搜档网
当前位置:搜档网 › 石墨烯纳米复合材料的制备与应用研究进展

石墨烯纳米复合材料的制备与应用研究进展

石墨烯纳米复合材料的制备与应用研究进展
石墨烯纳米复合材料的制备与应用研究进展

石墨烯制备方法及应用的研究进展

石墨烯制备方法及应用的研究进展 邓振琪黄振旭 (郑州师范学院化学化工学院,河南郑州450044) 摘要:石墨烯因具有高的比表面积、突出的导热性能和力学性能及其非凡的电子传递性能等一系列优异的性质,引起了科学界新一轮的研究热点。本文总结近年石墨烯的研究现状,综述介绍石墨烯的制备方法和其应用的研究进展。 关键字:石墨烯;制备;应用 2004年,英国曼彻斯特大学Geim研究小组首成功地在实验中从石墨中分离出石墨烯[1],并提出了表征石墨烯的光学方法,对其电学性能进行了系统研究,发现石墨烯具有很高的载流子浓度、迁移率和亚微米尺度的弹道输运特性,从而掀起了石墨烯研究的热潮。 石墨烯是由碳原子以sp2杂化连接按照六边形紧密排列成蜂窝状晶格的二维晶体,其理论厚度仅为0.35nm,是目前所发现的最薄的二维材料[2]。是构造其他维度碳质材料的基本单元,它可以包裹形成零维富勒烯,也可以卷起来形成一维的碳纳米管或者层层堆叠构成三维的石墨。 石墨烯因其独特的二维晶体结构,从而具有优异的性能。如单原子层石墨烯材料理论表面积可达2630m2/g,半导体本征迁移率高达2×105cm2/(V·s),弹性模量约为1.0TPa,热传导率约为5000W/(m·K),透光率高达97.7%,强度高达 110GPa[3]。这些优异的性能使得石墨烯在纳米电子器件、传感器、电化学及复合材料等领域有光明的应用前景。 1.石墨烯的制备 现在制备石墨烯主要方法为微机械剥离法、基底生长法、化学气相沉淀法、氧化石墨还原法。另简单介绍液相或气相直接剥离法、电化学法、石墨插层法等方法。 1.1微机械剥离法 石墨烯最初的制备就是微机械剥离,机械剥离法就是通过机械力从具有高度定向热解石墨表面剥离石墨烯片层。Geim教授采用胶带剥离法可以认为是机械剥离法中的一个代表。Knieke等[4]利用湿法研磨法在室温下研磨普通石墨粉,成功的对石墨的片层结构进行了剥离,制备了单层和多层的石墨烯片。微机械剥离法制得的石墨烯具有最高的质量,适用于研究石墨烯的电学性质。但该方法低

石墨烯研究现状及应用前景

石墨烯材料研究现状及应用前景 崔志强 (重庆文理学院材料与化工学院,重庆永川402160) 摘要:近几年来, 石墨烯材料以其独特的结构和优异的性能, 在化学、物理和材料学界引起了轰动。本文引用大量最新的参考文献,阐述了石墨烯的制备方法如机械剥离法、取向附生法、加热 SiC 法、爆炸法、石墨插层法、热膨胀剥离法、电化学法、化学气相沉积法、氧化石墨还原法、球磨法等,分析了各种制备方法的优缺点。论述了石墨烯材料在透明电极、传感器、超级电容器、能源储存、复合材料等方面的应用,同时简要分析了石墨烯材料研究的现实意义,展望了其未来的发展前景。 关键词:石墨烯材料;制备方法;现实意义;发展现状;应用前景 中图分类号: TQ323 文献标识码:A 文章编号: Research status and application prospect of graphene materials Cui Zhiqiang (Faculty of materials and chemical engineering, Chongqing Academy of Arts and Sciences, Yongchuan, Chongqing 402160) Abstract: In recent years, graphene has caused a sensation in chemical, physical and material science due to its unique structure and excellent properties. Cited in this paper a large number of the latest references, expounds the graphene preparation methods such as layer method, thermal mechanical stripping method, orientation epiphytic method, heating SiC method, explosion, graphite intercalation expansion stripping method, electrochemical method, chemical vapor phase deposition method, graphite oxide reduction method, ball milling method, and analyze the advantages and disadvantages of various preparation methods. This paper discusses the application of graphene materials in transparent electrodes, sensors, super capacitors, energy storage and composite materials, and briefly analyzes the practical significance of the study of graphene materials, and gives a prospect of its future development. Keywords: graphene materials; preparation methods; practical significance; development status; application prospect 0 引言 1985 年英美科学家发现富勒烯[1]和1991 年日本物理学家Iijima 发现碳纳米管[2],加之英国曼彻斯特大学科学家于2004 年成功制备石墨烯[3]之后,金刚石(三维)、石墨(三维)、石墨烯(二维)、碳纳米管(一维)和富勒烯(零维)组成了一个完整的碳系材料“家族”。从理论上说,石墨烯是除金刚石外所有碳晶体的基本结构单元,如果从石墨烯上“剪”出不同形状的薄片,进一步就可以包覆成零维的富勒烯,卷曲成一维的碳纳米管,堆叠成三维的石墨,如图1 所示[4]。由于石墨烯优异的电学、热学、力学性能,近年来各国科研人员对其的研究日益增长,已经是材料科学领域的研究热点之一。2010 年诺贝尔物理学奖揭晓[5-6]之后,人们对石墨烯的研究和关注越来越多,新的发现不断涌现。在不断深入研究石墨烯的制备方法和性质的过程中,其应用领域也在不断扩大。由于石墨烯缺乏带隙以及在室温下的超高电子迁移率、低于银铜的电阻率、高热导率[7]等,在光电晶体管、生化传感器、电池电极材料和复合材料方面有着很高

多孔石墨烯材料的研究进展

多孔石墨烯材料的研究进展 摘要:多孔石墨烯材料同时结合了石墨烯和多孔材料的优点,具有独特的二维结构及优异的理化性质,是一种具备巨大应用潜力的新型纳米碳质材料。然而单一的石墨烯材料很难充分满足各个领域的应用需求,且石墨烯片层容易堆叠和团聚,制约了其实际应用的发展。通过掺杂、改性、组装和复合等手段制备石墨烯衍生物及石墨烯纳米复合物等石墨烯基材料可以丰富并优化石墨烯的性质,拓展并提升石墨烯的性能,对于促进石墨烯的实际应用具有重大意义。作为一种新型石墨烯衍生物,多孔石墨烯以其二维片状结构、超高比表面积、开放的能带间隙、丰富的活性位点等特性吸引了研究者的很大关注。 关键词:石墨烯;杂化;石墨烯衍生物 引言 如果以化学家的视角将人类和世界写成一本书,碳元素必将会跻身关键词之列:从碳基生命到无机碳素,从史前壁画到太空天梯,从钻木取火到蒸汽革命,再从笔墨纸砚书酒花到柴米油糖酱醋茶,碳的身影无处不在,不可替代。作为世界上最为普遍和奇妙的元素,碳变化多端的魅力归因于其电子轨道杂化方式的多样性及其特殊的成键能力和成键方式。碳原子含有四个价电子,往往以sp,sp2和sp3等杂化形式构成具有不同性质的单质或化合物。以碳单质为例,碳元素存在多种结构、性质迥异的同素异形体。其中sp杂化形式的卡宾碳异常活泼,不易单独稳定存在;sp3杂化的金刚石稳定、超硬、价高,化学修饰较困难;sp2杂化的石墨、石墨烯化学修饰较易且具有独特的电子共轭体系,此外还存在杂化形式介于sp2杂化和sp3杂化之间的富勒烯及包含多种杂化形式碳原子的无定形碳等等。碳家族的众多成员极大丰富了碳质材料的性质,为其在各领域的广泛应用奠定了基础[1]。 1石墨烯及石墨烯基材料 石墨烯即单层或少层石墨薄片,是sp2杂化碳原子按照蜂窝状六元环结构排列而成的二维平面网络结构。2004年,曼彻斯特大学的Novoselov和Geim教授研究组利用机械剥离法成功得到独立存在的单原子层石墨烯,两位物理学家因这一开创性的发现在2010年共同获得诺贝尔物理学奖。然而当我们认真地追根溯源时,会发现石墨烯并非一颗横空出世的新星,围绕石墨烯的讨论已经在科学界

石墨烯的制备方法与应用

石墨烯的制备方法与应用 摘要: 石墨烯是目前发现的唯一存在的二维自由态原子晶体, 它是构筑零维富勒烯、一维碳纳米管、三维体相石墨等sp2 杂化碳的基本结构单元, 具有很多奇异的电子及机械性能。因而吸引了化学、材料等其他领域科学家的高度关注。本文介绍了近几年石墨烯的研究进展, 包括石墨烯的合成、去氧化、化学修饰及应用前景等方面的内容。石墨烯由于其特殊的电学、热学、力学等性质以及在纳米电子器件、储能材料、光电材料等方面的潜在应用,引起了科学界新一轮的热潮。关键字: 石墨烯, 制备, 应用,氧化石墨烯,传感器 石墨烯的定义 石墨烯是碳原子紧密堆积成单层二维蜂窝状晶格结构的一种碳质新材料,厚度只有0.335纳米,仅为头发的20万分之一,是构建其它维数碳质材料(如零维富勒烯、一维纳米碳管、三维石墨)的基本单元,具有极好的结晶性、力学性能和电学质量。 石墨烯的结构 完美的石墨烯是二维的, 它只包括六角元胞(等角六边形)。 如果有五角元胞和七角元胞存在,那么他们构成石墨烯的缺陷。如果少量的五角元胞细胞会使石墨烯翘曲; 12个五角元胞的会形成富勒烯。碳纳米管也被认为是卷成圆桶的石墨烯; 可见,石墨烯是构建其它维数碳质材料(如零维富勒烯、一维纳米碳管、三维石墨)的基本单元。

单原子层石墨晶体薄膜。 每个原胞中两个碳原子,每个原子与最相邻三个碳原子形成三个σ键。 每个碳原子贡献一个多余p电子,垂直于graphene平面,形成未成键的π电子——良好的导电性。 石墨烯的性能 最薄——只有一个原子厚 强度最高——美国哥伦比亚大学的专家为了测试石墨烯的强度,先在一块硅晶体板上钻出一些直径一微米的孔,每个小孔上放置一个完好的石墨烯样本,然后用一个带有金刚石探头的工具对样本施加压力。结果显示,在石墨烯样品微粒开始断裂前,每100纳米距离上可承受的最大压力为2.9 微牛左右。按这个结果测算,要使1 米长的石墨烯断裂,需要施加相当于55 牛顿的压力,也就是说,用石墨烯制成的包装袋应该可以承受大约两吨的重量。 没有能隙——良好的半导体 良好的导热性 热稳定性——优于石墨 较大的比表面积 优秀导电性——电子的运动速度达到了光速的1/300,远远超过了电子在一般导体中的运动速度--电子的“光速”移动碳原子有四个价电子,这样每个碳原子都贡献一个未成键的π电子,这些π电子与平面成垂直的方向可形成轨道,π电子可在晶体中自由移动,赋予

石墨烯的结构、制备、性能及应用研究进展

. . .. . . 报告题目:石墨烯的结构、制备、性能及应用研究进展 一、书目信息: 二、评分标准 1.格式规、容简明扼要。报告中引用的数据、观点等要注明出处20分 2. 报告结构合理,表述清晰20分 3. 石墨烯的结构、性能、制备方法概述正确、新(查阅5篇以上的文献)20分 4. 石墨烯的应用研究进展概述(文献)全、新(查阅5篇以上的文献)20分 5. 心得及进一步的研究展望真实,无抄袭与剽窃现象20分 三、教师评语 请根据写作容给定成绩,填入“成绩”部分。 注1:本页由报告题目、书目信息有学生填写,其余由教师填写。提交试卷时含本页。学生从第二页开始写作,要求见蓝色字体部分。 注2:“阅卷教师评语”部分请教师用红色或黑色碳素笔填写,不可用电子版。无“评语”视为不合规。注3:不符合规试卷需修改规后提交。 摘要 碳是自然界中万事万物的重要组成物质,也是构成生命有机体的主要元素。石墨和金刚石是两种典型的单质碳,也是最早为人们所熟知的两种碳的三维晶体结构,属于天然矿

密封线 石。除石墨和金刚石外,碳材料还包括活性炭、碳黑、煤炭和碳纤维等非晶形式。煤是重 要的燃料。碳纤维在复合材料领域有重要的应用。20 世纪80 年代,纳米材料与技术获得 了极大的发展。纳米碳材料也是从这一时期开始进入历史的舞台。1985 年,由60 个碳原 子构成的“足球”分子:C60被三位英美科学家发现。随后,C70、C86等大分子相继出现, 为碳家族添加了一大类新成员:富勒烯。富勒烯是碳的零维晶体结构,它们的出现开启了 富勒烯化学新篇章。三位发现者于1996 年获诺贝尔化学奖。1991 年,由石墨层片卷曲 而成的一维管状纳米结构:碳纳米管被发现。如今,碳纳米管已经成为一维纳米材料的典 型代表。发现者饭岛澄男于2008 年获卡弗里纳米科学奖。2004 年,一位新成员:石墨 烯,出现在碳材料的“家谱”中。石墨烯的发现者,两位英国科学家安德烈·盖姆(Andre Geim)和康斯坦丁·诺沃肖罗夫(Konstantin Novoselov)于2010 年获诺贝尔物理学 奖。 关键词:碳材料复合材料晶体结构 1 石墨烯的结构 石墨烯是sp2杂化碳原子形成的厚度仅为单层原子的排列成蜂窝状六角平面晶体。在单层石墨烯中,碳碳键长为0.142nm,厚度只有0.334nm。石墨烯是构成下列碳同素异型体的基本单元:例如:石墨,碳纳米管和富勒烯。石墨烯被认为是平面多环芳香烃原子晶体。 2 石墨烯的制备 2.1 物理法制备石墨烯 物理方法通常是以廉价的石墨或膨胀石墨为原料,通过机械剥离法、取向附生法、液相或气相直接剥离法来制备单层或多层石墨烯。这些方法原料易得, 操作相对简单,合成的石墨烯的纯度高、缺陷较少。 2.1.1机械剥离法 机械剥离法或微机械剥离法是最简单的一种方法,即直接将石墨烯薄片从较大的晶体上剥离下来。Novoselovt 等[1]于2004年用一种极为简单的微机械剥离法成功地从高定向热解石墨上剥离并观测到单层石墨烯,验证了单层石墨烯的独立存在。具体工艺如下:首先利用氧等离子在 1 mm厚的高定向热解石墨表面进行离子刻蚀,当在表面刻蚀出宽20 μm—2 mm、深 5 μm的微槽后,用光刻胶将其粘到玻璃衬底上,再用透明胶带反复撕揭,然后将多余的高定向热解石墨去除并将粘有微片的玻璃衬底放入丙酮溶液中进行超声,最后将单晶硅片放入丙酮溶剂中,利用德华力或毛细管力将单层石墨烯“捞出”。 2.1.2取向附生法—晶膜生长

石墨烯材料的研究进展论文

石墨烯材料的研究进展 摘要:石墨烯是近年被发现和合成的一种新型二维碳质纳米材料。由于其独特的结构 和新奇的物化性能,在改善复合材料的热性能、力学性能和电性能等方面具有很大的潜力,已成为纳米复合材料研究的热点。综述了石墨烯纳米复合材料的制备与应用研究进展,并对石墨烯纳米复合材料的发展前景进行了展望。 关键词:石墨烯;纳米复合材料;制备;应用 1,材料的基本情况 石墨烯是碳原子紧密堆积成单层二维蜂窝状晶格结构的碳质材料,是构成其它碳同素异形体的基本单元。石墨烯的理论研究已有60多年的历史,一直被认为是假设性的结构,无法单独稳定存在。2004年,英国曼彻斯特大学物理学家安德烈·海姆和康斯坦丁·诺沃肖洛夫用胶带反复剥离高定向热解石墨的方法,得到了稳定存在的石墨烯。石墨烯的出现颠覆了传统理论,使碳的晶体结构形成了从零维的富勒烯、一维的碳纳米管、二维的石墨烯到三维的金刚石和石墨的完整体系。 石墨烯的结构非常稳定。石墨烯内部的碳原子之间的连接很柔韧,当施加外力于石墨烯时,碳原子面会弯曲变形,使得碳原子不必重新排列来适应外力,从而保持结构稳定。这种稳定的晶格结构使石墨烯具有优秀的导热性。石墨烯是构成石墨,木炭,碳纳米管和富勒烯碳同素异形体的基本单元。完美的石墨烯是二维的,它只包括六边形(等角六边形); 如果有五边形和七边形存在,则会构成石墨烯的缺陷。12个五角形石墨烯会共同形成富勒烯。石墨烯卷成圆桶形可以用为碳纳米管 石墨烯的出现在科学界激起了巨大的波澜,人们发现,石墨烯具有非同寻常的导电性能、超出钢铁数十倍的强度和极好的透光性,它的出现有望在现代电子科技领域引发一轮革命。 石墨烯目前是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光;导热系数高于碳纳米管和金刚石,石墨烯是迄今为止世界上强度最大的材料,据测算如果用石墨烯制成厚度相当于普通食品塑料包装袋厚度的薄膜(厚度约100 纳米),那么它将能承受大约两吨重物品的压力,而不至于断裂,石墨烯是世界上导电性最好的材料。 常温下其电子迁移率比纳米碳管或硅晶体高,而电阻率比铜或银更低,为目前世上电阻率最小的材料。因为它的电阻率极低,电子迁移的速度极快,因此被期待可用来发展出更薄、导电速度更快的新一代电子元件或晶体管。由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明触控屏幕、光板、甚至是太阳能电池。石墨烯另一个特性,是能够在常温下观察到量子霍尔效应。 2,最热的应用合成 石墨烯的应用范围广阔。根据石墨烯超薄,强度超大的特性,石墨烯可被广泛应用于各领域. 根据其优异的导电性,使它在微电子领域也具有巨大的应用潜力。石墨烯有可能会成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机,碳元素更高的电子迁移率可以使未来的计算机获得更高的速度。最小最快石墨烯晶体管。2011年4月7日IBM向媒体展示了其最快的石墨烯晶体管,该产品每秒能执行1550亿个循环操作,比之前的试验用晶体管快50%。 石墨烯材料还是一种优良的改性剂,在新能源领域如超级电容器、锂离子电池方面,由

石墨烯量子点制备与应用

石墨烯量子点的概述 石墨烯量子点的性质 GQDs是准零维结构的纳米材料,由于其自身半径小于波尔激发半径,原子内部的电子在三维方向上的运动均受到限制,所以量子局域效应十分显着,因此具有许多独特的物理和化学性质。其与传统的半导体量子点(QDs)相比,GQDs 具有如下独特的性质:不含高毒性的金属元素如镉、铅等,属环保型量子点材料;自身结构稳定,耐强酸和强碱,耐光漂白;厚度可达到单个原子层,横向尺寸可达到几个互相联接的苯环大小,却能够保持高度的化学稳定性;带隙宽度范围可调,原则上可通过量子局域效应和边缘效应在0~5 eV 范围内调节,从而将波长范围从近红外区扩展到可见光区及深紫外区,从而满足了各种技术对材料能隙和特征波长的要求;容易实现表面功能化,可稳定分散于常用的化学试剂,满足材料低成本加工处理的需求。GQDs拥有的发光特性主要是通过光致发光和电化学发光产生,其中荧光性能是GQDs最突出的性能,GQDs的荧光性质主要包括:激发荧光稳定性高且具有抗光漂白性;荧光发射波长可以进行可控调节,有些GQDs还具有上转换荧光性质;激发光谱宽且连续,可以进行一元激发、多元发射。目前关于GQDs的光致发光机理主要有两个:(1)官能团效应,即在GQDs表面进行化学修饰,使得GQDs表面产生能量势阱,表面物理化学状态发生显着变化,导致其荧光量子产率提高;(2)尺寸效应,即GQDs的荧光性能取决于粒径尺寸的大小。GQDs还是优良的电子给体和电子受体,因此GQDs在能量存储、光电转化和电磁学领域具有重要的研究意义,同时在生物、医学、材料、新型半导体器件等领域具有重要潜在应用价值。 石墨烯量子点的制备 GQDs的合成方法可以分为两大类:自上而下法和自下而上法,如图1-1所示。自上而下法是通过简单的物理化学作用,进行热解和机械剥离块状石墨,得到尺寸较小的GQDs,是最常用的制备方法,比如改进的Hummers法,其使用的原料廉价,但是反应条件比较苛刻,制备周期比较长,通常需要经过强酸、强氧

石墨烯复合材料应用最新研究进展

2019年3月第46卷第3期 云南化工 Yunnan Chemical Technology Mar.2019 Vol.46,No.3 doi:10.3969/j.issn.1004-275X.2019.03.062 石墨烯复合材料应用最新研究进展 程扬帆 (湖北科技学院,湖北咸宁,437000) 摘要:介绍了石墨烯复合材料在国内外的应用前景及应用进展,着重介绍了利用石墨烯特性应用于电容储能、环境治理、导热散热性能和导电等多领域的研究。石墨烯复合材料的应用潜力巨大,具有非常广阔的市场前景。 关键词:石墨烯;复合材料;应用前景 中图分类号:TQ04文献标志码:A文章编号:1004-275X(2019)03-157-02 Recent Research Progress in the Application of Graphene Composites at Home and Abroad Cheng Yangfan (Hubei Institute of Science and Technology,Xianning,Hubei,437000) Abstract:This paper introduces the application p rospects and progress of graphene composites at home and abroad.It focuses on the application of graphene characteristics in capacitance energy storage, environmental management,thermal conductivity and heat dissipation,conductivity and other fields. Graphene composites have great potential and broad market prospects. Key words:Graphene;Compound material;Application prospect 1石墨烯复合材料及其应用前景 1.1定义与特性 石墨烯被称为“单层石墨片”。它是一种二维的结构,密集的碳原子与石墨的单原子层十分类似,是一种新型碳材料。石墨烯的多种优点造就它多种用途,比如它的比表面积大,可以用于吸附和环境治理;机械强度高可以用于航空航天等;载流子迁移率高可以用于半导体与电容等设备。应用的环境非常广泛,随着石墨烯新型材料国内外发展,石墨烯不但可以显著提升传统产业,还可以为高端制造业的发展提供推力。1.2国内外石墨烯复合材料发展趋势及应用前景 目前,世界上有很多关于石墨烯的讨论。2012年,有近2万篇关于石墨烯研究的论文被纳 入科学研究。中国和美国是前两个国家。与此同时,其他国家也积极参与石墨烯相关专利申请的布局。截至2013年6月,它已申请了3,000多项相关发明专利。从2006-2017年,国内和国际研究呈上升趋势。在“十一五”期间,石墨烯复合技术的发展还处于起步阶段,国内外研究的数量相对较少。在“十二五”期间,国外开展了研究,主要集中在石墨烯的制备和化合物的研究上。随后,石墨烯复合材料的研究进入了快速发展阶段。在过去两年中,研究数量已超过以前的总数。其中,国外研究数量急剧增加,工业化进程不断推进,国内则在重点领域不断扩展提升。 由于石墨烯的重要特性和巨大应用价值,全球多个国家将其定义到发展战略高度。比如亚太地区的日本和中国,美国、以及欧洲欧盟等区域国家。这其中不少国家投入的研究和开发金额达到十亿美元,专门用来研究用于石墨烯材料。美国科技发展战略同样包括石墨烯技术。各国企业也积极进行石墨烯产业的布局,相关开发和研究涉及多家公司,像比如洛克希德·马丁、波音、三星、IBM、杜邦、陶氏化学、索尼等巨头均在公司名单中[1]。 2石墨烯复合材料国内外应用进展 由于石墨烯具有多种独特的优点,将它作为复合材料的填充相,就可以增强材料的相应性能,这就为它的应用提供了多种方向。比如国内外相关研究应用于能量储存、液晶器件、电子器件,而在其他领域比如生物材料、传感材料和催化剂载体等也有较多的报道。随着对石墨烯复合材料研究的不断深入,它应用也越来越受到人们的重视。 2.1石墨烯储能复合材料应用 锂电池是当前用途最广泛的电池能源,锂电池整体性能提升的关键是开发新的电极材料。石墨烯作为一种新型碳质材料,加入到锂离子电池中能够大幅提高其导电性,因为它为锂离子电池解决了两个问题,大幅度提高能量密度与大幅度提高功率密度。相对应的,石墨烯就可以作为电池导电的添加剂了。国内也有报道将它作为复合电极材料的正负极[2]。 157--

综述石墨烯的制备与应用

半导体物理课程作业 石墨烯的制备与应用(材料)

目录 一、石墨烯概述 (2) 二、石磨烯的制备 (3) 1、机械剥离法 (3) 2、外延生长法 (5) 3、化学气相沉积法 (6) 4、氧化石墨-还原法 (6) 5、电弧法 (9) 6、电化学还原法 (9) 7、有机合成法 (10) 三、石墨烯的应用 (11) 1、石墨烯在电子器件领域的应用 (11) 1.1 石墨烯场效应晶体管 (11) 1.2 石墨烯基计算机芯片 (12) 1.3 石墨烯信息存储器件 (13) 2、石墨烯在能源领域的应用 (14) 2.1 石墨烯超级电容器 (14) 2.2 锂离子电池 (15) 2.3 太阳能电池 (16) 2.4 储氢/甲烷器件 (17) 3、石墨烯在材料领域的应用 (18) 3.1 特氟龙材料替代物 (18) 3.2 石墨烯聚合物复合材料 (18) 3.3 光电功能材料 (19) 4、石墨烯在生物医药领域的应用 (20) 4.1 基于氧化石墨烯的纳米载药体系 (20) 4.2 氧化石墨烯对DNA/基因/蛋白的选择性检测 (21) 4.3用于生物成像技术 (23) 4.4 石墨烯在肿瘤治疗方面的应用 (23) 四、总结及展望 (24) 参考文献 (25)

一、石墨烯概述 碳广泛存在于自然界中,是构成生命有机体的基本元素之一。碳基材料是材料界中一类非常具有魅力的物质,从无定形的碳黑到晶体结构的天然层状石墨;从零维纳米结构富勒烯到一维碳纳米管无不给人们带来炫丽多彩的科学新思路。而二维碳基材料石墨烯的发现,不仅极大地丰富了碳材料的家族,而且其所具有的特殊纳米结构和性能,使得石墨烯无论是在理论还是实验研究方面都已展示出了重大的科学意义和应用价值,从而为碳基材料的研究提供新的目标和方向。 碳的晶体结构—石墨和金刚石(三维)是自然界中最早为人们熟知的两种碳同素异构体,因化学成键方式不同而具有截然相反的特性。1985年,一种被称为“巴基 (零维)被首次发现,三位发现者于11年后, 即1996年获诺贝尔球”的足球形分子C 60 化学奖。1991年,由石墨层片卷曲而成的一维管状结构: 碳纳米管被发现,发现者饭岛澄男(Sumio Iijima)于2008年获卡弗里纳米科学奖。石墨烯(Graphene)是只有一个原子层厚的单层石墨片,是石墨的极限形式。作为碳的二维晶体结构, 石墨烯的出现最终为人类勾勒出一幅点、线、面、体(从零维到三维)相结合的完美画面(图1)。 图1 碳的晶体结构 石墨烯作为一种独特的二维晶体,有着非常优异的性能:具有超大的比表面积,理论值为2630m2/g;机械性能优异,杨氏模量达1.0TPa;热导率为5300W·m-1·K-1,是铜热导率的10多倍;几乎完全透明,对光只有2.3%的吸收;在电和磁性能方面具有很多奇特的性质,如室温量子霍尔效应、双极性电场效应、铁磁性、超导性及高

石墨烯的结构、制备、性能及应用研究进展

石墨烯的结构、制备、性能及应用研究进展

姓名:学号: 20150700 密封线 报告题目:石墨烯的结构、制备、性能及应用研究进展 一、书目信息: 二、评分标准

姓名:学号: 20150700 密封线

姓名:学号: 20150700 密封线 2. 报告结构合理,表述清晰 20分 3. 石墨烯的结构、性能、制备方法概述正确、 新(查阅5篇以上的文献) 20分 4. 石墨烯的应用研究进展概述(文献)全、新 (查阅5篇以上的文献) 20分 5. 心得及进一步的研究展望真实,无抄袭与剽窃现象 20分 三、教师评语 请根据写作内容给定成绩,填入“成绩”部分。

密封线 注1:本页由报告题目、书目信息有学生填写,其余由教师填写。提交试卷时含本页。学生从第二页开始写作,要求见蓝色字体部分。 注2:“阅卷教师评语”部分请教师用红色或黑色碳素笔填写,不可用电子版。无“评语”视为不合规范。注3:不符合规范试卷需修改规范后提交。 摘要 碳是自然界中万事万物的重要组成物质,也是构成生命有机体的主要元 素。石墨和金刚石是两种典型的单质碳,也是最早为人们所熟知的两种碳的 三维晶体结构,属于天然矿石。除石墨和金刚石外,碳材料还包括活性炭、 碳黑、煤炭和碳纤维等非晶形式。煤是重要的燃料。碳纤维在复合材料领域 有重要的应用。20 世纪80 年代,纳米材料与技术获得了极大的发展。纳米 碳材料也是从这一时期开始进入历史的舞台。1985 年,由60 个碳原子构成 的“足球”分子:C60被三位英美科学家发现。随后,C70、C86等大分子相继 出现,为碳家族添加了一大类新成员:富勒烯。富勒烯是碳的零维晶体结构, 它们的出现开启了富勒烯化学新篇章。三位发现者于1996 年获诺贝尔化学 奖。1991 年,由石墨层片卷曲而成的一维管状纳米结构:碳纳米管被发现。 如今,碳纳米管已经成为一维纳米材料的典型代表。发现者饭岛澄男于2008 年获卡弗里纳米科学奖。2004 年,一位新成员:石墨烯,出现在碳材料的“家 谱”中。石墨烯的发现者,两位英国科学家安德烈·盖姆(Andre Geim)和 康斯坦丁·诺沃肖罗夫(Konstantin Novoselov)于2010 年获诺贝尔物理 学奖。 关键词:碳材料复合材料晶体结构 1 石墨烯的结构 石墨烯是sp2杂化碳原子形成的厚度仅为单层原子的排列成蜂窝状六角平面晶体。在单层石墨烯中,碳碳键长为0.142nm,厚度只有0.334nm。石墨烯是构成下列碳同素异型体的基本单元:例如:石

石墨烯材料研究进展

石墨烯材料研究进展 化学工程与工艺 0909403068 王月 摘要:石墨烯具有非凡的物理及电学性质,如高比表面积、高导电性、高机械强度、易于修饰及大规模生产等。2004年石墨烯的成功剥离,使石墨烯成为形成纳米尺寸晶体管和电路的“后硅时代”的新潜力材料,其产品研发和应用目前正在全球范围内急剧增加。本文通过对石墨烯的特性、制备和应用现状几方面进行了综述。 关键词:石墨烯制备应用进展 石墨烯是碳 原子紧密堆 积成单层二 维蜂窝状晶 格结构的一 种碳质新材 料,是构筑 零维富勒 烯、一维碳 纳米管、三 维体相石墨等sp2杂化碳(即碳以双键相连或连接其他原子)的基本结构单元,如图1所示。石墨烯的理论研究已有60多年的历史,但直至2004年,英国曼彻斯特大学物理学家安德烈〃海姆和康斯坦丁〃诺沃肖洛夫,

利用胶带剥离高定向石墨的方法获得真正能够独立存在的二维石墨 烯晶体,并发现了石墨烯载流子的相对论粒子特性,才引发石墨烯研 究热。这以后,制备石墨烯的新方法层出不穷,人们发现,将石墨烯 引入工业化生产的领域已为时不远了[1]。 1石墨烯的特性 石墨烯是零带隙半导体,有着独特的载流子特性,为相对论力学 现象的研 究提供了一条重要 途径;电子在石墨 烯中传输的阻力很 小,在亚微米距离 移动时没有散射,具 有很好的电子传输 性质;石墨烯韧性 好,它们每100nm 距离上承受的最大 压力可达2.9N [2],是迄今为止发现的力学性能最好的材料之一。石墨烯特有的 能带结构使空穴和电子相互分离,导致了新电子传导现象的产生,如 量子干涉效应、不规则量子霍尔效应。Novoselov 等观察到石墨烯具 有室温量子霍耳效应,使原有的温度范围扩大了10倍。石墨烯在很 多方面具备超越现有材料的特性,具体如图 2 [3]所示,日本企业的 一名技术人员形容单层石墨碳材料“石墨烯”是“神仙创造的材料”。 图2 石墨烯的特点

石墨烯项目申报材料

石墨烯项目 申报材料 规划设计/投资分析/产业运营

石墨烯项目申报材料说明 2016年8月,国务院出台的《十三五国家科技创新规划》明确重点发展以石墨烯等为代表的先进碳材料。2017年1月,工信部、发改委、科技部、财政部联合发布了《新材料产业发展指南》,对石墨烯、超导材料等提出了任务要求,提出大力发展石墨烯产业。2017年4月,科技部发布《十三五材料领域科技创新》,明确指出了石墨烯碳材料技术发展领域:单层薄层石墨烯粉体、高品质大面积石墨烯薄膜工业制备技术,柔性电子器件大面积制备技术,石墨烯粉体高效分散、复核与应用技术,高催化活性炭及材料应用技术。 该石墨烯项目计划总投资5133.17万元,其中:固定资产投资4044.47万元,占项目总投资的78.79%;流动资金1088.70万元,占项目总投资的21.21%。 达产年营业收入7693.00万元,总成本费用5895.79万元,税金及附加87.16万元,利润总额1797.21万元,利税总额2132.26万元,税后净利润1347.91万元,达产年纳税总额784.35万元;达产年投资利润率35.01%,投资利税率41.54%,投资回报率26.26%,全部投资回收期5.31年,提供就业职位106个。

坚持“实事求是”原则。项目承办单位的管理决策层要以求实、科学 的态度,严格按国家《建设项目经济评价方法与参数》(第三版)的要求,在全面完成调查研究基础上,进行细致的论证和比较,做到技术先进、可靠、经济合理,为投资决策提供可靠的依据,同时,以客观公正立场、科 学严谨的态度对项目的经济效益做出科学的评价。 ...... 报告主要内容:项目基本情况、项目建设及必要性、市场分析预测、 建设规划方案、选址分析、土建工程、工艺说明、环境保护说明、项目职 业安全、风险评价分析、项目节能情况分析、实施安排、项目投资规划、 项目经济评价分析、总结说明等。

石墨烯的制备与应用--课程论文

石墨烯的制备与应用前景 石墨烯是由碳原子以sp2链接的单元子层构成,其基本结构为有机材料中最稳定的苯六元环。它是目前发现的最薄的二维材料。石墨烯是构成其他石墨材料的基本单元,它可以翘曲成为零维的富勒烯,卷曲成为一维的CNTs或者堆垛成为三维的石墨。石墨烯是人类已知强度最高的物质,比钻石还坚硬,厚度相当于普通食品塑料袋的石墨烯能够承担大约两吨重的物品。石墨烯最大的特点是石墨 烯最大的特性是其中电子的运动速度达到了光速的1/300,远远超过了电子在一般导体中的运动速度。这使得石墨烯中的电子,或更准确地,应称为“载荷子”的性质和相对论性的中微子非常相似。此外石墨烯有相当的不透明度:可以吸收大约2.3%的可见光。而这也是石墨烯中载荷子相对论性 的体现。 石墨烯的合成方法 1.微机械剥离法 这是最早制备出石墨烯的方法。2004年Novoselovt等用这种方法制备出了单层石墨烯。典型制备方法是用另外一种材料膨化或者引入缺陷的热 解石墨进行摩擦,体相石墨的表面会产生絮片状的晶体,在这些絮片状的 晶体中含有单层的石墨烯。但缺点是此法是利用摩擦石墨表面获得的薄片 来筛选出单层的石墨烯薄片,其尺寸不易控制,无法可靠地制造长度足供 应用的石墨薄片样本。 2.外延生长法 一般是通过加热6H—SiC单晶表面,脱附Si(0001面)原子制备出石墨烯.先将6H- SiC单晶表面进行氧化或H 刻蚀预处理在超高真空下加热去除表面氧化物,通过俄歇电子能谱确认氧化物完全去除后,继续恒温加热10-20分钟,所得的石墨烯片层厚度主要由这一步骤的温度所决定,这种方法能够制备出l-2碳原子层厚的石墨烯,但由于SiC晶体表面结构较为复杂,难以获得大面积、厚度均一的石烯。与机械剥离法得到的石墨烯相比,外延生长法制备的石墨烯表现出较高的载流子迁移率等特性,但观测不到量子霍尔效应。 3.碳纳米管轴向切割法 前文已经提到过,碳纳米管从结构上可以看作是由单层的石墨烯纳米带卷曲

石墨烯在锂电池中的应用研究

LUOYANG NORMAL UNIVERSITY 2015届本科毕业论文 石墨烯在锂离子电池材料中的应用研究 院(系)名称化学化工学院 专业名称化学工程与工艺 学生姓名雷丙丽 学号110644058 指导教师刘丰讲师 完成时间2015年04月

石墨烯在锂离子电池材料中的应用研究 摘要:石墨烯是单原子层紧密堆积的一种特殊石墨材料,在电学、热学、力学等方面具有独特的构造和优良的功能,可以发挥其重要的作用。因为石墨烯具有较高的电导率、超大的比表面积、高的化学稳定性等优良的化学和物理特性,所以它在锂离子电池材料中的研究引起了人们的广泛关注。文章不仅综述了石墨烯的结构和制备工艺以及改性方法,而且介绍了石墨烯作为锂离子电池材料的最新研究进展,还分析了石墨烯各制备和改性方法对锂离子电池材料的影响,并对石墨烯在锂离子电池材料中应用的发展趋势进行了展望。 关键词:石墨烯;锂离子电池材料;电化学 The application of graphene in lithium-ion battery materials research Abstract:Graphene is a single atomic layer close packing of a kind of special graphite material, such as electrical, thermal and mechanical aspects has unique structure and excellent performance, can play its important role. Because of properties of high electrical conductivity, large surface area, and chemical stability, graphene holds great promising for potential applications in electrode materials for lithium-ion battery, it is in the lithium-ion battery materials research has attracted widespread attention. Article summarizes the modification of graphene and graphene is introduced as a new research progress of the lithium-ion battery materials, graphene is analyzed the influence of the preparation and applications of graphene in lithium-ion battery material development trend is prospected. Keywords:graphene; the modification of graphene; lithium—ion battery material 1 引言 近几年来,为了进一步实现可持续发展,锂离子电池受到人们的普遍关注,世界

石墨烯的研究进展概述

龙源期刊网 https://www.sodocs.net/doc/f95390813.html, 石墨烯的研究进展概述 作者:兰耀海 来源:《建材发展导向》2014年第03期 摘要:由于石墨烯具有独特的结构和优越的性能,现己逐渐应用于电子材料、薄膜材 料、储能材料、液晶材料、催化材料等先进的功能材料领域。石墨烯复合材料是石墨烯应用研究中的重要领域,近年来已成为材料研究的热门领域。文章主要对石墨烯的物理化学性质、制备方法、石墨烯复合材料以及应用领域进行简单总结,并对未来石墨烯复合材料的发展做一展望。 关键词:石墨烯;复合材料;研究进展 1 石墨烯的物理化学性质 石墨烯是一种由碳原子构成的单层片状结构的新材料,是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,是只有一个碳原子厚度的二维材料。石墨烯一直被认为是假设性的结构,无法单独稳定存在,直到2004年,英国科学家成功地在实验中从石墨中分离出石墨烯,从而证实它可以单独存在。石墨烯具有特殊的单原子层结构和奇特的物理性质:强度达130GPa、热导率约5000J/(m·K·S),禁带宽度几乎为零、载流子迁移率达到2×105cm2/(V·s),具有极高的透明度(约为97.7%)、表面积的理论计算值为2630m2/g,石墨烯的杨氏模量(1100GPa)和断裂强度(125GPa)与碳纳米管相当,它还具有分数量子霍尔效应、量子霍尔铁磁性和零载流子浓度极限下的最小量子电导率等一系列优良性质。 石墨烯是一种由碳原子构成的单层片状结构的新材料。是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸收大约2.3%的光。石墨烯的物理性能优越可以翘曲成零维的富勒烯,卷成一维的碳纳米管或者堆垛成三维的石墨。石墨烯的基本结构单元为有机材料中最稳定的苯六元环,理想的石墨烯结构是平面六边形点阵,可以看作是一层被剥离的石墨分子,每个碳原子均为sp2杂化,并贡献剩余一个p轨道上的电子形成大π键,π电子可以自由移动,这赋予石墨烯良好的导电性。 2 石墨烯的制备方法 自从2004年曼彻斯特大学的研究小组发现了单层及薄层石墨烯以来,石墨烯的制备引起学术界的广泛关注。由于二维晶体结构在有限温度下是极不稳定,而考察石墨烯的基本性质并充分发挥其优异性能需要高质量的单层或薄层石墨烯,这就要求寻找一种石墨烯的制备方法来满足日益增长的研究及应用需求。 目前石墨烯的制备方法主要划分为三类:第一类为化学剥离法,这种方法通过制备氧化石墨作为前躯体,使用化学还原,溶剂热还原,热膨胀还原等手段得到对应的石墨烯。第二类为

石墨烯

石墨烯简介 有这样一种材料,它的机械强度是世界上最好钢的100倍,有着最快的电子迁移率,1秒内就可以传完两张蓝光DVD的容量……这就是石墨烯。 石墨烯是从石墨中剥离出的单层碳原子面材料,由碳原子紧密堆积成单层二维蜂窝状晶格结构,也可称为“单层石墨”(碳原子以sp2混成轨域呈蜂巢晶格排列构成的单层二维晶体,由碳原子和其共价键所形成的原子尺寸网,为平面多环芳香烃原子晶体),它是人类已知的厚度最薄、质地最坚硬、导电性最好的材料。 一、石墨烯发展简史 20世纪初,科学家开始接触到石墨烯。2004年,英国曼彻斯特大学的物理学教授安德烈〃杰姆(AndreGeim)和他的学生克斯特亚〃诺沃消洛夫(Ko-styaNovoselov)用简单易行的胶带分离法制备出了石墨烯。他们从石墨中剥离出石墨片,然后将薄片的两面粘在一种特殊的胶带上,撕开胶带,把石墨片一分为二,不断重复这样的操作,于是薄片越来越薄,最后得到了仅由一层碳原子构成的薄片,即石墨烯。2010年,他们二人凭借着在石墨烯方面的创新研究获得了诺贝尔物理学奖。获奖后,一些媒体渲染性地报道:“物理学家用透明胶和铅笔赢得诺贝尔奖。” 二、特性 石墨烯具有优异的力学、光学和电学性质:结构非常稳定,迄今为止研究者仍未发现石墨烯中有碳原子缺失的情况,碳原子之间的连接非

常柔韧,比钻石还坚硬,强度比世界上最好的钢铁还要高上100倍,如果用石墨烯制成包装袋,它将能承受大约两吨重的物品;几乎完全透明,却极为致密、不透水、不透气,即使原子尺寸最小的氦气也无法穿透;导电性能好,石墨烯中电子的运动速度达到了光速的1/300,导电性超过了任何传统的导电材料;化学性质类似石墨表面,可以吸附和脱附各种原子和分子,还有抵御强酸强碱的能力。 三、制备方法 石墨烯的制备方法主要有机械法和化学法两种。机械法包括微机械分离法、取向附生法和加热碳化硅法,化学法包括化学还原法与化学解理法、化学气相沉积法等。 2008年,常州二维碳素科技有限公司于庆凯博士首次提出以铜箔为基质的化学气相沉积法合成石墨烯,这已成为目前石墨烯合成的主要方法。2010年,韩国科学家用此项技术较便宜地制备出了30英寸的石墨烯,并研制出以石墨烯为电极的触摸屏样品。 四、应用方向 石墨烯在物理学、化学、信息、能源以及器件制造等领域,都具有巨大的研究价值和应用前景。可用于制造超轻防弹衣、超薄超轻型飞机材料、“太空电梯”缆线、抗菌材料、超微型晶体管、代替硅用于电子产品、生产未来的超级计算机等等。 也许有一天,你会在电视上看到这样的广告。“××电脑采用1.5T 石墨烯处理器……”;也许有一天,你把掌上电脑三折两叠塞进牛仔裤后兜,这比各种Pad都拉风;也许有一天,应用了石墨烯的光调制器,可使网络速度快一万倍;也许有一天,石墨烯实现了直接快速低成本

相关主题