搜档网
当前位置:搜档网 › 基本计数原理

基本计数原理

基本计数原理
基本计数原理

基本计数原理(1)加法原理和分类计数法

1.加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。

2.第一类办法的方法属于集合A1,第二类办法的方法属于集合A2,……,第n类办法的方法属于集合An,那么完成这件事的方法属于集合A1UA2U…UAn。

3.分类的要求:每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏) 。

(2)乘法原理和分步计数法

1. 乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有

N=m1×m2×m3×…×mn种不同的方法。

2.合理分步的要求

任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同。二项式定理(a+b)^n=Σ(0->n)C(in)a^(n-i)b^i[1]

通项公式:a_(i+1)=C(in)a^(n-i)b^i

二项式系数:C(in)

杨辉三角

杨辉三角:右图。两端是1,除1外的每个数是肩上两数之和。

系数性质:(1)和首末两端等距离的系数相等;

(2)当幂指数是奇数时,中间两项最大且相等;

(3)当幂指数是偶数时,中间一项最大。

(4)奇数项和偶数项总和相同,都是2^(n-1);

(5)所有系数总和是2^n

1.明确任务的意义例1. 从1、2、3、……、20这二十个数中任取三个不同的数组成等差数列,这样的不同等差数列有多少个?

分析:首先要把复杂的生活背景或其它数学背景转化为一个明确的排列组合问题。

设a,b,c成等差,∴2b=a+c, 可知b由a,c决定,

又∵2b是偶数,∴a,c同奇或同偶,即:分别从1,3,5,……,19或2,4,6,8,……,20这十个数中选出两个数进行排列,由此就可确定等差数列,A(10,2)*2=90*2,因而本题为180。

例2. 某城市有4条东西街道和6条南北的街道,街道之间的间距相同,若规定只能向东或向北两个方向沿图中路线前进,则从M到N有多少种不同的走法?

分析:对实际背景的分析可以逐层深入:

(一)从M到N必须向上走三步,向右走五步,共走八步;

(二)每一步是向上还是向右,决定了不同的走法;

(三)事实上,当把向上的步骤决定后,剩下的步骤只能向右;

从而,任务可叙述为:从八个步骤中选出哪三步是向上走,就可以确定走法数。

∴本题答案为:C(8,3)=56。2.分析分析是分类还是分步,是排列还是组合

注意加法原理与乘法原理的特点,分析是分类还是分步,是排列还是组合。

例3.在一块并排的10垄田地中,选择二垄分别种植A,B两种作物,每种种植一垄,为有利于作物生长,要求A,B两种作物的间隔不少于6垄,不同的选法共有多少种?

分析:条件中“要求A、B两种作物的间隔不少于6垄”这个条件不容易用一个包含排列数,组合数的式子表示,因而采取分类的方法。

第一类:A在第一垄,B有3种选择;

第二类:A在第二垄,B有2种选择;

第三类:A在第三垄,B有1种选择,

同理A、B位置互换,共12种。

例4.从6双不同颜色的手套中任取4只,其中恰好有一双同色的取法有多少种?

(A)240 (B)180 (C)120 (D)60

分析:显然本题应分步解决。

(一)从6双中选出一双同色的手套,有6种方法;

(二)从剩下的十只手套中任选一只,有10种方法。

(三)从除前所涉及的两双手套之外的八只手套中任选一只,有8种方法;

(四)由于选取与顺序无关,因(二)(三)中的选法重复一次,因而共240种。

或分步

(1)从6双中选出一双同色的手套,有C(6,1)=6种方法

(2)从剩下的5双手套中任选两双,有C(5,2)=10种方法

(3)从两双中手套中分别拿两只手套,有C(2,1)×C(2,1)=4种方法。

同样得出共(1)×(2)×(3)=240种。

例5.身高互不相同的6个人排成2横行3纵列,在第一行的每一个人都比他同列的身后的人个子矮,则所有不同的排法种数为_______。

分析:每一纵列中的两人只要选定,则他们只有一种站位方法,因而每一纵列的排队方法只与人的选法有关系,共有三纵列,从而有C(6,2)×C(4,2)×C(2,2)=90种。

例6.在11名工人中,有5人只能当钳工,4人只能当车工,另外2人能当钳工也能当车工。现从11人中选出4人当钳工,4人当车工,问共有多少种不同的选法?

分析:采用加法原理首先要做到分类不重不漏,如何做到这一点?分类的标准必须前后统一。以两个全能的工人为分类的对象,考虑以他们当中有几个去当钳工为分类标准。

第一类:这两个人都去当钳工,C(2,2)×C(5,2)×C(4,4)=10种;

第二类:这两个人都去当车工,C(5,4)×C(2,2)×C(4,2)=30种;

第三类:这两人都不去当钳工,C(5,4)×C(4,4)=5种。

第四类:这两个人一个去当钳工、一个去当车工,C(2,1)×C(5,3)×C(2,1)×C(4,3)=160种;第五类:这两个人一个去当钳工、另一个不去当车工,C(2,1)×C(5,3)×C(4,4)=20种;

第六类:这两个人一个去当车工、另一个不去当钳工,C(5,4)×C(2,1)×C(4,3)=40种;

因而共有265种。

例7.现有印着0,1,3,5,7,9的六张卡片,如果允许9可以作6用,那么从中任意抽出三张可以组成多少个不同的三位数?

分析:有同学认为只要把0,1,3,5,7,9的排法数乘以2即为所求,但实际上抽出的三个数中有9的话才可能用6替换,因而必须分类。

抽出的三数含0,含9,有32种方法;

抽出的三数含0不含9,有24种方法;

抽出的三数含9不含0,有72种方法;

抽出的三数不含9也不含0,有24种方法。

因此共有32+24+72+24=152种方法。

例8.停车场划一排12个停车位置,今有8辆车需要停放,要求空车位连在一起,不同的停车方法有多少种?

分析:把空车位看成一个元素,和8辆车共九个元素排列,因而共有A(9,8)=362880种停车方法。3.特殊优先特殊元素,优先处理;特殊位置,优先考虑。

例9.六人站成一排,求

(1)甲、乙即不再排头也不在排尾的排法数

(2)甲不在排头,乙不在排尾,且甲乙不相邻的排法数

分析:(1)按照先排出首位和末尾再排中间四位分步计数

第一类:排出首尾和末尾、因为甲乙不再首尾和末尾,那么首尾和末尾实在其它四位数选出两位进行排列、一共有A(4,2)=12种;

第二类:由于六个元素中已经有两位排在首尾和末尾,因此中间四位是把剩下的四位元素进行顺序排列,

共A(4,4)=24种;

根据乘法原理得即不再排头也不在排尾数共12×24=288种。

(2)第一类:甲在排尾,乙在排头,有A(4,4)种方法。

第二类:甲在排尾,乙不在排头,有3×A(4,4)种方法。

第三类:乙在排头,甲不在排尾,有3×A(4,4)种方法。

第四类:甲不在排尾也不再排头,乙不在排头也不再排尾,有6×A(4,4)种方法(排除相邻)。共A(4,4)+3×A(4,4)+3×A(4,4)+6×A(4,4)=312种。

例10.对某件产品的6件不同正品和4件不同次品进行一一测试,至区分出所有次品为止。若所有次品恰好在第五次测试时被全部发现,则这样的测试方法有多少种可能?

分析:本题意指第五次测试的产品一定是次品,并且是最后一个次品,因而第五次测试应算是特殊位置了,分步完成。

第一步:第五次测试的有C(4,1)种可能;

第二步:前四次有一件正品有C(6,1)中可能。

第三步:前四次有A(4,4)种可能。

∴共有576种可能。4.捆绑与插空例11. 8人排成一队

(1)甲乙必须相邻

(2)甲乙不相邻

(3)甲乙必须相邻且与丙不相邻

(4)甲乙必须相邻,丙丁必须相邻

(5)甲乙不相邻,丙丁不相邻

分析:(1)甲乙必须相邻,就是把甲乙捆绑(甲乙可交换) 和7人排列A(7,7)×2

(2)甲乙不相邻,A(8,8)-A(7,7)×2。

(3)甲乙必须相邻且与丙不相邻,先求甲乙必须相邻且与丙相邻A(6,6)×2×2

甲乙必须相邻且与丙不相邻A(7,7)×2-A(6,6)×2×2

(4)甲乙必须相邻,丙丁必须相邻A(6,6)×2×2

(5)甲乙不相邻,丙丁不相邻,A(8,8)-A(7,7)×2×2+A(6,6)×2×2

例12. 某人射击8枪,命中4枪,恰好有三枪连续命中,有多少种不同的情况?

分析:∵连续命中的三枪与单独命中的一枪不能相邻,因而这是一个插空问题。另外没有命中的之间没有区别,不必计数。即在四发空枪之间形成的5个空中选出2个的排列,即A(5,2)。

例13. 马路上有编号为l,2,3,……,10 十个路灯,为节约用电又看清路面,可以把其中的三只灯关掉,但不能同时关掉相邻的两只或三只,在两端的灯也不能关掉的情况下,求满足条件的关灯方法共有多少种?

分析:即关掉的灯不能相邻,也不能在两端。又因为灯与灯之间没有区别,因而问题为在7盏亮着的灯形成的不包含两端的6个空中选出3个空放置熄灭的灯。

∴共C(6,3)=20种方法。5.间接计数法(1)排除法

例14. 三行三列共九个点,以这些点为顶点可组成多少个三角形?

分析:有些问题正面求解有一定困难,可以采用间接法。

所求问题的方法数=任意三个点的组合数-共线三点的方法数,

∴共76种。

例15.正方体8个顶点中取出4个,可组成多少个四面体?

分析:所求问题的方法数=任意选四点的组合数-共面四点的方法数,

∴共C(8,4)-12=70-12=58个。

例16. 1,2,3,……,9中取出两个分别作为对数的底数和真数,可组成多少个不同数值的对数?

分析:由于底数不能为1。

(1)当1选上时,1必为真数,∴有一种情况。

(2)当不选1时,从2--9中任取两个分别作为底数,真数,共A(8,2)=56,其中log2为底4=log3为底9,log4为底2=log9为底3, log2为底3=log4为底9, log3为底2=log9为底4.

因而一共有56-4+1=53个。

例17. 六人排成一排,要求甲在乙的前面,(不一定相邻),共有多少种不同的方法? 如果要求甲乙丙按从左到右依次排列呢?

分析:(一)实际上,甲在乙的前面和甲在乙的后面两种情况对称,具有相同的排法数。因

而有=360种。

(二)先考虑六人全排列;其次甲乙丙三人实际上只能按照一种顺序站位,因而前面的排法数重复了种,∴共=120种。

例18.5男4女排成一排,要求男生必须按从高到矮的顺序,共有多少种不同的方法?

分析:首先不考虑男生的站位要求,共A(9,9)种;男生从左至右按从高到矮的顺序,只有一种站法,因而上述站法重复了次。因而有=9×8×7×6=3024种。

若男生从右至左按从高到矮的顺序,只有一种站法,同理也有3024种,综上,有6048种。例19. 三个相同的红球和两个不同的白球排成一行,共有多少种不同的方法?

分析:先认为三个红球互不相同,共A(5,5)=120种方法。

而由于三个红球所占位置相同的情况下,共A(3,3)=6变化,因而共A(5,5)/A(3,3)=20种。公式P是指排列,从N个元素取R个进行排列(即排序)。(P是旧用法,现在教材上多用A,Arrangement)

公式C是指组合,从N个元素取R个,不进行排列(即不排序)。6.挡板的使用例20.10个名额分配到八个班,每班至少一个名额,问有多少种不同的分配方法?

分析:把10个名额看成十个元素,在这十个元素之间形成的九个空中,选出七个位置放置档板,则每一种放置方式就相当于一种分配方式。因而共36种。7.区别与联系所有的排列都可以看作是先取组合,再做全排列;同样,组合如补充一个阶段(排序)可转化为排列问题。

例21. 用数字0,1,2,3,4,5组成没有重复数字的四位数,

(1)可组成多少个不同的四位数?

(2)可组成多少个不同的四位偶数?

(3)可组成多少个能被3整除的四位数?

分析:(1)有A(6,4)-A(5,4)=240个。

(2)分为两类:0在末位,则有A(5,3)=60种:0不在末位,则有

C(2,1)×A(5,3)-C(2,1)×A(4,2)=96种。

∴共60+96=156种。

(3)先把四个相加能被3整除的四个数从小到大列举出来,即先选

0,1,2,3

0,1,3,5

0,2,3,4

0,3,4,5

1,2,4,5

它们排列出来的数一定可以被3整除,再排列,有:4×[A(4,4)-A(3,3)]+A(4,4)=96种。8.分组问题例22. 5名学生分配到4个不同的科技小组参加活动,每个科技小组至少有一名学生参加,则分配方法共有多少种?

分析:(一)先把5个学生分成二人,一人,一人,一人各一组。

其中涉及到平均分成四组,有C(5,3)=10种分组方法。可以看成4个板三个板不空的隔板法。

(二)再考虑分配到四个不同的科技小组,有A(4,4)=24种,

由(一)(二)可知,共10×24=240种。9.几何问题

例23.某区有7条南北向街道,5条东西向街道(如右图)

(1)图中共有多少个矩形?

(2)从A点到B点最近的走法有多少种?

分析:(1)在7条竖线中任选2条,5条横线中任选2条,这样4条线

可组成1个矩形,故可组成矩形C(7,2)·C(5,2)=210个

(2)每条东西向的街道被分成4段,每条南北向的街道被分成6段,从A到B最短的走法,无论怎样走,一定包括10段,其中6段方向相同,另外4段方向相同,每种走法,即是从10段中选出6段,这6段是走东西方向的,共有C(10,6)=C(10,4)=210种走法(同样可以从10段中选出4段走南北方向,每一种选法即是1种走法)。所以共有210种走法。

计数原理基本知识点

计数原理基本知识点 1.分类计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法那么完成这件事共有 12n N m m m =+++种不同的方法 2.分步计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事有12n N m m m =??? 种不同的方法 3.排列的概念:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定的顺序.....排成一列,叫做从n 个不同元素中取出m 个元素的一个排列....4.排列数的定义:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫 做从n 个元素中取出m 元素的排列数,用符号m n A 表示 5.排列数公式:(1)(2)(1)m n A n n n n m =---+(,,m n N m n *∈≤) 6 阶乘:!n 表示正整数1到n 的连乘积,叫做n 的阶乘规定0!1=. 7.排列数的另一个计算公式:m n A =!()!n n m - 8 组合的概念:一般地,从n 个不同元素中取出m ()m n ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合 9.组合数的概念:从n 个不同元素中取出m ()m n ≤个元素的所有组合的个数,叫做从 n 个不同元素中取出m 个元素的组合数... .用符号m n C 表示. 10.组合数公式:(1)(2)(1)!m m n n m m A n n n n m C A m ---+== 或)! (!!m n m n C m n -=,,(n m N m n ≤∈*且 11 组合数的性质1:m n n m n C C -=.规定:10=n C ; 12.组合数的性质2:m n C 1+=m n C +1-m n C

2021年高中数学1.1基本计数原理教学案理新人教B版选修3

2021年高中数学1.1基本计数原理教学案理新人教B版选修2-3 【教学目标】 理解分类加法计数原理与分步乘法计数原理;会利用两个原理分析和解决一些简单的问题;②培 养归纳概括能力;③养成“自主学习”与“合作学习”等良好的学习习惯 【教学重点】 分类计数原理与分步计数原理的应用 【教学难点】 分类计数原理与分步计数原理的准确理解 课前预习 1.分类加法计数原理:做一件事,完成它有____办法,在第一类办法中有___种不同的方法,在第二类办法中有___种不同的方法……在第类办法中有___种不同的方法.那么完成这件事共有___________________种不同的方法. 2.分步乘法计数原理:做一件事,完成它需要分成____个步骤,做第一个步骤有___种不同的方法,做第二个步骤有___种不同的方法……做第个步骤有___种不同的方法.那么完成这件事共有___________________种不同的方法. 3.[思考] ①如何理解“分类”和“分步”? ②两个计数原理的联系与区别是什么? 课上学习 例1、(1)某班三好学生中有男生6人,女生4人,从中选一名学生去领奖,共有多少种不同的选派方法? (2)8本不同的书,任选3本分给3名同学,每人一本,有多少种不同的分法? (3)将4封信投入3个邮筒,有多少种不同的投法? (4)3位旅客到4个旅馆住宿,有多少种不同的住宿方法? 例2、三层书架的上层放有10本不同的语文书,中层放有9本不同的数学书,下层放有8本不同的外语书. (1)从书架上任取一本书有多少种取法? (2)从书架上任取语、数、外各一本,有多少种取法? (3)从书架上任取两本不同学科的书,有多少种取法? 例3、用0,1,2,3,4,5这六个数字可以组成多少个无重复数字的: (1)银行存折的四位密码? (2)四位数? (3)四位奇数? (4)四位偶数?

两个基本计数原理教案

第一章计数原理 第1节两个基本计数原理 教材分析 本节课《分类计数原理与分步计数原理》是苏教版普通高中课程标准试验教科书(选修2-3)第一章第一节的内容,是本章后续知识的基础,对后续内容的学习有着举足轻重的作用,另外本节课涉及的分步、分类的思想是解决实际问题的最有效武器,是人们思考问题的最根本方法. 学情分析 高二学生已具备一定的数学知识和方法,能很容易的接受两个原理的内容,并应用原理解决一些简单的实际问题,这些形成了学生思维的“最近发展区”.虽然学生已经具备了一定的归纳、类比能力,但在数学的应用意识与应用能力方面尚需进一步培养.另外,学生的求知欲强,参与意识,自主探索意识明显增强,对能够引起认知冲突,表现自身价值的学习素材特别感兴趣。但在合作交流意识欠缺,有待加强. 目标分析 ⑴知识与技能 ①掌握分类计数原理与分步计数原理的内容 ②能根据具体问题的特征选择分类计数原理与分步计数原理解决一些简单实际问题. ⑵过程与方法 ①通过具体问题情境总结出两个计数原理,并通过实际事例学生感悟两个原理的应用并最终学会应用 ②通过“学生自主探究、合作探究,师生共究”更深刻的理解分类计数与分步计数原理,并应用它们解决实际问题 ⑶情感、态度、价值观 树立学生积极合作的意识,增强数学应用意识,激发学生学习数学的热情和兴趣. 教学重难点分析 教学重点:分类计数原理与分步计数原理的掌握 教学难点:根据具体问题特征选择分类计数原理与分步计数原理解决实际问题. 教法、学法分析 教法分析: ①启发探究法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性。 ②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性。 学法分析:本节课要求学生自主探究,学会用类比的思想解决问题,树立学生的合作交流意识. 教学过程 一、创设情境:对于分类计数原理设计如下情境(看多媒体): 该情境是原教材上情境经过加工设计的,比原教材情境更加贴近学生生活,能够增强学生的有意注意,激发学生的兴趣,调动学生的主动性和积极性,从而进入思维情境接着是对情境的处理:在情境处理过程中要启发学生由特殊情形归纳出一般原理,遵循由简单到复杂的认知规律,我处理情境的办法是: 第一步在解决问题时首先让学生尝试分析,然后由学生代表分析解答,教师及时给出评价,并由老师给出解题过程,在这里由老师按分类计数原理给出解题过程,为学生顺利总结概括出原理做好铺垫. 第二步对原问题加以引申:若当天有4次航班,则有多少种不同方法? 设计的意图是让学生更清楚的认识到总方法数是各类方法数之和. 第三步提出问题:你能否尽可能简练的总结出问题1中的计数规律? 接着由学生分组讨论、总结问题1中计数规律,这样由学生总结归纳,并通过讨论准确叙述出分类计数原理,可以提高学生的数学表达意识,激发合作意识和竞争意识,体验获得成功的喜悦,也就完成了情感目标.

1.1基本计数原理

《计数原理》预习学案 编制:王礼堂2013.1.28 一、课前新知初探 (1)学习目标 1.通过实例,总结出分类计数原理、分步计数原理; 2. 了解分类、分步的特征,合理分类、分步; 3. 体会计数的基本原则:不重复,不遗漏. (2)自主预习 (1)分类加法计数原理: 计算公式: (2)分步乘法计数原理: 计算公式:: (3)思考探究 分类加法计数原理与分步乘法计数原理的有哪些异同点? 共同点: 不同点: 二、课堂互动探究 (1)课堂提问 (1)从潍坊到北京,可以乘火车,也可以乘汽车,还可以乘飞机,假定火车每日3.班,汽车每日4班,飞机每日2班,那么一天中从潍坊到北京 可以有多少种走法? (2)加工一种零件有3道工序,第一道工序有3种方法,第二道工序有2种 方法,第三道工序有3种方法,那么加工这种零件共有多少种方法?(2)课内探究 探究任务一:分类计数原理 问题1:用一个大写的英文字母或一个阿拉伯数字给教室的座位编号,总共能编出多少种不同的号码? 分析:给座位编号的方法可分____类方法? 第一类方法用,有___ 种方法; 第二类方法用,有___ 种方法; ∴能编出不同的号码有__________ 种方法 试试:一件工作可以用2种方法完成,有5人只会用第1种方法完成,另有4人只会用第2种方法完成,从中选出1人来完成这项工作,不同选法的种数是 . 反思:使用分类计数原理的条件是什么?分类加法原理可以推广到两类以上的方法吗?

班级 姓名 学号 小组 探究任务二:分步计数原理 问题2:用前六个大写的英文字母和1~9九个阿拉伯数字,以,,,,,2121B B A A ???…的方式给教室的座位编号,总共能编出多少种不同的号码? 分析:每一个编号都是由 个部分组成,第一部分是 ,有____种编法, 第二部分是 ,有 种编法;要完成一个编号,必须完成上面两部分,每一部分就是一个步骤,所以,不同的号码一共有 个. 试试:从A 村去B 村的道路有3条,从B 村去C 村的道路有2条,从A 村经B 村去C 村,不同的路线有 条. 反思:使用乘法原理的条件是什么?分步乘法原理可以推广到两步以上的问题吗? (3)典例剖析 例1现有高一学生代表3名,高二学生代表5名,高三学生代表2名: (1) 从中任选1人担任校学生会主席,共有多少种不同的选法? (2) 从每个年级的代表中各选1人,由选出的三个人组成校学生会主席团, 共有多少种不同的选法? (3) 从高一年级和高二年级的学生代表中各选一人,与高三年级2名学生代 表,共4人组成校学生会主席团,共有多少种不同的选法? 小结: (1)要弄清两个原理的条件和结论。 (2)要弄清是“分类”还是“分步”还是既有“分类又有分步” 变式:有4名同学分别报名参加学校的足球队,篮球队,乒乓球队,每人限报其中的一个运动队,不同的报名种数是 . 例2由数字0,1,2,3,这四个数字,可组成多少个: (1) 无重复数字的三位数? (2) 可以有重复数字的三位数? (3) 无重复数字的3位偶数?

高中数学选修2-3两个基本计数原理

两个基本计数原理 教学目标: 1、准确理解分类加法计数原理和分步乘法计数原理概念和步骤 2、会运用分类加法计数原理和分步乘法计数原理分析和解决一些简单的问题 要点扫描: 1、(1)分类计数原理(加法原理): (2)分步计数原理(乘法原理): 2、分类计数原理和分步计数原理的区别和联系 分类计数原理和分步计数原理,回答的都是有关做一件事的不同方法总数的问题,其区别在于:分类计数原理针对的是___问题,其中各种方法____,用其中任何一种方法都可以做完这件事;分步计数原理针对的是___问题,各个步骤中的方法____,只有各个步骤都完成之后才算做完这件事。 例题讲解: 例1、(1)一个学生要从5本不同的文史类书,4本不同的理科类书及3本不同的艺术类书中任选一本书阅读,有多少种不同的选法? (2)一个学生要从5本不同的文史类书,4本不同的理科类书及3本不同的艺术类书中各选一本书阅读,有多少种不同的选法? 例2、从1到200的自然数中,各个数位上都不含数字8的有多少个? 例3、3名学生报名参加4个不同学科的比赛,每名学生只能参赛一项,有多少种不同的报名方法?若有4项冠军在3人中产生,每项冠军只能有一人获得,有多少种不同的夺冠方法? 例4、电视台在“欢乐大本营”节目中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的观众来信,甲信箱中有30封,乙信箱中有20封,现由主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中各确定一名幸运伙伴,有多少种不同的结果?

例5、在区间[400,800]上,(1)有多少个能被5整除且数字允许重复的整数?(2)有多少 个能被5整除且数字不允许重复的整数? 当堂反馈: 1、某人要将4封信投入3个信箱中,不同的投寄方法有 ( ) A 、12种 B 、7种 C 、43种 D 、34种 2、从0,1,2,3,4,5,7七个数中任取两个数相乘,使所得积为偶数,这样的偶数共有 ( ) A 、18个 B 、9个 C 、12个 D 、10个 3、有三个车队分别有5辆,6辆,7辆车,现欲从其中两个车队各抽调一辆车外出执行任务, 设不同的抽调方案数为n ,则n 的值为 ( ) A 、107 B 、210 C 、36、 D 、77 4、已知集合A={},102,≤≤-∈x z x x A n m ∈,,方程12 2=+n y m x 表示焦点在x 轴上的椭圆,则这样的椭圆共有 ( ) A 、45个 B 、55个 C 、78个 D 、91个 作业:课课练 课时1,2

1.1基本计数原理(刘大川修改)

基本计数原理 昌邑三中付世安 修改:刘大川 课标点击: (一)学习目标: 掌握加法原理和乘法原理,能根据具体问题的特征,选择加法原理和乘法原理解决一些简单问题。 (二)教学重点:从实例入手理解加法原理和乘法原理。 难点:在练习中熟练应用加法原理和乘法原理。 教学过程: 【课前准备】 (一)知识链接: 张、王、李、赵四人在寒假中要互寄一张贺年卡,他们一共寄了几张张贺年卡?(二)问题导引: 从甲地到乙地,可以坐火车,也可以坐汽车,还可以乘轮船。已知火车每日1班,汽车每日3班,轮船每日2班,那么从甲地到乙地有多少种不同的走法? (三)学习探究 自学导引:阅读自学课本掌握下列内容 自主阅读课本第3—4页,回答 1、探究(1):请举出用分类形式完成工作的一个实例。 探究(2):请举出用分布形式完成工作的一个实例。 2、知识梳理: (1)分类加法原理:_____________________________________________________________ 公式N=_____________________ (2)分步乘法原理:_____________________________________公式N=_________________________ 2、思考与讨论: (1)两个计数原理的作用是什么? (2)两个计数原理的区别和联系是什么? (四)典例示范

例1:一个三层书架的上层放有5本不同的数学书,中 层放有3本不同的语文书,下层放有2本不同的英语书。 (1) 从书架上任取一本书,有多少种不同的取法? (2) 从书架上任取3本书,其中数学书语文书英语各一本,有多少种不同的取法? 解:(1)N=10(种)(2)N=523??=30(种) 例2:用0、.1、2、3、4 这五个数可以组成多少个无重复数字的: (1)银行存折的四位密码? (2)四位数? (3)四位奇数? 解:(1)N=5?4?3?2=120(个)(2)N=4?4?3?2=96(个)(3)N=3?3?2+3?3?2=36(个)。 思考:解决计数问题的步骤是什么? 变式拓展:P6练习B 第2题 例 3我们把一元硬币有国徽的一面叫做正面,有币值的一面叫做反面。现依次抛出5枚一元硬币,按照抛出顺序得到一个由5个“正”或者“反”组成的序列,如“正、反、反、反、正”。问:一共可以得到多少个不同的这样的序列? 解:N=2?2?2?2?2=25=32. 思考:例3与例1、例2有何不同? (五)归纳总结: (六)当堂检测: 1.一名学生做除法游戏,在一个红口袋中装着20张分别标有数1、2、3…20的红卡片,从中任意抽取一张,把卡片上的数作为被除数;在另一个黄口袋中装着10张分别是1、2、3…10的黄卡片,从中任意抽取一张,把卡片上的数作为除数,问他一共可以列出多少个不同得除法公式? 解;20?10=200(个) 2、从一个小组的6名学生中产生一名组长,一名学生代表,在下列条件下个有多少种不同的选法? 解:6?5=30(种) 3.由数字0、1、2、3这四个数字,可组成多少个: (1)无重复数字的三位数? (2)可以有重复数字的三位数? (3)无重复数字的三位偶数? 解:(1)18(个)(2)48(个)(3)10(个)

1.1 两个基本计数原理(2)

教学内容 §1.1 两个基本计数原理(2) 教学目标要求(1)掌握分类计数原理与分步计数原理,并能根据具体问题的特征,选择分类加法原理或分步乘法原理解决一些简单的实际问题; (2)通过对分类计数原理与分步计数原理的理解和运用,提高学生分析问题和解 决问题的能力,开发学生的逻辑思维能力. 教学重点分类计数原理与分步计数原理的区别和综合应用. 教学难点分类计数原理与分步计数原理的区别和综合应用. 教学方法和教具 教师主导活动学生主体活动一.问题情境 复习回顾:1.两个基本计数原理; 2.练习: (1)从2,3,5,7,11中每次选出两个不同的数作为分数的分子、 分母,则可产生不同的分数的个数是,其中真分数的 个数是. (2)①用0,1,2,……,9可以组成多少个8位号码; ②用0,1,2,……,9可以组成多少个8位整数; ③用0,1,2,……,9可以组成多少个无重复数字的4位整数; ④用0,1,2,……,9可以组成多少个有重复数字的4位整数; ⑤用0,1,2,……,9可以组成多少个无重复数字的4位奇数. 二.数学运用 1.例题: 例1 用4种不同颜色给如图所示的地图上色,要求相邻两块涂不同 的颜色,共有多少种不同的涂法? 分析完成这件事可分四个步骤,不妨 设①、②、③、④的次序填涂. 解:第一步,填涂①,有4种不同颜色 可选用; 第二步,填涂②,除①所用过的颜色外, 还有3种不同颜 色可选用; 第三步,填涂③,除①、②用过的2种 颜色外,还有2种 不同颜色可选用; 第四步,填涂④,除②、③用过的2种颜色外,还有2种不同颜色可 选用. ???=种不同的方法,即填涂这张 所以,完成这件事共有432248 地图共有48种方法. 答共有48种不同的涂法. 思考:如果按①、②、④、③的次序填涂,怎样解决这个问题?

(完整版)分类计数原理和分步计数原理练习题

1、一个学生从3本不同的科技书、4本不同的文艺书、5本不同的外语书中任选一本阅读,不同的选法有_________________种。 2、一个乒乓球队里有男队员5人,女队员4人,从中选出男、女队员各一名组成混合双打,共有_________________种不同的选法。 3、一商场有3个大门,商场内有2个楼梯,顾客从商场外到二楼的走法有 __________种。 4、从分别写有1,2,3,…,9九张数字的卡片中,抽出两张数字和为奇数的卡片,共有_________________种不同的抽法。 5、某国际科研合作项目成员由11个美国人,4个法国人和5个中国人组成,(1)从中选出1人担任组长,有多少种不同选法? (2)从中选出两位不同国家的人作为成果发布人,有多少种不同选法? 6、(1)3名同学报名参加4个不同学科的比赛,每名学生只能参赛一项,问有多少种不同的报名方案? (2)若有4项冠军在3个人中产生,每项冠军只能有一人获得,问有多少种不同的夺冠方案? 7、用五种不同颜色给图中四个区域涂色,每个区域涂一种颜色, (1)共有多少种不同的涂色方法? (2)若要求相邻(有公共边)的区域不同色,那么共有多少种不同的涂色方法? 8、从甲地到乙地有两种走法,从乙地到丙地有4种走法,从甲地不经过乙地到丙地有3种走法,则从甲地到丙地共有_________________种不同的走法。 9、某电话局的电话号码为,若后面的五位数字是由6或8组成的,则这样的电话号码一共有_________________个。 10、从0,1,2,…,9这十个数字中,任取两个不同的数字相加,其和为偶数的不同取法有_________________种。

基本计数原理

基本计数原理 一、主要内容 一般计数原理部分的考试,分为两种,一是排列组合二项式定理单独出题,二是在概率中需要用到排列组合二项式定理。 1、基本计数原理 2、排列和组合 3、常用方法 二、知识梳理 1、基本计数原理 (1)分类加法计数原理 从甲地到乙地,可乘坐三类交通工具:可以乘火车,可以坐汽车,还可以乘轮船,假定火车每日1班,汽车每日3班,轮船每日2班,那么一天中从甲地到乙地有多少种不同的走法?(1+3+2=6种) 做一件事,完成它有n 类办法,在第一类办法中,有1m 种不同的方法,在第二类办法中,有2m 种不同的方法,以此类推,在第n 类办法中,有n m 种不同的方法,那么完成这件事共有n m m m N +++=...21种不同的方法。 (2)分步乘法计数原理。 某中学的阅览室有50本不同的科技书,80本不同的文艺书,现在张三同学想借1本科技书和1本文艺书,共有多少种借法?(50*80=4000) 做一件事,完成它需要分成n 个步骤,做第一个步骤有 1m 种不同的方法,做第二个步骤有2m 种不同的方法,以此类推,做第n 个步骤有n m 种不同的方法,那么完成这件事共有n m m m N ???=...21种不同的方法。 以上两个基本计数原理是解决计数问题最基本的理论依据。他们分别给出了两种不同方式完成一件事的方法总数的不同计算方法。 注意:分类要“不重不漏”,每类的每一种方法都能独立完成事件; 分步要“步骤完整”,每一步不能完成事件,只有各步依次都完成,才能完成事件。

2、排列与组合 (1)排列 有红球、白球、黄球各一个,现从这三个小球中任取两个,分别放入甲、乙盒子里,有多少种不同的方法?(3*2=6) 我们把被取的对象叫做元素。取出的元素按照已知的顺序排成一列,我们称它为该问题的一个排列。 一般地,从n 个不同元素中任取出)(n m m ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列。 两个排列相同,则组成排列的元素相同,并且元素的排列顺序也相同。 从n 个不同元素中取出)(n m m ≤个元素的所有排列的个数,叫做从n 个不同元素中取出 m 个元素的排列数,用符号m n A 表示。 根据分步乘法计数原理,得到公式)1()2)(1(+---=m n n n n A m n 这里+∈N m n ,,并且n m ≤,这个公式叫做排列数公式。 一般地,n 个不同元素全部取出的一个排列,叫做n 个不同元素的一个全排列,这时n m =,则有123)2()1(????-?-?= n n n A m n ,这个公式是由1到n 。我们把正整数1到n 的连 乘积,叫做n 的阶乘,用!n 表示。所以n 个不同元素的全排列数公式可以写成!n A n n = 排列数的公式还有下面的另一种形式:)! (!m n n A m n -=,我们规定1!0=。 (2)组合 有红球、黄球、白球各一个,从这三个小球中,任意取出两个小球,共有多少种不同的取法?(与顺序无关,共3种) 一般地,从n 个不同元素中,任意取出)(n m m ≤个元素并成一组,叫做从n 个不同元素中任取m 个元素的一个组合。 从n 个不同元素中,任意取出)(n m m ≤个元素的所有组合的个数,叫做从n 个不同元素中,任意取出m 个元素的组合数,用符号m n C 表示。 一般地,从n 个不同元素中,任取m 个元素的排列,可以分两步完成:

计数原理(最全面的方法汇总)

计数原理(排列组合)插空法,挡板法,捆绑法,优选法,平均分配问题等例题精选+练习 一、挡板法(插板法、隔板法、插刀法) 将n个相同的元素排成一行,n个元素之间出现了(n-1)个空档,现在我们用(m-1)个“档板”插入(n-1)个空档中,就把n个元素隔成有序的m份,每个组依次按组序号分到对应位置的几个元素(可能是1个、2个、3个、4个、….),这样不同的插入办法就对应着n个相同的元素分到m组的一种分法,这种借助于这样的虚拟“档板”分配元素的方法称之为挡板法。 (1)例题解读 【例1】共有10完全相同的球分到5个盒里,每个盒至少要分到一个球,问有几种不同分法? 解析:我们可以将10个相同的球排成一行,10个球之间出现了9个空隙,现在我们用4个档板”插入这9个空隙中,就“把10个球隔成有序的5份,每个盒子依次按盒子序号分到对应位置的几个球(可能是1个、2个、3个、4个、5个),这样,借助于虚拟“档板”就可以把10个球分到了5个班中。 【基本题型的变形(一)】 题型:有n个相同的元素,要求分到m组中,问有多少种不同的分法? 解题思路:这种问题是允许有些组中分到的元素为“0”,也就是组中可以为空的。对于这样的题,我们就首先将每组都填上1个,这样所要元素总数就m个,问题也就是转变成将(n+m)个元素分到m组,并且每组至少分到一个的问题,也就可以用插板法来解决。 【例2】有8个相同的球放到三个不同的盒子里,共有()种不同方法. A.35 B.28 C.21 D.45 解答:题目允许盒子有空,则需要每个组添加1个,则球的总数为8+3×1=11,此题就有C (10,2)=45(种)分法了,选项D为正确答案。 【基本题型的变形(二)】 题型:有n个相同的元素,要求分到m组,要求各组中分到的元素至少某个确定值S(s>1,且每组的s值可以不同),问有多少种不同的分法? 解题思路:这种问题是要求组中分到的元素不能少某个确定值s,各组分到的不是至少为一个了。对于这样的题,我们就首先将各组都填满,即各组就填上对应的确定值s那么多个,这样就满足了题目中要求的最起码的条件,之后我们再分剩下的球。这样这个问题就转变为上面我们提到的变形(一)的问题了,我们也就可以用插板法来解决。 【例3】15个相同的球放入编号为1、2、3的盒子内,盒内球数不少于编号数,有几种不同的放法? 解析: 编号1:至少1个,符合要求。

苏教版数学高二-数学苏教版选修2-3导学案 1.1 两个基本计数原理

1.1 两个基本计数原理 1.分类计数原理 完成一件事,有n 类方式,在第1类方式中有m 1种不同的方法,在第2类方式中有m 2种不同的方法,……,在第n 类方式中有m n 种不同的方法,那么完成这件事共有N =m 1+m 2+…+m n 种不同的方法.分类计数原理又称为加法原理. 预习交流1 应用分类计数原理的原则是什么? 提示:做一件事有n 类方式,每一类方式中的每一种方法均完成了这件事. 2.分步计数原理 完成一件事,需要分成n 个步骤,做第1步有m 1种不同的方法,做第2步有m 2种不同的方法,……,做第n 步有m n 种不同的方法,那么完成这件事共有N =m 1×m 2×…×m n 种不同的方法.分步计数原理又称为乘法原理. 预习交流2 应用分步计数原理的原则是什么? 提示: 做一件事要分n 个步骤完成,只有所有步骤完成时,才完成这件事,也就是说,每一步骤中每种方法均不能完成这件事. 一、分类计数原理问题 从甲地到乙地每天有火车3班,汽车8班,飞机2班,轮船2班,问一天内乘坐班次不同的运输工具由甲地到乙地,有多少种不同的走法? 思路分析:由于每班火车、汽车、飞机、轮船均能实现从甲地到乙地,因此利用分类计数原理.

解:根据运输工具可分四类: 第1类是乘坐火车,有3种不同的走法; 第2类是乘坐汽车,有8种不同的走法; 第3类是乘坐飞机,有2种不同的走法; 第4类是乘坐轮船,有2种不同的走法; 根据分类计数原理,共有不同的走法的种数是N=3+8+2+2=15. 设有5幅不同的油画,2幅不同的国画,7幅不同的水彩画.从这些画中只选一幅布置房间,有__________种不同的选法. 答案:14 解析:根据分类计数原理,不同的选法有N=5+2+7=14种. 如果完成一件事有n类方式,每类方式彼此之间是相互独立的,无论哪一种方式的每种方法都能单独完成这件事,求完成这件事的方法种数,就用分类计数原理(加法原理). 二、分步计数原理问题 有三个盒子,分别装有不同编号的红色小球6个,白色小球5个,黄色小球4个,现从盒子里任取红、白、黄小球各1个,有多少种不同的取法? 思路分析:要从盒子里取到红、白、黄小球各1个,应分三个步骤,并且这三个步骤均完成时,才完成这件事,故应用分步计数原理. 解:分三步完成: 第1步是取红球,有6种不同的取法; 第2步是取白球,有5种不同的取法; 第3步是取黄球,有4种不同的取法; 根据分步计数原理,不同取法的种数为N=6×5×4=120. 现有高一学生9人,高二学生12人,高三学生7人自发组织参加数学课外活动小组,为便于管理,每年级各选一名组长,有__________种不同的选法. 答案:756 解析:根据分步计数原理有N=9×12×7=756种不同的选法. 如果完成一件事需要分成n个步骤,缺一不可,即需要依次完成所有步骤才能完成这件事,而完成每一个步骤各有若干种不同的方法,求完成这件事的方法种数就用分步计数原理(乘法原理). 1.两个书橱,一个书橱内有7本不同的小说,另一个书橱内有5本不同的教科书.现从两个书橱任取一本书的取法有__________种. 答案:12 解析:根据分类计数原理,不同的取法有N=7+5=12种. 2.教学大楼有5层,每层均有2个楼梯,由1楼到5楼的走法有__________种. 答案:16 解析:根据分步计数原理,不同的走法有N=2×2×2×2=16种. 3.现有高一学生9人,高二学生12人,高三学生7人,从中推选两名来自不同年级的

1.1两个基本计数原理(二)教案

备课时间年月日[来源:学科网][来源:学#科#网 Z#X#X#K] 编写: 上课时间[来源:https://www.sodocs.net/doc/fb9932582.html,] 第周周月日[来 源:Z_xx_https://www.sodocs.net/doc/fb9932582.html,][来源:学科网] 班级节次 课题 1.1两个基本计数原理(二)总课时数第节 教学目标1、能根据具体问题的特征,选择运用分类计数原理、分步计数原理; 2、能综合运用两个原理解决一些简单的实际问题; 3、会用列举法解一些简单问题,并体会两个原理的作用. 重难 点 综合运用两个基本原理解决一些简单的实际问题;准确选用两种基本原理.教学 参考 教材、教参 授课方法合作探究、讲授 教学辅助手段 多媒体 专用教室 教学教学二次备课

过程设计复习回顾: 分类计数原理: 分步计数原理: 分类计数原理与分步计数原理的区别与联系 问题 1. 某电脑用户计划使用不超过500元的 资金购买单价分别为60元、70元的单片软件 和盒装磁盘,根据需要,软件至少买3盒,磁 盘至少买2盒,问有多少种不同的选购方式? 问题 2.等腰三角形的三边均为正整数,且其 周长不大于10,这样不同形状的三角形的种数 为多少? 问题 3.将3种作物种植在如图所示的5块试 验田里,每块种植一种作物,且相邻的试验田 不能种植同一种作物,不同的种植方法共有多 少种? 当堂检测 1、某巡洋舰上有一 排四根信号旗杆,每 根旗杆上可以挂红 色、绿色、黄色三种 信号旗中的一面(每 根旗杆必须挂一 面),则这排信号旗 杆所发出的信号种 数为. 2、有三个车队分别 有5辆、6辆、7辆 车,现欲从其中两个 车队各抽掉一辆车 外出执行任务,设不 同的抽调方案数为 n,则n的值为 . 3、某同学逛书店, 发现三本喜欢的书, 决定至少买其中一 本,则购买方案有 种

计数原理(公开课)

分类加法计数原理与分步乘法计数原理 熊向前208班 【教材分析】“分类加法计数原理和分步乘法计数原理”是人教A版高中数学课标教材选修2-3“第一章计数原理”第1.1节的内容,教学需要安排4个课时,本节课为第1课时.两个计数原理不仅是继续学习排列、组合和二项式定理的理论依据,更是处理计数问题的两种基本思想方法,在本章中是奠基性的知识.两个计数原理的灵魂是划归与转化的思想、分类与整合的思想和特殊与一般的思想的具体化身.从数学本质的角度看,以退为进,以简驭繁,是理解和掌握两个计数原理的关键,运用两个计数原理是知识转化为能力的催化剂. 【学情分析】在高中数学《必修2》中学习“古典概型”时,已学会了用列举法解决最简单的计数问题;同时在学习和生活中,学生已经不自觉地会使用“分类”和“分步”的方法来思考和解决问题,这些都是学生学习两个计数原理的认知基础.两个计数原理虽简单朴素,易学好懂,但如何让学生借助已有的数学活动经验,抽象概括出两个计数原理,并领悟其中重要的数学思想方法,则是本课必须要突破的难点.为此,抓住以下两个要点尤为重要:一是要通过典型丰富的实例来帮助学生完成归纳提炼的过程,加强学生应用两个计数原理解决问题的意识——这是有效提升学生抽象概括能力的契机;二是要在解决问题的过程中,始终突出两个计数原理的核心要素,即弄清“完成一件事”的含义和区分“分步”与“分类”的特征——这是如何选择两个计数原理的关键. 【教学目标】知识与技能:理解分类加法计数原理与分步乘法计数原理;会利用两个原理分析和解决一些简单的实际问题.过程与方法:通过诱导,探索得出结论,培养学生的理解能力和抽象概括能力;通过知识应用培养学生的分析和解决问题的能力.情感、态度与价值观:通过实例引入体会数学来源生活,并为生活服务,激发学生学习本章的兴趣;通过探索与发现的过程,使学生体会数学研究的成功与快乐,学会提出问题、分析问题、解决问题,激发学生勇于探索,敢于创新的精神,优化学生的思维品质. 【教学重点】归纳出两个计数原理,并能初步用其解决一些简单的实际问题. 【教学难点】准确区分“分类”和“分步”. 【教学方法】本节课是概念原理课的教学典范.采用问题式教学为主,辅以启发式、探究式、自助式、讨论式的教学方式. 【教学用具】粉笔、多媒体等. 【教学过程】 1.创设情境,提出问题 “日”字加一笔能够组成多少个常见的汉字?(田、申、甲、由、电、旧、旦、白、目共9个.)我们将这种方法数的计算问题都称之为计数问题.生活中还有很多计数问题,如:(1)座子上有多少本书?(2)教室里面坐了多少个人?(3)从甲、乙、丙中选一个人当班

计数原理教材分析

选修2-3第一章《计数原理》教材分析 计数原理是数学的重要研究对象,分类加法计数原理、分步乘法计数原理是解决计数原理问题的最基本、最重要的方法,也称为基本计数原理,它们为解决很多实际问题提供了思想和工具.本章在整个高中数学中占有重要地位以计数问题为主要内容的排列与组合,属于现在发展很快且在计算机领域获得广泛应用的组合数学的最初步知识,它不仅有着许多直接应用,是学习概率理论的准备知识,而且由于其思维方法的新颖性与独特性,它也是培养学生思维能力的不可多得的好素材.作为初中一种多项式乘法公式推广二项式定理,不仅使前面组合等知识的学习得到强化,而且与后面概率中的二项分布有着密切联系 一、内容分析 1.本章从学习加法原理和乘法原理开始,应该说,这两个基本原理在本章的学习中占有重要地位;其作用并不限于用来推导排列数、组合数公式,实际上其解决问题的思想方法贯穿在整个学习的始终:当将一个较复杂的问题通过分类进行分解时,用的是加法原理;当将它通过分步进行分解时,用的是乘法原理在此基础上,研究排列与组合,运用归纳法导出排列数公式与组合数公式,并提出组合数的两个性质,以简化组合数的计算和为推导二项式定理作好铺垫随后研究的二项式定理,在本章中起着承上启下的作用:它不仅将前面的组合的学习深化一步,而且为学习后面的独立重复试验,二项分布作了准备 2.排列、组合是两类特殊而重要的计数原理,而解决它们的基本思想和工具就是两个计数原理.教材从简化运算的角度提出排列和组合的学习任务,通过具体的实例得出排列和组合的概念、排列数公式、组合数公式及其在解决问题中的应用. 3.二项式定理的学习过程是应用两个计数原理解决问题的典型过程,教材主要是运用组合数两个性质推导出二项式定理,同时通过对二项式系数的性质的学习,深化对组合数的认识. 二、教学要求 1.掌握加法原理与乘法原理,并能用它们分析和解决一些简单的应用问题 2.理解排列、组合的意义,掌握排列数、组合数计算公式,并能用它们解决一些简单的应用问题

1.1基本计数原理学案

§1.1 基本计数原理 班级: 姓名: 使用时间: 2019.12 编写:苗桂玲、王亚洁初审:于彦春终审:梁晓辉学习目标 1、理解分类加法计数原理与分步乘法计数原理; 2、会利用两个原理分析和解决一些简单的应用问题; 学习过程 探究点一、分类加法计数原理 问题1:从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船。一天中,火车有1班, 汽车有3班,轮船有2班。那么一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法? 问题2:用一个大写的英文字母或一个阿拉伯数字给北京部分景点编号,总共能够编出多少种不同的号码? 分类计数原理做一件事,完成它有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有m n种不同的方法。那么完成这件事共有种不同的方法。 例1. 一个三层书架的上层放有5本不同的数学书,中间放有3本不同的语文书,下层放有2本不同的英语书: 从书架上任取一本书,有多少种不同的取法? 跟踪练习:有一项活动,需在3名老师、8名男生和5名女生中选人参加.若只需1人参加,有多少种不同选法? 探究点二、分步加法计数原理

问题3. 由A村去B村的道路有3条,由B村去C村的道路有2条。从A村经B村去C 村,共有多少种不同的走法? 问题4. 某中学的阅览室有50本不同的科技书,80本不同的文艺书。王华同学想借1本科技书和1本文艺书,共有多少种不同的借法? 分步计数原理做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有m n种不同的方法,那么完成这件事有 种不同的方法。 例2. 一个三层书架的上层放有5本不同的数学书,中间放有3本不同的语文书,下层放有2本不同的英语书: 从书架上任取三本书,其中数学书、语文书、英语书各一本,有多少种不同的取法? 跟踪练习:一个袋子里放有6个球,另一个袋子里放有8个球,每个球各不相同,从两袋子里各取一个球,不同取法的种数为( ) A.182B.14C.48D.91 例3. 我们把壹元硬币有国徽的一面叫做正面,有币值的一面叫做反面.现依次抛出5枚壹

基本计数原理的综合应用

基本计数原理的综合应用 1.基本计数原理 ⑴加法原理 分类计数原理:做一件事,完成它有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种方法,……,在第n 类办法中有n m 种不同的方法.那么完成这件事共有12n N m m m =+++种不同的方法.又称加法原理. ⑵乘法原理 分步计数原理:做一件事,完成它需要分成n 个子步骤,做第一个步骤有1m 种不同的方法,做第二个步骤有2m 种不同方法,……,做第n 个步骤有n m 种不同的方法.那么完成这件事共有12n N m m m =???种不同的方法.又称乘法原理. ⑶加法原理与乘法原理的综合运用 如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类计数原理.如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事才告完成,那么计算完成这件事的方法数时,使用分步计数原理. 分类计数原理、分步计数原理是推导排列数、组合数公式的理论基础,也是求解排列、组合问题的基本思想方法,这两个原理十分重要必须认真学好,并正确地灵活加以应用. 2. 排列与组合 ⑴排列:一般地,从n 个不同的元素中任取()m m n ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.(其中被取的对象叫做元素) 排列数:从n 个不同的元素中取出()m m n ≤个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号A m n 表示. 排列数公式:A (1)(2) (1)m n n n n n m =---+,m n +∈N ,,并且m n ≤. 全排列:一般地,n 个不同元素全部取出的一个排列,叫做n 个不同元素的一个全排列. n 的阶乘: 正整数由1到n 的连乘积,叫作n 的阶乘,用!n 表示.规定:0!1=. ⑵组合:一般地,从n 个不同元素中,任意取出m ()m n ≤个元素并成一组,叫做从n 个元素中任取m 个元素的一个组合. 知识内容

(完整版)“两个基本计数原理”教学设计与教学反思

“两个基本计数原理”教学设计及教学反思 江苏省苏州中学刘华(215007) 在新课标教材中,“两个基本计数原理”是高中数学选修2-3第1章“计数原理”的起始课,在原《大纲》版教材中,这个章节的标题是“排列、组合与二项式定理”,新课标教材的内容与原人教版教材是一致的,但新课标的理念却有了很大的不同,如何在教学设计以及教学过程中充分展现新课程对数学教学的新要求?这使我在着手教学设计之时就面临挑战. 1. 如何处理教材 1.1目标定位 教材提供了教学的素材——原理、范例、练习(习题),如何将素材整合成一个有机的教学内容?首先要分析教学内容在教材体系(乃至数学知识体系)中的地位,并确立教学的目标. 《课程标准》对本章的教学侧重点做了界定:“计数问题是数学中的重要研究对象之一,分类加法计数原理、分步乘法计数原理是解决计数问题的最基本、最重要的方法,也称为基本计数原理,它们为解决很多实际问题提供了思想和工具.[1]”这说明,本章的教学重点是两个基本计数原理,而排列、组合、二项式定理则是两个基本计数原理的应用实例.根据上述分析,结合《课程标准》对本章的目标定位,我认为,“计数原理”这一章研究的对象是计数问题,研究的方法是“问题解决”,研究的过程是“建构方法”,在本课的学习过程中,师生将面对实际计数问题(可能是已加工过的)并加以解决,这一“问题解决”过程的目标是建构方法——两个基本计数原理.因此,将本节课的教学目标拟定为: 1.通过实例分析,让学生自主建构分类加法计数原理和分步乘法计数原理,并弄清它 们的区别. 2.能初步运用分类加法计数原理和分步乘法计数原理分析和解决一些简单的计数问 题. 1.2重难点分析 对学生而言,“计数”是其学习数学的基本能力之一,简单的计数问题,其解决方法就是“数”数,但复杂的问题呢?因此,要使学生意识到,只会机械地“数”是不够的,必须从简单的、已能解决的计数问题中,抽象出能够解决一“类”问题的方法,并明确界定适用该方法的问题的“类”.由此可知,本节课教学的重点与难点为: 1.本节课的重点是经历对实际问题进行方法建构的过程,从而掌握解决实际计数问题 2.本节课的难点是在具体问题解决中,区别使用计数原理.

计数的基本原理 教案

《分类计数原理与分步计数原理》教学设计 一、教学目标: 通过学习,学生能 1.理解并掌握分类计数原理与分步计数原理,用它们分析和解决一些简单的应用问题; 2.创设情境,将一些实际问题归结为一个分类或分步的计数问题,提升建构思维能力; 3.通过组内合作探究,认识数学知识与现实生活的内在联系,感受到亲切、和谐的学习氛围。 二、教学重点、难点 1、重点:两个计数原理的理解和掌握 2、难点:如何判断完成一件事是分类或分步完成 3、突破难点分析:要准确的判断是分类还是分步去完成一件事,首 先得明确这是一件什么事,该怎样去完成。在分析的过程中,便会发现有些事可以按某些方法独立完成,有些事需要多个步骤才能完成。能独立完成的就用分类,需多个步骤完成的就用分步。 为此,设计了两个小组活动来让学生体会。 三、教学策略: 本节课的课本引例、例题同学们通过预习大多都能看懂。为了贴近学生实际生活,激发学生学习兴趣,在创设情境和例题的选用上,选择了学生所熟悉的生活事例。 本节课采用了老师引导启发,学生分小组合作学习的方法进行教学。利用多媒体显示问题情境,让学生通过小组活动,具体地分析

比较,进而归纳总结,体现了从特殊到一般的思维过程,既关注了学生的认知基础,又促使学生在原有认知基础上获取知识,提高思维能力,保持高水平的思维活动,符合学生的认知规律。 四、教学过程: 1.创设情境,揭示课题 问题1:从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船。一天中,火车有4班, 汽车有2班,轮船有3班。那么一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法? 问题2:从甲地到乙地,要从甲地先乘火车到丙地,再于次日从丙地乘汽车到乙地。一天中,火车有3班,汽车有2班,那么两天中,从甲地到乙地共有多少种不同的走法? 【设计目的】:选择学生身边的素材作为新课引入的实例,利用简单的熟悉的问题情境激发学生学习的积级性,让学生在迫 切要求下去探究。 2.逐层探索,构建新知 在刚才的第一问中,我们要完成什么事?要怎样去完成?

相关主题