搜档网
当前位置:搜档网 › 高阶导数的计算

高阶导数的计算

高阶导数的计算
高阶导数的计算

高阶导数的计算

一、 高阶导数定义

定义(二阶导数) 若函数f 的导函数'f 在点0x 可导,则称'f 在点0x 的导数为f 在点0x 的二阶导数,记作)(''0x f ,即

)('')

(')('lim

00

00

x f x x x f x f x x =--→,

此时称f 在点0x 二阶可导。

如果f 在区间I 上每一点都二阶可导,则得到一个定义在I 上的二阶可导函数,记作)(''x f ,

I x ∈,或记作''f ,''y ,2

2dx y

d 。

函数)(x f y =的二阶导数)(''x f 一般仍旧是x 的函数。如果对它再求导数,如果导数存在的话,

称之为函数)(x f y =的三阶导数,记为'''y ,)('''x f ,或33dx

y

d 。

函数)(x f y =的1-n 阶导数的导数称为函数)(x f y =的n 阶导数,记为)

(n y

,)

(n f

,或n

n dx

y d 。 相应地,)(x f y =在0x 的n 阶导数记为: 0

)

(x x n y =,)(0)

(x f

n ,0

x x n

n dx

y d =。

二阶及二阶以上的导数都称为高阶导数。 1. )()()

(]

[n n n v u v u ±=±。

2. +++=--)2()2(2)1()1(1)0()()()(v u C v u C v u uv n n n n n n )()()

1()1(1)()(n o n n n k k n k n v u v u C v u C ++++---

∑=-=

N

K k k n k

n

v u C

)()(, (Leibniz 公式)

其中u u

=)

0(,v v =)0(。

注 将Leibniz 公式与二项式展开作一比较可见:

n o k

k n k n n n n n v u v u C v u C v u v u ++++=+-- 1110)(。

(这里 100==v u ),在形式上二者有相似之处。

(6)几个初等函数的n 阶导数公式

()

()

n x x e e =;

()()sin sin 2n

x x n π??

=+?

??

?

; ()()

c o s

c o s 2n x x n π?

?=+? ??

?;

()()

()

()

()()

()11!ln 1111n n n n x x x --+=->-????

+;(4)()1(1)!(ln )(1)n n n

n x x --=-

()()

()()()()

121n n

x a n x a αααααα-??

+=---++??

(5)()()(1)(1)n n x n x ααααα-=--+ 特别的,当1α=-时,有

()

()()

11!1n

n n n x a x a +-??

= ?+??

+.

(7)参数方程的高阶导数求导法则

设()x t ,()y t 均二阶可导,且()0x t '≠,由参数方程()()x x t y y t =??=?

所确定的函数()y f x =的一、二阶导数:

()()

y t dy dx x t '=

' , ()()()()()22y t y t d y d d d dt

y dx dx dx x t dt x t dx

????'''===? ? ? ? ?''???? ()()()()

()()()()()()()2

3

1

x t y t y t x t x t y t y t x t x t x t x t ''''''''''''--=

?

='''??????

??

. 这里一定要注意,在求由参数方程确定的函数的导数时,t 是中间变量,而符号22d y

dx

示对x 求二次导数,因此

22d y dx ()()y t d dx x t ??'= ? ?'??()()()()()2x t y t x t y t x t ''''''-≠'????

.

例1 (1)已知b ax y +=,求y ''.(2)已知t s ωsin =,求s ''. 解:(1)y a '=,0y ''=. (2)cos s t ωω'=,2

sin s t ωω''=-. 例2 求函数x y e =的n 阶导数.

解:e x y '=,e x y ''=…显然对任意正整数n ,有x n y e )(=. 例3 求sin y x =的n 阶导数。 解 1cos sin(

)2

y x x π

?'==+, 2sin sin(

)2y x x π?''=-=+,3cos sin()2y x x π

?'''=-=+, (4)4sin sin()2y x x π?==+,(5)5cos sin()2y x x π

?=-=+,

…()

sin()2

n n y x π?=+. 同理可得 ()

(cos )cos()2n n x x π=+。 求n 节导数,通常的方法是求一阶导数、二阶导数、三阶导数、四阶导数…,然后仔细观察得出规律,归纳出n 阶导数的表达式,因此,求n 阶导数的关键在于从各阶导数中寻找共同的规律。

例4 求函数x y ln =的n 阶导数. 解:011(1)y x x '=

=-, 12211(1)y x x ''=-=-,

23322!(1)y x x '''==-,(4)343!(1)y x

=-

一般地,对任意正整数n 有n

n n x n y

)!

1()1(1

)

(--=-. 例5 求n 次多项式101n n n y a x a x a -=+++ 的各阶导数. 解 -1

201-1(1)n n n y na x

n a x a -'=+-++

-2301-2(-1)(1)(2)2n n n y n n a x n n a x a -''=+--++

()00(1)(2)21!n y a n n n a n =--?= (1)(2)0n n y y ++===

例6 已知

arctan

ln x

y

=求y ''.

解 两端对x 求导,得

)(

1

)()(11222

22

'

++='?+y x y x y

x

y

x ,

2

22

22

2222221y x y y x y x y y x y y x y +'?+?

+=

'

-?+,

整理得 x y y x y -='+)( ,故 x

y x

y y +-=',

上式两端再对x 求导,得

2

2

)()()

)(1())(1(x y x y y x y y x y x y y y x y x y y x y y y ++-'+'--'+-'=

+-+'-+-'=

''

=2)(22x y y y x +-',将 x

y x

y y +-='代入上式,得

2

)

(22x y y

x y x

y x y +-+-?

=''

322)(2222y x xy y x xy +---=3

22)()(2x y y x ++-

=. 注意 在对隐函数求二阶导数时,要将y '的表达式代入y ''中,注意,在y ''的最后表达式中,切不能出现y '.

例7 求方程cos (02)sin x a t t y b t

π=?≤≤?=?所确定的函数的一阶导数dy dx 及二阶导数22d y

dx 。

cos cot sin dy b t b

t dx a t a

==--。 22

223()csc sin sin d dy b t d y b dt dx a dx dx a t a t dy

===-

-。 例8 已知作直线运动物体的运动方程为2sin(2)6

s t π

=+,求在t π=时物体运动速度和加速度。

解 2cos(2)24cos(2)66

s t t π

π

'=+

?=+,

4sin(2)28sin(2)66

s t t ππ

''=-+?=-+,

二阶导数

1.设)(x f e y =,其中)(x f 为二阶可导函数,则=''y ( ). A 、)(x f e ; B 、)]()([)(x f x f e x f ''+'; C 、)]())([(2)(x f x f e x f ''+'; D 、2)()]([x f e x f '.

2、设)(ln x f y =,其中)(u f 为可微函数,则=''y ( ).

A 、)(ln x f '';

B 、21

x

-

; C 、)(ln 1)(ln 12x f x x f x '-''; D 、)](ln )(ln [1

2x f x f x

'-''.

3.设???+==)

1ln(arctan 2

t y t x ,则=22dx y

d ( ). A 、212t +; B 、)1(22

t +; C 、2; D 、2

22)

1()1(2t t +-. 4、设)2ln(2x x y -+=,则=''y ( ). A 、2

2x

x +-

; B 、2

3

2)

2(x x +-

; C 、

2

2x

x +; D 、

2

32)

2(x x +.

5.12

2

=-y x ,其中y 是x 的函数,则_________22=dx

y

d .

6.设2

11ln

)(x

x

x f +-=,则_______)0(=''f . 7、试求由方程0422=--xy y x 所确定的隐函数y 的二阶导数.

8、设???=+=t t y t t x ln ln ,求dx dy ,2

2dx y d ;

10.证明函数22x x y -=

满足关系式01''3=+y y ;

11、 已知函数)ln(ln )(x x f =,求)e (),e (2

2f f '''

12、x e y x cos =,求y '''。)5(y 。 解:

高阶导数

1、设x x y ln =,则=)10(y ( ). A 、91x -

; B 、91x ; C 、9

!8x

; D 、9!

8x -. 2、x n e x y +=,则____________)0()(=n y .

4.设x e y x cos =,求)5(y 。 5.设x x y sin 2=,求)80(y 。

6、)1ln(x y +=,求各阶导数。

7、设kx y sin =的n 阶导数.

8、设x e x y 22=, 求)20(y .

二阶导数

1、C;

2、D;5、

1

-;6、

3

-;

7、解: 方程两边同时对x 求导,得

04422='--'-y x y y y x

y

x y

x y y x y y x +-='?-='+?222)2( 2

2)

2(55)2()2)(2()2)(21(y x y x y y x y y x y x y y +'

-=+'+--+'-=

'' 3

2

22)2(5520)2(2255y x x y xy y x y x y

x x

y +-+=

++--=

0)

2()

4(53

22=+-+=y x x y xy . 8、

解:1)1(ln 111ln ++=

++==t t t t

t dt dx dt dy

dx dy

=?++=dt

dx t t t dt d dx y d 1]1)1(ln [223)1()

ln 2(+++t t t t

9、

12、解: )s i n (c o s )s i n (c o s x x e x e x e y x x x -=-+=', )s i n 2()c o s s i n ()s i n (c o s x e x x e x x e y x x x -=--+-='', )c o s (s i n 2)c o s s i n (2x x e x e x e y x x x +-=+-='''。

)(cos )()(cos )(cos )()cos (25)4(15)5()5()5('''''+'+?==x e C x e C x e x e y x x x x

=)sin (cos 5sin 10)cos (10)sin (5cos x e x e x e x e x e x e x x x x x x -+++-+-+ )

5()4(4

535)(cos )(cos )()(cos )(x e x e C x e C x x x +'+'''''+

=)cos 4sin 4(x x e x - =)cos (sin 4x x e x -。

高阶导数

1、C ;

2、1!+n ; 6、解:)1ln(x y +=,x y +=

'11,2)1(1x y +-='',3

)1(2

1x y +?=

''', 4

)4()

1(3

21x y +??-

=,…… 一般地,有 n

n n x n y )1()!

1()1(1

)(+--=- 即 n

n n x n x )

1()!

1()1())1(ln(1

)(+--=+-。 7、解 y 'kx k cos =,2s i n ???

?

?

+=πkx k y '')(''=y ??? ??+=2cos 2πkx k ??? ??++=22sin 2ππkx k ,22sin 2??? ??

?+=πkx k

y ''')('''=y ??? ?

?

?+=22cos 3πkx k ……

)(n y ,2sin ??? ???+=πn kx k n 即)()(sin n kx .2sin ??? ?

?

?+=πn kx k n

同理可得)()(cos n kx .2cos ??? ?

?

?+=πn kx k n

8、解 设,2x e u =,2x v =则由莱布尼兹公式知

)20(y )'()(20)(2)19(22)20(2x e x e x x ?+?=0')'()(!

2)120(202

182+?-+

x e x 22!

21920222022182192220??+??+?=x

x x e x e x e ).9520(22220++=x x e x

高中导数的概念与计算练习题带答案

导数概念与计算 1.若函数42()f x ax bx c =++,满足'(1)2f =,则'(1)f -=( ) A .1- B .2- C .2 D .0 2.已知点P 在曲线4()f x x x =-上,曲线在点P 处的切线平行于直线30x y -=,则点P 的坐标为( ) A .(0,0) B .(1,1) C .(0,1) D .(1,0) 3.已知()ln f x x x =,若0'()2f x =,则0x =( ) A .2e B .e C . ln 2 2 D .ln 2 4.曲线x y e =在点(0,1)A 处的切线斜率为( ) A .1 B .2 C .e D .1e 5.设0()s i n f x x =,10()'()f x f x =,21()'()f x f x =,…,1()'()n n f x f x +=,n N ∈,则2013()f x = 等于( ) A .sin x B .sin x - C .cos x D .cos x - 6.已知函数()f x 的导函数为'()f x ,且满足()2'(1)ln f x xf x =+,则'(1)f =( ) A .e - B .1- C .1 D .e 7.曲线ln y x =在与x 轴交点的切线方程为________________. 8.过原点作曲线x y e =的切线,则切点的坐标为________,切线的斜率为____________. 9.求下列函数的导数,并尽量把导数变形为因式的积或商的形式: (1)1 ()2ln f x ax x x =-- (2)2 ()1x e f x ax =+ (3)21 ()ln(1)2 f x x ax x =--+ (4)cos sin y x x x =- (5)1cos x y xe -= (6)1 1 x x e y e +=-

导数的运算练习题.doc

导数的运算练习 一、常用的导数公式 (1)'C = (C 为常数); (2)()'n x = ; (3)(sin )'x = ; (4)(cos )'x = ; (5)()'x a = ; (6)()'x e = ; (7)_____________; (8)_____________; 二、导数的运算法则 1、(1) ; (2) ; (3)______________________________________; (4) =___________________________________;(C 为常数) 2、复合函数的导数 设 . 三、练习 1、已知()2f x x =,则()3f '等于( ) A .0 B .2x C .6 D .9 2、()0f x =的导数是( ) A .0 B .1 C .不存在 D .不确定 3、32y x 的导数是( ) A .23x B .213x C .12- D 33x

4、曲线n y x =在2x =处的导数是12,则n 等于( ) A .1 B .2 C .3 D .4 5、若()f x =()1f '等于( ) A .0 B .13- C .3 D .13 6、2y x =的斜率等于2的切线方程是( ) A .210x y -+= B .210x y -+=或210x y --= C .210x y --= D .20x y -= 7、在曲线2y x =上的切线的倾斜角为4 π的点是( ) A .()0,0 B .()2,4 C .11,416?? ??? D .11,24?? ??? 8、设()sin y f x =是可导函数,则x y '等于( ) A .()sin f x ' B .()sin cos f x x '? C .()sin sin f x x '? D .()cos cos f x x '? 9、函数()2 2423y x x =-+的导数是( ) A .()2823x x -+ B .()2 216x -+ C .()()282361x x x -+- D .()()242361x x x -+- 10、曲线34y x x =-在点()1,3--处的切线方程是( ) A .74y x =+ B .72y x =+ C .4y x =- D .2y x =- 11、点P 在曲线323y x x =-+ 上移动,设点P 处切线的倾斜角为α,则角α的取值范围是( ) A .0,2π?????? B .30,,24πππ????????????U C .3,4ππ?????? D .3,24ππ?? ???

基本初等函数的导数公式及导数运算法则综合测试题(附答案)

基本初等函数的导数公式及导数运算法则综合测试题(附答案) 选修2-21.2.2第2课时基本初等函数的导数公式及导数运算法则 一、选择题 1 .函数y = (x+ 1)2(x—1)在x= 1处的导数等于() A.1B.2 C. 3 D. 4 答案]D 解析]y = (x+1)2]'—x1 )+(x+ 1)2(x—1)' =2(x + 1)?(x—1) + (x+ 1)2= 3x2 + 2x—1, y‘ =1= 4. 2.若对任意x€ R, f‘ =)4x3, f(1) = —1,则f(x)=() A. x4 B. x4— 2 C. 4x3—5 D. x4+ 2 答案]B 解析]丁f‘(=4x3.f(x) = x4+c,又f(1) = — 1 ? ? ? 1 + c= — 1 ,? ? ? c= —2,—f(x) = x4 — 2. 3 .设函数f(x) = xm + ax 的导数为f‘ =)2x+1,则数列{1f(n)}(n € N*) 的前n 项和是() A.nn+1 B.n+2n+1 C.nn—1 D.n+1n 答案]A 解析]T f(x) = xm+ ax 的导数为f‘(x)2x + 1,

/. m = 2, a= 1,二f(x) = x2+ x, 即f(n) = n2+n=n(n+ 1), 二数列{1f(n)}(n € N*)的前n项和为: Sn= 11 X2 12X3 13 x+…+ 1n(n+ 1) =1 —12+ 12—13+…+ 1n —1n + 1 =1 —1n+ 1= nn+ 1, 故选 A. 4.二次函数y = f(x)的图象过原点,且它的导函数y= f‘的)图象是过第 一、二、三象限的一条直线,贝卩函数y= f(x)的图象的顶点在() A.第一象限 B.第二象限 C.第三象限 D.第四象限 答案]C 解析]由题意可设f(x)= ax2 + bx, f' (=2ax + b,由于f‘(的图象是过第一、二、三象限的一条直线,故2a>0, b>0,则f(x) = ax+ b2a2—b24a, 顶点—b2a,—b24a 在第三象限,故选 C. 5 .函数y = (2 + x3)2的导数为() A. 6x5+ 12x2 B. 4+ 2x3 C. 2(2+ x3)2 D. 2(2+ x3)?3x 答案]A 解析]t y= (2+ x3)2= 4+ 4x3+ x6, /. y = 6x5 + 12x2.

导数计算练习习题

欢迎阅读 导数计算练习题 1、已知()2f x x =,则()3f '等于() A .0 B .2x C .6 D .9 2、()0f x =的导数是() A .0 B .1 C .不存在 D .不确定 3、 y A .3x 4A .15、若 A .06、y A .2C .27A .(8A .()sin f x 'B .()sin cos f x x '? C .()sin sin f x x '? D .()cos cos f x x '? 9、(理科)函数()2 2423y x x =-+的导数是() A .()2823x x -+B .()2 216x -+ C .()()282361x x x -+- D .()()242361x x x -+-

10、曲线34y x x =-在点()1,3--处的切线方程是() A .74y x =+ B .72y x =+ C .4y x =- D .2y x =- 11、点P 在曲线323y x x =-+ 上移动,设点P 处切线的倾斜角为α,则角α的取值范围是() A .0,2π??????B .30,,24πππ????????????C .3,4ππ??????D .3,24ππ?? ??? 122 131415(5)y =(6)y =(7)y =16(1)(2)(3)(4)(5)2 1x +(6)232x y x x =- - 17、求下列各函数的导数 (1)sin cos y x x x =+ (2)1cos x y x =-

(3)tan tan y x x x =- (4)5sin 1cos x y x =+ 18、(理科)求下列各函数的导数 (1)25(1)y x =+ (2)2(23y x =+ (3)(4)y (5)y =(6)y =(7)y =(8)y =(9)y =(10)y (11)y

高二导数计算练习题(基础题)

导数计算 一、基本初等函数的导数公式: (1)f(x)=C (C 为常数),则f ’(x)=_______ (2)f(x)=)(Q a x a ∈,则f ’(x)=_______ (3)f(x)=sinx ,则f ’(x)=_______ (4)f(x)=cosx ,则f ’(x)=_______ (5)f(x)=x a ,则f ’(x)=_______ (6)f(x)=x e ,则f ’(x)=_______ (7)f(x)=x a log ,则f ’(x)=_______ (8)f(x)=x ln ,则f ’(x)=_______ 二、导数的运算法则: 已知)(),(x g x f 的导数存在,则: (1)_______________])()([='±x g x f (2)__________________])()([='?x g x f (3)=']) ()([x g x f ____________________ 练习题: 1、已知()2f x x =,则()3f '等于( )A .0 B .2x C .6 D .9 2、()0f x =的导数是( )A .0 B .1 C .不存在 D .不确定 3、y 的导数是( )A .23x B .21 3x C .12 - D 4、曲线n y x =在2x =处的导数是12,则n 等于( ) A .1 B .2 C .3 D .4 5、若() f x =()1f '等于( )A .0 B .13- C .3 D .13 7、函数()2 2423y x x =-+的导数是( ) A .()2823x x -+ B .()2 216x -+ C .()()282361x x x -+- D .()()242361x x x -+- 8、求下列各函数的导数

导数及其应用高考题精选含答案

导数及其应用高考题精选 1.(2010·海南高考·理科T3)曲线2 x y x = +在点()1,1--处的切线方程为() (A )21y x =+(B )21y x =-(C )23y x =--(D )22y x =-- 【命题立意】本题主要考查导数的几何意义,以及熟练运用导数的运算法则进行求解. 【思路点拨】先求出导函数,解出斜率,然后根据点斜式求出切线方程. 【规范解答】选 A.因为22 (2) y x '= +,所以,在点()1,1--处的切线斜率12 2 2(12)x k y =-' == =-+,所以,切线方程为12(1)y x +=+,即21y x =+,故选A. 2.(2010·山东高考文科·T8)已知某生产厂家的年利润y (单位:万元) 与年产量x (单位:万件)的函数关系式为3 1812343 y x x =-+-,则使该生产厂 家获得最大年利润的年产量为() (A)13万件(B)11万件 (C)9万件(D)7万件 【命题立意】本题考查利用导数解决生活中的优化问题,考查了考生的分析问题解决问题能力和运算求解能力. 【思路点拨】利用导数求函数的最值. 【规范解答】选C ,2'81y x =-+,令0y '=得9x =或9x =-(舍去),当9x <时'0y >;当9x >时'0y <,故当9x =时函数有极大值,也是最大值,故选C. 3.(2010·山东高考理科·T7)由曲线y=2 x ,y=3 x 围成的封闭图形面积为() (A ) 1 12 (B)14 (C)13 (D) 712 【命题立意】本题考查定积分的基础知识,由定积分求曲线围成封闭图形的

(word完整版)高二导数计算练习题(基础题)(2)

一、基本初等函数的导数公式: (1)f(x)=C (C 为常数),则f ’(x)=_______ (2)f(x)=)(Q a x a ∈,则f ’(x)=_______ (3)f(x)=sinx ,则f ’(x)=_______ (4)f(x)=cosx ,则f ’(x)=_______ (5)f(x)=x a ,则f ’(x)=_______ (6)f(x)=x e ,则f ’(x)=_______ (7)f(x)=x a log ,则f ’(x)=_______ (8)f(x)=x ln ,则f ’(x)=_______ 二、导数的运算法则: 已知)(),(x g x f 的导数存在,则: (1)_______________])()([='±x g x f (2)__________________])()([='?x g x f (3)=']) ()([x g x f ____________________ 导数计算练习题 1、已知()2f x x =,则()3f '等于( ) A .0 B .2x C .6 D .9 2、()0f x =的导数是( ) A .0 B .1 C .不存在 D .不确定 3、y 的导数是( ) A .23x B .21 3 x C .12 - D 4、曲线n y x =在2x =处的导数是12,则n 等于( ) A .1 B .2 C .3 D .4 5、若()f x =()1f '等于( )

A .0 B .13- C .3 D .13 7、函数()2 2423y x x =-+的导数是( ) A .()2823x x -+ B .()2 216x -+ C .()()282361x x x -+- D .()()242361x x x -+- 8、求函数212y x =-在点1x =处的导数。 9、求下列各函数的导数 (1) 235y x x =-+ (2) 1y x =+(3) 222 2x y x =+ (4) 3 y = (5) 1)y = (6) (y x =+ (7) ()()y x a x b =--

高中数学一轮复习 第1讲 导数的概念及其运算

第1讲 导数的概念及其运算 1.已知函数3 2 ()32f x ax x =++,若f′(-1)=4,则a 的值等于( ) A.193 B.163 C.133 D.103 【答案】 D 【解析】 f′2 ()36x ax x f =+,′(-1)=3a 10643 a -=,=. 2.设y=-2e x sinx,则y′等于( ) A.-2e x cosx B.-2e x sinx C.2e x sinx D.-2e (x sinx+cosx) 【答案】 D 【解析】 ∵y=-2e x sinx, ∴y′=(-2e )x ′sinx+(-2e )(x sinx)′ =-2e x sinx-2e x cosx =-2e (x sinx+cosx). 3.已知3 270()x m f x mx m <,=+,且f′(1)18≥-,则实数m 等于( ) A.-9 B.-3 C.3 D.9 【答案】 B 【解析】 由于f′2 27()3x mx m =+,故f′27(1)183m m ≥-?+≥ -18 , 由m<0得2 27318318270m m m m +≥-?++≤?2 3(3)m +0≤,故m=-3. 4.设曲线11 x y x +=-在点(3,2)处的切线与直线ax+y+1=0垂直,则a 等于( ) A.2 B.12 C.12 - D.-2 【答案】 D 【解析】 因为y′22(1) x -= ,-所以切线斜率k=y′|3 x ==1 2-,而此切线与直线ax+y+1=0垂直, 故有()1k a ?-=-,因此12a k ==-. 5.已知12()f x =sin2x+sinx,则f′(x)是( ) A.仅有最小值的奇函数 B.既有最大值又有最小值的偶函数 C.仅有最大值的偶函数 D.非奇非偶函数 【答案】 B 【解析】 f′12()x =cos 22x ?+cosx=cos2x+cosx =2cos 21x -+cosx=2(cos 29148)x +-. 故f′(x)是既有最大值2,又有最小值98-的偶函数,选B 项.

导数练习题(含答案)

导数概念及其几何意义、导数的运算 一、选择题: 1 已知32()32f x ax x =++,若(1)4f '-=,则a 的值等于 A 193 B 103 C 16 3 D 133 2 已知直线1y kx =+与曲线3y x ax b =++切于点(1,3),则b 的值为 A 3 B -3 C 5 D -5 3 函数2y x a a =+2()(x-)的导数为 A 222()x a - B 223()x a + C 223()x a - D 222()x a + 4 曲线313y x x =+在点4 (1,)3 处的切线与坐标轴围成的三角形的面积为 A 1 9 B 29 C 13 D 2 3 5 已知二次函数2y ax bx c =++的导数为(),(0)0f x f ''>,对于任意实数x ,有()0f x ≥,则(1) (0) f f '的最小值为 A 3 B 52 C 2 D 32 6 已知函数()f x 在1x =处的导数为3,则()f x 的解析式可能为 A 2()(1)3(1)f x x x =-+- B ()2(1)f x x =- C 2()2(1)f x x =- D ()1f x x =- 7 下列求导数运算正确的是 A 211()1x x x '+=+ B 21 (log )ln 2 x x '= C 3(3)3log x x e '=? D 2 (cos )2sin x x x x '=- 8 曲线3 2153 y x x =-+在1x =处的切线的倾斜角为 A 6 π B 34π C 4π D 3 π 9 曲线3 2 31y x x =-+在点(1,1)-处的切线方程为 A 34y x =- B 32y x =-+ C 43y x =-+ D 45y x =- 10 设函数sin cos y x x x =+的图像上的点(,)x y 处的切线斜率为k ,若()k g x =,则函数()k g x =的图像大致为

导数学案(有答案)

3.1.1平均变化率 课时目标 1.理解并掌握平均变化率的概念.2.会求函数在指定区间上的平均变化率.3.能利用平均变化率解决或说明生活中的实际问题. 1.函数f(x)在区间[x1,x2]上的平均变化率为____________.习惯上用Δx表示________,即__________,可把Δx看作是相对于x1的一个“__________”,可用__________代替x2;类似地,Δy=__________,因此,函数f(x)的平均变化率可以表示为________. 2.函数y=f(x)的平均变化率Δy Δx= f(x2)-f(x1) x2-x1 的几何意义是:表示连接函数y=f(x)图象 上两点(x1,f(x1))、(x2,f(x2))的割线的________. 一、填空题 1.当自变量从x0变到x1时,函数值的增量与相应自变量的增量之比是函数________.(填序号) ①在[x0,x1]上的平均变化率; ②在x0处的变化率; ③在x1处的变化率; ④以上都不对. 2.设函数y=f(x),当自变量x由x0改变到x0+Δx时,函数的增量Δy=______________. 3.已知函数f(x)=2x2-1的图象上一点(1,1)及邻近一点(1+Δx,f(1+Δx)),则Δy Δx= ________. 4.某物体做运动规律是s=s(t),则该物体在t到t+Δt这段时间内的平均速度是______________. 5.如图,函数y=f(x)在A,B两点间的平均变化率是________. 6.已知函数y=f(x)=x2+1,在x=2,Δx=0.1时,Δy的值为________. 7.过曲线y=2x上两点(0,1),(1,2)的割线的斜率为______. 8.若一质点M按规律s(t)=8+t2运动,则该质点在一小段时间[2,2.1]内相应的平均速度是________. 二、解答题 9.已知函数f(x)=x2-2x,分别计算函数在区间[-3,-1],[2,4]上的平均变化率.10.过曲线y=f(x)=x3上两点P(1,1)和Q(1+Δx,1+Δy)作曲线的割线,求出当Δx=0.1时割线的斜率.

北师大版数学高二-高中数学《导数的计算》教案7 选修2-2

高中数学《导数的计算》教案7 选修2-2 教学目标: 1.熟练掌握基本初等函数的导数公式; 2.掌握导数的四则运算法则; 3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数。 教学重点:基本初等函数的导数公式、导数的四则运算法则 教学难点: 基本初等函数的导数公式和导数的四则运算法则的应用 教学过程: 一.创设情景 四种常见函数y c =、y x =、2 y x =、 1 y x = 的导数公式及应用 二.新课讲授 (一)基本初等函数的导数公式表

(2)推论:[]' ' ()()cf x cf x = (常数与函数的积的导数,等于常数乘函数的导数) 三.典例分析 例1.假设某国家在20年期间的年均通货膨胀率为5%,物价p (单位:元)与时间t (单 位:年)有如下函数关系 0()(15%)t p t p =+,其中0p 为0t =时的物价.假定某种商品的 01p =,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)?

解:根据基本初等函数导数公式表,有'() 1.05ln1.05t p t = 所以' 10 (10) 1.05ln1.050.08p =≈(元/年) 因此,在第10个年头,这种商品的价格约为0.08元/年的速度上涨. 例2.根据基本初等函数的导数公式和导数运算法则,求下列函数的导数. (1)323y x x =-+ (2)y = x x --+11 11; (3)y =x · sin x · ln x ; (4)y = x x 4; (5)y = x x ln 1ln 1+-. (6)y =(2 x 2 -5 x +1)e x (7) y = x x x x x x sin cos cos sin +- 【点评】 ① 求导数是在定义域内实行的.② 求较复杂的函数积、商的导数,必须细心、耐心. 例3日常生活中的饮水通常是经过净化的.随着水纯净度的提高,所需净化费用不断增加.已知将1吨水净化到纯净度为%x 时所需费用(单位:元)为 5284 ()(80100)100c x x x = <<- 求净化到下列纯净度时,所需净化费用的瞬时变化率:(1)90% (2)98% 解:净化费用的瞬时变化率就是净化费用函数的导数. '' ' '2 52845284(100)5284(100)()()100(100)x x c x x x ?--?-==-- 20(100)5284(1)(100)x x ?--?-= -2 5284 (100) x =- (1) 因为' 2 5284 (90)52.84(10090)c = =-,所以,纯净度为90%时,费用的瞬时变 化率是52.84元/吨. (2) 因为' 2 5284 (98)1321(10090) c = =-,所以,纯净度为98%时,费用的瞬时变

导数的计算练习题及答案.doc

【巩固练习】 一、选择题 1.设函数 f (x) (1 2x 3 )10 ,则 f '(1) ( ) A .0 B .―1 C .― 60 D . 60 2.( 2014 江西校级一模)若 f (x) 2ln x x 2 ,则 f ' ( x) 0 的解集为( ) A.(0,1) B. , 1 U 0,1 C. 1,0 U 1, D. 1, 3.( 2014 春 永寿县校级期中)下列式子不正确的是( ) A. 3x 2 ' 6x sin x B. ln x 2 x ' 1 x ln 2 cos x 2 x ' sin x ' x cos x sin x C. 2sin 2x 2cos2x D. x x 2 4.函数 y x 4 5 的导数是( ) 3x 8 A . 5 B .0 C . 5(4 x 3 3) D . 5(4 x 3 3) 4x 3 3 ( x 4 3x 8) 2 (x 4 3x 8) 2 5 .( 2015 安 徽 四 模 ) 已 知 函 数 f ( x) 的 导 函 数 为 f ' ( x) , 且 满 足 关 系 式 f ( x) x 2 3xf ' (2) ln x ,则 f '(2) 的值等于( ) A. 2 C. 9 D. 9 4 4 x 1 ( x 6.设曲线 y 1) 在点( 3,2)处的切线与直线 ax+y+1=0 垂直,则 a=( ) x 1 A .2 B . 1 C .―1 D .―2 2 2 7. y log 3 cos 2 x (cos x 0) 的导数是( ) A . 2log 3 e tan x B . 2log 3 e cot x C . 2log 3 e cos x D . log 2 e cos 2 x 二、填空题 8.曲线 y=sin x 在点 ,1 处的切线方程为 ________。 2 9.设 y=(2x+a) 2,且 y ' |x 2 20 ,则 a=________。 . x 3 1 ____________, 2x sin 2x 5 ____________。 10 sin x 11.在平面直角坐标系 xOy 中,点 P 在曲线 C :y=x 3― 10x+3 上,且在第二象限内,已知曲

导数历届高考试题精选含答案

导数高考试题精选 一.选择题(共16小题) 1.(2013?河东区二模)已知曲线的一条切线的斜率为,则切点的横坐标为() A. 3 B.2 C. 1D. 2.(2012?汕头一模)设曲线y=ax2在点(1,a)处的切线与直线2x﹣y﹣6=0平行,则a=() A.1B.C. D.﹣1 3.(2011?烟台一模)设曲线在点(3,2)处的切线与直线ax+y+1=0垂直,则a=() A. 2B.C.D.﹣2 4.(2010?泸州二模)曲线在点处的切线与坐标轴围成的三角形面积为() A. B. C.D. 5.(2010?辽宁)已知点P在曲线y=上,α为曲线在点P处的切线的倾斜角,则α的取值范围是() A. [0,) B.C. D. 6.(2010?江西模拟)曲线y=x3﹣2x+4在点(1,3)处的切线的倾斜角为() A. 30° B. 45°C.60°D.120°7.(2009?辽宁)曲线y=在点(1,﹣1)处的切线方程为() A. y=x﹣2 B. y=﹣3x+2C. y=2x﹣3 D. y=﹣2x+1 8.(2009?江西)若存在过点(1,0)的直线与曲线y=x3和都相切,则a等于() A. ﹣1或B. ﹣1或 C. 或 D. 或7 9.(2006?四川)曲线y=4x﹣x3在点(﹣1,﹣3)处的切线方程是() A.y=7x+4 B. y=7x+2 C.y=x﹣4 D.y=x﹣2 10.(2012?海口模拟)已知f(x)=alnx+x2(a>0),若对任意两个不等的正实数x1,x2,都有 >2恒成立,则a的取值范围是() A. (0,1]B.(1,+∞) C. (0,1) D.[1,+∞)

导数练习题含答案

导数练习题 班级 姓名 一、选择题 1.当自变量从x 0变到x 1时函数值的增量与相应自变量的增量之比是函数( ) A .在区间[x 0,x 1]上的平均变化率 B .在x 0处的变化率 C .在x 1处的变化量 D .在区间[x 0,x 1]上的导数 2.已知函数y =f (x )=x 2+1,则在x =2,Δx =0.1时,Δy 的值为( ) A .0.40 B .0.41 C .0.43 D .0.44 3.函数f (x )=2x 2 -1在区间(1,1+Δx )上的平均变化率Δy Δx 等于( ) A .4 B .4+2Δx C .4 +2(Δx )2 D .4x 4.如果质点M 按照规律s =3t 2运动,则在t =3 时的瞬时速度为( ) A .6 B .18 C .54 D .81 5.已知f (x )=-x 2 +10,则f (x )在x =32处的瞬时变化率是( ) A .3 B .-3 C .2 D .-2 6.设f ′(x 0)=0,则曲线y =f (x )在点(x 0,f (x 0))处的切线( ) A .不存在 B .与x 轴平行或重合 C .与x 轴垂直 D .与x 轴相交但不垂直 7.曲线y =-1 x 在点(1,-1)处的切线方程为( ) A .y =x -2 B .y =x C .y =x +2 D .y = -x -2 8.已知曲线y =2x 2上一点A (2,8),则A 处的切 线斜率为( ) A .4 B .16 C .8 D .2 9.下列点中,在曲线y =x 2上,且在该点处的 切线倾斜角为 π 4 的是( ) A .(0,0) B .(2,4) C .(1 4 ,116) D .(1 2 ,1 4 ) 10.若曲线y =x 2+ax +b 在点(0,b )处的切线 方程是x -y +1=0,则( ) A .a =1,b =1 B .a =-1,b =1 C .a =1,b =-1 D .a =-1,b =-1 11.已知f (x )=x 2,则f ′(3)=( ) A .0 B .2x C .6 D .9 12.已知函数f (x )=1x ,则f ′(-3)=( ) A .4 B.19 C .-1 4 D .-1 9 13.函数y =x 2 x +3 的导数是( ) A.x 2+6x x +32 B.x 2+6x x +3 C.-2x x +32 D.3x 2 +6x x +32 14.若函数f (x )=12f ′(-1)x 2-2x +3,则f ′(-1)的值为( ) A .0 B .-1 C .1 D .2 15.命题甲:对任意x ∈(a ,b ),有f ′(x )>0;命题乙:f (x )在(a ,b )内是单调递增的.则甲是乙的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 16.函数f (x )=(x -3)e x 的单调递增区间是( ) A .(-∞,2) B .(0,3)

导数的运算专项练习(含答案)

导数的运算 一、单选题(共33题;共66分) 1.f′(x)是函数f(x)=x3+2x+1的导函数,则f′(-1)的值为() A. 0 B. 3 C. 4 D. - 2.函数的导数为() A. B. C. D. 3.设函数,若,则等于() A. B. C. D. 4.设则等于( ) A. B. C. D. 5.已知函数的导函数,且满足,则=( ) A. B. C. 1 D. 6.已知函数的导函数为,且,则() A. 2 B. 3 C. 4 D. 5 7.下列求导运算的正确是() A. 为常数 B. C. D. 8.已知函数的值为() A. B. C. D. 9.下列求导运算正确的是() A. B. C. D. 10.已知函数f(x)=sinx-cosx,则f'()=() A. B. C. D. 11.若函数f(x)=2+xcos2x,则f'(x)=() A. cos 2x-xsin 2x B. x-sin 2x C. 1-2sin 2x D. cos2x-2sin2x 12.函数的导数为() A. =2 B. = C. =2 D. = 13.设函数的导函数为,且,则=( ) A. 0 B. -4 C. -2 D. 2

14.设,若,则() A. B. C. D. 15.已知函数,则其导数() A. B. C. D. 16.若函数,则的值为() A. 0 B. 2 C. 1 D. -1 17.已知函数,且,则的值为() A. B. C. D. 18.已知函数,为的导函数,则的值为() A. B. C. D. 19.下列求导运算正确的是() A. B. C. D. 20.已知函数的导函数为,且满足,则() A. B. C. D. 21.若,则函数的导函数() A. B. C. D. 22.函数的导数为() A. B. C. D. 23.下列导数式子正确的是() A. B. C. D. 24.已知,则等于() A. -2 B. 0 C. 2 D. 4 25.已知函数,则() A. B. C. D. 26.已知,则() A. B. C. D. 27.设,,则x0=( ) A. e2 B. e C. D. ln 2 28.下列求导数运算正确的是()

高二数学选修2-2导数的计算

导数的计算 教学目标:1、能根据导数的定义推导部分基本初等函数的导数公式; 2、能利用导数公式求简单函数的导数。 教学重难点: 能利用导数公式求简单函数的导数,基本初等函数的导数公式的应用 一、 用定义计算导数 问题1:如何求函数()y f x c ==的导数? 2.求函数()y f x x ==的导数 3.函数2()y f x x ==的导数 4.函数1()y f x x == 的导数 5 .函数y = 二 1.基本初等函数的导数公式表 分几类 1、幂函数 2.三角函数 3指数函数 4.对数函数 补充 1 ()f x x = '21 ()f x x =- ( )f x = '()f x =

2公式的应用 典型题一、求导数 A x y x y x y x y y x y cos )6(log )5(ln )4(1)3(5 )2()1(125==== ==、求下列函数的导数 例 思考 求()f x '的方法有哪些? 3.导数的四则运算法则: 问题 ln x x ?如何求? 推论:[]''()()cf x cf x = 提示:积法则,商法则, 都是 前导后不导, 前不导后导, 但积法则中间是加 号, 商法则中间是减号.。 常见错误:[]'''()()()()f x g x f x g x ?= ' ''()()(()0)()()f x f x g x g x g x ??=≠???? 典型题二、导数的四则运算法则 例题3根据基本初等函数的导数公式和导数运算法则,求下列函数的导数. (1)323y x x =-+

(2)sin y x x =?; (3)2(251)x y x x e =-+?; (4)cos x y x lnx =- A 变式练习1 1y x x =+ sin (cos )x y x x e =- cos x y x = +lnx 2sin y x x = sin cos x y x = A 变式2.求下列函数的导数 (1)y=23x +3cosx, (2)y=(1+2x)(2x-3) (3)y=sin x x (4)y=2 ln 1x x + A 变式3.已知f (x )=xcosx ﹣sinx ,则f′(x )=( ) 解:∵f (x )=xcosx ﹣sinx , ∴f ′(x )=cosx ﹣xsinx ﹣cosx=﹣xsinx , 已知函数f (x )=2 x lnx ,则f′(x )等于( ) 函数y=e x sinx 的导数等于( ) A . e x cosx B . e x sinx C . ﹣e x cosx D . e x (sinx+cosx ) 分析: 利用导数乘法法则进行计算,其中(e x )′=e x ,sin ′x=cosx . 解答: 解:∵y=e x sinx , ∴y ′=(e x )′sinx+(e x )?(sinx )′ =e x sinx+e x cosx

导数的运算练习题答案Word版

1.设a 为实数,函数R x a x e x f x ∈+-=,22)(。 (Ⅰ)求)(x f 的单调区间与极值; (Ⅱ)求证:当12ln ->a 且0>x 时,122 +->ax x e x 。 2. 已知 函数f(x)=))(6(3)4(2 3 R x n mx x m x ∈-+--+的图像关于原点对称,其中m,n 为实常数。 (1) 求n m ,的值; (2) 试用单调性的定义证明:f (x) 在区间[-2, 2] 上是单调函数; (3) 当-2≤x ≤2 时,不等式)log ()(a n x f m -≥恒成立,求实数a 的取值范围。 解(1)由于f(x)图象关于原点对称,则f(x)是奇函数, f(-x)=-f(x) 恒成立,)6(3)4()6(3)4(2323--+---=-++-+-n mx x m x n mx x m x []()()()()()(), ,0, 012022) 12)(()12()12(,2,2,,12)()1()2(.6,40)6()4(2121222121212122212121232131212 12132x f x f x f x f x x x x x x x x x x x x x x x x x x x f x f x x x x x x x f n m n x m >>-<-++<-≤<≤--++-=---=-<-∈-====-+-即从而,知,由且任取可知由恒成立,必有即

∴f(x)在[-2,2]上是减函数。 (3)由(2)知f(x)在[-2,2]上是减函数,则-22≤≤x 时,()().162-=≥f x f 故-2时,2≤≤x 不等式f(x)a a n m m log )log (-≥恒成立 .4161 08 log 2log 0)2)(log 8(log log )log 6(168444444≥≤ +++=a d cx bx x a x f , 且方程09)('=-x x f 的两个根分别为1,4。 (Ⅰ)当a=3且曲线)(x f y =过原点时,求)(x f 的解析式; (Ⅱ)若)(x f 在),(+∞-∞无极值点,求a 的取值范围

导数与微分习题及答案

第二章 导数与微分 (A) 1.设函数()x f y =,当自变量x 由0x 改变到x x ?+0时,相应函数的改变量 =?y ( ) A .()x x f ?+0 B .()x x f ?+0 C .()()00x f x x f -?+ D .()x x f ?0 2.设()x f 在0x 处可,则()() =?-?-→?x x f x x f x 000 lim ( ) A .()0x f '- B .()0x f -' C .()0x f ' D .()02x f ' 3.函数()x f 在点0x 连续,是()x f 在点0x 可导的 ( ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件 D .既不充分也不必要条件 4.设函数()u f y =是可导的,且2x u =,则 =dx dy ( ) A .()2x f ' B .()2x f x ' C .()22x f x ' D .()22x f x 5.若函数()x f 在点a 连续,则()x f 在点a ( ) A .左导数存在; B .右导数存在; C .左右导数都存在 D .有定义 6.()2-=x x f 在点2=x 处的导数是( ) A .1 B .0 C .-1 D .不存在 7.曲线545223-+-=x x x y 在点()1,2-处切线斜率等于( ) A .8 B .12 C .-6 D .6 8.设()x f e y =且()x f 二阶可导,则=''y ( ) A . ()x f e B .()()x f e x f '' C .()()()[]x f x f e x f ''' D .()()[](){} x f x f e x f ''+'2 9.若()???≥+<=0,2sin 0 ,x x b x e x f ax 在0=x 处可导,则a ,b 的值应为( ) A .2=a ,1=b B . 1=a ,2=b C .2-=a ,1=b D .2=a ,1-=b

导数大题练习带答案

1.已知f (x )=x ln x -ax ,g (x )=-x 2-2, (Ⅰ)对一切x ∈(0,+∞),f (x )≥g (x )恒成立,求实数a 的取值范围;(Ⅱ)当a =-1时,求 函数f (x )在[m ,m +3](m >0)上的最值;(Ⅲ)证明:对一切x ∈(0,+∞),都有ln x +1>ex e x 2 1- 成立. 2、已知函数2 ()ln 2(0)f x a x a x = +->.(Ⅰ)若曲线y =f (x )在点P (1,f (1))处的切线与直线y =x +2垂直,求函数y =f (x )的单调区间;(Ⅱ)若对于(0,)x ?∈+∞都有f (x )>2(a ―1)成立,试求a 的取值范围;(Ⅲ)记g (x )=f (x )+x ―b (b ∈R ).当a =1时,函数g (x )在区 间[e ― 1,e]上有两个零点,求实数b 的取值范围. 3. 设函数f (x )=ln x +(x -a )2,a ∈R .(Ⅰ)若a =0,求函数f (x )在[1,e]上的最小值; (Ⅱ)若函数f (x )在1 [,2]2 上存在单调递增区间,试求实数a 的取值范围; (Ⅲ)求函数f (x )的极值点. 4、已知函数2 1()(21)2ln ()2 f x ax a x x a = -++∈R . (Ⅰ)若曲线()y f x =在1x =和3x =处的切线互相平行,求a 的值;(Ⅱ)求()f x 的单调区间;(Ⅲ)设2 ()2g x x x =-,若对任意1(0,2]x ∈,均存在2(0,2]x ∈,使得 12()()f x g x <,求a 的取值范围. 5、已知函数())0(2ln 2 >-+= a x a x x f (Ⅰ)若曲线y =f (x )在点P (1,f (1))处的切线与直线y =x +2垂直,求函数y =f (x )的单 调区间; (Ⅱ)若对于任意()())1(2,0->+∞∈a x f x 都有成立,试求a 的取值范围; (Ⅲ)记g (x )=f (x )+x -b (b ∈R ).当a =1时,函数g (x )在区间[ ] e ,e 1 -上有两个零点, 求实数b 的取值范围. 6、已知函数1ln ()x f x x += . (1)若函数在区间1 (,)2 a a + (其中0a >)上存在极值,求实数a 的取值范围; (2)如果当1x ≥时,不等式()1 k f x x ≥+恒成立,求实数k 的取值范围.

相关主题