搜档网
当前位置:搜档网 › 生成排列和组合

生成排列和组合

生成排列和组合
生成排列和组合

第四章生成排列和组合

4.1 生成排列

算法一: (生成集合{1,2,…,n}的n!个排列)

基本思想是递归地对集合{1,2,…,n-1}的(n-1)!个排列的每一个排列, 通过把n插入到首、尾和任两个数的中间共n个位置,产生集合{1,2,…,n}的n个排列,从而产生n (n-1)!=n!个集合{1,2,…,n}的排列。

算例:

排列

n=1: 1

n=2: 1 2

2 1

n=3: 1 2 3

1 3 2

3 1 2

3 2 1

2 3 1

2 1 3

n=4:

1 2 3 4

1 2 4 3

1 4

2 3

4 1 2 3

4 1 3 2

1 4 3 2

1 3 4 2

1 3

2 4

3 1 2 4

3 1

4 2

3 4 1 2

4 3 1 2

4 3 2 1

3 4 2 1

3 2

4 1

3 2 1 4

2 3 1 4

2 3 4 1

2 4

3 1

4 2 3 1

4 2 1 3

2 4 1 3

2 1 4 3

2 1

3 4

n=5:

算法结束,生成全部排列。

算法二: (生成集合{1,2,…,n}的n!个排列)

定义:

对任一给定整数k, 其上加一个箭头表示移动方向,k 或k . 对于集合{1,2,…,n}的任一个排列,其中每一个整数都有一个箭头指出其移动方向, 若整数k 的箭头指向与其相邻但比它小的整数, 称k 是活动的.

算法:

从1 2 3 …n 开始, 当不存在活动的整数时,算法结束.

(1) 求出最大的活动整数m;

(2) 交换m 和它箭头所指的相邻数;

(3) 改变所有满足p>m 的整数p 的方向.

算例: (n=4)

4.2 排列中的逆序

定义:

令i 1 i 2 …i n 是集合{1,2,…,n}的一个排列,如果 0≤ k < L ≤n, 且i k >i L , 称数对(i k ,i L )是排列的一个逆序。

例:31524的逆序

定义:

令a j表示排列i1 i2…i n中数j的逆序数,称a1, a2,…, a n为排列i1 i2…i n的逆序列。例:排列31524的逆序列

逆序列的性质:

(1) 0≤a1≤n-1, 0≤a2≤n-2, …, 0≤a n-1≤1, a n =0。

(2) 逆序列数有n!个。

定理4.2.1:

令b1, b2,…, b n为满足

0≤b1≤n-1, 0≤b2≤n-2, …, 0≤b n-1≤1, b n =0

的整数序列,那么存在集合{1,2,…,n}的唯一一个排列,使它的逆序列为b1, b2,…, b n。

证明:(构造性证明)

算法一:

n: 写出整数n

n-1: 考虑b n-1,若b n-1 =0,则n-1必在n的前面。

若b n-1 =1:则n-1必在n的后面。

n-2: 考虑b n-2,若b n-2 =0,则n-2必在上一步得到的排列的前面。

若b n-2 =1,则n-2必在上一步得到的排列的两个数中间。

若b n-2 =2,则n-2必在上一步得到的排列的后面。

1: 考虑b1,把1放在上一步得到的排列的第b1个数的后面。

由算法可知,从n, n-1,…,2,1每一步都根据b1, b2,…, b n唯一地确定1,2,…n在排列中的位置,两者存在一一对应关系。

算法二:

设有n个位置,标志为1,2,…,n

1: 把1放在b1+1位置上;

2: 把2放在第b2+1个空位置上;

k: 把k放在第b k+1个空位置上;

n: 把k放在余下的空位置上;

由算法可知,根据b 1, b 2,…, b n 唯一地确定1,2,…n 在排列中的位置,两者存在一一对应关系。

例1:

已知{1,2,…,8}的一个排列的逆序列为:5,3,4,0,2,1,1,0,确定此排列。

4.3 生成组合

令集合S={x n-1, x n-2,…, x -1, x 0} ,生成S 的所有2n 个组合。

算法:

从n 元组a n-1a n-2…a 1a 0=00…0开始, 当a n-1a n-2…a 1a 0=11…1时算法结束, 做:

(1)求出使得a j =0的最小整数j;

(2)用1代替a j , 并且用0代替a j-1, a j-2 , … , a 0 .

算法正确性证明:

几种不同的组合输出序:

(1) 字典序

(2) 组合压缩序

(3) 格雷(Gray)码序

n 阶反射格雷(Gray)码的递归定义:

(1) 1阶反射格雷(Gray)码是 1

;

(2) 设n>1, 且n-1阶反射格雷(Gray)码已经构造好,首先顺序列出n-1阶反射格雷(Gray)

码的全部n-1元组, 并把0加到全部n-1元组的开头; 然后再反序列出n-1阶反射格雷(Gray)码的全部n-1元组, 并把1加到全部n-1元组的开头.

定义:

设a n-1a n-2…a 1a 0是01的n 元组, 定义σ函数为:

σ( a n-1a n-2…a 1a 0)= a n-1+a n-2+…+a 0

算法: (以反射格雷(Gray)码序生成全部 01的n 元组)

从n 元组a n-1a n-2…a 1a 0=00…0开始, 当a n-1a n-2…a 1a 0=10…0时算法结束, 做:

(1)计算σ( a n-1a n-2…a 1a 0)= a n-1+a n-2+…+a 0

(2)若σ( a n-1a n-2…a 1a 0)是偶数, 则改变a 0(0→1 或 1→0)

(3) 若σ( a n-1a n-2…a 1a 0)是奇数, 确定这样的j, 使得对所有i

例1:

生成4阶反射格雷(Gray)码.

定理4.3.1(算法正确性证明)

上述算法产生n 阶反射格雷(Gray)码.

例2:

在8阶反射反射格雷(Gray)码中,求10100110的后继,00011101的前驱.

4.4 生成r 组合

定理4.41:

令a 1a 2…a r 是{1,2,…,n }的一个r-组合, 在字典序中, 第一个r-组合是12…r, 最后一个r-组合是(n-r+1) (n-r+2)…n, 设a 1a 2…a r ≠(n-r+1) (n-r+2)…n, 令k 是满足a k

例1:

应用算法生成{1,2,…,6}的4-组合.

定理4.4.2

{1,2,…,n}的r-组合a 1a 2…a r 出现在{1,2,…,n}的r-组合中的字典序中的位置号如下: ???? ??r n -???? ??r a -n 1-???

? ??1-r a -n 2-…-???? ??2a -n 1-r -???? ??1a -n r

例2:

求{1,2,…,8}的4-组合中1258的字典序位置.

4.5 偏序和等价关系

定义1:

设X是一个集合,X上的关系定义为X ? X上的子集(其中X ? X是集合X的序偶的集合,即X ? X={(a,b)∣ a,b∈X }),令关系R? X ? X,若(a,b)∈R ,则称a和b有关

系R,记为aRb;否则称a和b没有关系R ,记为a R b.

定义2:

设R是X上的关系,R={(x,y)| x, y∈X 且xRy }, 那么R可能具有下列性质:

(1)自反性: 若对? x∈X, 均有xRx;

(2)反自反性: 若对? x∈X, 均有x R x;

(3)对称性: 对? x,y∈X, 若xRy, 则必有yRx;

(4)反对称性: 对? x,y∈X, x≠y, 若xRy; 则必有y R x;

(5)传递性: 对? x,y,z∈X, 若xRy, yRz, 则必有xRz;

定义3: 设R是X上的二元关系

(1)偏序关系: 若R满足自反性, 反对称性和传递性, 则称R是X上的偏序关系. 记

为” ≤”. 在其上定义了偏序关系的集合称偏序集, 记为(X, ≤).

(2)严格偏序关系: 若R满足反自反性, 反对称性和传递性, 则称R是X上的严格偏序关

系. 记为”<”.

(3)全序关系: 对x,y∈X, 若xRy或yRx, 则称x和y是可比的, 否则称x和y是

不可比的; 若偏序关系R使X中任两个元素都是可比的, 则R是X

上的全序关系, 记为”≤”, 此时(X, ≤)称全序集.

(4)等价关系: 若R满足自反性, 对称性和传递性, 则称R是X上的等价关系. 记

为”~”或”=”.

定义4: 偏序集(P, ≤)中, 设a,b∈P

(1)覆盖: 若a

(2)直接覆盖: 若a

偏序集的几何(哈斯图)表示:

方法: 当b是a的直接覆盖时,b与a画一条线段, b在a的上方.

例1:

X={1, 2, 3}, 画出偏序集(P(A), ?)的哈斯图.

例2:

X={1, 2, 3, 4, 5, 6, 7, 8}, ” ≤”定义为整除关系, 画出偏序集(P, ≤)的哈斯图.

例3:

P={1, 2, 3, 4, 5}, ” ≤”定义为实数域小于等于关系,画出全序集(P, ≤)的哈斯图.

定义4:

偏序集(P, ≤)中, 若? m∈P,对? x∈P, 均有x ≤m, 则称m是P的最大元.

若n∈P,对x∈P, 若n ≤x, 则必有n=x, 称n是P的极大元.

同理定义最小元和极小元.

性质: (1)偏序集未必存在最大元(最小元), 若存在必唯一.

(2)偏序集一定存在极大元(极小元), 但未必唯一.

定理4.5.1

设X是n个元素的有限集, 那么, 在X的全序和排列之间存在一一对应.

特别地, X上的不同全序个数是n! .

定义5:

令≤1和≤2是集合X上的两个偏序, 对于a,b∈X,若有a≤1b, 则必有a≤2b, 那么称偏序集

(X, ≤2)是偏序集(X, ≤1)的扩展.

定理4.5.2

令(X, ≤) 是一个有限偏序集, 则存在X上的线性序(全序) ≤', 使得(X, ≤')是(X, ≤)的一个扩展.

例4:

X={1,2,3,4,5,6,7,8}, “≤”定义为整除关系, 确定(X, ≤)的一个线性扩展.

定义6:

对于X中每一个元素a, a的等价类定义为所有与a等价的元素构成的集合.记为

[a]={x∣ x∈X ,x~a }.

定理4.5.3

X的全部等价类构成X的一个划分, 反之, X的任一个非空划分对应X的一个等价类.

新课标排列组合解题策略(精编)

新课标排列组合问题的解题策略(精编)相邻元素捆绑法 例1.7名学生站成一排,甲、乙必须站在一起有多少不同排法? 变式练习:1.7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法 2.某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 (20) 3.有8本不同的书;其中数学书3本,外语书2本,其它学科书3本.若将这些书排成一列放在书架上,让数学书排在一起,外语书也恰好排在一起的排法共有( )种1440 不相邻问题——插空法 例2.7名学生站成一排,甲乙互不相邻有多少不同排法? 变式练习:1.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 2.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 ____(30) 3.用1、2、3、4、5、6、7、8组成没有重复数字的八位数,要求1与2相邻,2与4相邻,5与6相邻,而7与8不相邻。这样的八位数共有( )个 288 特殊元素——优先考虑法 例3 (1995年上海高考题) 1名老师和4名获奖学生排成一排照像留念,若老师不排在两端,则共有不同的排法()种. 72 变式练习:1.乒乓球队的10名队员中有3名主力队员,派5名队员参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有多少种? 252 2.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数 288 定序问题用除法(缩倍法) 例4.6个人排队,甲、乙、丙三人按“甲---乙---丙”顺序排的排队方法有多少种? 120 变式练习:1.4个男生和3个女生,高矮不相等,现在将他们排成一行,要求从左到右女生从矮到高排列,有多少种排法 2.0人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐 增加,共有多少排法? 5 C 10

排列组合问题的解题策略

排列组合问题的解题策略 排列组合问题的解题策略 一、相临问题——捆绑法 例1.7名学生站成一排,甲、乙必须站在一起有多少不同排法? 解:两个元素排在一起的问题可用“捆绑”法解决,先将甲乙二人看作一个元素与其他五人进行排列,并考虑甲乙二人的顺序,所以共有种。 评注:一般地: 个人站成一排,其中某个人相邻,可用“捆绑”法解决,共有种排法。 二、不相临问题——选空插入法 例2.7名学生站成一排,甲乙互不相邻有多少不同排法? 解:甲、乙二人不相邻的排法一般应用“插空”法,所以甲、乙二人不相邻的排法总数应为:种 . 评注:若个人站成一排,其中个人不相邻,可用“插空”法解决,共有种排法。 三、复杂问题——总体排除法 在直接法考虑比较难,或分类不清或多种时,可考虑用“排除法”,解决几何问题必须注意几何图形本身对其构成元素的限制。 例3.(1996年全国高考题)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有多少个. 解:从7个点中取3个点的取法有种,但其中正六边形的对角线所含的中心和顶点三点共线不能组成三角形,有3条,所以满足条件的三角形共有-3=32个.

四、特殊元素——优先考虑法 对于含有限定条件的排列组合应用题,可以考虑优先安排特殊位置,然后再考虑其他位置的安排。 例4.(1995年上海高考题) 1名老师和4名获奖学生排成一排照像留念,若老师不排在两端,则共有不同的排法种. 解:先考虑特殊元素(老师)的排法,因老师不排在两端,故可在中间三个位置上任选一个位置,有种,而其余学生的排法有种,所以共有=72种不同的排法. 例5.(2000年全国高考题)乒乓球队的10名队员中有3名主力队员,派5名队员参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有种. 解:由于第一、三、五位置特殊,只能安排主力队员,有种排法,而其余7名队员选出2名安排在第二、四位置,有种排法,所以不同的出场安排共有=252种. 五、多元问题——分类讨论法 对于元素多,选取情况多,可按要求进行分类讨论,最后总计。 例6.(2003年北京春招)某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为(A ) A.42 B.3 0 C.20 D.12 解:增加的两个新节目,可分为相临与不相临两种情况:1.不相临:共有A62种;2.相临:共有A22A61种。故不同插法的种数为:A62 +A22A61=42 ,故选A。 例7.(2003年全国高考试题)如图,一个地区分为5个行政区域,现给地图着色,要求相

简单的排列组合 案例分析

《简单的排列组合》案例分析 乒乓球的比赛场次,密码箱中密码的排列数,电话机容量超过多少电话号码就要升位等。在数学学习中经常要用到推理,如加法和乘法的一些运算定律的推导过程,能被2、5、3整除的数的推导等。这节课安排生动有趣额活动,让学生通过这些活动进行学习。例1给出了一副学生用数学卡片摆两位数的情境图,学生在进行小组合作学习,先用2个卡片摆,学生通过操作感受摆的方法以后,再用3个卡片摆;然后小组交流摆卡片的体会:怎样摆才能保证不重复、不遗漏。【教材分析】 “数学广角”是新编实验教材新增设的内容,是新教材在向学生渗透数学思想方法方面做出的新的尝试。排列和组合的思想方法不仅应用广泛,而且是学生学习概率统计的知识基础,同时也是发展学生抽象能力和逻辑思维能力的好素材,这部分内容重在向学生渗透简单的排列、组合的数学思想方法,并初步培养学生有顺序地全面思考问题的意识。 【教学目标】 1.通过观察、实验等活动,使学生找出最简单的事物的排列数和组合数,初步经历简单的排列和组合规律的探索过程; 2.使学生初步学会排列组合的简单方法,锻炼学生观察、分析和推理的能力;

新|课|标|第|一|网 3.培养学生有序、全面思考问题的意识,通过小组合作探究的学习形式,养成与人合作的良好习惯。 【教学重点】经历探索简单事物排列与组合规律的过程 【教学难点】初步理解简单事物排列与组合的不同 【教学准备】多媒体课件、数字卡片。 【教学方法】观察法、动手操作法、合作探究法等。 【课前预习】 预习数学书99页,思考以下问题: 1、用1、2两个数字能摆出哪些两位数? 2、用1、2、3这3个数字能摆出哪些两位数?可以动手写一写。 3、想一想:你是怎么摆的,先摆什么,再摆什么?有什么好方法才会不遗漏,不重复。 【教学准备】PPT 【教学过程】 一、以游戏形式引入新课 师:同学们,今天老师带大家去数学广角做游戏。在门口设置了?,?上有密码。这个密码盒的密码是由数字1、2组成的一个两位数,想不想进去呢? 师:谁来告诉老师密码,帮老师打开这个密码盒?(生尝试说出组成的数) 生:12、21

排列组合的二十种策略

排列组合的二十种策略 教学目标 1.进一步理解和应用分步计数原理和分类计数原理。 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第 2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有14C 最后排其它位置共有34A 由分步计数原理得113434288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有 多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元 素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有522 522480A A A =种不同的

高三复习:排列组合问题的解题方法

排列组合问题的解题方法 一、特殊元素(或位置) “优先法”:排列组合问题无外乎“元素”与“位置”的关系问题,即某个元素排在什么位置或某个位置上排什么元素的问题.因此,对于有限制条件的排列组合问题,可从限制元素(或位置)入手,优先考虑. 例1、在由数字0、1、2、3、4、5所组成的没有重复数字的四位数中,不能被5整除的数共有( )个. 解1:(元素优先法)根据所求四位数对0和5两个元素的特殊要求将其分为四类:① 含0不含5,共有1324C A =48(个);②含5不含0,共有1334C A =72(个);③含0也含5,共有112224C C A =48(个);④不合0也不含5,共有4 4 A =24(个).所以,符合条件的四位数共有48+72+48+24=192(个). 解2:(位置优先法)根据所求四位数对首末两位置的特殊要求可分三步:第一步:排 个位,有14C 种方法;第二步;排首位,有14C 种方法;第三步:排中间两位,有2 4A 种方法.所以符合条件的四位数共有14C 14C 24 A =192(个). 二、相邻问题“捆绑法”:对于元素相邻的排列问题,可先将相邻元素“捆绑”起来看作一个元素(整体),先与其它元素排列,然后相邻元素之间再进行排列. 例2、6个人排成一排,甲、乙二人必须相邻的排法有多少种? 解:将甲、乙二人“捆绑”起来看作一个元素与其它4个元素一起排列,有A 55 种,甲、乙二人的排列有A 22 种,共有A 22·A 5 5=240种. 三、不相邻问题“插空法”:对元素不相邻问题,可先不考虑限制条件先排其它元素,再将不相邻元素插入已排好元素的空隙中(包括两端)即可. 例3、用1,2,3,4,5,6,7,8组成没有重复数字的八位数,其中1与2相邻、3与4相邻、5与6相邻、7与8不相邻的八位数共有 个. 解:先“相邻”排列成三个“大元素”,再三个“大元素”排列,最后7与8“插空”, 共有22232 22234576A A A A A 种. 四、有序问题“无序法”:对于元素顺序一定的排列问题,可先考虑没有顺序元素的排列,然后除以有顺序的几个元素的全排列即可. 例4、3男3女排成一排,若3名男生身高不相等,则按从高到低的一种顺序站的站法有多少种? 解:6个人的全排列有A 66 种,3名男生不考虑身高的顺序的站法有A 3 3种,而由高到低又可从左到右,或从右到左(这是两种不同的站法),故共有不同站法2A 66÷A 3 3 =240种. 五、分排问题“直排法”:n 个元素分成m (m <n )排,即为n 个元素的全排列. 例5、将6个人排成前后两排,每排3人,有多少种排法. 解:6个人中选3个人排在前排有A C 33 36种,剩下3人排在后排有A 3 3种,故共有

排列组合解题策略大全(十九种模型)

排列组合解题策略大全 一、合理分类与分步 1、五个人排成一排,其中甲不在排头,乙不在排尾,不同的排法有多少种? 四位上,则有1 31333A A A 种排法,由分类计数原理,排法共有7813133344 =+A A A A (种) 解法二(排除法):甲在排头:44A ,乙在排尾: 44A ,甲在排头且乙在排尾: 3 3A ,故符合题意的不同的排法为: 5443544378A A A A --+=.注: 甲在排头和乙在排尾都包含甲在排头的同时乙在排位,所以多减了要补回来. 2、从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案? 解析:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况: ① 若甲乙都不参加,则有派遣方案48A 种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有3 8A 方法, 所以共有383A ;③若乙参加而甲不参加同理也有3 83A ④(同例1)若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另外两个城市有28A 种,共有287A 方法.所以共有不同的派遣方法总数4332 88883374088A A A A +++=(种) 二、特殊元素和特殊位置优先法 1、0,1,2,3,4,5能够组成多少个没有重复数字的五位奇数? 分析:特殊元素:0,1,3,5;特殊位置:首位和末位 先排末位:13C ,再排首位:14C ,最后排中间三位:34A 共有:13C 14C 3 4A =288 2、7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 先种这两种特殊的花在除中间和两端外剩余的3个位置:24A ;再在其余5个位置种剩余的5种花:55A ;总共:24A 55A =1440 三、排列组合混合问题先选后排法 1、4个不同小球放入编号为1,2,3,4的四个盒中,恰有一空盒的方法有多少种? 解决排列组合混合问题,先选后排是最基本的指导思想。

排列组合解题策略

排列组合解题策略 2.A、36种B、120种C、720种D、1440种 前后两排可看成一排的两段,因此本题可看成6个不同的元素排成一排,共66720A =种,选C 3.把15人分成前后三排,每排5人,不同的排法种数为() (A)510515A A (B)3355510515A A A A (C)1515A (D)3355510515A A A A ÷答案:C 4.8个不同的元素排成前后两排,每排4个元素,其中某2个元素要排在前排,某1个元素排在后排,有多少种不同排法? 解:看成一排,某2个元素在前半段四个位置中选排2个,有24A 种,某1个元素排在后半段的四个位置中选一个有14A 种,其余5个元素任排5个位置上有55A 种,故共有1254455760A A A =种排法. 5.10个相同的球装5个盒中,每盒至少一有多少装法?4 9C 解:从0、0、0、1、2、3…100中插入三个隔板即可3103C 。 7.某校准备组建一个由12人组成篮球队,这12个人由8个班的学生组成,每班至少一人,名额分配方案共种。 解:在12个名额种的11个空当中插入7块闸板,一种插法对应一种名额的分配方式,故有种 8.有20个不加区别的小球放入编号为1,2,3的三个盒子里,要求每个盒子内的球数不少编号数,问有多少种不同的方法? 解:向1,2,3号三个盒子中分别放入0,1,2个球后还余下17个球,然后再把这17个球分成3份,每份至少一球,运用隔板法,共有1202 16=C 种。 9.(a+b+c+d)15有多少项?

解:当项中只有一个字母时,有种(即 a.b.c.d 而指数只有15故;当项中有2个字母时,有 而指数和为15,即将15分配给2个字母时,如何分,闸板法一分为2,即;当项中有3个字母 时指数15分给3个字母分三组即可;当项种4个字母都在时 四者都相加即可.10.将4个相同的白球、5个相同的黑球、6个相同的红球放入4各不同的盒子中的3个 中,使得有一个空盒且其他盒子中球的颜色齐全的不同放法有多少种? 解:1、先从4个盒子中选三个放置小球有3 4C 种方法;2、注意到小球都是相同的,我们可以采用隔板法。为了保证三个盒子中球的颜色齐全,可以在4个相同的白球、5个相同的黑球、6个相同的红球所产生的3个、4个5个空挡中分别插入两个板。各有23C 、24C 、25C 种方法;3、由分步计数原理可得34C 23C 24C 25C =720种。 11.用不同的5种颜色分别为ABCDE 五部分着色,相邻部分不能用同一颜色,但同一种颜色可以反复使用也可以不用,则符合这种要求的不同着色种数.(540)第11题第12题第13题第14题 12.四个区域坐定4个单位的人,有四种不同颜色的服装,每个单位的观众必须穿同种颜色的服装,且相邻两区域的颜色不同,不相邻区域颜色相同,不相邻区域颜色相同与否不受限制,那么不同的着色方法是种(84) 13.某城市中心广场建造一个花圃,花圃6分为个部分(如图),现要栽种4种颜色的花,每部分栽种一种且相邻部分不能栽种同一样颜色的话,不同的栽种方法有种(以数字作答).(120) 秒杀秘籍:合并单元格解决染色问题 例3.如图,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同 一颜色,现有四种颜色可供选择,则不同的着色方法共有种(以数字作答)。 解:分情况讨论: (ⅰ)当3、4颜色相同且1、5颜色不同时,将3、4合并成一个单元格,此时不同的 着色方法相当于4个元素的全排列数4 4A (ⅱ)当3、4颜色不同且1、5颜色相同时,与情形(ⅰ)类似同理可得44A 种着色法. (ⅲ)当3、4与1、5分别同色时,将3、4,1、5分别合并,这样仅有三个单元格,从4种颜色中选3种来着色这三个单元格,计有3334A C 种方法.由加法原理知:不同着色方法共有3 334442A C A +=48+24=72(种) 例4.将一个四棱锥S ABCD -的每个顶点染上一种颜色,并使同一条棱的两端 点异色,如果只有5种颜色可供使用,那么不同的染色方法的总数是_______. 解:可把这个问题转化成相邻区域不同色问题,如图, 若恰用三种颜色,可先从五种颜色中任选一种染顶点S,再从余下的四种颜色中任 选两种涂A、B、C、D 四点,此时只能A 与C、B 与D 分别同色,故有125460C A =种方法。 (2)若恰用四种颜色染色,可以先从五种颜色中任选一种颜色染顶点S,再从余下的四种颜色中任选两种染A 与B,由于A、B 颜色可以交换,故有24A 种染法;再从余下的两种颜色中任选一种染D 或C,而D 与C,而D 与C 中另一个只需染与其相对顶点同色即可,故有12115422240C A C C =种方法。 (3)若恰用五种颜色染色,有55120A =种染色法综上所知,满足题意的染色方法数为60+240+120=420种。涂色问题的常用方法有:(1)可根据共用了多少种颜色分类讨论;(2)根据相对区域是否同色分类讨论; (3)将空间问题平面化,转化成平面区域涂色问题。54321

排列和组合

德阳市第一小学2011秋期汇报课教案 数学广角——排列和组合 教学内容:义务教育课程标准实验教科书二年级上册第99页数学广角中的排列和组合。 教学目标: 1、通过观察、猜测、操作等活动,找出最简单的事物的排列数和组合数。 2、经历探索简单事物排列与组合规律的过程。 3、培养学生有顺序地全面地思考问题的意识。 4、感受数学与生活的紧密联系,激发学生学数学的信心。教学重点:经历探索简单事物排列与组合规律的过程 教学难点:初步理解简单事物排列与组合的不同 教具准备:教学课件 学具准备:每生准备3张数字卡片,记录表,学具袋 教学过程: 一、开门见山引入新课: 师:今天老师带小朋友去数字宫玩数字游戏,想玩吗? 1、用1、2两张卡片摆两位数 (1)贴在黑板上,师:你能用这两

张数字卡片1、2摆出几个不同的两位数?想想怎么摆的。(2)、抽生上台边摆边汇报摆的方法。 (3)、师再根据生说的进行总结:(先把1放在十位,2放在个位,组成12,再调换位置组成21,能排成两个不同的两位数)并写出12、21 (4)、通过刚才摆卡片,你有什么发现?(发现排列的顺序不一样,数不一样,大小不一样。) (5)揭示课题:排列(好,这节课我们来研究有关排列知识)。 二、自主探究,感知排列 1、摆一摆(用1、 2、3摆两位数,分组摆) 师:再添上一张数字卡片3(用数字1、2、3能摆出几个两位数呢?) (1) 小组合作探究 师:请同学们小组合作,一个人摆,其余人仔细观察,再完成记录表,开始合作。

学生活动教师巡视。(学生所写的个数可能不一样,有多有少,找几份重复的或个数少的展示。) (2)、小组汇报展示结果 ①抽记录员汇报所写数及个数并出示各组摆的数。 可能出现以下几种情况: 十位个位十位个位十位个位 1 2 1 2 2 1 1 3 2 3 2 1 3 2 2 3 1 3 3 1 3 1 3 2 (6个)(6个)重复或缺少 ②指派各组代表说摆法。 ③评价方法优劣(听了各组的摆法,你认为哪种方 法好,好在哪里?)小组讨论讨论并作汇报。 ④指出问题有的重复写了,有的漏写了。 (3)、解决问题 师:怎样才能像这些组的孩子很快写出用1、2、3组

完整版排列组合的二十种解法最全的排列组合方法总结

教学目标 1. 进一步理解和应用分步计数原理和分类计数原理。 2. 掌握解决排列组合问题的常用策略 ;能运用解题策略解决简单的综合应用题。提高学生解决问题分 析问题的能力 3. 学会应用数学思想和方法解决排列组合问题 复习巩固 1. 分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有 m i 种不同的方法,在第 2类办法中有m 2种不同的方 法,…,在第n 类办法中有m n 种不同的方法,那么完成这件事共有: N m i m 2 L m n 种不同的方法. 2. 分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有叶种不同的方法,做第2步有m 2种不同的方法,… 做第n 步有m n 种不同的方法,那么完成这件事共有: N mi m 2 L m n 种不同的方法. 3. 分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下 : 1. 认真审题弄清要做什么事 2. 怎样做才能完成所要做的事 ,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少 类。 3. 确定每一步或每一类是排列问题 (有序)还是组合(无序)问题,元素总数是多少及取出多少个元素 . 4. 解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5 可以组成多少个没有重复数字五位奇数 . 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置 . 先排末位共有C ; 然后排首位共有C 1 最后排其它位置共有 A 3 由分步计数原理得C 4C ;A ; 288 位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法 ,若以元素分析为主,需 先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位 置。若 有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件 练习题:7种不同的花种在排成一列的花盆里 多少不同的种法? 二. 相邻元素捆绑策略 例2. 7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元 素进行排 A 3 ,若两种葵花不种在中间,也不种在两端的花盆里,冋有 A 5 A 2 A 2 480种不同的

排列组合常见题型及解题策略(详解)

排列组合常见题型及解题策略 一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复, 把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类 问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数 【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同报名方法? (2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果? (3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法? 【解析】:(1)43(2)34 (3)34 【例2】 把6名实习生分配到7个车间实习共有多少种不同方法? 【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案, 第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案. 【例3】 8名同学争夺3项冠军,获得冠军的可能性有( ) A 、38 B 、83 C 、38A D 、3 8C 【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠军 看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有38种不同的 结果。所以选A 二.相邻问题捆绑法: 题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 【例1】,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有 【解析】:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A 种 【例2】(2009四川卷理)3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女 生中有且只有两位女生相邻,则不同排法的种数是( ) A. 360 B. 188 C. 216 D. 96 【解析】: 间接法 6位同学站成一排,3位女生中有且只有两位女生相邻的排法有, 22223242C A A A =432种, 其中男生甲站两端的有1 222223232A C A A A =144,符合条件的排法故共有288 三.相离问题插空法 :元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列, 再把规定的相离的几个元素插入上述几个元素的空位和两端. 【例1】七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是

简单的排列组合教案

二年级上册数学广角《简单的排列问题》教案 课时:第一课时 教材:人教版义务教育课程标准试验教科书二年级上册数学广角《排列和组合》,课本例1。 教学目标: 1、知识与能力:培养学生学习初步的观察、分析能力和有序全面思考问题的意识。 2、过程与方法:通过摆一摆、玩一玩等实践活动,了解有关简单的排列组合的知识。 3、情感、态度与价值观:培养学生大胆猜想、积极思维的学习方法,进一步激发学生学习数学的兴趣。 教学重点: 1、了解简单的排列知识。 2、能应用排列组合的知识解决实际生活中的问题。 教学难点:掌握简单的逻辑推理。 教学准备:数字卡片、课件。 一、创设情境,导入新课 孩子们,你们喜欢看《喜羊羊与灰太狼》吗? (边出示课件2和3边讲解故事内容) 师:在这一天,灰太狼抓住了美羊羊,把她关在了狼堡里。灰太狼为了阻止喜羊羊去救美羊羊,他设计一扇“超级密码门”,装在自己的狼堡里。喜羊羊

为了进大门,非常着急。正在这时,喜羊羊发现了大门上有一排小字,我们把它放大看看吧!(点击电脑,出示图中云注标志) 二、动手操作、探究新知 1、初步感知排列(出示课件4) (1)师:大门的密码是由数字1和2组成的两位数中较大的数,请同学们利用自己手边的数字卡片1和2来摆一摆吧! 学生活动:用数字1和2摆出两位数。 师总结:原来把这两个数字的十位与个位交换也成了不同的两位数啊!(板书课题) 师:刚刚同学们说了可以摆成12和21两个两位数。所以密码是12、21中的较大的数。 生:密码是21。 2、合作探究排列(出示课件5) 师:虽然狼堡的大门开了,但还要进行闯关游戏。 (1)过关前我们先来做个游戏吧,请三个同学上台来演示。 游戏规则:先确定十位,再将个位变动。(板书:固定十位) 十位:1,个位就可以是2,3.(板书:12,13,对齐竖着写)组成的两位数分别是:12,13. 十位:2,个位就可以是1,3. (板书:21,23,对齐竖着写)组成的两位数分别是:21,23. 十位:3,个位就可以是1,2. (板书:31,32,对齐竖着写)组成的两位数分别是:31,32.

(推荐)排列组合问题的类型及解答策略

排列组合问题,联系实际,生动有趣,但题型多样,思路灵活,不易掌握。实践证明,备考有效的方法是题型与解法归类,识别模式,熟练运用。本文介绍十二类典型排列组合问题的解答策略,供参考。 一、相邻问题捆绑法 例1 6名同学排成一排,其中甲、乙两人必须排在一起的不同排法有()种 A. 720 B. 360 C. 240 D. 120 解:因甲、乙两人要排在一起,故将甲、乙两人捆在一起视作一人, 与其余四人进行全排列有种排法;甲、乙两人之间有种排法。由分步计数原理可知,共有=240种不同排法,选C。 评注:从上述解法可以看出,所谓“捆绑法”,就是在解决对于某几个元素相邻的问题时,可整体考虑将相邻元素视作一个“大”元素。 二、相离问题插空法 例2 要排一张有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目不得相邻,有多少不同的排法?(只要求写出式子,不必计算) 解:先将6个歌唱节目排好,其不同的排法为种;这6个歌唱节目的空隙及两端共7个位置中再排4个舞蹈节目,有种排法。由分步计数原理可知,任何两个舞蹈节目不得相邻的排法为种。 评注:从解题过程可以看出,不相邻问题是要求某些元素不能相邻,由其它元素将它们隔开。此类问题可以先将其它元素排好,再将所指定的不相邻的元素插入到它们的间隙及两端位置,故称插空法。 三、定序问题缩倍法 例 3 信号兵把红旗与白旗从上到下挂在旗杆上表示信号。现有3面红旗、2面白旗,把这5面旗都挂上去,可表示不同信号的种数是__________(用数字作答)。 解:5面旗全排列有种挂法,由于3面红旗与2面白旗的分别全排 列均只能算作一次的挂法,故共有不同的信号种数是=10(种)。 评法:在排列问题中限制某几个元素必须保持一定顺序称为定序问题。这类问题用缩小倍数的方法求解比较方便快捷。 四、标号排位问题分步法 例4 同室4人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送来的贺年卡,则四张贺年卡的分配方式有()

小学:二年级数学上册《简单的排列和组合》教学案例分析

小学数学新课程标准教材 数学教案( 2019 — 2020学年度第二学期 ) 学校: 年级: 任课教师: 数学教案 / 小学数学 / 小学二年级数学教案 编订:XX文讯教育机构

小学数学教案 文讯教育教学设计二年级数学上册《简单的排列和组合》教学案例分析 教材简介:本教材主要用途为通过学习数学的内容,让学生可以提升判断能力、分析能力、理解能力,培养学生的逻辑、直觉判断等能力,本教学设计资料适用于小学二年级数学科目, 学习后学生能得到全面的发展和提高。本内容是按照教材的内容进行的编写,可以放心修改调整或直接进行教学使用。 案例背景: 本课内容是人民教育出版社义务教育课程标准实验教科书数学二年级上册p99数学广角例1简单的排列与组合。“数学广角”是义务教育课程标准实验教科书从二年级上册开始新增设的一个单元,是新教材在向学生渗透数学思想方法方面做出的新的尝试。排列和组合的思想方法应用得很广泛,是学生学习概率统计的知识基础,同时也是发展学生抽象能力和逻辑思维能力的好素材,本教材在渗透这一数学思想方法时就做了一些探索,把它通过学生日常生活中最简单的事例呈现出来。 教材的例1通过2个卡片的排列顺序不同,表示不同的两位数,属于排列知识,而简单的排列组合对二年级学生来说都早有不同层次的接触,如用1、2两个数字卡片来排两位数,学生在一年级时就已经掌握了。而对1、2、3三个数字排列成几个两位数,也有不少学生通过平时的益智游戏都能做到不重复、不遗漏地排列。针对这些实际情况,在设计本节课时,根据学生的年龄特点处理了教材。整堂课坚持从低年级儿童的实际与认知出发,以“感受生 第2页共6页

简单的排列与组合

数学广角——《简单的排列和组合》 教学目标: 知识与技能: 1.通过观察、猜测、比较、动手等活动,找出最简单的数的排列数,在合作交流中获得情感体验。 2、初步培养学生有顺序地、全面地思考问题的意识,使学生在数学活动中养成与人合作的良好习惯。 过程与方法: 通过实践活动,经历找排列数的过程,体验排列的方法。 情感态度与价值观: 通过解决生活中的一些实际问题,感受数学与生活的密切联系,培养学生积极思维的学习品质。 教学重点:经历探索简单事物排列规律的过程 教学难点:初步理解简单事物排列有序的进行排列方法。 教学准备:多媒体课件、数字卡片、头饰 教学过程: 一、情境导入 师:同学们,平时放假时,你们都去哪里玩了呢? 生:公园、广场等等。 师:同学们玩得开心吗?今天呢,老师就带大家到一个更好玩的地方去旅行,它就是……….. 同学们,看,数学王国到了,可是门是锁着的,只有输入正确的密码,

门才可以打开,可是密码是多少呢?请小精灵来告诉我们吧!小精灵语音提示:密码是由1和2这两个数字摆成的两位数。那么1和2能摆成几个两位数呢? 生:12 21 师:这两个数有什么不同? 生:这两个数交换了位置。 师:密码到底是哪个两位数呢?我们一起来看一看 师:12不行,那肯定是多少呢? 生:21 师:为什么一定是21呢? 生:因为1和2能组成的两位数不是12,就一定是21。 师:密码到底是哪个两位数呢? 课件演示:密码跳动,跳到21时,门慢慢打开。 二、探究新知 课件出示数学王国里的美丽照片。 师:同学们,数学王国是智慧的乐园,能不能随随便便就能玩呢?生:不能 师:所以,同学们必须在各个景点回答对了问题才能进去游玩。(我们首先去第一个智慧乐园游玩吧!)点击课件: 请同学们打开书,翻到101面,齐读例题。 师:由0、1、3、5这四个数字其中的两个摆成的两位数,个位和十位不能是同一个数,那么,能组成几个两位数呢?你们能猜出来吗?

排列组合的解题策略 陈莉

排列组合的解题策略陈莉 发表时间:2014-04-01T17:09:56.750Z 来源:《新疆教育》2013年第5期供稿作者:陈莉 [导读] 排列组合作为高中代数课本的一个独立分支,因为极具抽象性而成为“教”与“学”难点。 重庆市江津区第八中学陈莉 排列组合作为高中代数课本的一个独立分支,因为极具抽象性而成为“教”与“学”难点。有相当一部分题目教者很难用比较清晰简洁的语言讲给学生听,有的即使教者觉得讲清楚了,但是由于学生的认知水平,思维能力在一定程度上受到限制,还不太适应。从而导致学生对题目一知半解,甚至觉得“云里雾里”。针对这一现象,笔者在日常教学过程中经过尝试总结出一些个人的想法跟各位同行交流一下。笔者认为之所以学生“怕”学排列组合,主要还是因为排列组合的抽象性,那么解决问题的关键就是将抽象问题具体化,我们不妨将原题进行一下转换,让学生走进题目当中,成为“演员”,成为解决问题的决策者。这样做不仅激发了学生的学习兴趣,活跃了课堂气氛,还充分发挥学生的主体意识和主观能动性,能让学生从具体问题的分析过程中得到启发,逐步适应排列组合题的解题规律,从而做到以不变应万变。当然,在具体的教学过程中一定要注意题目转换的等价性,可操作性。 怎样分析排列组合综合题?使用“分类计数原理”还是“分步计数原理”要根据我们完成某事件时采取的方式而定,分类来完成这件事时用“分类计数原理”,分步来完成这件事时就用“分步计数原理”,怎样确定分类,还是分步骤?“分类”表现为其中任何一类均可独立完成所给的事件,而“分步骤”必须把各步骤均完成才能完成所给事件,所以准确理解两个原理强调完成一件事情的几类办法互不干扰,彼此间交集为空集,并集为全集,不论哪类办法都能将事情单独完成,分步计数原理强调各步骤缺一不可,需要依次完成所有步骤才能完成这件事,步与步之间互不影响,即前步用什么方法不影响后面的步骤采用的方法。排列与组合定义相近,它们的区别是在于是否与顺序有关。复杂的排列问题常常通过试验、画简图、小数字化等手段使问题直观化,从而寻求解题途径,由于结果的正确性难于检验,亦常常需要用不同的方法求解来获得检验。按元素的性质进行分类,按事件发生的连续性进行分步是处理组合问题的基本思想方法,要注意“至少、至多”等限制词的意义。处理排列、组合综合性问题,一般思想是先选元素(组合),后排列,按元素的性质进行“分类”和按事件的过程“分步”,始终是处理排列、组合问题基本方法和原理,通过解题训要注意积累分类和分步的基本技能。在解决排列、组合综合性问题时,必须深刻理解排列组合的概念,能熟练确定问题是排列问题还是组合问题,牢记排列数与组合数公式与组合数性质,容易产生的错误是重复和遗漏计数。 下面笔者将就教学过程中的两个难点通过两个特例作进一步的说明:第一,占位子问题例1:将编号为1、2、3、4、5 的5 个小球放进编号为1、2、3、4、5 的5 个盒子中,要求只有两个小球与其所在的盒子编号相同,问有多少种不同的方法?①仔细审题:在转换题目之前先让学生仔细审题,从特殊字眼小球和盒子都已“编号”着手,清楚这是一个“排列问题”,然后对题目进行等价转换。②转换题目:在审题的基础上,为了激发学生兴趣进入角色,我将题目转换为:让学号为1、2、3、4、5 的学生坐到编号为1、2、3、4、5 的五张凳子上(已准备好放在讲台前),要求只有两个学生与其所坐的凳子编号相同,问有多少种不同的坐法? ③解决问题:这时我在选另一名学生来安排这5 位学生坐位子(学生争着上台,积极性已经得到了极大的提高),班上其他同学也都积极思考(充分发挥了学生的主体地位和主观能动性),努力地“出谋划策”,不到两分钟的时间,同学们有了统一的看法:先选定符合题目特殊条件“两个学生与其所坐的凳子编号相同”的两位同学,有C 种方法,让他们坐到与自己编号相同的凳子上,然后剩下的三位同学不坐编号相同的凳子有2 种排法,最后根据乘法原理得到结果为2×C =20(种)。 这样原题也就得到了解决。④学生小结:接着我让学生之间互相讨论,根据自己的分析方法对这一类问题提出一个好的解决方案。(课堂气氛又一次活跃起来)⑤老师总结:对于这一类占位子问题,关键是抓住题目中的特殊条件,先从特殊对象或者特殊位子入手,再考虑一般对象,从而最终解决问题。 第二,分组问题例2:从1、3、5、7、9 和2、4、6、8 两组数中分别选出3 个和2 个数组成五位数,问这样的五位数有几个?(本题我是先让学生计算,有很多同学得出的结论是P ×P )①仔细审题:先由学生审题,明确组成五位数是一个排列问题,但是由于这五个数来自两个不同的组,因此是一个“分组排列问题”,然后对题目进行等价转换。②转换题目:在学生充分审题后,我让学生自己对题目进行等价转换,有一位同学A 将题目转换如下:从班级的第一组(12 人)和第二组(10 人)中分别选3 位和2 位同学分别去参加苏州市举办的语文、数学、英语、物理、化学竞赛,问有多少种不同的选法?③解决问题:接着我就让同学A 来提出选人的方案同学A 说:先从第一组的12 个人中选出3 人参加其中的3 科竞赛,有P×P 种选法;再从第二组的10 人中选出2 人参加其中2 科竞赛有P×P 种选法;最后由乘法原理得出结论为(P×P)×(P×P)(种)。(这时同学B 表示反对)同学B 说:如果第一组的3个人先选了3 门科目,那么第二组的2 人就没有选择的余地。所以第二步应该是 P×P(. 同学们都表示同意,但是同学 C 说太蘩)同学 C说:可以先分别从两组中把5 个人选出来,然后将这5 个人在5 门学科中排列,他列出的计算式是C×C×P(种)。(再次通过互相讨论,都表示赞赏)这样原题的解答结果就“浮现”出来C×C×P(种)。④老师总结:针对这样的“分组排列”题,我们多采用“先选后排”的方法:先将需要排列的对象选定,再对它们进行排列。 以上是我一节课两个例题的分析过程,旨在通过这种方法的尝试(教学效果比较明显),进一步活跃课堂气氛,更全面地调动学生的学习积极性,发挥教师的主导作用和学生的主体作用,让学生在互相讨论的过程中学会自己分析转换问题,解决问题。

人教版二年级上册数学《简单的排列和组合》教学设计,教案设计

人教版二年级上册数学《简单的排列和组合》教学设计,教案设计 人教版二年级上册数学《简单的排列和组合》教学设计教学目标: 1、通过观察、猜测、比较、实验等活动,找出最简单的事物的排列数和组合数。 2、初步培养有顺序地、全面地思考问题的意识。 3、感受数学与生活的密切联系,激发学习数学、探索数学的浓厚兴趣。 4、通过小组合作探究的学习形式,养成与人合作的良好习惯。 学生分析: 简单的排列组合对二年级学生说都早有不同层次的接触,如用1、2两个数字卡片排两位数,学生在一年级时就已经掌握了。而对1、2、3三个数字排列成几个两位数,也有不少学生通过平时的益智游戏都能做到不重复、不遗漏地排列。针对这些实际情况,在设计本节课时,教学的重点让学生说一说有序排列、巧妙组合的理由,体会到有顺序、全面思考问题的好处。根据学生的年龄特点在设计教案时也要做到设计学生感兴趣的环节,灵活处理教材。 数学广角——《简单的排列和组合》

火炬小学王彦 教学目标: 1.通过观察、猜测、比较、实验等活动,找出最简单的事物的排列数和组合数 2.感受数学与生活的密切联系,激发学习数学、探索数学的浓厚兴趣 3.初步培养有顺序地、全面地思考问题的意识。使学生在数学活动中养成与人合作的良好习惯。 教学重点:经历探索简单事物排列与组合规律的过程 教学难点:初步理解简单事物排列与组合的不同,怎样有序的进行排列组合。 教学准备:多媒体课件、数字卡片、1角、2角、5角的人民币。 教学过程: 一、情境导入 师:同学们老师今天想带大家一起去数学王国玩,你们想去吗?同学看数学王国到了,可是门是锁着的,只有输入正确的密码门才可以打开,可是密码是多少呢?提示密码是由1和2这两个数字摆成的两位数。那么这个密码是多少呢? 师:试试看。(课件出示答案。) 二、探究新知 1、感知排列

排列组合的二十种解法(最全的排列组合方法总结)

教学目标 1.进一步理解和应用分步计数原理和分类计数原理。 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2 类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有1 4C 最后排其它位置共有3 4A 由分步计数原理得113 434288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有 多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元 素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有522 522480A A A =种不同的 排法

相关主题