搜档网
当前位置:搜档网 › 大学物理第4章 狭义相对论时空观习题解答(改)

大学物理第4章 狭义相对论时空观习题解答(改)

大学物理第4章 狭义相对论时空观习题解答(改)
大学物理第4章 狭义相对论时空观习题解答(改)

习 题

4-1 一辆高速车以0.8c 的速率运动。地上有一系列的同步钟,当经过地面上的一台钟时,驾驶员注意到它的指针在0=t ,他即刻把自己的钟拨到0'=t 。行驶了一段距离后,他自己的钟指到6 us 时,驾驶员看地面上另一台钟。问这个钟的读数是多少? 【解】s)(10)

/8.0(16/12

2

2

0μ=-μ=

-?=

?c c s c

u t t

所以地面上第二个钟的读数为

)(10's t t t μ=?+=

4-2 在某惯性参考系S 中,两事件发生在同一地点而时间间隔为4 s ,另一惯性参考系S′ 以速度c u 6.0=相对于S 系运动,问在S′ 系中测得的两个事件的时间间隔和空间间隔各是多少?

【解】已知原时(s)4=?t ,则测时

(s)56

.014/1'2

2

2

=-=

-?=

?s c

u t t

由洛伦兹坐标变换2

2

/1'c u ut x x --=

,得:

)(100.9/1/1/1'''82

22

2202

21012m c u t u c u ut x c u ut x x x x ?=-?=

---

--=

-=?

4-3 S 系中测得两个事件的时空坐标是x 1=6×104 m ,y 1=z 1=0,t 1=2×10-4 s 和x 2=12×104 m ,y 2=z 2=0,t 2=1×10-4 s 。如果S′ 系测得这两个事件同时发生,则S′ 系相对于S 系的速度u 是多少?S′ 系测得这两个事件的空间间隔是多少?

【解】(m )1064

?=?x ,0=?=?z y ,(s)1014

-?-=?t ,0'=?t

0)('2=?-

?γ=?c

x

u t t 2c

x

u t ?=?? (m/s )105.182?-=??=?x t c u (m )102.5)('4?=?-?γ=?t u x x

4-4 一列车和山底隧道静止时等长。列车高速穿过隧道时,山顶上一观察者看到当列车完全进入隧道时,在隧道的进口和出口处同时发生了雷击,但并未击中列车。试按相对论理论定性分析列车上的旅客应观察到什么现象?这现象是如何发生的? 【解】S 系(山顶观察者)看雷击同时发生,但车厢长度短于山洞长度,故未被击中。

'S 系(列车观察者)看雷击不同时发生。虽然车厢长度长于山洞长度,但出洞处

先遭雷击,入洞处后遭雷击,此时车尾已经进入山洞。故未被击中。

4-5 一飞船以0.99c 的速率平行于地面飞行,宇航员测得此飞船的长度为400 m 。(1)地面上的观察者测得飞船长度是多少?(2)为了测得飞船的长度,地面上需要有两位观察者携带着两只同步钟同时站在飞船首尾两端处。那么这两位观察者相距多远?(3)宇航员测得两位观察者相距多远?

【解】(1))(4.5699.01400/12

2

2

0m c u l l =-=-=

(2)这两位观察者需同时测量飞船首尾的坐标,相减得到飞船长度,所以两位观察者相距是56.4 m 。

(3)上的两位观察者相距56.4 m ,这一距离在地面参考系中是原长,宇航员看地面是运动的,他测得地面上两位观察者相距为

)(96.799.014.56/12220m c u l l =-=-=

所以宇航员测得两位观察者相距7.96 m 。

4-6 一艘飞船原长为l 0,以速度v 相对于地面作匀速直线飞行。飞船内一小球从尾部

运动到头部,宇航员测得小球运动速度为u ,求地面观察者测得小球运动的时间。

【解】宇航员测得小球离开尾部的时空坐标为)','11t x (,小球到达头部的时空坐标为)','22t x (。地面上测得小球运动的时间为:

)

''(/11)'

'(/11)''(/11

22

2211222222

212c x v t c v c vx t c

v c vx t c v t t t ?+?-=+--+

-=

-=?

012''l x x =- ,u l t t /''012=-

2220222/1)

/1()''(/11

c

v u c uv l c x u t c u t -+=

?+?-=?∴

4-7 在实验室中测得两个粒子均以0.75c 的速度沿同一方向飞行,它们先后击中同一静止靶子的时间间隔为5×10-8 s 。求击中靶子前两个粒子相互间的距离。 【解】(m)25.11=?=?t u x

4-8 在参考系S 中,一粒子沿x 轴做直线运动,从坐标原点O 运动到x =1.50×108 m 处,经历时间Δt =1 s 。试计算粒子运动所经历的原时是多少? 【解】粒子在S 系中的速度为

)(105.10

18-??=?-=

s m t

x u 原时为:)(866.0/12

2

0s c u t t =-?=?

4-9 一个在实验室中以0.8c 的速度运动的粒子飞行了3 m 后衰变。实验室中的观察者测量该粒子存在了多少时间?与粒子一起运动的观察者测得该粒子在衰变前存在了多少时间?

【解】实验室中的观察者测得粒子的存在时间为:(s)1025.18-?=?=

?u

x

t 与粒子一起运动的观察者测得粒子的存在时间为原时

(s)101/18220-?=-?=?c u t t

4-10

远方的一颗星体以0.8c 的速率离开我们。我们接收到它辐射出来的闪光周期

是5昼夜,求固定在星体上的参考系测得的闪光周期。

【解】我们接收的闪光周期是测时,固定在星体上的参考系测得的闪光周期为原时,即原时为:)(3/1'22昼夜=-?=?c u t t 4-11

一星体与地球之间的距离是16光年。一观察者乘坐以0.8c 速度飞行的飞船

从地球出发向着星体飞去。该观察者测得飞船到达星体所花的时间是多少?试解释计算结果。

【解】星体与地球之间的距离是原长,飞船上的观察者测得的距离是测长,测长为:

)(6.98.01/1L '02220光年=-=-=L c u L

)(128.0'

'年==

?c

L t 地球上的观察者测得飞船到达星体所花的时间为:)(208.00

年==

?c

L t 飞船上的观察者测得的时间是原时,地球上的观察者测得飞船到达星体所花的时间为测时,这正是时间膨胀的一种表现。 4-12

一根固有长度为1 m 的尺子静止在S′系中,与O ′x′轴成30°角。如果在S 系

中测得该尺与Ox 轴成45°角,则S′ 系相对于S 系的速度u 是多少?S 系测得该尺的长度是多少?

【解】在'S 系中,米尺在x′ 轴方向的投影长度为:(m)2

3

30cos '0=

=

L x

在y ′ 轴方向的投影长度为:(m)5.030sin '0==

L y

在S 系中,米尺在y 轴方向的投影长度不变,)(5.0'm y y ==

由于米尺在S 系中测得该尺与Ox 轴的夹角为45°,则在x 轴方向的投影长度为:

)(5.0m x =,即

2222/12

3

5.0'/1c u x c u x -=

?-= S′ 系相对于S 系的速度为:c u 3

2

= S 系中测得该尺的长度为:(m)707.05.02=?=L

4-13

一立方体的质量和体积分别为m 0和V 0。求立方体沿其一棱的方向以速速u

运动时的体积和密度。

【解】 设立方体沿x 方向运动,立方体的一条棱边平行于x 轴。 立方体的原边长为300V a =

运动时,沿x 轴方向边长为:02

2

/1'a c u a -=

因此物体的体积为:2

2

00002

2

/1/1'c u V a a a c u V -=??-= 运动时,物体的质量为:02

2

/11m c

u m -=

因此运动时物体的密度为:

1220022002

2)/1(/1/11''--=--==

c u V m c u V m c u V m ρ 4-14

直杆纵向平行于S 系的Ox 轴匀速运动,在S 系中同时标出该杆两端的位置,

并测得两端坐标差Δx 1=4 m 。若在固定于杆上的S′ 系中同时标出该杆两端的位置,则

在S′ 系中测得两端坐标差Δx 2=9 m 。求杆本身的长度和杆相对于S 系的运动速度。 【解】根据题意可知,在S′ 系中测得杆的长度即为原长0L 。

029()L x m =?=

根据长度收缩关系式2

2

10/1c

u x L -?=

1x ?是在s 系中测得杆的长度

21

22

1x u c x ??-=

? 3u c ∴=

【解】(邱雄习题答案)设直杆的原长为0L ,根据题意可知,在S′ 系中测得杆的长度即为原长。

了)

这个题目的Δx 2=9 m 是在S 系中的两个坐标之差,不是原长。如果用洛仑兹变换解这题的第二次测量,会更容易理解。以下是我的解法。

【解】在S′ 系中,不管是否同时测量,杆两端坐标差都是原长,设直杆的原长为0L 。

第一次测量,Δx 1=4 m 是动长,可以直接用长度收缩公式,有以下关系:

2

2

10/1c

u x L -?=

(1)

第二次测量,Δt 2′ =0 Δx 2=9 m Δx 2′ =L 0 由洛仑兹变换

)'t u 'x (c u 1x 222

2

2???+-=

1 得到下面式子

2220/1c u x L -?= (2)

由(1)(2)得到

2122x x c u ??=

-1 c u 35

=? )(69

51922

0m L =-=

4-15

从地球上测得地球到最近的恒星半人马座α星的距离是4.3×1016 m ,设一宇

宙飞船以速度0.99c 从地球飞向该星。(1)飞船中的观察者测得地球和该星间距离是多少?(2)按照地球上的时钟计算,飞船往返一次需要多少时间?若以飞船上的时钟计算,往返一次的时间又为多少?

【解】(1)设地球为S 系,飞船为S’系。地球上测得地球到半人马座α星的距离为原长,飞船测得的距离为测长。则:

)(1092.1999.01103.4/1'15216220m c u l l ?=-??=-=

(2)地球上的时钟计算飞船往返一次)2(0l 所需的时间为

年)(1.9)(87.2103999.0103.4228

16

0==????==?s u l t

地球上的时钟计算飞船往返一次所需的时间为测时,以飞船时钟计为原时,则

年)

(41.0999.01.19/1'222=-?=-?=?c u t t 4-16

天津和北京相距120 km 。在北京于某日上午9时整有一工厂因过载而断电。

同日在天津于9时0分0.0003秒有一自行车与卡车相撞。试求在以c 8.0沿北京到天津方向飞行的飞船中的观察者看来,这两个事件相距多远?这两个事件之间的时间间隔是多少?哪一事件发生的更早?

【解】(1)设飞船为'S 系,地球为S 系,北京发生事件1,天津发生事件2。飞船测得这两个事件的距离为:

2

2

2

2

202

2

1012/1/1/1'''c

u t u x c

u ut x c

u ut x x x x -?-?=

---

--=

-=?

)(80)(10808.010003

.01038.01012032

83km m =?=-???-?=

(2)飞船测得这两个事件的时间间隔为:

)(/11'22

2c

x

u t c u t ?-

?-=

? )(1033.3))103(101201038.00003.0(8

.011

5

28382s -?-=?????--= 0'

4-17

地球上的观察者发现,一艘以c 6.0的速度航行的宇宙飞船在5 s 后同一个以

c 8.0的速度与飞船相向飞行的彗星相撞。

(1)飞船上的人看到彗星以多大速率向他们接近。(2)按照飞船上观察者的钟,还有多少时间允许它离开原来的航线以避免相撞? 【解】(1)设地球为S 系,飞船为'S 系。由洛伦兹速度变换,在飞船测得的彗星速度为:

c c

c c uv u v v 95.06

.0)8.0(16.08.0/1'2-=?----=--=

即彗星以c 95.0的速率向飞船接近。

(2)飞船上测得测得离发生碰撞的时间间隔为:

)(46.015/1'222s t c u t =-?=?-=?

4-18

一原子核以0.6c 的速率离开某观察者运动。原子核在它的运动方向上向后发

射一光子,向前发射一电子。电子相对于核的速度为0.8c 。对于静止的观察者,电子和光子各具有多大的速度?

【解】设观察者所在参考系为S 系,原子核为S ’系。 洛伦兹速度变换式2

/1'c vu u

v v ++=

由题意可知,c u 6.0=,电子c v 8.0'=,光子c v -=' 电子的速度 c c

c c vu u v v 946.06

.08.016.08.0/1'2

=?++=++=电子 光子的速度 c c

c c vu u v v -=?-++-=++=6

.0)1(16.0/1'2光子

4-19

(1)火箭A 以0.8c 的速度相对于地球向正东飞行,火箭B 以0.6c 的速度相

对于地球向正西飞行,求火箭B 测得火箭A的速度大小和方向。(2)如果火箭A 向正北飞行,火箭B 仍向正西飞行,由火箭B 测得火箭A的速度大小和方向又是如何? 【解】取正东为x 轴的正向,正北为y 轴的正向,根据洛伦兹速度相对变换式

2/1'c u v u v v x x x --=, 222/1/1'c u v c u v v x y y --=, 2

2

2/1/1'c u v c u v v x z z --=

(1)将c u 6.0-=,c v x 8.0=,0=y v ,0=z v 代入,得:

c c c c u v u v v x x x 95.0.6)

0(8.01)

6.0(8.0/1'2

=-?---=--=

0/1/1'2

22=--=

c u v c u v v x y y

0/1/1'2

22=--=c

u v c u v v x z z 即在火箭B 上测得火箭A的速度大小为c 95.0,方向为正东。

(2)将c u 6.0-=,0=x v ,c v y .80=,0=z v 代入,得:

c c c u v u v v x x x 6.0.6)

0(01)

6.0(0/1'2=-?---=--=

c c c u v c u v v x y y 64.0)

6.0(016.018.0/1/1'22

22=-?--?=--=

0/1/1'2

2

2=--=c u v c u v v x z z

c v v v y x 87.0''22=+=, 8.466.064.0==c

c

arctg

θ 即在火箭B 上测得火箭A的速度大小为c 87.0,方向为东偏北

8.46。 4-20

北京正负电子对撞机中,电子可以被加速到能量为eV 1000.39

?。求:(1)

这个电子的质量是其静止质量的多少倍?(2)这个电子的速率为多大?和光速相比相差多少?(3)这个电子的动量有多大? 【解】(1)根据20202

20k /11-c m c m c u E E E --==,eV 1051.0620?=c m 可

得:

588311051.01000.31/11

69

22=+??=+=-E E c u k 002

2

5883/11m m c

u m =-=

即这个电子的质量是其静止质量的5883倍。

(2)由上式可计算出这个电子的速率为:c u 60.99999998= 与光速相比,相差:)/(3.34101.44-8

s m c u =?=?

(3)电子的动量为:c

c m E E p k k 2

02

2+=

由于2

0c m E k >>,所以有)/(106.110

3106.110318819

9s m kg c E p k ??=????=≈-- 4-21

一个电子的总能量是它静能的5倍,求它的速率、动量、总能分别是多少?

【解】(1)根据k 0E E E +=,2

mc E =,200c m E =可得:

00

05m m m m

E E =?=

由02

2

/11m c

v m -=

,求得电子的速率为:

)/(1094.25

24

8s m c v ?==

(2)电子的动量:)(1034.1c 5

24

5210m/s kg m mv p ??=?

==- (3)电子的能量:)(1028.3413

200k J c m E E E -?==-=

4-22

(1)把一个静止质量为m 0的粒子由静止加速到0.1c 所需的功是多少?(2)

由速率0.89c 加速到0.99c 所需的功又是多少?

【解】(1)由相对论的功能关系,电子由静止加速到0.1c 所需的功为:

20202

22021005.0)1/11(

-c m c m c v c m mc W =--==

(2)同理,电子由速率0.89c 加速到0.99c 所需的功为:

202

2

12

2

221222)/11/11(

-c m c v c v c m c m W --

-==

20202

2

.94)9

.80119.9011(

c m c m =--

-=

4-23

一个电子由静止出发,经过电势差为1.0×104 V 的均匀电场,电子被加速。

已知电子静止质量为m 0=9.11×10-31 kg ,求:(1)电子被加速后的动能;(2)电子被加速后质量增加的百分比;(3)电子被加速后的速率。 【解】(1)根据)(106.11010

6.115419

k J V e E --?=??=?=

(2)由相对论的动能表达式2

02k -c m mc E =,可得质量的增量为:

)(1078.132

20kg c

E m m m k -?==

-=? 电子质量增加的百分比为:

%210

11.91078.13132

0=??=?--m m (3)电子加速后质量为:)(1029.931

0kg m m m -?=+?=

由质速关系式02

2

/11m c

v m -=

,可得:

)/(1085.5)29

.911.9(1103)(

172

820s m m m c v ?=-??=-= 4-24

一个质子的静止质量为kg 10

65672.127

P -?=m ,一个中子的静止质量为

kg 1095674.127n -?=m ,一个质子和一个中子结合成的氘核的静止质量为kg 1065343.327D -?=m 。求结合过程中放出的能量是多少MeV ?这能量称为氘核

的结合能,它是氘核静能的多少倍? 【解】氘核的结合能为:

2

8-272D D 10(310

3.34365)-1.67495(1.67265)())(???+=?=?c m E )(2.22)(105.53-13MeV J =?=

%12.0)

103(1034365.31055.3(2

82713

2D D D =????==--c m ΔE)η 即这一结合能是氘核静能的0.12%倍。 4-25

太阳发出的能量是由质子参与一系列反应产生的,其总结果相当于热核反

应:e He H H H H 1

04

21

11

11

11

12+→+++。

已知:一个质子(H 1

1)的静止质量是kg 10

65672.127

P -?=m ,一个氦核(He 4

2)

的静止质量是kg 1050642.627He -?=m ,一个正电子(e 1

0)的静止质量是

kg 1011.931e -?=m 。求:这一反应所释放的能量是多少?(2)消耗1kg 的质子可

以释放的能量是多少?(3)目前太阳辐射的总功率为W 109.326

?=P ,它一秒钟

消耗多少千克质子? 【解】(1)释放能量为:

28-31-27-27210(3)109.112-106.64250-10651.672(4)

???????=?=?mc E )(10

5.14-12

J ?=

(2)消耗1kg 的质子释放的能量为:

)/(1020.6)1067265.14/(105.141427-12kg J ?=???-

(3)太阳一秒钟消耗质子的质量为:

)/(1029.6)1020.6/(109.3111426s kg ?=??

4-26

两个静止质量都是m 0 的小球,其中一个静止,另一个以v =0.8c 运动。它们

对心碰撞后粘在一起,求碰后合成小球的静止质量。 【解】两小球碰撞前后能量守恒,则有:

2220c m mc c m 合=+ 合m m c

v m =-+

?02

2

0/11

两小球碰撞前后动量守恒,则有:

'v m mv 合= ')1/11(

/11102

2

02

2

v m c

v v m c

v +-=--?

将c v 8.0=代入,解得:03

8

m m =合, c v 5.0'= 因为02

2

/'11合合m c

v m -=

,所以有:

02022031.25.013

8

/'1m m c v m m =-=-=合合

即碰撞后合成小球的静止质量为031.2m 。 4-27

在什么速度下粒子的动量等于非相对论动量的2倍?又在什么速度下粒子的

动能等于非相对论动能的2倍? 【解】对动量问题,由题意可知:

v m v m c

v 002

2

2/11=-

解得:c c v 866.02/3==

对能量问题有:

202022

1

2-v m c m mc ?=

)1()1(11-/11

22

2222

2

22c

v c v c v c v -+=?=-?

解得:c v 786.0=

大学物理第一章质点运动学习题解(详细、完整)

第一章 质点运动学 1–1 描写质点运动状态的物理量是 。 解:加速度是描写质点状态变化的物理量,速度是描写质点运动状态的物理量,故填“速度”。 1–2 任意时刻a t =0的运动是 运动;任意时刻a n =0的运动是 运动;任意时刻a =0的运动是 运动;任意时刻a t =0,a n =常量的运动是 运动。 解:匀速率;直线;匀速直线;匀速圆周。 1–3 一人骑摩托车跳越一条大沟,他能以与水平成30°角,其值为30m/s 的初速从一边起跳,刚好到达另一边,则可知此沟的宽度为 ()m/s 102=g 。 解:此沟的宽度为 m 345m 10 60sin 302sin 220=??==g R θv 1–4 一质点在xoy 平面运动,运动方程为t x 2=,229t y -=,位移的单位为m ,试写出s t 1=时质点的位置矢量__________;s t 2=时该质点的瞬时速度为__________,此时的瞬时加速度为__________。 解:将s t 1=代入t x 2=,229t y -=得 2=x m ,7=y m s t 1=故时质点的位置矢量为 j i r 72+=(m ) 由质点的运动方程为t x 2=,229t y -=得质点在任意时刻的速度为 m/s 2d d ==t x x v ,m/s 4d d t t x y -==v s t 2=时该质点的瞬时速度为 j i 82-=v (m/s ) 质点在任意时刻的加速度为 0d d ==t a x x v ,2m/s 4d d -==t a y y v s t 2=时该质点的瞬时加速度为j 4-m/s 2 。

大学物理第四章课后答案

第四章 气体动理论 一、基本要求 1.理解平衡态的概念。 2.了解气体分子热运动图像和理想气体分子的微观模型,能从宏观和统计意义上理解压强、温度、内能等概念。 3.初步掌握气体动理论的研究方法,了解系统的宏观性质是微观运动的统计表现。 4.理解麦克斯韦速率分布律、速率分布函数和速率分布曲线的物理意义,理解气体分子运动的最概然速率、平均速率、方均根速率的意义,了解玻尔兹曼能量分布律。 5.理解能量按自由度均分定理及内能的概念,会用能量均分定理计算理想气体的内能。 6.了解气体分子平均碰撞频率及平均自由程的意义及其简单的计算。 二、基本内容 1. 平衡态 在不受外界影响的条件下,一个系统的宏观性质不随时间改变的状态。 2. 理想气体状态方程 在平衡态下,理想气体各参量之间满足关系式 pV vRT = 或 n k T p = 式中v 为气体摩尔数,R 为摩尔气体常量118.31R J mol K --=??,k 为玻尔兹曼常量2311.3810k J K --=?? 3. 理想气体压强的微观公式 212 33 t p nm n ε==v 4. 温度及其微观统计意义 温度是决定一个系统能否与其它系统处于热平衡的宏观性质,在微观统计上

32 t kT ε= 5. 能量均分定理 在平衡态下,分子热运动的每个自由度的平均动能都相等,且等于2 kT 。以 i 表示分子热运动的总自由度,则一个分子的总平均动能为 2 t i kT ε= 6. 速率分布函数 ()dN f Nd = v v 麦克斯韦速率分布函数 23 2/22()4()2m kT m f e kT ππ-=v v v 7. 三种速率 最概然速率 p = =v 平均速率 = =≈v 方均根速率 = =≈8. 玻尔兹曼分布律 平衡态下某状态区间(粒子能量为ε)的粒子数正比于kT e /ε-。重力场中粒子数密度按高度的分布(温度均匀): kT m gh e n n /0-= 9. 范德瓦尔斯方程 采用相互作用的刚性球分子模型,对于1mol 气体 RT b V V a p m m =-+ ))((2 10. 气体分子的平均自由程 λ= =

大学物理练习题

一、选择题 1. 半径为R 的均匀带电球面,若其电荷面密度为σ,取无穷远处为零电势点,则在距离球面r (R r <) 处的电势为( ) A 、0 B 、R 0 εσ C 、r R 02 εσ D 、r R 024εσ 2. 下列说法正确的是:( ) A. 电场场强为零的点,电势也一定为零 B. 电场场强不为零的点,电势也一定不为零 C. 电势为零的点,电场强度也一定为零 D. 电势在某一区域内为常量,则电场强度在该区域内必定为零 3. 如图示,边长是a 的正方形平面的中垂线上,距中心O 点 处, 有一电量为q 的正点电荷,则 通过该平面的电通量是( )。 A. B. C. D. 4. 两根长度相同的细导线分别密绕在半径为R 和r 的两个直圆筒上形成两个螺线管,两个螺线管的长 度相同,R=2r ,螺线管通过的电流相同为I ,螺线管中的磁感应强度大小为B R ,B r ,则应该满足:( ) A. B R =2B r B. B R =B r C. 2B R =B r D. B R =4B r 5. 两个同心均匀带电球面,半径分别为a R 和b R (b a R R <), 所带电荷分别为a q 和b q .设某点与球 心相距r ,当b a R r R <<时,取无限远处为零电势,该点的电势为( ) A 、 r q q b a +?π041ε B 、 r q q b a -?π041ε

C 、???? ? ?+?b b a R q r q 0 41επ D 、 ???? ??+?b b a a R q R q 0 41 επ 6. 面积为S 和S 2的两圆线圈1、2如图放置,通有相同的电流I .线圈1的电流所产生的通过线圈2的磁通用21Φ表示,线圈2的电流所产生的通过线圈1的磁通用12Φ表示,则21Φ和12Φ的大小关系为( ) 1 2 S 2 S I I A 、12212ΦΦ= B 、1221ΦΦ> C 、1221ΦΦ= D 、12212 1 ΦΦ= 7. 如图所示,两个“无限长”的、半径分别为1R 和2R 的共轴圆柱面均匀带电,沿轴线方向单位长度上所带电荷分别为1λ和2λ,则在两圆柱面之间、距离轴线为r 处的P 点的电场强度大小E 为( ) A 、 r 02 12ελλπ+ B 、 2 02 10122R R ελελπ+ π C 、 r 01 2ελπ D 、0 8. 如图,长度为l 的直导线ab 在均匀磁场B ? 中以速度v ? 移动,直导线ab 中的电动势为( )

大学物理第一章 习题

第一章 质点运动学 1–1 描写质点运动状态的物理量是 。 1–2 任意时刻a t =0的运动是 运动;任意时刻a n =0的运动是 运动;任意时刻a =0的运动是 运动;任意时刻a t =0,a n =常量的运动是 运动。 1–3 一人骑摩托车跳越一条大沟,他能以与水平成30°角,其值为30m/s 的初速从一边起跳,刚好到达另一边,则可知此沟的宽度为 ()m /s 102=g 。 1–4 一质点在xoy 平面内运动,运动方程为t x 2=,229t y -=,位移的单位为m ,试写出s t 1=时质点的位置矢量__________;s t 2=时该质点的瞬时速度为__________,此时的瞬时加速度为__________。 1–5 一质点沿x 轴正向运动,其加速度与位置的关系为x a 23+=,若在x =0处,其速度m /s 50=v ,则质点运动到x =3m 处时所具有的速度为__________。 1–6 一质点作半径R =1.0m 的圆周运动,其运动方程为t t 323+=θ,θ以rad 计,t 以s 计。则当t =2s 时,质点的角位置为________;角速度为_________;角加速度为_________;切向加速度为__________;法向加速度为__________。 1–7 下列各种情况中,说法错误的是[ ]。 A .一物体具有恒定的速率,但仍有变化的速度 B .一物体具有恒定的速度,但仍有变化的速率 C .一物体具有加速度,而其速度可以为零 D .一物体速率减小,但其加速度可以增大 1–8 一个质点作圆周运动时,下列说法中正确的是[ ]。 A .切向加速度一定改变,法向加速度也改变 B .切向加速度可能不变,法向加速度一定改变 C .切向加速度可能不变,法向加速度不变 D .切向加速度一定改变,法向加速度不变 1–9 一运动质点某瞬时位于位置矢量),(y x r 的端点处,对其速度大小有四种意见: (1)t r d d (2)t d d r (3)t s d d (4)2 2d d d d ?? ? ??+??? ??t y t x 下述判断正确的是[ ]。 A .只有(1),(2)正确 B .只有(2),(3)正确 C .只有(3),(4)正确 D .只有(1),(3)正确 1–10 一质点在平面上运动,已知质点位置矢量的表示式为j i r 22bt at +=(其中a 、b 为常量),则该质点作[ ]。 A .匀速直线运动 B .变速直线运动 C .抛物线运动 D .一般曲线运动 1–11 一小球沿斜面向上运动,其运动方程为S =5+4t –t 2(SI ),则小球运动到最高点的时刻是[ ]。

大学物理第四章习题解

第四章 刚体的定轴转动 4–1 半径为20cm 的主动轮,通过皮带拖动半径为50cm 的被动轮转动,皮带与轮之间无相对滑动,主动轮从静止开始作匀角加速度转动,在4s 被动轮的角速度达到π/s 8,则主动轮在这段时间转过了 圈。 解:被动轮边缘上一点的线速度为 πm/s 45.0π8222=?==r ωv 在4s 主动轮的角速度为 πrad/s 202 .0π412111====r r v v ω 主动轮的角速度为 2011πrad/s 54 0π2==?-=t ωωα 在4s 主动轮转过圈数为 20π 520ππ2(π212π212 121=?==αωN (圈) 4–2绕定轴转动的飞轮均匀地减速,t =0时角速度为0ω=5rad/s ,t =20s 时角速度为 08.0ωω=, 则飞轮的角加速度α= ,t =0到t =100s 时间飞轮所转过的角度θ = 。 解:由于飞轮作匀变速转动,故飞轮的角加速度为 20 s /rad 05.020 558.0-=-?=-=t ωωα t =0到t =100s 时间飞轮所转过的角度为 rad 250100)05.0(2 1100521220=?-?+?=+=t t αωθ 4–3 转动惯量是物体 量度,决定刚体的转动惯量的因素有 。 解:转动惯性大小,刚体的形状、质量分布及转轴的位置。 4–4 如图4-1,在轻杆的b 处与3b 处各系质量为2m 和m 的质点,可绕O 轴转动,则质点系的转动惯量为 。 解:由分离质点的转动惯量的定义得 221i i i r m J ?=∑=22)3(2b m mb +=211mb = 4–5 一飞轮以600r/min 的转速旋转,转动惯量为2.5kg·m 2,现加一恒定的制动力矩使飞轮在1s 停 止转动,则该恒定制动力矩的大小M =_________。 解:飞轮的角加速度为 20s /rad 201 60/π26000-=?-=-= t ωωα 制动力矩的大小为 m N π50π)20(5.2?-=-?==αJ M 负号表示力矩为阻力矩。 图4-1 m 2m b 3b O

《大学物理习题集》 上 习题解答

) 2(选择题(5)选择题(7)选择题单元一 质点运动学(一) 一、选择题 1. 下列两句话是否正确: (1) 质点作直线运动,位置矢量的方向一定不变; 【 ? 】 (2) 质点作园周运动位置矢量大小一定不变。 【 ? 】 2. 一物体在1秒内沿半径R=1m 的圆周上从A 点运动到B 点,如图 所示,则物体的平均速度是: 【 A 】 (A) 大小为2m/s ,方向由A 指向B ; (B) 大小为2m/s ,方向由B 指向A ; (C) 大小为3.14m/s ,方向为A 点切线方向; (D) 大小为3.14m/s ,方向为B 点切线方向。 3. 某 质 点 的 运 动 方 程 为 x=3t-5t 3+6(SI) ,则该质点作 【 D 】 (A) 匀加速直线运动,加速度沿X 轴正方向; (B) 匀加速直线运动,加速度沿X 轴负方向; (C) 变加速直线运动,加速度沿X 轴正方向; (D)变加速直线运动,加速度沿X 轴负方向 4. 一质点作直线运动,某时刻的瞬时速度v=2 m/s ,瞬时加速率a=2 m/s 2则一秒钟后质点的速度: 【 D 】 (A) 等于零 (B) 等于-2m/s (C) 等于2m/s (D) 不能确定。 5. 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处 的定滑轮拉湖中的船向边运动。设该人以匀速度V 0 收绳,绳不伸长、湖水静止,则小船的运动是 【 C 】 (A)匀加速运动; (B) 匀减速运动; (C) 变加速运动; (D) 变减速运动; (E) 匀速直线运动。 6. 一质点沿x 轴作直线运动,其v-t 曲线如图所示, 如t=0时, 质点位于坐标原点,则t=4.5s 时,质点在x 轴上的位置为 【 C 】 (A) 0; (B) 5m ; (C) 2m ; (D) -2m ; (E) -5m *7. 某物体的运动规律为 t kv dt dv 2-=, 式中的k 为大于零的常 数。当t=0时,初速为v 0,则速度v 与时间t 的函数 关系是 【 C 】

大学物理 第一章练习及答案

一、判断题 1. 在自然界中,可以找到实际的质点. ···················································································· [×] 2. 同一物体的运动,如果选取的参考系不同,对它的运动描述也不同. ···························· [√] 3. 运动物体在某段时间内的平均速度大小等于该段时间内的平均速率. ···························· [×] 4. 质点作圆周运动时的加速度指向圆心. ················································································ [×] 5. 圆周运动满足条件d 0d r t =,而d 0d r t ≠ . · ··············································································· [√] 6. 只有切向加速度的运动一定是直线运动. ············································································ [√] 7. 只有法向加速度的运动一定是圆周运动. ············································································ [×] 8. 曲线运动的物体,其法向加速度一定不等于零. ································································ [×] 9. 质点在两个相对作匀速直线运动的参考系中的加速度是相同的. ···································· [√] 10. 牛顿定律只有在惯性系中才成立. ························································································ [√] 二、选择题 11. 一运动质点在某时刻位于矢径(),r x y 的端点处,其速度大小为:( C ) A. d d r t B. d d r t C. d d r t D. 12. 一小球沿斜面向上运动,其运动方程为2 54SI S t t =+-() ,则小球运动到最高点的时刻是: ( B ) A. 4s t = B. 2s t = C. 8s t = D. 5s t = 13. 一质点在平面上运动,已知其位置矢量的表达式为22 r at i bt j =+ (其中a 、b 为常量)则 该质点作:( B ) A. 匀速直线运动 B. 变速直线运动 C. 抛物线运动 D. 一般曲线运动 14. 某物体的运动规律为2d d v kv t t =-,式中的k 为大于0的常数。当0t =时,初速为0v ,则速 度v 与时间t 的关系是:( C ) A. 0221v kt v += B. 022 1 v kt v +-= C. 021211v kt v += D. 0 21211v kt v +-= 15. 在相对地面静止的坐标系中,A 、B 二船都以2m/s 的速率匀速行驶,A 沿x 轴正方向,B

大学物理简明教程(吕金钟)第四章习题答案

第四章电磁学基础 静电学部分 4.2解:平衡状态下受力分析 +q受到的力为: 处于平衡状态: (1) 同理,4q 受到的力为: (2) 通过(1)和(2)联立,可得:, 4.3解:根据点电荷的电场公式: 点电荷到场点的距离为: 两个正电荷在P点产生的电场强度关于中垂线对称: 所以: 当与点电荷电场分布相似,在很远处,两个正电荷q组成的电荷系的电场分布,与带电量为2q的点电荷的电场分布一样。 4.4解:取一线元,在圆心处 产生场强: 分解,垂直x方向的分量抵消,沿x方向 的分量叠加: 方向:沿x正方向 4.5解:(1 (2)两电荷异号,电场强度为零的点在外侧。 4.7解:线密度为λ,分析半圆部分: 点电荷电场公式: + +

在本题中: 电场分布关于x 轴对称:, 进行积分处理,上限为,下限为: 方向沿x轴向右,正方向 分析两个半无限长: ,,, 两个半无限长,关于x轴对称,在y方向的分量为0,在x方向的分量: 在本题中,r为场点O到半无限长线的垂直距离。电场强度的方向沿x轴负方向,向左。那么大O点的电场强度为: 4.8解:E的方向与半球面的轴平行,那么 通过以R为半径圆周边线的任意曲面的 电通量相等。所以 通过S1和S2的电通量等效于通过以R为半 径圆面的电通量,即: 4.9解:均匀带电球面的场强分布: 球面 R 1 、R2的场强分布为: 根据叠加原理,整个空间分为三部分: 根据高斯定理,取高斯面求场强: 图4-94 习题4.8用图 S1 S2 R O

场强分布: 方向:沿径向向外 4.10解:(1)、这是个球对称的问题 当时,高斯面对包围电荷为Q 当,高斯面内包围电荷为q 方向沿径向 (2)、证明:设电荷体密度为 这是一个电荷非足够对称分布的带电体,不能直接用高斯定理求解。但可以把这一带电体看成半径为R、电荷体密度为ρ的均匀带电球体和半径为R`、电荷体密度为-ρ的均匀带电体球相叠加,相当于在原空腔同时补上电荷体密度为ρ和-ρ的球体。由电场 叠加原理,空腔内任一点P的电场强度为: 在电荷体密度为ρ球体内部某点电场为: 在电荷体密度为-ρ球体内部某点电场为: 所以 4.11解:利用高斯定理,把空间分成三部分

大学物理 习题分析与解答

第八章 恒定磁场 8-1 均匀磁场的磁感强度B 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为[ ]。 (A) B r 22π (B) B r 2π (C) 0 (D) 无法确定 分析与解 根据高斯定理,磁感线是闭合曲线,穿过圆平面的磁通量与穿过半球面的磁通量相等。正确答案为(B )。 8-2 下列说法正确的是[ ]。 (A) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过 (B) 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零 (C) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零 (D) 磁感强度沿闭合回路的积分不为零时,回路上任意点的磁感强度必定为零 分析与解 由磁场中的安培环路定理,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和一定为零。正确答案为(B )。 8-3 磁场中的安培环路定理∑?=μ=?n L I 1i i 0d l B 说明稳恒电流的磁场是[ ]。 (A) 无源场 (B) 有旋场 (C) 无旋场 (D) 有源场

分析与解 磁场的高斯定理与安培环路定理是磁场性质的重要表述,在恒定磁场中B 的环流一般不为零,所以磁场是涡旋场;而在恒定磁场中,通过任意闭合曲面的磁通量必为零,所以磁场是无源场;静电场中E 的环流等于零,故静电场为保守场;而静电场中,通过任意闭合面的电通量可以不为零,故静电场为有源场。正确答案为(B )。 8-4 一半圆形闭合平面线圈,半径为R ,通有电流I ,放在磁感强度为B 的均匀磁场中,磁场方向与线圈平面平行,则线圈所受磁力矩大小为[ ]。 (A) B R I 2π (B) B R I 221π (C) B R I 24 1π (D) 0 分析与解 对一匝通电平面线圈,在磁场中所受的磁力矩可表示为B e M ?=n IS ,而且对任意形状的平面线圈都是适用的。正确答案为(B )。 8-5 一长直螺线管是由直径d =0.2mm 的漆包线密绕而成。当它通以I =0.5A 的电流时,其内部的磁感强度B =_____________。(忽略绝缘层厚度,μ0=4π×10-7N/A 2) 分析与解 根据磁场中的安培环路定理可求得长直螺线管内部的磁感强度大小为nI B 0μ=,方向由右螺旋关系确定。正确答安为(T 1014.33-?)。 8-6 如图所示,载流导线在平面内分布,电流为I ,则在圆心O 点处的磁感强度大小为_____________,方向为 _____________ 。 分析与解 根据圆形电流和长直电 流的磁感强度公式,并作矢量叠加,可得圆心O 点的总

天津大学《物理化学》第四版_第四章习题及解答

第四章多组分系统热力学 4.1 有溶剂A与溶质B形成一定组成的溶液。此溶液中B的浓度为c B,质量摩尔浓度为 b B,此溶液的密度为。以M A,M B分别代表溶剂和溶质的摩尔质量,若溶液的组成用B 的摩尔分数x B表示时,试导出x B与c B,x B与b B之间的关系。 解:根据各组成表示的定义 4.2 D-果糖溶于水(A)中形成的某溶液,质量分数,此溶液 在20 °C时的密度。求:此溶液中D-果糖的(1)摩尔分数;(2)浓度;(3)质量摩尔浓度。 解:质量分数的定义为 4.3 在25 °C,1 kg水(A)中溶有醋酸(B),当醋酸的质量摩尔浓度b B介于 和之间时,溶液的总体积 。求:

(1)把水(A)和醋酸(B)的偏摩尔体积分别表示成b B的函数关系。 (2)时水和醋酸的偏摩尔体积。 解:根据定义 当时 4.4 60 °C时甲醇的饱和蒸气压是84.4 kPa,乙醇的饱和蒸气压是47.0 kPa。二者可形成理想液态混合物。若混合物的组成为二者的质量分数各50 %,求60 °C时此混合物的平衡蒸气组成,以摩尔分数表示。 解:质量分数与摩尔分数的关系为 求得甲醇的摩尔分数为 根据Raoult定律 4.5 80 °C是纯苯的蒸气压为100 kPa,纯甲苯的蒸气压为38.7 kPa。两液体可形成理想

液态混合物。若有苯-甲苯的气-液平衡混合物,80 °C时气相中苯的摩尔分数,求液相的组成。 解:根据Raoult定律 4.6 在18 °C,气体压力101.352 kPa下,1 dm3的水中能溶解O2 0.045 g,能溶解N2 0.02 g。现将1 dm3被202.65 kPa空气所饱和了的水溶液加热至沸腾,赶出所溶解的O2和N2,并干燥之,求此干燥气体在101.325 kPa,18 °C下的体积及其组成。设空气为理想气体混合物。 其组成体积分数为:, 解:显然问题的关键是求出O2和N2的Henry常数。 18 °C,气体压力101.352 kPa下,O2和N2的质量摩尔浓度分别为 这里假定了溶有气体的水的密度为(无限稀溶液)。 根据Henry定律, 1 dm3被202.65 kPa空气所饱和了的水溶液中O2和N2的质量摩尔浓度分 别为

大学物理课后习题答案详解

第一章质点运动学 1、(习题1.1):一质点在xOy 平面内运动,运动函数为2 x =2t,y =4t 8-。(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。 解:(1)由x=2t 得, y=4t 2-8 可得: y=x 2 -8 即轨道曲线 (2)质点的位置 : 2 2(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j = 则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8r i j v i j a j =+=+= 2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速 度为0v ,求运动方程)(t x x =. 解: kv dt dv -= ??-=t v v kdt dv v 001 t k e v v -=0 t k e v dt dx -=0 dt e v dx t k t x -?? =0 00 )1(0 t k e k v x --= 3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ? ?=v v 0 d 4d t t t v 2=t 2 v d =x /d t 2=t 2 t t x t x x d 2d 0 20 ?? = x 2= t 3 /3+10 (SI) 4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的 d d r t ,d d v t ,t v d d . 解:(1) t v x 0= 式(1) 2gt 21h y -= 式(2) 201 ()(h -)2 r t v t i gt j =+ (2)联立式(1)、式(2)得 2 2 v 2gx h y -= (3) 0d -gt d r v i j t = 而落地所用时间 g h 2t = 所以 0d -2g h d r v i j t = d d v g j t =- 2 202y 2x )gt (v v v v -+=+= 21 20 212202)2(2])([gh v gh g gt v t g dt dv +=+=

大学物理例题

例1 路灯离地面高度为H,一个身高为h 的人,在灯下水平路面上以匀速度步行。如图3-4所示。求当人与灯的水平距离为时,他的头顶在地面上的影子移动的速度的大小。 解:建立如右下图所示的坐标,时刻头顶影子的坐标为 ,设头顶影子的坐标为,则 由图中看出有 则有 所以有 ; 例2如右图所示,跨过滑轮C的绳子,一端挂有重物B,另一端A 被人拉着沿水平方向匀速运动,其速率。A离地高度保 持为h,h =1.5m。运动开始时,重物放在地面B0处,此时绳C在铅 直位置绷紧,滑轮离地高度H = 10m,滑轮半径忽略不计,求: (1) 重物B上升的运动方程;

(2) 重物B在时刻的速率和加速度; (3) 重物B到达C处所需的时间。 解:(1)物体在B0处时,滑轮左边绳长为l0 = H-h,当重物的位移为y时,右边绳长为 因绳长为 由上式可得重物的运动方程为 (SI) (2)重物B的速度和加速度为 (3)由知 当时,。

此题解题思路是先求运动方程,即位移与时间的函数关系,再通过微分求质点运动的速度和加速度。 例3一质点在xy平面上运动,运动函数为x = 2t, y = 4t2-8(SI)。 (1) 求质点运动的轨道方程并画出轨道曲线; (2) 求t1=1s和t2=2s时,质点的位置、速度和加速度。 解:(1) 在运动方程中消去t,可得轨道方程为 , 轨道曲线为一抛物线如右图所示。 (2) 由 可得: 在t1=1s 时, 在t2=2s 时, 例4质点由静止开始作直线运动,初始加速度为a0,以后加速度均匀增加,每经过τ秒增加a0,求经过t秒后质点的速度和位移。 解:本题可以通过积分法由质点运动加速度和初始条件,求解质点的速度和位移。

大学物理习题答案第一章

[习题解答] 1-3 如题1-3图所示,汽车从A地出发,向北行驶60km到达B地,然后向东行驶60km到达C地,最后向东北行驶50km到达D地。求汽车行驶的总路程和总位移。 解汽车行驶的总路程为 ; 汽车的总位移的大小为 ?r = 位移的方向沿东北方向,与 方向一致。 1-4 现有一矢量R是时间t的函数,问 与 在一般情况下是否相等?为什么? 解 与 在一般情况下是不相等的。因为前者是对矢量R的绝对值(大小或长度)求导, 表示矢量R的大小随时间的变化率;而后者是对矢量R的大小和方向两者同时求导,再取绝对值,表示矢量R大小随时间的变化和矢量R方向随时间的变化两部分的绝对值。如果矢量R方向不变只是大小变化,那么这两个表示式是相等的。 1-5 一质点沿直线L运动,其位置与时间的关系为r = 6t 2 -2t 3 ,r和t的单位分别是m和s。求: (1)第二秒内的平均速度; (2)第三秒末和第四秒末的速度; (3)第三秒末和第四秒末的加速度。

解取直线L的正方向为x轴,以下所求得的速度和加速度,若为正值,表示该速度或加速度沿x轴的正方向,若为负值表示,该速度或加速度沿x轴的反方向。 (1)第二秒内的平均速度 m?s-1; (2)第三秒末的速度 因为,将t = 3 s 代入,就求得第三秒末的速度,为 v3 = - 18 m?s-1; 用同样的方法可以求得第四秒末的速度,为 v4 = - 48 m?s-1; (3)第三秒末的加速度 因为,将t = 3 s 代入,就求得第三秒末的加速度,为 a3 = - 24 m?s-2; 用同样的方法可以求得第四秒末的加速度,为 v4 = - 36 m?s-2 . 1-6 一质点作直线运动,速度和加速度的大小分别为和,试证明: (1) v d v = a d s; (2)当a为常量时,式v 2 = v02 + 2a (s-s0 )成立。

大学物理学习题解答习题

第十章 10-1无限长直线电流的磁感应强度公式为B=μ0I 2π a,当场点无限接近于导线时(即a→0),磁感应强度B→∞,这个结论正确吗?如何解释? 答:结论不正确。公式 a I B π μ 2 =只对理想线电流适用,忽略了导线粗细,当a→0,导线的尺寸不能忽略,电流就不能称为线电流,此公式不适用。 10-2如图所示,过一个圆形电流I附近的P点,作一个同心共面圆形环路L,由于电流分布的轴对称,L上各点的B大小相等,应用安培环路定理,可得∮L B·d l =0,是否可由此得出结论,L上各点的B均为零?为什么? 答:L上各点的B不为零. 由安培环路定理 ∑ ?= ? i i I l d B μ 得0 = ? ?l d B ,说明圆形环路L内的电流代数和为零, 并不是说圆形环路L上B一定为零。 10-3设题10-3图中两导线中的电流均为8A,对图示的三条闭合曲线a,b,c,分别写出安培环路定理等式右边电流的代数和.并讨论: (1)在各条闭合曲线上,各点的磁感应强度B 的大小是否相等? (2)在闭合曲线c上各点的B 是否为零?为什么? 解:?μ = ? a l B 8 d ?μ = ? ba l B 8 d ?= ? c l B0 d (1)在各条闭合曲线上,各点B 的大小不相等. (2)在闭合曲线C上各点B 不为零.只是B 的环路积分为零而非每点0 = B .题10-3图 习题10-2图

10-4 图示为相互垂直的两个电流元,它们之间的相互作用力是否等值、反向?由此可得出什么结论? 答:两个垂直的电流元之间相互作用力不是等值、反向的。 B l Id F d ?= 2 0?4r r l Id B d ?= πμ 221 21221 10221212201112)?(4?4r r l d I l d I r r l d I l d I F d ??=??= πμπμ 2 12 12112 20212121102212)?(4?4r r l d I l d I r r l d I l d I F d ??=??= πμπμ ))?()?((42 12 121221************r r l d l d r r l d l d I I F d F d ??+??-=+ πμ 2 122112 210212112221212102112)(?4))?()?((4r l d l d r I I r l d r l d l d r l d I I F d F d ??=?-?=+πμπμ 一般情况下 02112≠+F d F d 由此可得出两电流元(运动电荷)之间相互作用力一般不满足牛顿第三定律。 10-5 把一根柔软的螺旋形弹簧挂起来,使它的下端和盛在杯里的水银刚好接触,形成串联电路,再把它们接到直流电源上通以电流,如图所示,问弹簧会发生什么现象?怎样解释? 答:弹簧会作机械振动。 当弹簧通电后,弹簧内的线圈电流可看成是同向平行的,而同向平行电流会互相吸引,因此弹簧被压缩,下端会离开水银而电流被断开,磁力消失,而弹簧会伸长,于 是电源又接通,弹簧通电以后又被压缩……,这样不断重复,弹簧不停振动。 10-6 如图所示为两根垂直于xy 平面放置的导线俯视图,它们各载有大小为I 但方向相反的电流.求:(1)x 轴上任意一点的磁感应强度;(2)x 为何值时,B 值最大,并给出最大值B max . 解:(1) 利用安培环路定理可求得1导线在P 点产生的磁感强度的大小为: r I B π=201μ2/1220)(12x d I +?π=μ 2导线在P 点产生的磁感强度的大小为: r I B π=202μ2 /1220)(1 2x d I +?π=μ 1B 、2B 的方向如图所示. P 点总场 θθcos cos 2121B B B B B x x x +=+= 021=+=y y y B B B 习题10-4图 r 12 r 21 习题10-5图 习题10-6图 y P r B 1 x y 1 o x d θ θ

大学物理例题

1。质点的运动方程为 求: (1)质点的轨迹方程; (2)质点在第1s和第2秒的运动速度; (3)质点在第1s和第2秒的加速度。 2.在离水面高为h 的岸边,有人用绳子拉小船靠岸,人以不变的速率u收绳。求:当船在离岸距离为x时的速度和加速度。 例3:一质点作直线运动,已知其加速度a= 2- 2t (SI),初始条件为x0=0,v0=0,求 (1)质点在第1s末的速度; (2)质点的运动方程; (3)质点在前3s内经历的路程。

4。 5。

6。已知l 长的绳端拴一质量m 的小球(另 一端固定在o 点),自水平位置由静止释 放。求球摆至任一位置时,球的速度及绳 中的张力。 7. 一个滑轮系统,如图,A 滑轮的加速度为a ,两边分别悬挂质量为m 1和m 2的两个物体, 求两个物体的加速度。 7。一个以加速度大小a=1/3g 上升的升降机里,有一装置如图所示,物体A 、B 的质量相同,均为m ,A 与桌面之间的摩擦忽略不计,滑轮的重量忽略不计。从地面看,B 做自由落体运动。试求,若从升降机上看,B 的加速度大小是多少?

8. 9.重量为P 的摆锤系于绳的下端,绳长为l ,上端固定,如图所示,一水平变力大小为F 从零逐渐增大,缓慢地作用在摆锤上,使摆锤虽然移动,但在所有时间内均无限接近力平衡,一直到绳子与竖直线成 Θ0 角的位置,试计算此变力所做的功. P F

10.一束子弹射入木块,并在木块中走了S ',然后停止;而子弹和木块整个系统水平向右走了S ,求子弹和木块所受的一对摩擦力f s 和f s '所做的净功。 11. 如图所示,倔强系数为k 的弹簧悬挂着质量为m 1,m 2两个物体,开始时处于静止,突然把两物体间的连线剪断,求m 1的最大速度为多少? 12. 墙壁上固定一水平放置的轻弹簧,弹簧的另一端连一质量为m 的物体,弹簧的弹性系数为k ,物体m 与水平面间的摩擦系数为μ,开始时,弹簧没有伸长,现以恒力F 将物体自平衡位置开始向右拉动,试求此系统所具有的最大势能。 k 1m 2 m

大学物理A第六章习题选解汇总

第六章 真空中的静电场 习题选解 6-1 三个电量为q -的点电荷各放在边长为r 的等边三角形的三个顶点上,电荷(0)Q Q >放在三角形的重心上。为使每个负电荷受力为零,Q 之值应为多大? 解:以三角形上顶点所置的电荷(q -)为例,其余两个负电荷对其作用力的合力为1f ,方向如图所示,其大小为 题6-1图 2 2 2 2 1004330cos 42r q r q f πεπε=??= 中心处Q 对上顶点电荷的作用力为2f ,方向与1f 相反,如图所示,其大小为 2 233200434r Qq r Qq f πεπε==??? ? ?? 由12f f =,得 Q =。 6-2 在某一时刻,从238U 的放射性衰变中跑出来的α粒子的中心离残核234 Th 的中心为159.010r m -=?。试问:(1)作用在α粒子上的力为多大?(2)α粒子的加速度为多大? 解:(1)由反应 238 234492 902U Th+He → ,可知 α粒子带两个单位正电荷,即 1912 3.210Q e C -==? Th 离子带90个单位正电荷,即 1929014410Q e C -==? 它们距离为159.010r m -=? 由库仑定律可得它们之间的相互作用力为:

19199 122152 0 3.21014410(9.010)5124(9.010) Q Q F N r πε---???==??=? (2)α粒子的质量为: 2727272()2(1.6710 1.6710) 6.6810p n m m m Kg α---=+=??+?=? 由牛顿第二定律得: 28227512 7.66106.6810 F a m s m α--= ==??? 6-3 如图所示,有四个电量均为C q 610-=的点电荷,分别放置在如图所示的1,2,3,4点上,点1与点4距离等于点1与点2的距离,长m 1,第3个电荷位于2、4两电荷连线中点。求作用在第3个点电荷上的力。 解:由图可知,第3个电荷与其它各 电荷等距,均为2 2 r m = 。各电荷之间均为斥力,且第2、4两电荷对第三电荷的作用力大小相等,方向相反,两力平衡。由库仑定律,作用于电荷3的力为 题6-3 图 题6-3 图 N r q q F 22 133 10108.141 -?== πε 力的方向沿第1电荷指向第3电荷,与x 轴成45o 角。 6-4 在直角三角形ABC 的A 点放置点电荷C q 91108.1-?=,B 点放置点电荷 C q 92108.4-?-=,已知0.04,0.03BC m AC m ==,试求直角顶点C 处的场强E 。 解:A 点电荷在C 点产生的场强为 1E ,方向向下 142 11 01108.141 -??== m V r q E πε B 点电荷在C 点产生的场强为2E ,方向向右 142 22 02107.241 -??== m V r q E πε

《大学物理习题集》上)习题解答

) 2(选择题(5) 选择题单 元一 质点运动学(一) 一、选择题 1. 下列两句话是否正确: (1) 质点作直线运动,位置矢量的方向一定不变; 【 ? 】 (2) 质点作园周运动位置矢量大小一定不变。 【 ? 】 2. 一物体在1秒内沿半径R=1m 的圆周上从A 点运动到B 点,如图所示,则物体的平均速度是: 【 A 】 (A) 大小为2m/s ,方向由A 指向B ; (B) 大小为2m/s ,方向由B 指向A ; (C) 大小为3.14m/s ,方向为A 点切线方向; (D) 大小为3.14m/s ,方向为B 点切线方向。 3. 某质点的运动方程为x=3t-5t 3+6(SI),则该质点作 【 D 】 (A) 匀加速直线运动,加速度沿X 轴正方向; (B) 匀加速直线运动,加速度沿X 轴负方向; (C) 变加速直线运动,加速度沿X 轴正方向; (D)变加速直线运动,加速度沿X 轴负方向 4. 一质点作直线运动,某时刻的瞬时速度v=2 m/s ,瞬时加速率a=2 m/s 2则一秒钟后质点的速度: 【 D 】 (A) 等于零 (B) 等于-2m/s (C) 等于2m/s (D) 不能确定。 5. 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向边运动。设该人以匀速度V 0收绳,绳不伸长、湖水静止,则小船的运动是 【 C 】 (A)匀加速运动; (B) 匀减速运动; (C) 变加速运动; (D) 变减速运动; (E) 匀速直线运动。 6. 一质点沿x 轴作直线运动,其v-t 曲线如图所示,如t=0时,质点位于坐标原点,则t=4.5s 时,

大学物理试题1.1

1.选择题 1.在升降机天花板上拴有轻绳,其下端系一重物,当升降机以加速度a 1上升时,绳中的张 力正好等于绳子所能承受的最大张力的一半,问升降机以多大加速度上 升时,绳子刚好被拉断? ( ) (A) 2a 1. (B) 2(a 1+g ). (C) 2a 1+g . (D) a 1+g . 2.如图所示,质量为m 的物体用细绳水平拉住,静止在倾角为θ的固定的光滑斜面上,则斜面给物体的支持力为 ( ) (A) θcos mg . (B) θsin mg . (C) θcos mg . (D) θsin mg . 3.竖立的圆筒形转笼,半径为R ,绕中心轴OO '转动,物块A 紧靠在圆筒 的内壁上,物块与圆筒间的摩擦系数为μ,要使物块A 不下落,圆筒转动的 角速度ω至少应为 ( ) (A) R g μ (B)g μ (C) R g μ (D)R g 4.已知水星的半径是地球半径的 0.4倍,质量为地球的0.04倍.设在地球 上的重力加速度为g ,则水星表面上的重力加速度为: ( ) (A) 0.1 g (B) 0.25 g (C) 2.5 g (D) 4 g 5.一个圆锥摆的摆线长为l ,摆线与竖直方向的夹角恒为θ,如图所示.则 摆锤转动的周期为 ( ) (A)g l . (B)g l θcos . (C)g l π 2. (D)g l θπcos 2 . 6.在作匀速转动的水平转台上,与转轴相距R 处有一体积很小的工件A ,如图所示.设工件与转台间静摩擦系数为μs ,若使工件在转台上无滑动, 则转台的角速度ω应满足 ( ) (A)R g s μω≤. (B)R g s 23μω≤. (C)R g s μω3≤. (D)R g s μω2≤. 7.用水平压力F 把一个物体压着靠在粗糙的竖直墙面上保持静止.当F 逐渐增大时,物体所受的静摩擦力f ( ) (A) 恒为零. (B) 不为零,但保持不变. (C) 随F 成正比地增大. (D) 开始随F 增大,达到某一最大值后,就保持不变 a 1 m θ θ l ωO R A A O O ′ ω

相关主题