搜档网
当前位置:搜档网 › Toric selfdual Einstein metrics on compact orbifolds

Toric selfdual Einstein metrics on compact orbifolds

Toric selfdual Einstein metrics on compact orbifolds
Toric selfdual Einstein metrics on compact orbifolds

a r X i v :m a t h /

405020v 2 [m a t h .D G ] 8 F e b 2005TORIC SELFDUAL EINSTEIN METRICS ON COMPACT ORBIFOLDS

DAVID M.J.CALDERBANK AND MICHAEL A.SINGER

Abstract.We prove that any compact selfdual Einstein 4-orbifold of positive scalar cur-

vature whose isometry group contains a 2-torus is,up to an orbifold covering,a quaternion

K¨a hler quotient of (k ?1)-dimensional quaternionic projective space by a (k ?2)-torus for

some k 2.We also obtain a topological classi?cation in terms of the intersection form of

the 4-orbifold.

Introduction A selfdual Einstein (SDE)metric is a 4-dimensional Riemannian metric g whose Weyl curvature W is selfdual with respect to the Hodge star operator (W =?W ),and whose Ricci tensor is proportional to the metric (Ric =λg ).The only compact oriented 4-manifolds admitting SDE metrics of positive scalar curvature are S 4and C P 2,with the round metric and Fubini–Study metric respectively (cf.[3,Thm.13.30]).However,if one considers 4-orbifolds,the class of examples is much wider.In [11],K.Galicki and https://www.sodocs.net/doc/f111770539.html,wson constructed SDE 4-orbifolds by taking quaternion K¨a hler quotients of quaternionic projective spaces by tori,and this construction was systematically investigated by Boyer–Galicki–Mann–Rees [6].These examples are all toric ,i.e.,the isometry group of the metric contains a 2-torus,hence they belong to the local classi?cation by H.Pedersen and the ?rst author of toric SDE metrics of nonzero scalar curvature [8],where it was shown that any such metric has an explicit local form determined by an eigenfunction of the Laplacian on the hyperbolic plane H 2.SDE 4-orbifolds have physical relevance as the simplest nontrivial target spaces for nonlin-ear sigma models in N =2supergravity (see [10]).They have also attracted interest recently because of the connection with M-theory and manifolds of G 2-holonomy [7,12]:in particular the results in [8]have been exploited by L.Anguelova and https://www.sodocs.net/doc/f111770539.html,zaroiu [1].The ?rst main theorem of this paper shows that the quaterion K¨a hler quotient is su?cient.Theorem A.Let X be a compact selfdual Einstein 4-orbifold with positive scalar curvature,whose isometry group contains a 2-torus.Then,up to orbifold coverings,X is isometric to a quaternion K¨a hler quotient of quaternionic projective space H P k ?1,for some k 2,by a (k ?2)-dimensional subtorus of Sp(k ).(We remark that the least such k is b 2(X )+2.)This result was already known when the 3-Sasakian 7-orbifold associated to X is smooth,

since toric 3-Sasakian 7-manifolds have been classi?ed by R.Bielawski [4]using analytical techniques.Our methods are quite di?erent,being elementary and entirely explicit.

Before outlining the proof,we recall that it was shown in [8]that the SDE metrics coming from (local)quaternion K¨a hler quotients of H P k ?1as above,are those for which the corre-sponding hyperbolic eigenfunction F is a positive linear superposition of k basic solutions which may be written

(1)F (ρ,η)=k i =1

√Date :February 2008.

1

2DAVID M.J.CALDERBANK AND MICHAEL A.SINGER

Proof.We provide here the main line of the argument,relegating the detail to the body of the paper.First we observe that by Myers’Theorem(which extends easily to orbifolds[5]) the universal orbifold cover?X of X is also a compact toric SDE4-orbifold of positive scalar curvature,so we may assume X=?X.

As we shall explain in section1,compact simply connected4-orbifolds X with an e?ective

action of a2-torus G=T2may be classi?ed by work of Orlik–Raymond[22]and Hae?iger–

Salem[13].The orbit space W=X/G is a polygonal disc whose edges C0,C1,...C k?1,C k=

C0(given in cyclic order)are labelled by orbifold generators v j=(m j,n j)∈Z2,determined up to sign1,with m j n j?1?m j?1n j=0for j=1,...k.The interior of W is the image of the open subset X0of X on which G acts freely,the edges C j are the images of points with

stabilizer G(v j)={(z1,z2)∈G:m j z1+n j z2=0}and cyclic orbifold structure groups of

order gcd(m j,n j),and the corners are the images of the?xed points.A sign choice for v j is

equivalent to an orientation of the corresponding circle orbits.

The classi?cation result of[8],which we discuss in section2,shows that the interior of W is equipped with a hyperbolic metric g H2and hyperbolic eigenfunction F(with?H2F=3

ρF(ρ,η)has a well-de?ned limit asρ→0,which is a continuous piecewise linear function f0(η)ofη(whose corners are at the corners of W).The half-space coordinates can be chosen so that f0(η)=±(m jη?n j)on C j.

As we shall discuss in section2(cf.[9])a hyperbolic monopole F on H2is determined by its‘boundary value’f0via a‘Poisson formula’

F(ρ,η)=1

ρ2+(η?y)2 3/2.

Integrating twice by parts(in the sense of distributions),we then have

F(ρ,η)=1ρ2+(η?y)2dy

ρ

.

In our case,f0is continuous and piecewise linear,so f′′0is a linear combination of k delta distributions and F is therefore a linear combination of k basic solutions,i.e.,a k-pole solution in the sense of[8].Since the SDE metric has positive scalar curvature,it follows from[8]that the determinant of a certain matrixΦ(ρ,η)associated to F(ρ,η)(see section2)is positive. Using[9](see section2again)we?nd that

(2)detΦ(ρ,η)=1

ρ2+(η?y)2 3/2 ρ2+(η?z)2 3/2dy dz.

Suppose nowηlies in the singular set of f′′0.Then asρ→0,this integral is dominated by the contribution from y nearηand the evaluation at z=ηgiven by the corresponding delta distribution in f′′0.It follows that f0is convex where it is positive and concave where it is negative.Thus,up to an irrelevant sign,f0(η)is positive and convex,hence F(ρ,η)is of the form(1).According to[8],the metric g is therefore locally isometric to a local quaternion K¨a hler quotient of H P k?1by an explicitly de?ned(k?2)-dimensional abelian subgroup of Sp(k),and one easily sees that the integrality conditions v j∈Z2imply that this subgroup is a torus.However,the quaternion K¨a hler quotient of H P k?1by a(k?2)-torus is a compact 4-orbifold[6].Therefore X must be its universal orbifold cover.

TORIC SELFDUAL EINSTEIN METRICS ON COMPACT ORBIFOLDS3 The proof of this theorem shows explicitly how the isotropy data of a toric SDE orbifold X give rise to the hyperbolic eigenfunction de?ning the SDE metric on X and hence to its realization as quaternion K¨a hler quotient.However,it is not yet clear which isotropy data give a toric orbifold admitting an SDE metric.To understand this,we consider the inverse construction.Suppose therefore that X is a quaternion K¨a hler quotient of H P k?1by a(k?2)-

dimensional subtorus H of the standard maximal torus T k=R k/2πZ k in Sp(k).Then the

isometry group of X contains the quotient torus T k/H.If we choose an identi?cation of

T k/H with with R2/2πZ2,then H=h/2πΛis determined by a map from Z k→Z2with kernelΛ,or equivalently by(a i,b i)∈Z2for i=1,...k(the images of the standard basis

elements of Z k).Any two(a i,b i)span Z2?Z Q:otherwise X is a quaternion K¨a hler quotient of H P j?1for some j0 and that the sequence(y i:=b i/a i)is increasing.We set y0=?∞and y k+1=+∞.

Now,by[8],the hyperbolic eigenfunction generating the SDE metric is given by(1)and therefore the boundary value of√

4DAVID M.J.CALDERBANK AND MICHAEL A.SINGER

If(i)–(iii)hold,then X admits a toric selfdual Einstein metric,unique up to homothety and pullback by an equivariant di?eomorphism.

Proof.(i)?(ii).Since the metric is selfdual with positive scalar curvature,the intersection form must be positive de?nite(by Hodge theory for orbifolds and a Bochner argument—cf.[17]).Now we observe that e<χorb(ˉS)follows from a positive scalar curvature analogue of[9,Theorem F].Indeed,the proof in[9,Section6]generalizes to orbifolds,and reversing the sign of the scalar curvature there,we see that any compact,connected,totally geodesic 2-suborbifold of an SDE orbifold of positive scalar curvature must satisfyΣ·Σ<χorb(Σ). (ii)?(iii).The positivity of the intersection form is equivalent to the fact that[v j]∈R P1are in cyclic order(see section1),which proves the?rst part.Because of this,we have?j?1,j>0 for1 j k.Now since[ˉS j]·[ˉS j]<χorb(ˉS j),(4)follows from the following formulae(see section1for the?rst,the second is standard for an orbifold2-sphere):

[ˉS j]·[ˉS j]=?j?1,j+1

?j?1,j?j,j+1

.

(iii)?(i).Under the conditions in(iii)we are still free to cyclicly permute the v j by changing

signs and relabelling.We use this freedom to ensure that m0=?m k

0

under these conditions X admits a toric SDE metric,and the exceptional surfaces,as?xed

point sets of a subgroup of the isometry group,are totally geodesic.

To establish(a)–(b)we note that(4)may be rewritten as

(5)(n j+1?n j)(m j?m j?1)>(m j+1?m j)(n j?n j?1).

Since?j?1,j>0,this says that(m j+1,n j+1)lies on the side containing the origin of the line

L j joining(m j?1,n j?1)to(m j,n j).We use induction to show that(m j)is increasing.Clearly

m1>m0,so suppose m j>m j?1.Then dividing(5)by m j?m j?1,we see that(m j+1,n j+1) is above L j,hence so is the origin.If m j 0,then this,together with the fact that?j,j+1>0,

shows that m j+1>m j.Hence the sequence(m j:m j 0)is increasing.A similar induction

starting from the fact that m k?1

Thus(a)holds,and dividing(5)by(m j?m j?1)(m j+1?m j)>0,we obtain(b).

The proof of(iii)?(i)establishes the existence of a toric SDE metric,which is unique as stated

by the proof of Theorem A and the classi?cation of simply connected toric4-orbifolds. Remarks.The second condition in(ii)means equivalently that for any negative toric complex structure on the complement of any?xed point in X,K?1X is nef.Indeed for a toric complex structure on the complement of x∈X,K?1X being nef is equivalent,by the adjunction formula,to[ˉS]·[ˉS]<χorb(ˉS)for allˉS that do not meet x.Now we note that by[16](see also[8]),X admits toric scalar-?at K¨a hler metrics on the complement of any?xed point. Note that X does not admit a global toric complex structure of either orientation unless it is a weighted projective space(or an orbifold quotient thereof).This can be seen by observing that toric complex orbifolds are symplectic and so the sequence[v1],[v2],...[v k]∈R P1must have winding number two(since the v j are the normals to the faces of a convex polytope in g?).It follows easily that the signature is±(k?4),which equals?(k?2)i?k=3. Theorem B shows that not every compact,simply connected toric4-orbifold admits an SDE metric.On the other hand,as was noted in[6],there are SDE toric4-orbifolds with arbitrarily large second Betti number.It is straightforward to construct such4-orbifolds and compute their rational homology using the methods presented here(the integer pairs(a i,b i), i=1,...k,used in formula(1)are constrained only by pairwise linear independence).

TORIC SELFDUAL EINSTEIN METRICS ON COMPACT ORBIFOLDS5 Examples.If k=b2(X)+2=2then X is necessarily isometric to an orbifold quotient of S4with the round metric:after an SL(2,Z)transformation we may take v0=(?m,0), v1=(0,?n)and v2=?v0as orbifold data,S4itself being given by mn=±1.

When k=3,X is a weighted projective space[11].For instance,orbifold data for C P2 can be taken to be(?2,?1),(?1,?1),(1,0),(2,1).

An example with k=4and only one orbifold singularity is given by the data(?2,?3), (?1,?1),(0,?1),(1,0),(2,3).More generally by taking the n j su?ciently negative,one can construct in?nitely many examples with b2(X)+2=k for any k 2|m0|.The graph of z=f0(y)is a union of line segments with integer slopes in the region{(y,z):z |m0y?n0|} as shown in Figure1.

Figure1.Graph of a typical boundary value for a compact SDE orbifold.

The body of the paper is really a series of appendices.In section1,we review the classi-?cation of compact toric4-orbifolds,following[22,13].In fact,we present the classi?cation of simply connected compact n-orbifolds with a cohomogeneity two torus action,since this is the most natural context and the fundamental paper of Hae?iger and Salem[13]rather understates the power of their theory in proving results such as this.

In section2,we review the material from[8,9]that we use.Then,in section3,we present the main technical arguments that we skipped in the proof of Theorem A.

We assume throughout that the reader is familiar with the theory of orbifolds. Acknowledgements.We thank W.Ziller for encouraging us to write this paper.The authors are grateful to EPSRC and the Leverhulme Trust for?nancial support.This paper was partly written while the?rst author was visiting ESI and the second author was on leave at MIT.We are grateful to these institutions for hospitality and?nancial support.

1.Torus actions on orbifolds

In this section we summarize the description of compact orbifolds with torus actions due to Orlik–Raymond[22]and Hae?iger–Salem[13](see also[14,18]).

1.1.Lie groups and tori acting on orbifolds.Let X be an oriented n-orbifold with a smooth e?ective action of a compact Lie group G.Fix x∈X with stabilizer H G and orbifold structure groupγ.Letφ:?U→?U/γ=U be an H-invariant uniformizing chart about x∈U and let?H be the group of di?eomorphisms of?U which project to di?eomorphisms induced by elements of H.Thusγis a normal subgroup of?H and H=?H/γ.

Elements of the Lie algebra g of G induceγ-invariant vector?elds on?U and the integral submanifold throughφ?1(x)isφ?1(G·x∩U).Let W=?T x X/?T x(G·x)be the quotient of the uniformized tangent spaces to X and G·x at x.Since?H preserves?T x(G·x),it acts linearly on W and this induces an action of H on W/γ.Hence by the di?erentiable slice theorem: there is a G-invariant neighbourhood of the orbit G·x that is G-equivariantly

di?eomorphic to G×H(B/γ),where B is a?H-invariant ball in W.

6DAVID M.J.CALDERBANK AND MICHAEL A.SINGER

Now suppose that G =g /2πΛis an m -torus (m n ),where Λis a lattice in g .Then we can improve on the above as follows.Let U now be a G -invariant tubular neighbourhood of G ·x with orbifold fundamental group Γ.Since π2(G ·x )=0,the universal orbifold cover π:?U →?U/Γ=U is smooth [13].Let ?G be the group of di?eomorphisms of ?U that project to di?eomorphisms of U induced by elements of G ,and let ?H be the stabilizer of a point ?x in π?1(x ),so that Γis normal in ?G

and G =?G/Γ.Then by the di?erentiable slice theorem:there is a G -invariant neighbourhood of the orbit G ·x that is G -equivariantly di?eomorphic to (?G ×?H B )/Γ,where B is a ?H -invariant ball in W .Observe that ?H

∩Γ=γ,so that (?G ×?H B )/Γ=(?G/Γ)×?H/γ

(B/γ)=G ×H (B/γ)as before.Since ?U is 1-connected,?G/?H is the universal cover of G/H ,namely g /h .Thus ?G/?G 0=?H/?H 0is a ?nite group D ,where ?G 0=g /2πΛ=G and ?H 0=h /2πΛ0denote the identity components,Λ0being a subgroup of Λ.Since ?H is the (unique)maximal compact subgroup of ?G

we have the following.1.2.Proposition.[13]Let G =g /2πΛbe an m -torus acting e?ectively on an oriented n -manifold X and let G ·x be an orbit with k -dimensional stabilizer H .Then there is

?a rank k sublattice Λ0of Λ,

?a ?nite group D with a central extension

0→Λ/Λ0→Γ→D →1,?and a faithful representation ?H →SO (n ?m +k ),where ?H is the maximal compact subgroup of the pushout extension ?G =Γ×Λ/Λ0

g /2πΛ0,such that a G -invariant tubular neighbourhood U of G ·x is G -equivariantly di?eomorphic to (?G ×?H B )/Γfor a ball B ?R n ?m +k .These data classify tubular neighbourhoods of orbits up to G -equivariant di?eomorphism.

This result is easy to apply when k =n ?m or k =n ?m ?1,when ?H 0=h /2πΛis a maximal torus in SO (2(n ?m ))or SO (2(n ?m ?1)+1).Then ?H =?H 0(since ?H is in the centralizer of ?H 0),so D =1and Γ=Λ/Λ0.Hence a tubular neighbourhood U of such an orbit is classi?ed by a subgroup Λ0of Λsuch that ?H =h /2πΛ0.?When k =n ?m ,U/G is homeomorphic to [0,1)n ?m and Λ0= n ?m j =1Λj 0,where Λj 0are linearly independent rank one sublattices of Λsuch that (Λj 0?Z R )/2πΛj 0is the stabilizer

the orbits over the j th face of U/G .?When k =n ?m ?1,U/G is homeomorphic to [0,1)n ?m ?1×(?1,1)and Λ0= n ?m ?1j =1Λj 0,with Λj 0as before.

To obtain a global classi?cation,one must patch together such local tubes.This is conve-niently encoded by the ˇCech cohomology of W =X/G with values in Λ.1.3.Proposition.[13]Suppose W = i W i is a union of open sets and (X i ,πi :X i →W i )are G -orbifolds with orbit maps πi .Then there is a G -orbifold (X,π:X →W )with π?1(W i )G -equivariantly di?eomorphic to X i if and only if a ˇCech cohomology class in H 3(W,Λ)associated to {(X i ,πi )}vanishes.If this is the case then the set of such G -orbifolds (X,π)is an a?ne space modelled on H 2(W,Λ).

1.4.Cohomogeneity two torus actions on orbifolds.Let us now specialize to the case dim W =2(i.e.,n =m +2).The union X 0of the m -dimensional orbits is the dense open subset on which the action of G is locally free,hence W 0=X 0/G is a 2-orbifold.The remaining orbits have dimension m ?1or m ?2,i.e.,stabilizers of dimension k =n ?m ?1=1or k =n ?m =

2.Hence we can obtain a global classi?cation in this case.(Similar arguments give a global classi?cation when dim W =1.)

TORIC SELFDUAL EINSTEIN METRICS ON COMPACT ORBIFOLDS 7

1.5.Theorem.[22,13](i)Let X be a compact connected oriented (m +2)-orbifold with a smooth e?ective action of an m -torus G =g /2πΛ.Then W =X/G is a compact connected oriented 2-orbifold with boundary and corners,equipped with a labelling Λj 0of the edges of W (the connected components of the smooth part of the boundary )by rank 1sublattices of Λsuch that at each corner of W the corresponding two lattices are linearly independent.

(ii)For any such data on W ,there is a G -orbifold X inducing these data,and if H 2(W,Λ)=0then X is uniquely determined up to G -equivariant di?eomorphism.

(iii)The orbifold fundamental group of X is determined by the long exact sequence:πorb 2(W 0)→Λ/ j Λj 0→πorb 1(X )→πorb 1(W 0)→1.

In particular X is simply connected if and only if either W 0is a smooth open disc and the lattices Λj 0generate Λ,or W 0=W is a simply connected orbifold 2-sphere (so that πorb 2(W )=Z )and πorb 2

(W 0)→Λis an isomorphism (so m =1)https://www.sodocs.net/doc/f111770539.html,pact toric 4-orbifolds.We now apply the preceding result when m =2and X is a simply connected 4-orbifold.Then W is a smooth polygonal disc with rank 1sublattices Λj 0?Λ~=Z 2(j =1,...k )labelling the edges C j of W ,which we order cyclicly.Λj 0is determined by one of its generators v j =(m j ,n j )∈Z 2,which is unique up to a sign.The corner conditions mean that v j ?1,v j are linearly independent,or equivalently ?j ?1,j =0,for j =1,...k (where v 0=?v k and ?i,j :=m i n j ?m j n i ).The simple connectivity of X means that {v j :j =1,...k }spans Z 2.Since H 2(W,Z 2)=0,X is uniquely determined by these data.(The classi?cation for manifolds is more subtle,since then we must have ?j ?1,j =±1,i.e.,adjacent pairs of labels form a Z -basis,which leads to combinatorial problems.)

We end by discussing the rational homology of such a toric 4-orbifold X .Since X is oriented and simply connected,this amounts to describing H 2(X,Q )and its intersection form.We have already remarked that b 2(X )=k ?2(and this is easy to establish by a spectral sequence argument):in fact the closures ˉS

j of the exceptional surfaces S j =π?1(C j ),once oriented,de?ne rational homology classes generating H 2(X,Q ).Obviously the only nontrivial intersections are the self-intersections and the intersections of adjacent ˉS j .For the latter,we note that in the orbifold uniformizing chart of order |?j,j +1|about ˉS j ∩ˉS j +1,the intersection number is ±1and hence [ˉS j ]·[ˉS j +1]=±1/?j,j +1.Similarly,by considering the link of S j (which is an orbifold lens space),we ?nd that [ˉS

j ]·[ˉS j ]=±?j ?1,j +1/(?j ?1,j ?j,j +1).In fact our orientation conventions give

(1.1)[ˉS j ]·[ˉS j ]=?j ?1,j +1/(?j ?1,j ?j,j +1),[ˉS

j ]·[ˉS j +1]=[ˉS j +1]·[ˉS j ]=?1/?j,j +1.We notice that k j =1m j [ˉS j

]and k j =1n j [ˉS j ]have trivial intersection with any [ˉS i ].Since the latter classes span the rational homology,and the intersection form is nondegenerate,we have k j =1m j [ˉS j ]=0= k j =1n j [ˉS j ].Since b 2(X )=k ?2,these span the relations amongst the rational classes [ˉS

j ].For Theorem B we need a formula for the signature of X (i.e.,of the intersection form on H 2(X,Q ))which was given by Joyce [16]in the manifold case and by Hattori–Masuda [14]in general.For this formula,choose an arbitrary vector v =(m,n )∈Z 2which is not a multiple of any v j and de?ne ?j =mn j ?nm j .Then

σ(X )=k j =1sign (?j ?1?j ?1,j ?j ).

This is evidently independent of the sign choices for the v j ,and it is independent of the choice of v ,since if we move v so that one ?j changes sign then only two terms in the above sum change sign,but they have the opposite sign.Let us choose the signs of the v j so that ?j >0

8DAVID M.J.CALDERBANK AND MICHAEL A.SINGER

for i=1,...k(so that the v j lie in a half-space bounded by the span of v);then?0<0.It follows that|σ(X)|=k?2=b2(X)i??j?1,j all have the same sign for j=1,...k,i.e.,i?

[v1],...[v k]are in cyclic order in R P1.Thus{±v j:j=1,...k}are the normals to

a compact

convex polytope in g?symmetric under v→?v,as in Anguelova–Lazaroiu[2].

2.Toric selfdual Einstein metrics

In this section we give a brief account of the relevant results of[8]and[9].

2.1.Local classi?cation.Let H2denote the hyperbolic plane,which we regard as the positive de?nite sheet of the hyperboloid{a∈S2R2:det a=1}in the space S2R2of symmetric2×2matrices,with the induced metric(?det is the quadratic form of a Minkowski metric on this vector space).

Let G denote the standard2-torus R2/2πZ2,with linear coordinates z=(z1,z2).Consider the metric g F constructed on(open subsets of)H2×G through the formula

(2.1)g F=|detΦ|

4

F,

dz=(dz1,dz2),A is the tautological S2R2-valued function on H2(with A a=a),and Φ=1

4F2?|dF|2.(The metric has singularities

where F=0or detΦ=0.)Furthermore,any SDE metric with nonzero scalar curvature and a2-torus in its isometry group is obtained locally from this construction.

A more explicit form of the metric can be obtained by introducing half-space coordinates (ρ(a)>0,η(a))on H2.The standard basis of R2leads to a preferred choice

A(ρ,η)=

1

ρF(ρ,η),v1=(fρ,ηfρ?ρfη),v2=(fη,ρfρ+ηfη?f),

so thatΦ=λ1?v1+λ2?v2,whereλ1=(√ρ,1/√

f2 dρ2+dη2ε(v1,v2)2 ,

whereε(·,·)denotes the standard symplectic form on R2.

TORIC SELFDUAL EINSTEIN METRICS ON COMPACT ORBIFOLDS9 2.3.Boundary behaviour.The replacement of F by f is quite natural because one can prove that if F satis?es(2.2)in a set of the form{0<ρ

where f0and f1are in general distributions.The coe?cients of the higher powers ofρare also distributions,uniquely determined by f0and f1;only even powers ofρcan occur.Such boundary regularity results are discussed in a much more general setting in[20,21].

In addition to this local regularity,we shall need the following uniqueness result.

2.4.Proposition.If F satis?es(2.2)globally on H2and f0=0on the boundary R P1of H2,then F=0.

Some care is needed in interpreting this result in half-space coordinates.At?rst sight,the function F=ρ3/2appears to be a counter-example.However,if one changes to coordinates (2.6)?ρ=ρ/(ρ2+η2),?η=?η/(ρ2+η2),

then F=?ρ3/2(?ρ2+?η2)?3/2and

?ρF(ρ,η)

with(ρ,η)and(?ρ,?η)related as in(2.6),then we see that

(2.7)?f0(?1/η)=|η|f0(η)

Thus f0is the restriction of a distributional section of the line-bundle O(1)?L over R P1, where L is the M¨o bius bundle and O(1)is the dual of the tautological line bundle.Sections of this bundle can also be viewed as functions?f0on R2 {0}satisfying?f0(λv)=|λ|?f0(v). An elementary way to prove Proposition2.4is via the maximum principle.

2.5.Proposition.Suppose that F is de?ned in H2and satis?es

?F=α(α+1)F,whereα∈R.

If the boundary value f0(η)=limρ→0ραF(ρ,η)vanishes for allηin R P1,then F=0. Proof.We pass to the Poincar′e model of H2:the unit disc with coordinates(x,y),r2= x2+y2<1.De?ne

1?r2

u=

10DAVID M.J.CALDERBANK AND MICHAEL A.SINGER

When α=1/2,we recover Propostion

2.4.Note that if we replace the

eigenvalue α(α+1)by β(β+1),then we obtain

?f +2u α?u ?α·?f =[(β?α)(1+α+β)+2α2u ]f.

Since u →0at the boundary,we cannot apply the maximum principle if (β?α)(1+α+β)<0;in particular it is not applicable for α>β=1/2.

2.6.The Poisson formula.A Poisson formula reconstructs the eigenfunction F from its boundary value f 0;in half-space coordinates,

(2.8)F (ρ,η)=1 ρ2+(η?y )2 3/2.It is straightforward to check (e.g.,by making the change of variables y =η+ρx )that f 0(η)=lim ρ→0

√ρ2+(η?y )2|dy |

is SL 2(R )invariant for the diagonal action of SL 2(R )on H 2×R P 1and (2.8)is the (3/2)-power of this kernel applied to f 0(y )|dy |?1/2,which is also SL 2(R )invariant.

We have seen that the map P :f 0→F given by (2.8)is injective.In fact,its image (operating on D ′(R P 1))is the space of solutions of (2.2)that grow at most exponentially with geodesic distance from a point [19].We shall not need this;the interested reader is referred to Theorem 4.24of the Introduction in Helgason’s book [15].

We end by remarking that [9,§5.1]gives an integral formula for the determinant of the matrix Φ=1

8

(y ?z )(μ(y )ν(z )?μ(z )ν(y ))ρ3

4

(y ?z )f 0(y )f ′0

(z )ρ3ρF (ρ,η)then on each

edge C j ,labelled by ±(m j ,n j ),f 0(η)is equal,up to sign,to the linear function m j η?n j ;?f 0(η)is continuous at the vertices of the polygon.

As we have remarked in section 2,for the second of these facts we can make a unimodular change of basis and suppose that (m j ,n j )=(0,?j ),where ?j =gcd(m j ,n j )is the order of the orbifold structure group of points in the corresponding special orbits.We then show that for the half-space coordinates corresponding to such a unimodular basis,f 0(η)=±?j on C j .At the corner ˉC

j ∩ˉC j +1corresponding to a ?xed point x ,we would like to use the primitive vectors (m j ,n j )/?j and (m j +1,n j +1)/?j +1as a basis for Z 2;unfortunately they only form a

TORIC SELFDUAL EINSTEIN METRICS ON COMPACT ORBIFOLDS11 basis for a sublattice of index(m j n j+1?m j+1n j)/(?j?j+1).However,to prove the continuity of f0at the corner,we may as well pass to the orbifold covering of a neighbourhood of x de?ned by this sublattice.Hence there is no loss in supposing that this index is1.

3.1.Exceptional surfaces.Let C be an edge of the polygon W and S its inverse image in X(whose closure is an orbifold2-sphere).We let2π/?be the cone angle of S in X so that points in S have orbifold structure group Z?.

Near any point of S we can introduce Fermi coordinates.For x near S,we write r(x)for the distance from x to S and introduce an angular coordinateθ(of period2π)such that dθvanishes on the radial geodesics and evaluates to1on the generator K of the action of the stabilizer of S(note thatθis far from unique).The metric then takes the form

(3.1)g=dr2+r2dθ2/?2+h1+rh2+r2h3

where h1is the‘?rst fundamental form’(restriction of the metric to S),h2is the second fundamental form,and h3is a form on T X bilinear in rdθand T S.Since S is a?xed point set of the isometry group generated by K,h2=0,which we shall use in the next subsection, but not here.(Also,by Gauss’s lemma,h3does not contain terms in dr,but we shall not need this precision.)

In our case,we also know that the metric is a toric SDE metric of positive scalar curvature and so is given explicitly by

(3.2)g F=dρ2+dη2

f2

(dψ1,dψ2)P t P dψ1dψ2

where

P= ρfη?ηfρfρ

f?ρfρ?ηfηfη and k=√

ρ?det P.

Here the angular coordinates(ψ1,ψ2):X0→R2/2πZ2are canonically de?ned up to a change of Z-basis,and the metric is invariant under such changes provided we make the corresponding change of half-space coordinates(ρ,η)(see section2).We use this freedom to let dψ1vanish on K,so that we can takeθ=ψ2.There is still the freedom to add a multiple ofψ1to ψ2andθ,and we use this(in a rather mild way)to ensure that the half-space coordinates (ρ,η)are bounded near S.Note that a priori the coordinates(ρ,η)are only independent in a punctured neighbourhood of S.

We complete the coordinates r,ψ1,ψ2=θby a coordinate y so that to leading order in r, as a bilinear form in dr,dy,dψ1,rdψ2,the metric(3.1)is given by

(3.3)dy2+dr2+a2dψ21+r2dψ22/?2

where a(y)>0.The equality of the angular parts of the metrics(3.2)and(3.3)now reduces to the following equation:

k2

f2 a?100?/r P t P a?100?/r =I+O(r).

This matrix is symmetric and so,by binomial series expansion(for r su?ciently small),it has an inverse square root which is also symmetric and of the form I+O(r).Multiplying on both sides by this inverse square root,we deduce that there is an orthogonal matrix with determinant?1 c s

s?c ,c2+s2=1

12DAVID M.J.CALDERBANK AND MICHAEL A.SINGER

such that k

f ρf η?ηf ρf ρf ?ρf ρ?ηf ηf η

= ca sr/?sa ?cr/? + O (r )O (r 2)O (r )O (r 2)

.This equation contains all the information we need.Taking determinants,we obtain (3.5)ρ

f 2det P =ar f

ρf η?ηf ρf ρf ?ρf ρ?ηf ηf η = cr/?sa sr/??ca + O (r 2)O (r )O (r 2)O (r ) and hence

?ρca ?ηsa =cr/?+O (r )

(3.10)k ?ρsa +ηca =sr/?+O (r ).(3.11)Assuming (as we may)that ρ→0and ηis bounded away from zero as r →0,the argument goes through in a similar way.This time,s =O (r ),hence c =±1+O (r 2)and k →?ηa as r →0.Therefore (3.9)gives (log f )ρ=O (ρ)but (log f )η=1/η+O (ρ),so f (ρ,η)=Aη+O (ρ2)for some constant A ,and we compute as before that A =±?.

Thus f 0(η)=±?η,as we would expect from the coordinate invariance of our formulae.

TORIC SELFDUAL EINSTEIN METRICS ON COMPACT ORBIFOLDS13 3.4.Corner behaviour.We now show that f0is continuous at a cornerˉC1∩ˉC2,for edges C1,C2corresponding to exceptional surfaces S1,S2.To do this,we argue as in§3.1,but with the metric expanded about the pointˉS1∩ˉS2.It is now natural to introduce coordinates r1and r2,the distance functions from S1and S2respectively.Since S1and S2are totally geodesic,the restriction of r2to S1is also the distance function fromˉS1∩ˉS2and similarly for r1and S2.Therefore,after adapting the basis of R2/2πZ2,we can suppose that the metric(3.2),to leading order in r1r2(as a bilinear form in dr1,dr2,r1dψ1,r2dψ2),is equal to

dr21+dr22+r21dψ21/?21+?22r22dψ22?22

for some positive integers?1and?2.If we carry through the calculations of§3.1with this metric,but now take into account that S1and S2are totally geodesic(since we now need better control over the error terms),then we certainly have

(3.12)

k

(ρr2/?2+r1/?1)2+(ηr2/?2)2+O(r21r22).

(We must be careful as s and c are not continuous at r1=r2=0.)We deduce from these formulae that

(log f)ρ=

ρr22/?22+r1r2/(?1?2)

(ρr2/?2+r1/?1)2+(ηr2/?2)2+O(r21r22).

(3.15)

Let the corner correspond toη=η0.We shall investigate the behaviour of f in polar coordinates centred at(0,η0),by introducing

η?η0=R cosΘ,ρ=R sinΘ.

Then

?R log f=(cosΘ?η+sinΘ?ρ)log f

and this is uniformly bounded for any?xedΘby(3.15).Hence f(R,Θ)has a limit f(0,Θ) as R→0,for each?xedΘ∈(0,π).It also has a limit asΘ→0orπfor each?xed R>0, namely the boundary value f0(η0±R).Thus f is bounded in[0,ε]×[?π,π]for someε>0. Now we note that

?Θf=f?Θlog f=fR(?sinΘ?η+cosΘ?ρ)log f

and the right hand side is O(R),uniformly inΘby(3.15).Hence by integration,we have |f(R,Θ1)?f(R,Θ2)|=O(R)for anyΘ1,Θ2∈(0,π).We deduce that

|f0(η0+R)?f0(η0?R)|=O(R)

and hence?nally,taking R→0,that f0is continuous at the corner.

14DAVID M.J.CALDERBANK AND MICHAEL A.SINGER

References

[1]L.Anguelova and https://www.sodocs.net/doc/f111770539.html,zaroiu,M-theory on toric G2cones and its type II reduction,J.High Energy

Phys.(2002)038,41pp.

[2]L.Anguelova and https://www.sodocs.net/doc/f111770539.html,zaroiu,M-theory compacti?cations on certain“toric”cones of G2holonomy,J.

High Energy Phys.(2003)066,72pp.

[3]A.L.Besse,Einstein Manifolds,Ergeb.Math.Grenzgeb.10,Springer,Berlin(1987).

[4]R.Bielawski,Complete hyper-K¨a hler4n-manifolds with a local tri-Hamiltonian R n-action,Math.Ann.

314(1999)505–528.

[5]J.E.Borzellino,Orbifolds of maximal diameter,Indiana Univ.Math.J.42(1993)37–53.

[6]C.P.Boyer,K.Galicki,B.M.Mann and E.G.Rees,Compact3-Sasakian7-manifolds with arbitrary

second Betti number,Invent.Math.131(1998)321–344.

[7]R.L.Bryant and S.M.Salamon,On the construction of some complete metrics with exceptional holo-

nomy,Duke Math.J.58(1989)829–850.

[8]D.M.J.Calderbank and H.Pedersen,Selfdual Einstein metrics with torus symmetry,J.Di?.Geom.60

(2002)485–521.

[9]D.M.J.Calderbank and M.Singer,Einstein metrics and complex singularities,Invent.Math.156(2004)

405–443.

[10]K.Galicki,New matter couplings in N=2supergravity,Nuclear Phys.B289(1987)573–588.

[11]K.Galicki and https://www.sodocs.net/doc/f111770539.html,wson,Jr.,Quaternionic reduction and quaternionic orbifolds,Math.Ann.282

(1988)1–21.

[12]G.W.Gibbons,D.N.Page and C.N.Pope,Einstein metrics on S3,R3and R4bundles,Comm.Math.

Phys.127(1990)529–553.

[13]A.Hae?iger and′E.Salem,Actions of tori on orbifolds,Ann.Global Anal.Geom.9(1991)37–59.

[14]A.Hattori and M.Masuda,Theory of multi-fans,Osaka J.Math.40(2003)1–68.

[15]S.Helgason,Groups and geometric analysis,Mathematical Surveys and Monographs83,American Math-

ematical Society,Providence(2000),Integral geometry,invariant di?erential operators,and spherical functions,Corrected reprint of the1984original.

[16]D.D.Joyce,Explicit construction of self-dual4-manifolds,Duke Math.J.77(1995)519–552.

[17]C.LeBrun,On the topology of self-dual4-manifolds,Proc.Amer.Math.Soc.98(1986)637–640.

[18]E.Lerman and S.Tolman,Hamiltonian torus actions on symplectic orbifolds and toric varieties,Trans.

Amer.Math.Soc.349(1997)4201–4230.

[19]J.B.Lewis,Eigenfunctions on symmetric spaces with distribution-valued boundary forms,J.Funct.Anal.

29(1978)287–307.

[20]R.Mazzeo,The Hodge cohomology of a conformally compact metric,J.Di?.Geom.28(1988)309–339.

[21]R.R.Mazzeo and R.B.Melrose,Meromorphic extension of the resolvent on complete spaces with asymp-

totically constant negative curvature,J.Funct.Anal.75(1987)260–310.

[22]P.Orlik and F.Raymond,Actions of the torus on4-manifolds I,Trans.Amer.Math.Soc.152(1970)

531–559.

School of Mathematics,University of Edinburgh,King’s Buildings,Mayfield Road,Edin-burgh EH93JZ,Scotland.

E-mail address:davidmjc@https://www.sodocs.net/doc/f111770539.html,

E-mail address:michael@https://www.sodocs.net/doc/f111770539.html,

爱因斯坦介绍(英语)

Albert Einstein ( /??lb?rt ?a?nsta?n/; German: [?alb?t ?a?n?ta?n] ( listen); 14 March 1879 – 18 April 1955) was a German-born theoretical physicist who developed the theory of general relativity, effecting a revolution in physics. For this achievement, Einstein is often regarded as the father of modern physics and one of the most prolific(多产的)intellects in human history.[2][3] While best known for his mass–energy equivalence formula E = mc2, he received the 1921 Nobel Prize in Physics "for his services to theoretical physics, and especially for his discovery of the law of the photoelectric effect".[4] The latter was pivotal (关键的)in establishing quantum theory (量子论)within physics. Near the beginning of his career, Einstein thought that Newtonian mechanics was no longer enough to reconcile the laws of classical mechanics with the laws of the electromagnetic field. This led to the development of his special theory of relativity. He realized, however, that the principle of relativity could also be extended to gravitational(重力场)fields, and with his subsequent(后来的)theory of gravitation in 1916, he published a paper on the general theory of relativity. He continued to deal with problems of statistical mechanics and quantum theory, which led to his explanations of particle theory(微粒说)and the motion of molecules. He also investigated the thermal properties(热力性质)of light which laid the foundation of the photon theory of light. In 1917, Einstein applied the general theory of relativity to model the structure of the universe as a whole.[5] He was visiting the United States when Adolf Hitler came to power in 1933, and did not go back to Germany, where he had been a professor at the Berlin Academy of Sciences. He settled in the U.S., becoming a citizen in 1940.[6] On the eve of World War II, he helped alert President Franklin D. Roosevelt that Germany might be developing an atomic weapon, and recommended that the U.S. begin similar research; this eventually led to what would become the Manhattan Project. Einstein was in support of defending the Allied forces, but largely denounced using the new discovery of nuclear fission as a weapon. Later, together with Bertrand Russell, Einstein signed the Russell–Einstein Manifesto(罗素爱因斯坦宣言), which highlighted the danger of nuclear weapons. Einstein was affiliated with(交往)the Institute for Advanced Study in Princeton, New Jersey, until his death in 1955. Einstein published more than 300 scientific papers along with over 150 non-scientific(反科学的)works.[5][7] His great intelligence and originality(创造力)have made the word "Einstein" synonymous(同义词)with genius.[8]

从爱因斯坦到霍金的宇宙100分满分答案

一、单选题 (题数:40,共 40.0 分)
1
光速不变原理是指()。(1.0 分)
1.0 分
?
A、
真空中的光速在空间各点都相同
?
B、
真空中的光速各向同性
?
C、
真空中的光速不随时间变化
?
D、
真空中的光速和观测者相对于光源的运动速度无关
正确答案: D 我的答案:D
2
最早认识到大地是一个球的人是()(1.0 分)
1.0 分
?
A、
亚里士多德(公元前 300 多年)
?
B、
毕达哥拉斯(公元前 500 多年)
?
C、

托勒密(公元前 100 多年)
?
D、
柏拉图(公元前 300 多年)
正确答案: B 我的答案:B
3
霍金本科毕业于().(1.0 分)
1.0 分
?
A、
剑桥大学
?
B、
伦敦大学
?
C、
利物浦大学
?
D、
牛津大学
正确答案: D 我的答案:D
4
金字塔和狮身人面像的建造时间是()。(1.0 分)
1.0 分
?
A、
前 4000 年

?
B、
前 3000 年
?
C、
前 2500 年
?
D、
前 1500 年
正确答案: C 我的答案:C
5
夏商周断代工程确定的武王克商之年为()。(1.0 分)
1.0 分
?
A、
前 1057 年
?
B、
前 1046 年
?
C、
前 1027 年
?
D、
前 899 年
正确答案: B 我的答案:B
6

高中关于霍金的作文素材:关于霍金的名人名言

高中关于霍金的作文素材:关于霍金的名人 名言 导读:本文高中关于霍金的作文素材:关于霍金的名人名言,仅供参考,如果觉得很不错,欢迎点评和分享。 宇宙中的物质是由正能量组成的。——霍金《时间简史》 充满希望的旅途胜过终点的到达。——霍金《果壳中的宇宙》 “即使把我关在果壳之中,仍然自以为无限宇宙。” 哈姆雷特也许是想说,虽然我们人类的身体受到许多限制,但是我们的精神却能自由的探索整个宇宙,甚至勇敢的闯入连"星际航行“都畏缩不前之处——噩梦不再纠缠的话——史蒂芬·霍金《果壳中的宇宙》 假如爱情伤害了你,不要悲伤,不要心急,它还会继续伤害你的。爱情是最折磨人的,但我们还是如朝圣般地仰望它、靠近它,甚至感激它。为着它曾馈赠我们的也是最差的时光。——霍金《他们》能好好相爱又能好好相处真的是太美好了,世界上有千千万万的人,却这么电光火石般碰上了,巷子转角就撞到了,系好鞋带起身就遇到了,一起喝杯咖啡就爱上了。前后不够一分钟也可以爱得彻底。我们爱的都是爱情给我们的模样。它就这么不经意地洋溢在我们的眼底,还没等你缓过神的时候爱情就来了。但又可能在你措手不及还惦记着下次约会穿什么衣服的时候又因为性格不合、价值观不合,甚至

因为星座不合信仰不同而告终。来不及想念就已经要怀念,来不及开心就已经伤心泪下。——《他们》 现在我们知道,任何粒子都有会和它相湮灭的反粒子。(对于携带力的粒子,反粒子即为其自身。)也可能存在由反粒子构成的整个反世界和反人。然而,如果你遇到了反你,注意不要握手!否则,你们两人都会在一个巨大的闪光中消失殆尽。——霍金《时间简史为何我们从未看到碎杯子集合起来,离开地面并跳回到桌子上,通常的解释是这违背了热力学第二定律所表述的在任何闭合系统中无序度或熵总是随时间而增加。换言之,它是穆菲定律的一种形式:事情总是趋向于越变越糟:桌面上一个完整的杯子是一个高度有序的状态,而地板破碎的杯子是一个无序的状态。人们很容易从早先桌子上的杯子变成后来地面上的碎杯子,而不是相反。——霍金《时间简史》 我们看到的从很远星系来的光是在几百万年之前发出的,在我们看到的最远的物体的情况下,光是在80亿年前发出的。这样当我们看宇宙时,我们是在看它的过去。——霍金《时间简史》我曾以为爱上一个人,我们都会变成勇敢的战士,什么伤都不觉得痛了。原来我们都只是脆弱的玩偶,被随手一捏,心就支离破碎了,如细雪般飞下来,荡进了远处的深海。可身体却依旧麻木地过活,直到下一次遇见爱情。——霍金《他们》 我们可以回到过去,却终究无法改变历史。——霍金《时间简史》我们通过观察创造了历史,而不是历史创造了我们。——霍金《大

《从爱因斯坦到霍金的宇宙》考试答案

?
《从爱因斯坦到霍金的宇宙》期末考试(20)
一、 单选题(题数:50,共 1 哈勃常数 50.0 分)
? ? ? ?
A、随时间的增加而变大 B、随时间的增加而减小 C、随距离的增加而增大 D、随距离的增加而减小 我的答案:B 2 以下哪项说法正确
? ? ? ?
A、牛顿和惠更斯都支持光的微粒说 B、牛顿支持光的微粒说,惠更斯支持光的波动说 C、牛顿支持光的波动说,惠更斯支持光的微粒说 D、牛顿和惠更斯都支持光的波动说 我的答案:B 3 时序保护思想是谁提出的
? ? ? ?
A、爱因斯坦 B、霍金 C、彭罗斯 D、朗道 我的答案:B 4 约翰·米歇尔在()年提出了暗黑的概念。()
? ? ? ?
A、1783 B、1784 C、1785 D、1786 我的答案:A 5 最早记载牛顿和苹果故事的是
? ? ? ?
A、伏尔泰 B、卢梭 C、霍布斯 D、胡克 我的答案:A 6 爱因斯坦方程又叫
? ?
A、场方程 B、惯性方程

? ?
C、非欧方程 D、引力方程 我的答案:A 7 以下哪位科学家没有和杨振宁共同做出过重大的科学成就
? ? ? ?
A、米尔斯 B、巴克斯特 C、邓稼先 D、李政道 我的答案:C 8 肉眼可以看见的除太阳之外的最亮的恒星是哪一颗?()
? ? ? ?
A、牛郎星 B、织女星 C、天狼星 D、北极星 我的答案:C 9 第一次完成环球航行的航海家是谁?() 1.0 分
? ? ? ?
A、马可波罗 B、郑和 C、哥伦布 D、麦哲伦 我的答案:D 10 最早的超新星爆发记录是在中国的哪个朝代?()
? ? ? ?
A、商代 B、唐代 C、宋代 D、明代 我的答案:C 11 爱因斯坦提出相对论主要参考了哪个实验
? ? ? ?
A、迈克尔逊实验 B、斐索实验 C、洛伦兹实验 D、庞加莱实验 我的答案:B 12 物理学家拉普拉斯是哪个国家的人?()
?
A、德国

爱因斯坦与霍金的宇宙题目答案

选择题 吾爱吾师,吾更爱真理是谁说的亚里士多德 静力学和流体静力学的奠基人是阿基米德 力学三定律的提出者是牛顿 下列不是电磁学时期的科学家的是托马斯.杨 托马斯杨提出了颜色的三原色是 提出杠杆原理的学者是阿基米德 最早使用物理学这个词的人是亚里士多德 相对论是关于时空和引力的基本理论是 首先证明光是波动的人是托马斯杨 爱因斯坦的丰收年是1905年 下列选项中属于伽利略的成就的是以上都是 那位女子曾帮爱因斯坦抄笔记米列娃 爱因斯坦认为光在什么中的光速对于任何观察者来说不变真空爱因斯坦掌握的什么实验而对绝对空间产生怀疑斐索实验 狭义相对论是哪部著作创立的《论动体的电动力学》 19世纪末的发现有以上都是 相对论的缔造者是爱因斯坦 x射线是几时被发现的1895年 最先提出元素周期律的人是纽兰兹 爱因斯坦掌握的什么实验而对绝对空间产生怀疑斐索实验 解决化圆为方问题的人是林德曼 林德曼解决的著名数学作图难题是用直尺和圆规画一个正方形薛定谔多大年龄的时候得出波动方程的39 反物质是塞林格在哪一年发现的1945 下列元素具有天然放射性的有以上都是 约里奥夫妇何时获得诺贝尔化学奖1935年 中子最终是有哪位科学家发现的查德威克 世界上第一个核反应堆出自费米实验室 世界上第一座原子反应堆的设计者是费米 1995年欧洲核子研究中心,早出了几个反氢的原子9 1939,年德国和苏联达成秘密协议瓜分了波兰 在第二次世界大战过后,各国经济都走向低迷,但是只有一个国家一枝独秀苏联 日本第一个获得诺贝尔奖的人是汤川秀树 介子的质量大概为200me 下列不属于是原子弹爆炸的方法是外控法 二战时期,美国主张首先制造原子弹的科学家不包括哈恩 美国氢弹的设计师是泰勒 白求恩牺牲后埋在了什么地方河北郡城 费曼何时获得诺贝尔奖1965年 费曼的贡献是路径积分量子化 1945年,美国对下列哪个国家投放了原子弹日本 最早提出原子弹的原理是约里奥居里 人类首先提出对宇宙比较科学的认识是毕达哥拉斯 发明阿拉伯数字的国家是印度 下面哪个不是正多面体正十面体 下列哪一项不是泰勒斯提出来的用直尺和圆规能平分一个角 宗教改革最先发生在德国,领导者是马丁路德 开普勒发现行星的第三定律后,开始遍什么,这个表在后来被航海家和天文学家使用了一百多年《鲁道夫新表》 日心说是谁提出来的哥白尼 法国大革命何时开始爆发的1789年 与牛顿有过巨大学术争论的人不包括哈雷 提出著名的行星运动三大定律的天体物理学家是开普勒 土星的光环首先是谁看到的伽利略 广义相对系原理是由谁提出的爱因斯坦 太阳的粒子流,像刮风一样刮向彗星,形成彗尾,这就叫太阳风 牛顿是下列哪个国家的著名的物理学家英国 等效原理说法错误的是引力场和惯性场是不等效的 关于单摆实验说法错误的是T=2pi(l/g) 等效原理说法错误的是引力场和惯性场是不等效的 下列不属于初中课本和高中对质量的定义是m=E/c2 下列关于牛顿的“桶和水的转动”假设实验的结论说法错误的是桶转水不转,水面是凹的 下列不是黎曼几何里面提到的三角形之和小于180° 系列是欧式几何的公理的是以上都是 下列哪一项是暗星出现的条件2GM/c2 被称为“几何之父”的是欧几里得 广义相对论的三个实验验证不包括单摆实验 下列哪项是反应恒星的真实亮度的绝对亮度 黎曼几何认为,球面上没有直线,但是有直线的推广,叫做短程线 公元1054年,金牛星座超新星爆发,持续23天白日可以看到,在几年的时间内晚上可以看到 2 何时开始提出暗星的概念1783年 对中子星的最早预言者是朗道 带电的黑洞奇点r= 0 我们肉眼看到的除太阳以外最亮的一颗恒星是天狼星 超新星爆发的结果是形成中子星和黑洞 白矮星有一个质量上限是由谁计算出来的钱德拉塞卡 事件视界是以上说法都对 何时提出信息不守恒1997年 下列关于火箭飞向黑洞后,产生的现象说法错误的是洞外的人会观察到火箭进入黑洞 下列关于米斯纳超辐射说法错误的是入射波大于出射波 第一个提出信息不守恒的人是霍金 人类是哪一年开始看到月球表面的1959年 αβγ火球模型是哪位科学家提出的伽莫夫 奇性定理说法错误的是认为时间又开始,没有终结 黑洞热辐射将导致A、B和C都是 首先看到彗星和木星相撞的哪个国家中国 火星的卫星有几个 2 钱德拉塞卡极限是几个太阳质量 1.4 考虑时间有方向的定律是热力学第二定律 “宇宙蛋”的宇宙膨胀说是下列哪位科学家提出的勒梅特神父根据宇宙编年史,选项中最贴近宇宙创生精确时间的是250亿年前 撑开虫洞所需要的负能物质半径一光年的虫洞需要大于银河系发光物质 奇性定理是有谁证明的A和B 金字塔有几块石块230万块 关于虫洞的种类说法错误的是欧几里得虫洞也是不可通过的时空隧道 不属于两河流域的东西是司母辛鼎 起源于大河文明的国家是中国 《三个火枪手》的作者是大仲马 商朝的图腾是凤鸟 何时开始把365天定为一年公元前4241年 公元前2500年的文明描述正确的是以上都对 犹太人随喜克索斯人进入埃及发生在公元前1700年 前四史不包括《资治通鉴》 彻底破译拉希德碑的人是商博良 下列成语描述马援的是以上都是 中国除甲骨文外,最古老的文献是《尚书》 特洛伊战争发生时间公元前1000年 前四史不包括《资治通鉴》 中国历史上第一个有确切记载的年份是公元前841年 马援是刘秀起兵的将领否 印度一下方面最发达的是神学 托勒密王朝统治时期的科学成就有以上都是 长平之战发生在下列哪一年公元前260年 接替唐玄宗登皇帝位,被称为唐肃宗的是李亨 基督教诞生时间是公元元年前后 后周第一个皇帝是柴荣 维纳斯雕像现在保存在卢浮宫 下列霍金辐射理论表述正确的是以上都是

2018超星从爱因斯坦到霍金的宇宙章节期末答案

2018超星从爱因斯坦到霍金的宇宙章节期末答案 相对论分为狭义相对论和广义相对论,它们都是关于()的基本理论。最早使用“物理学”这个词的人物是谁?() 中国奴隶社会比欧洲时间短,西方封建社会比中国时间短。()欧几里得的学生是阿基米德的老师。() 惯性定律认为物体在受任何外力的作用下,不会保持下列哪种运动状态?()伽利略有许多成就,但不包括下面哪一项?()牛顿出生于1642年,同年伽利略逝世。() 奥地利物理学家伽利略是近代实验科学的先驱者。()焦耳是哪个国家的物理学家?() 继发现热力学第一定律和第二定律后,有谁发现了“热力学第三定律”。() 根据“热力学第零定律”,如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡,则它们彼根据双缝干涉实验,牛顿提出了光学上的“波动说”。()与平衡热辐射实验值在长波和短波波段都吻合是哪条线?() 最早提出量子假说的物理学家是()。 量子论的产生来自于对黑体辐射问题的研究;相对论的产生则是源于迈克尔逊实验。() 普朗克立即赞同了爱因斯坦提出了光量子说。() 创立相对论的爱因斯坦在哪个国家上的大学?()出生于德国的爱因斯坦是哪个民族的?()数学家希尔伯特是闵可夫斯基的小学同学。() 爱因斯坦毕业于苏黎世大学时没有文凭。()在攻读博士时,爱因斯坦毕业论文的主题是()。c在质能方程E

1902-1909年期间,爱因斯坦曾在下面哪个单位任职?()爱因斯坦的儿子获得过诺贝尔奖。() 下面哪个原理可以说明“真空中的光速对任何观察者来说都是相同的”?() 光速在不同惯性系和不同方向上都是相同的,是下面那位物理学家通过实验证明的。()“洛伦兹收缩”可以由“伽利略变换”所推出。() 恒星若以v的速度运动,那么恒星发出光的速度则是c+v。()太阳离我们最近,次至的恒星是()。哪位物理学家提出“双生子佯谬”?()“相对论”的结论包括下面哪些项?() 在火车上的以0.9倍光速在运动,火车以0.9倍光速同方向运动,我们就会看到火车上的人速度超过光速许多物理学对相对论的产生都做了大量的准备工作,其中就包括以下哪位?()曾独立地提出和洛伦茨变换一样学说的是哪位物理学家?()杨振宁曾经对彭卡莱和洛伦兹做过()的评论。贝索清楚自己没有为相对论的诞生做了什么。()第一个获得诺贝尔物理学奖的人是谁?()现代化学的元素周期律是谁发现的?()谁最先找到了氢光谱的规律 创建电离学说的是瑞典物理学化学家阿累尼乌斯。()居里夫人一生获得了两次诺贝尔物理学奖。()构成原子的粒子不包括()。 下列哪位物理学家提出了原子的西瓜模型?() 提出“宇称不守恒”理论的科学家是李政道和杨振宁。() 李政道和杨振宁的“宇称不守恒”理论被吴健雄通过实验证明是错误的。()钱学森是下面哪一位的学生?() 研究量子论的专家有很多位,但不包括()。数学史上的三大作图难题包括()。 波尔在德国波恩创立了哥本哈根理论物理研究所。()薛定谔在()岁时得出了波动方程。 没有在慕尼黑大学任职的是以下哪位?()哪位科学家提出了物质波,即概率波?

2018从爱因斯坦到霍金的宇宙.超星尔雅答案.最新

物理学的开端:经验物理时期已完成成绩:分 【单选题】相对论分为狭义相对论和广义相对论,它们都是关于()的基本理论。 A、引力和重力 B、时空和重力 C、时间和空间 D、时空和引力 我的答案:D得分:分 2 【单选题】提出“格物穷理”的是谁() A、张载 B、陆九渊 C、朱熹 D、王阳明 我的答案:C得分:分 3 【判断题】 中国奴隶社会比欧洲时间短,西方封建社会比中国时间短。() 我的答案:√得分:分 4 【判断题】欧几里得的学生是阿基米德的老师。() 我的答案:√得分:分 伽利略与经典物理的诞生已完成成绩:分 1 【单选题】惯性定律认为物体在受任何外力的作用下,不会保持下列哪种运动状态() A、匀速曲线 B、匀速直线 C、加速直线 D、加速曲线

我的答案:B得分:分 2 【单选题】伽利略有许多成就,但不包括下面哪一项() A、重述惯性定律 B、阐述相对性原理 C、发现万有引力 D、自由落体定律 我的答案:C得分:分 3 【单选题】认为万物都是由原子构成的古希腊哲学家是谁() A、德谟克利特 B、毕达哥拉斯 C、色诺芬 D、亚里士多德 我的答案:A得分:分 4 【判断题】奥地利物理学家伽利略是近代实验科学的先驱者。() 我的答案:×得分:分 经典物理的三大支柱:经典力学、经典电动力学、经典热力学和统计力学已完成成绩:分 1 【单选题】继发现热力学第一定律和第二定律后,有谁发现了“热力学第三定律”。() A、克劳修斯 B、开尔文 C、能斯特 D、焦耳 我的答案:C得分:分 2 【多选题】下列选项不属于经典物理学范畴的是()。

A、万有引力定律 B、热质学说 C、量子论 D、狭义相对性原理 我的答案:B、C、D得分:25分 3 【判断题】根据双缝干涉实验,牛顿提出了光学上的“波动说”。() 我的答案:×得分:分 4 【判断题】根据“热力学第零定律”,两个热力学系统彼此处于热平衡的前提条件是每一个都与第三个热力学系统处理热平衡。() 我的答案:√得分:分 经典物理的局限与量子论的诞生已完成成绩:分 1 【单选题】物理学上用紫外灾难形容经典理论的困境,其具体内容指()。 A、维恩线在短波波段与实验值的巨大差异 B、瑞利-金斯线在短波波段与实验值的巨大差异 C、维恩线在长波波段与实验值的巨大差异 D、瑞利-金斯线在长波波段与实验值的巨大差异 我的答案:B得分:分 2 【单选题】与平衡热辐射实验值在长波和短波波段都吻合是哪条线() A、普朗克线 B、维恩线 C、瑞丽-金斯线 D、爱因斯坦线 我的答案:A得分:分 3

尔雅——爱因斯坦与霍金的宇宙_答案

5、爱因斯坦头脑最清晰的时候在什么时候? ?A.青年 ?B.中年 ?C.老年 7、提出了浮力定律、杠杆原理、重心概念的人是谁?(20.0分) ?A.亚里士多德 ?B.阿基米德 ?C.欧几里得 8、提出惯性定律、相对性原理、自由落体定律的科学家是谁?(20.0分) ?A.牛顿 ?B.伽利略 ?C.哥白尼 1、原子论的提出者是谁?(35.0分) ?A.伽利略 ?B.毕达哥拉斯 ?C.德谟克利特 2、托马斯·杨发现了散光的原因,转而研究光学,完成了双缝干涉实验,认识到光是波动,并提出什么?(35.0分) ?A.三原色原理 ?B.波动方程 ?C.光谱 1、下列不是热力学第一定律发现者的是?(35.0分) ?A.焦耳 ?B.赫姆霍兹 ?C.普朗克 2、克劳修斯、开尔文发现了什么,从而认为热永远都只能由热处转到冷 处?(35.0分) ?A.热力学第一定律 ?B.热力学第二定律 ?C.热力学第三定律 /1、爱因斯坦在哪里的学d 校补习?(35.0分)

?A.德国 ?B.荷兰 ?C.苏黎世 2、哪位女子以前曾帮爱因斯坦他抄笔记?(35.0分) ?A.米列娃 ?B.米加娃 ?C.米卡娃 1、1933年,爱因斯坦离开德国去了哪里?(35.0分) ?A.瑞士 ?B.荷兰 ?C.美国 2、迈克尔逊做迈克尔逊试验想要测量以太相对于地球的什么?(35.0分) ?A.移动速度 ?B.漂移速度 ?C.旋转速度 8、爱因斯坦掌握的试验是什么而对对绝对空间理论产生怀疑?(35.0分) ?A.迈克尔逊试验 ?B.双缝干涉实验 ?C.斐索实验 5、光速不变原理认为什么中的光速在任何时候都是相同的?(35.0分) ?A.介质 ?B.空气 ?C.真空 1、双生子佯谬的问题是谁提出来的?(35.0分) ?A.郎之万 ?B.费兹杰惹 ?C.爱因斯坦 2、什么公式不是爱因斯坦最先得到的,而是洛伦兹1904年得到的?(35.0分) ?A.光子质量 ?B.电子质量 ?C.质子质量

英语演讲————爱因斯坦

Albert Einstein's life Albert Einstein was born in Ulm, Germany in 1879. Einstein's father is a businessman, he has a production of electrical equipment factory. When children, Einstein is very quiet, he often alone to kill time. His language is slow and difficult to read. However, the things he was especially interested in the theory, and it often puts forward many problems. When Einstein was 5 years old, his father gave him a compass. He was surprised to find that the compass needle always points to the north, he is very curious, so he asked his father and his uncle is what causes the pointer to move. However, their answers to the magnetic and gravity are too difficult for the child, but Einstein still spends a lot of time thinking about the problem. Einstein won the Nobel prize for physics in 1921. His winning is not due to the relative theory, but because he found the law of the photoelectric effect. This discovery has driven the development of modern electronics, including radio and television. Einstein became a celebrity, but he felt very lonely, he almost no close friends. He wrote: the strange is that so many people know, but so lonely. I see in the nature of things and the profound, we understand only one or two of it. Einstein put his life in the last 25 years in the "unified field theory".

爱因斯坦到霍金的宇宙期末考试题及答案

从爱因斯坦到霍金的宇宙期末考试题及答案 1“吾爱吾师,吾更爱真理”这句话是谁说的?() A、苏格拉底 B、柏拉图 C、亚里士多德 D、色诺芬 正确答案: C 2 下列人物中最早使用“物理学”这个词的是谁?() A、牛顿 B、伽利略 C、爱因斯坦 D、亚里斯多德 正确答案: D 3 “给我一个支点,我就可以耗动地球”这句话是谁说的?() A、欧几里得 B、阿基米德 C、亚里士多德 D、伽利略 正确答案: B

4 “格物穷理”是由谁提出来的?() A、张载 B、朱熹 C、陆九渊 D、王阳明 正确答案: B 5 相对论是关于()的基本理论,分为狭义相对论和广义相对论。 A、时空和引力 B、时空和重力 C、时间和空间 D、引力和重力 正确答案: A 欧洲奴隶社会比中国时间长,中国封建社会比西方时间长。 正确答案:√ 7 阿基米德是欧几里得的学生的学生。 正确答案:√ 8 西方在中世纪有很多创造。 正确答案:×

伽利略与经典物理的诞生 1 以下不属于伽利略的成就的是() A、重述惯性定律 B、发现万有引力 C、阐述相对性原理 D、自由落体定律 正确答案: B 2 “地恒动而人不知,譬如闭舟而行,不觉舟之运也”体现了什么物理学原理?() A、相对性原理 B、惯性原理 C、浮力定理 D、杠杆原理 正确答案: A 3 哪位古希腊哲学家认为万物都是由原子构成的 A、亚里士多德 B、毕达哥拉斯 C、色诺芬 D、德谟克利特

正确答案: D 4 惯性定律认为物体在不受任何外力的作用下,会保持下列哪种运动状态?() A、匀速曲线 B、加速直线 C、匀速直线 D、加速曲线 正确答案: C 5 《关于托勒密和哥白尼两大世界体系的对话》与《天体运行论》都是伽利略的著作正确答案:× 伽利略是奥地利物理学家,近代实验科学的先驱者。() 正确答案:× 7 伽利略的逝世和牛顿的出生都是在1642年。() 正确答案:√ 8 伽利略认为斜面上的运动是冲淡了的自由落体运动。() 正确答案:√ 经典物理的三大支柱:经典力学、经典电动力学、经典热力学和统计力学

爱因斯坦与霍金的宇宙期末考试参考答案答案 (1)

1、开普勒得出行星绕太阳运动中,与太阳的连线在相同的时间内扫过的面积相等,是开普勒第几定律:(b)(2.00分) A.第一定律 B.第二定律 C.第三定律 D.第零定律 A.牛顿 B.伽利略 C.哥白尼 3、告诉伏尔泰牛顿和苹果故事的人是?(2.00分) A.牛顿的外孙女 B.牛顿的外甥女 C.牛顿的姑妈 4、下列哪一项不属于1904年提出的原子模型?(2.00分) A.汤姆生的西瓜模型 B.长冈半太郎的土星模型 C.卢瑟福的太阳系模型 5、关于黑洞无毛定理说法正确的是:()(2.00分) A.看不到黑洞的所有信息 B.只能看到黑洞的M、J和Q C.黑洞只有质量信息 D.黑洞只有总角动量信息 6、在黑洞内部r=0处表示的是:()(2.00分) A.坐标原点 B.球心 C.对称中心 D.时间的终点 7、同位素是:()(2.00分) A.中子数相同,质子数不同 B.原子量相同 C.质子数相同,中子数不同 D.中子数相同,电子数不同 8、光速不变原理认为什么中的光速在任何时候都是相同的?(2.00分) A.介质 B.空气 C.真空 9、克劳修斯、开尔文发现了什么,从而认为热永远都只能由热处转到冷处?(2.00分) A.热力学第一定律 B.热力学第二定律 C.热力学第三定律

10、牛顿和莱布尼兹争吵的焦点是:()(2.00分) A.弹性定理的问题 B.万有引力的问题 C.折射率问题 D.微积分发现权问题 11、根据狭义相对论,对光速说法正确的是:()(2.00分) A.在真空中不变 B.在惯性参考系之间不变 C.不满足伽利略变换 D.以上都对 12、浮力定律是谁提出的:()(2.00分) A.欧几里得 B.亚里士多德 C.阿基米德 D.苏格拉底 13、对成吉思汗评价最高的国家是?(2.00分) A.俄罗斯 B.英国 C.中国 14、元素周期表中的元素是按照什么排序的:()(2.00分) A.原子体积 B.中子数 C.质子数 D.电子数 15、据我们所知,事实上第一个完成环球航行的人是?(2.00分) A.恩利基 B.郑和 C.麦哲伦 16、长平之战中,坑杀40万赵军的将领是?(2.00分) A.赵括 B.白起 C.蒙恬 17、爱因斯坦头脑最清晰的时候在什么时候?(2.00分) A.青年 B.中年 C.老年 18、诸葛亮的兄弟是?(2.00分) A.诸葛瑾 B.诸葛恪 C.诸葛青云 19、以下理论中哪个是研究宇宙学的最好的理论:()(2.00分)

爱因斯坦简介和英语学习

爱因斯坦(Albert Einstein,1879-1955),举世闻名的德裔美国科学家,现代物理学的开创者和奠基人。 爱因斯坦1900年毕业于苏黎世工业大学,1909年开始在大学任教,1914年任威廉皇家物理研究所所长兼柏林大学教授。后被迫移居美国,1940年入美国国籍。 十九世纪末期是物理学的变革时期,爱因斯坦从实验事实出发,从新考查了物理学的基本概念,在理论上作出了根本性的突破。他的一些成就大大推动了天文学的发展。他的量子理论对天体物理学、特别是理论天体物理学都有很大的影响。理论天体物理学的第一个成熟的方面——恒星大气理论,就是在量子理论和辐射理论的基础上建立起来的。爱因斯坦的狭义相对论成功地揭示了能量与质量之间的关系,解决了长期存在的恒星能源来源的难题。近年来发现越来越多的高能物理现象,狭义相对论已成为解释这种现象的一种最基本的理论工具。其广义相对论也解决了一个天文学上多年的不解之谜,并推断出后来被验证了的光线弯曲现象,还成为后来许多天文概念的理论基础。 爱因斯坦对天文学最大的贡献莫过于他的宇宙学理论。他创立了相对论宇宙学,建立了静态有限无边的自洽的动力学宇宙模型,并引进了宇宙学原理、弯曲空间等新概念,大大推动了现代天文学的发展。 生平简述 1879年出生于德国乌尔姆一个经营电器作坊的小业主家庭。一年后,随全家迁居慕尼黑。1894年,他的家迁到意大利米兰。1895年他转学到瑞士阿劳市的州立中学。1896年进苏黎世工业大学师范系学习物理学,1900年毕业。1901年取得瑞士国籍。1902年大学毕业后无法进入学术机构,只在瑞士伯尔尼专利局找到一份做审查员的临时工作,被伯尔尼瑞士专利局录用为技术员,从事发明专利申请的技术鉴定工作。但在那里,爱因斯坦被正规教育扼杀的科学激情终于重新迸发出来,轻松的工作让爱因斯坦得以继续致力于科学研究。他利用业余时间开展科学研究,在1905年,年近26岁的爱因斯坦连续发表了三篇论文(《光量子》、《布朗运动》和《狭义相对论》),在物理学三个不同领域中取得了历史性成就,特别是狭义相对论的建立和光量子论的提出,推动了物理学理论的革命。同年,以论文《分子大小的新测定法》,取得苏黎世大学的博士学位。爱因斯坦1908年兼任伯尔尼大学的编外讲师。1909年离开专利局任苏黎世大学理论物理学副教授。1911年任布拉格德语大学理论物理学教授,1912年任母校苏黎世联邦工业大学教授。1914年,应马克斯·普朗克和瓦尔特·能斯脱的邀请,回德国任威廉皇家物理研究所所长兼柏林大学教授,直到1933年。1920年应亨德里克·安东·洛伦兹和保耳·埃伦菲斯特的邀请,兼任荷兰莱顿大学特邀教授。第一次世界大战爆发后,他投入公开和地下的反战活动。1915年爱因斯坦发表了广义相对论。他所作的光线经过太阳引力场要弯曲的预言,于1919年由英国天文学家亚瑟·斯坦利·爱丁顿的日全食观测结果所证实。1916年他预言的引力波在1978年也得到了证实。爱因斯坦和相对论在西方成了家喻户晓的名词,同时也

高考作文:霍金

专题六:霍金 身残志坚!21岁的他身患不治之症 专家总因言多而失,霍金作为世界上最著名的科学家,其言论的影响力可想而知,不说世界闻之一震,起码也是举足轻重。 可是出现频率太高,而又给不出科学依据的话,再有名望的人其声誉也会受到一定影响。就像一个祥林嫂,总是重复那一段悲惨过往就会让人越来越丧失同理心。因此,现在甚至有人用“开炮”来形容霍金目前频繁发言的状态。 然而,换一种正确的认知,其实可以理解是霍金正在慷慨地分享他对世界的观察,并提出关于世界所面临问题的警告,而且,对于霍金以难以想象的坚强意志追求真理这样的做法,人类是应该怀有敬意的。 霍金是渐冻症患者 为何?先从这“身残志坚”说起。首先说明一点,霍金对于残疾这个是讳莫如深,非常的不合作。“不愿对恶疾低头,甚至不愿接受任何帮助。”也许并不是每个身体有恙的人,都会对自己的疾病是接受的态度,霍金就“最喜欢被视为是科学家,然后是科普作家,最重要的是,被视为正常人。” 霍金患有的是一种可以称得上“不治之症”的疾病:肌肉萎缩性脊髓侧索硬化症,也就是我们传说中的渐冻症。它是上运动神经元和下运动神经元损伤之后,导致包括球部、四肢、躯干、胸部腹部的肌肉逐渐无力和萎缩。形象来说,就是肌无力、肌萎缩、肌束震颤等症状。 患这个病的人可能先出现吞咽困难,进而讲话困难,然后四肢肌肉慢慢萎缩,变得无力,甚至呼吸衰竭,最终不治。在霍金被确诊的时候,所有的医生都下了相似的判决:活不过几年、几年内致死、绝症。 爱情给了霍金重生的力量 在霍金就读剑桥大学研究院时期,霍金的身体已出现了渐冻症的症状,他变得越来越笨拙,时常不知缘由地摔跤,划船也变得力不从心,还从楼梯上摔下来,造成暂时的记忆力轻微丧失。然后开始讲话含糊不清……直到21岁时,被诊断患有肌萎缩性脊髓侧索硬化症,只有两年好活。 一个正直21岁青春期的少年,被一纸诊断了余生,这是多么痛的打击。中国作家史铁生在壮年时遭遇不幸,用了很多年才想通,最终写出很多有价值的作品。看来伟人都有一个

东华大学网络课 爱因斯坦与霍金的宇宙 课后答案完整版

最早使用物理学这个词的人是 亚里士多德 提出杠杆原理的学者是 阿基米德 属于伽利略的成就的是 重述惯性定律用科学的语言阐述了相对性原理自由落体定律 静力学和流体静力学的奠基人是 阿基米德 提出浮力定律,杠杆原理,重心概念的人是 阿基米德 “物理”这个词最早是在公元300多年前亚里士多德首次使用希腊三哲不包括 阿基米德(是苏格拉底柏拉图亚里士多德) 提出惯性定律相对性原理自由落体定律的科学家是 伽利略 牛顿的贡献有 力学三定律万有引力定律光的微粒说 “吾爱吾师,吾更爱真理”是谁说的 亚里士多德 双缝的干涉实验完成者是 托马斯,杨 下列不是电磁学说时期的科学家的是 托马斯,杨(是库伦安培法拉第) 首先证明光是波动的人是 托马斯,杨 “格物穷理”是我国哪位理学家提出的 朱熹 热力学第三定律的发现者是 能斯特 量子物理学的开创者是 普朗克 微粒说的提出者是 牛顿 第一个发现并表述了能量守恒定律的人是 迈尔 原子论的提出者是 德谟克利特 第一个完成双缝干涉实验的人是 托马斯,杨 力学三定律的提出者是 牛顿 爱因斯坦的丰收年是 1905年 最早提出地心说的人是

亚里士多德 静力学和流体静力学的奠基人是 阿基米德 爱因斯坦在哪一年发表了5篇具有划时代的论文 1905年 克劳修斯、开尔文发现了什么,从而认为热永远都只能有热处 热力学第二定律 爱因斯坦的国籍是 美国和瑞士的双重国籍 1905年,爱因斯坦的学术贡献有 《分子大小的新测定方法》《布朗运动的一些检视》《论动体的电动力学》 爱因斯坦的质能关系的公式是 E=MC2 爱因斯坦与米列娃离婚主要原因是 母亲反对 哪位女子以前曾帮爱因斯坦抄笔记 米列娃 爱因斯坦对绝对空间理论产生怀疑是因为什么实验 斐索实验 下列哪位人物较早提出以太是不存在的观点 恩斯特,马赫 1933年爱因斯坦离开德国去往哪个国家 美国 爱因斯坦的第几个儿子获得了精神病 2 相对论的结论有 “同时”是相对的尺缩效应动中慢变 下列不是热力学第一定律发现者的是 卡诺(是赫姆霍兹焦耳迈尔) 光速不变原理认为什么中的光速在任何时候都是相同的 真空 绝对空间运动是下列哪位人物提出的 牛顿 狭义相对论是哪部著作创立的 《论动体的电动力学》 迈克尔逊做迈克尔逊实验是想要测量以太相对于地球的什么 漂移速度 由于阿累尼乌斯的反对,门捷列夫没能获得诺贝尔奖,那一届的诺贝尔奖颁给了谁莫瓦桑 首先提出光速不变原理的人是 爱因斯坦 最早进行元素周期律研究的是 纽兰兹 相对论的电子质量公式是谁首先给出的

完整版从爱因斯坦到霍金的宇宙课后答案及考试答案目前最完整

爱因斯坦和量子论与相对论的诞生(二)作业(100 C ))透悴茨(6吩) 1.炽子论的提出吿定谁?(30 00分) A. 側昭 2、扭训肠发砚了饭光的斤因.转而碣究光学,完域了双耀干涝实矽》认识刽尢定波幼,并提出什么丁(30 0051) B. 阳样 C. 光适 対商通(4吩)j 1、自山落体试验杲伽利站在比葫糾塔做出的.(40.0吩) Q 是?? 3 5/ 爱因斯坦和量子论与相对论的渥生(四)作业(70.00分)选择劉6吩) 1. 爱因斯坦在哪里的宁筱补习?(30?0吩) B. 荷兰 C. 苏製世 止礪答案:C、苏黎世 2、哪位女子以横曾岳爱囚斯坦他抄笙记?(30.0051) 0.粒妊 C.米卡娃 判断鐵40升) 1、爱因斷坦住毎歿世工业大学数书的时悅讲课风理生动,非常受学生的或迎?(40.0吩) Q是?否J

爱因斯坦和虽子论与相对论的诞牛(六)作业(和.00分)iS择蹩(60别 1. 爱因斯坦刘绝対空材理论户生怀疑足因为什么实峻2 (30 00分) A. 厉完尔引忖垃 EJ.收述千述齐ii 2、光速不亞除理队为什么中的光速衣任何时候都壬相制的?(30.00^) A. 介盾 B. 空咒 K浦伦兹变换足初用耒協和19徂纪建立起来的经典电功力学同牛换力学之间符垢耒成为扶义相对论中桶本万稈切?(40.0吩) Q 杲?£X 爱因斯坦和量子论与相对论的诞生(八)作业(400.00分)^S?(6Q?l 1、由干阿累尼乌Mi的&对,门捷列夫浚能茯斜诺贝尔奖,贝尔次fifi绘了谊?(30.00^) 2、最早进行元寿坏期律研允的足谁?(30 00分) A.血尔 B?1徨歹快 1.天然放対巴做現丘由贝克初尔机居怛夫扫共同岌现的,沒有风克琳,居里夫妇不可能E笑发现泳(40.00分) # s e s 5/

相关主题