搜档网
当前位置:搜档网 › 锅炉的自动控制系统

锅炉的自动控制系统

锅炉的自动控制系统
锅炉的自动控制系统

锅炉自动控制系统

摘要

锅炉是国民经济中主要的供热设备之一。电力、机械、冶金、化工、纺织、造纸、食品等工业和民用采暖都需要锅炉供给大量的蒸汽。各种工业的生产性质与规模不同,工业和民用采暖的规模大小不尽相同。锅炉是供热之源,锅炉及其设备的任务在于安全,可靠,有效把燃料的化学能转化成热能,进而将热能传递给水,以生产热水和蒸汽。为了生产工艺有特殊要求外,所生产的热水不需要过高温的压力和温度,容量也无需很大。

随着现代工业技术的飞速发展,对能源利用率的要求越来越高。锅炉作为将一次能源转化为二次能源的重要设备之一,其控制和管理的水平也日趋提高。但在我国,大部分锅炉还采用仪表和继电器控制,甚至人工操作,已无法满足生产需求。因此,对锅炉控制系统采用先进的控制技术,不仅能够保证安全生产,而且能够节能增效,具有很好的市场发展空间和投资收益前景。

本论文的主要方向就是采用过程控制对工业锅炉进行控制。

关键字:锅炉;过程控制;控制算法;DCS;现场总线;工业以太网;监控软件

一、锅炉的基本构造及其工作原理

锅炉的主要设备包括汽锅、炉子、炉膛、锅筒、水冷壁、过热器、省煤器、燃烧热备、引风设备、送风设备、给水设备、空气预热器、水处理设备、燃烧供给设备以及除灰除尘设备等。

锅炉的原理及过程

锅炉的工作过程概括起来应该包括三个同时进行的过程:燃料的燃烧过程,烟气向水的传热过程,水的汽化过程。

一个锅炉进行工作,其主要任务是:(1) 要使锅炉出口蒸汽压力稳定;(2)保证燃烧过程的经济性;(3)保持锅炉负压稳定,通常我们是炉膛负压保持在微负压(-10~80Pa)。为了完成上述三项任务,我们对三个变量进行控制:燃烧

量,送风量,引风量。从而使锅炉能正常运行。

系统组成总体结构

AW:应用操作站处理机:执行与显示、生产控制、用户应用程序、诊断和组

态等有关的应用的功能

WP:操作站处理机和预它连接的外部设备一起,在用户和所有系统功能之间

提供一个界面,即作为系统站和操作员之间的借口。他从用于处理机和其他系统

站接受图形和文本信息并产生视频信号,在监视器上作显示。

CP:控制处理机:是一可选的容错站,和与它相连的现场组件(FBM)一起,

可按组态好的控制方案对过程进行控制。它可以实现连续控制、梯形逻辑控制、

和顺序控制等功能。完成数据采集、检测、报警和传送信息的功能。

FBM:现场总线插件

二、硬件设计

控制器:1. 应用操作站处理机AW:AW70具有应用处理机与操作站处理机

的双重功能。AW70执行与现实、生产控制、用户应用程序、诊断和组态等有关

的应用功能。AW70具有开发和执行需要扩展的数据处理和文件服务能力的应用

功能。AW70处理本身或来自其它站的任务所需的大容量存储文件申请。

2. 控制处理机CP:控制处理机是一个可选的容错站,和与它相连的现场总线组建(FBM)一起,可按组态好的控制方案对过程进行控制。它可实现常规的连

续控制、梯形逻辑控制、顺序控制以及批量处理等功能,也可实现数据采集、检

测、报警和传送信息的功能。本系统选用的控制处理机是FCP270。

3.现场总线组件FBM:I/A Series现场总线组件(FBM),可连接到运行I/A Series综合控制软件的控制处理机或个人计算机上。FBM既可以与控制处理机或个人计算机一起就地安装,也可远程安装。本系统选用3个FBM204(4通道AI+4通道AO)控制模拟量,选用FBM219(24通道DI+8通道DO)控制数字量。

4. 蒸汽温度控制系统:因为锅炉的运行环境不可能使理想的状态,蒸汽的温度总是会受到某些干扰的影响,所以必须对蒸汽的温度加以控制,以在一定范围内得到温度相对恒定的蒸汽。影响蒸汽温度的主要因素是给煤量以及给风量。另外,影响蒸汽温度的因素还有给水量、蒸汽流量以及引风量等,又考虑到了控

制系统相应的快速性,我们又将给水量和蒸汽流量作为蒸汽温度控制的前馈量构成前馈控制系统。即采用前馈比值串级控制系统对蒸汽温度进行控制,其控制系统的结构框图见图3.2所示。

蒸汽温度控制系统检测仪表:1.温度传感器、2.固体流量计SpeedFlow、3.电动调节阀、4.风压传感器、5.引风机、6.鼓风机、7.变频器。

(一)、蒸汽压力控制系统:如果锅炉内压力过低,将会降低蒸汽质量;反之,如果锅炉内压力过高,有可能导致爆炸等安全事故的发生。所以必须保证锅炉的压力处于一个适中的范围,即必须对锅炉压力加以控制。

(二)、汽包液位控制系统:如果汽包液位过高,可能会影响蒸汽质量,甚至会导致水满溢出等安全事故;反之,如果汽包液位过低,锅炉很可能会被烧坏,甚至导致爆炸等安全事故。

能够影响汽包液位的主要有两大变量,那就是给水量和蒸汽流量,在其他条件不变的情况下,蒸汽流量越大,液位越低,而给水量越大则液位越高,反之则越低。其中蒸汽流量是由工业的需要所决定的,给水的主要作用就是用以维持汽包液位的,所以我们选择给水量作为操纵量对汽包液位进行控制,又因为考虑到系统相应的平稳性和快速性,除采用串级控制外,还将蒸汽流量引入前馈通道,对系统进行前馈-反馈串级控制。

(三)、炉膛负压控制系统:炉膛负压是反映燃烧工况稳定与否的重要参数,是运行中要控制和监视的重要参数之一。炉内燃烧工况一旦发生变化,炉膛负压随即发生相应变化。在原锅炉控制系统中,如果烟囱挡板开度过大,则会使炉膛负压增加,造成空气大量进入炉内,热效率降低,同时也增加了引风机的功耗。而且负压过大容易使炉管氧化爆皮而减少炉管寿命。负压过小或者正压则是由于烟囱挡板开度过小或锅炉超负荷运转,使炉膛产生正压,锅炉闷烧,甚至向外喷火,影响炉膛压力的主要变量有给煤量、给风量以及抽风量等,而其中给煤量和给风量是由蒸汽温度、压力以及蒸汽量等因素决定的,所以要想保持炉膛压力在一定

范围内保持不变就只有改变抽风量,亦即通过调节抽风量以达到控制炉膛压力的目的。另外,又因为考虑到系统相应的快速性,同时,又因为给风量和给风量成一定的比例关系。

(四)、报警系统:因为系统的运行并不是100%的,所以难免某些控制变量会超出可控或安全的范围,当出现情况时,随时都有可能危及到现场操作人员以及工作设备等的安全,所以必须对这类情况给出相应的报警提示,即必须安装相应的报警系统,用以提示操作人员做出相应的必要操作,在某些可能出现安全事故的情况下还有用于提示人员疏散等紧急措施。

四个报警系统,即温度报警系统、压力报警系统、液位报警系统和负压控制系统,分别对蒸汽温度、蒸汽压力、汽包液位和炉膛负压进行超限报警提示。在锅炉的控制系统中,系统分别对真气温度、蒸汽压力、汽包液位和炉膛负压设置了上下限值。报警系统就是当相应的实测值低于(或高于)其相应的下限(或上限)值给出相应的下(上)限报警,这些功能均由软件完成,与此同时,控制系统还会做出相应的反应,使相应的变量值进入相应的极限范围,然后撤销相应的报警提示。

三、软件设计:锅炉自动控制系统过程生产工况复杂多变,过程控制软件需要根据生产实际的技术要求进行设计。过程控制软件采用FoxView开发。它是I/A S用户和生产过程交互的界面软件,提供用户可组态的操作环境,用于嵌入式实时和历史趋势的显示和执行,用于直接访问动态过程的显示数据,可访问最近使用的四个显示画面,使用报警管理器实现过程报警的有关服务和显示,使用FoxSelect显示在控制数据库中的组合模块和模块的概貌,访问其他的应用程序。

参考文献:《过程控制系统及工程》作者:孙洪程化学工业出版社

《自动控制原理》作者:张彬北京邮电大学出版社

《锅炉自动控制系统》论文作者:lzmmyr 百度文库

《自动控制理论基础》作者:左为恒机械工业出版社

组态王课程设计锅炉温度控制系统

锅炉温度控制系统上位机设计 1.设计背景 锅炉是化工、炼油、发电等工业生产过程中必不可少的重要的动力设备。它所产生的高压蒸汽,既可以作为风机、压缩机、大型泵类的驱动透平的动力源,又可作为蒸馏、化学反应、干燥和蒸发等过程的热源。随着工业生产规模的不断扩大,生产设备的不断创新,作为全厂动力和热源的锅炉,办向着大容量、高参数、高效率发展。为了确保安全,稳定生产,锅炉设备的控制系统就显得愈加重要。随着经济的迅猛发展,自动化控制水平越来越高,用户对锅炉控制系统的工作效率要求也越来越高,为了提高锅炉的工作效率,较少对环境的污染问题,所以利用计算机与组态软件技术对锅炉生产过程进行自动控制有着重要的意义。 2.任务要求 (1) 按照题目设计监控画面及动态模拟; (2) 在数据字典中定义需要的内存变量和I/O变量; (3) 实现监控系统的实时、历史曲线及报警界面显示; (4) 实现保存数据和参数报表打印功能; (5) 实现登陆界面和帮助界面。 3. 界面功能 3.1 系统说明 本系统的目的是实现锅炉的温度控制,所以在监控界面设置了加热部分和降温部分,同时通过观察相应仪表,操作者手动的实现对锅炉温度的控制,而且在加热过程和降温过程中有信号灯可以清楚地显示系统工作在什么阶段。此外,在监控界面加入了液位控制部分,通过对进水量和出水量的控制实现液位平衡。实时曲线和历史曲线可以让操作者清楚地观察到锅炉内液体的液位高度和温度,从而更加准确的操作系统,达到控制要求。实时报警界面可以随时进行提醒,防止发生意外情况。帮助界面可以让初次登陆该系统的用户快速学会如何操作系统。登陆界面中加入用户登陆部分,只有有相应权限的操作者也可以控制系统。该系统还加入历史曲线打印功能和对系统相关变量的保存功能,用户可以随时查看历史记录。 3.2主监控界面 主控界面实现的是操作者观察仪表,得到锅炉内液体温度和液位的实时信息,通过调节电磁阀1、2,使得锅炉内液体液位保持在要求范围内,通过加热按钮和降温按钮对

锅炉控制系统的组态设计

; 济南铁道职业技术学院 电气工程系 毕业设计指导书 课题名称: 锅炉控制系统的组态设计《 专业电气自动化 班级电气0831 姓名 cmy ~ 设计日期至 指导教师 ly ? 2010、11

济南铁道职业技术学院电气工程系 毕业设计指导书 2010、11 一、设计课题: ! 锅炉控制系统的组态设计 锅炉设备是工业生产中典型的控制对象,而组态控制技术是当今自动化系统应用广泛的技术之一。本课题采用组态王组态软件设计上位机监控画面,实时监控液位参数,并采用实时趋势曲线显示液位的实时变化。由此组成一个简单的液位控制系统。 二、设计目的: 通过本课题的设计,培养学生利用组态软件、PLC设计控制系统的能力,理解、掌握工业中最常用的PID控制算法,有利于进一步加深《自动控制原理》、《组态软件》和《过程控制》等课程的理解,为今后工作打好基础。 三、设计内容: 掌握锅炉生产工艺,实现锅炉自动控制的手段,利用“组态王”软件做出上位机监控程序,具体有主监控画面、实时曲线、历史曲线;掌握PID参数调整方法。 — 四、设计要求及方法步骤: 1.设计要求: (1)监控系统要有主监控画面和各分系统的控制画面,包括实时曲线、历史曲线和报表等。 (2)各控制画面要有手/自动切换。

(3)掌握PID控制算法。 2.运用的相关知识 (1)组态控制技术。 (2)过程控制技术。 ~ 3.设计步骤: (1)熟悉、掌握锅炉的生产工艺。 (2)设计各分系统的控制方案。 (3)构思系统主监控画面和分画面,包括实时曲线、历史曲线和报表等。 (4)编写设计论文。 五、设计时间的安排: 熟悉题目、准备资料 1周 @ 锅炉控制系统的工艺了解 1周 监控画面的设计 2周 控制算法的编制和系统调试 3周 论文的编写 2周 准备毕业设计答辩 1周 六、成绩的考核 在规定时间内,学生完成全部的设计工作,包括相关资料的整理,然后提交给指导教师,指导教师审阅学生设计的全部资料并初步通过后,学生方可进入毕业答辩环节,若不符合设计要求,指导教师有权要求学生重做。 … 答辩时,设计者首先对自己的设计进行10分钟左右的讲解,然后进行答辩,时间一般为30分钟。 成绩根据学生平时的理论基础、设计水平、论文质量和答辩的情况综合考虑而定。 成绩按优秀、良好、中、及格、不及格五个等级进行评定。

锅炉控制系统简介

锅炉控制系统简介 本锅炉控制系统设计遵循先进、可靠、安全、经济、适用、开放的原则。系统控制器采用DCS、计算机系统,能实现锅炉及辅机的热工控制、电气检测、联锁保护、自动调节及控制等,实现锅炉房生产过程控制自动化。 系统组成及技术要求 1系统组成 锅炉采用DCS控制系统集中监控,在锅炉房就地控制室内布置锅炉控制设备。整个锅炉系统的监视及控制功能将通过DCS控制系统实现,DCS将对锅炉系统所有被控对象进行监控,包括闭环控制、设备启、停控制,设备启停状态、远方/就地切换、主要工艺参数的监视(数据采集、LCD画面显示、参数处理、越限报警、制表打印等),并完成设备的连锁保护。机组正常运行时,运行人员主要在锅炉房就地控制室中通过LCD液晶显示器、键盘、鼠标来完成锅炉系统控制功能,只有非正常状态下,运行人员通过就地手操进行控制。 锅炉控制系统采用一套带冗余配置的DCS系统控制器及操作员站,实现对锅炉系统的集中监控,能对锅炉系统进行按键操作的全自动启动和停止的控制。控制系统由下述几部分组成:传感器、变送器,调节器及电动执行器等。同时系统能实现 对重要设备的手/自动切换和必要的手操功能。 锅炉自动调节系统包含下列项目: a 汽包水位自动调节; b 炉膛压力自动调节; c 蒸汽温度自动调节; DCS控制系统按dcS系统进行设计,其系统的配置及主要特性如下: 2、控制方式 采用集控、单机控制方式,集控方式下可以通过操作员站

的键盘和鼠标,对主、辅机设备进行启停,并由联锁功能;对各调节回路进行手动和自动控制;在手动方式下,通过备用操作盘启停设备和用硬手操对调节回路进行控制。系统主要运行在集控方式,只有控制系统故障时才在单机方式下运行。 集控方式下控制的设备有:引风机,鼓风机,给煤机,给水泵等。集控方式下的调节回路有:锅炉喂煤调节,炉膛负压调节,主蒸汽温度自控调节、汽包水位三冲量调节等。 3、主要画面监视及操作功能: 流程图参数显示 调节回路操作显示 电机控制显示 顺序启停操作 事件、报警显示 趋势记录显示保护报警显示 信号一缆表显示报表打印

YZG22.5油田注汽炉说明书

YZG22.5-14/360-G型油田过热注汽锅炉 使用说明书 编制: 校对: 审核: 哈尔滨鑫北源电站设备制造有限公司 二零一四年二月

简介 油田注汽锅炉是稠油热采的专用设备,属油田专用A级直流锅炉。其产生的高温、高压湿饱和蒸汽注入油井加热原油,降低稠油的粘度,改善稠油的流动性,大幅度提高稠油的采收率。 YZG22.5-14/360-G型油田过热注汽锅炉是卧式强制循环直流锅炉,专门针对SAGD 开发工艺技术的特殊要求而设计的,与传统的注汽锅炉相比,该型锅炉蒸汽出口为过热度为2-23℃,适用于注汽压力在14MPa以下的超稠油区块开发。该型锅炉充分考虑了冬季室外运行的防冻、停炉排水等问题,具有现场安装简单、锅炉管束和耐火绝热层维修方便,运行操作方便等优点。控制系统采用新型触摸屏控制,具有强大的控制和通讯功能。 YZG22.5-14/360-G型油田过热注汽锅炉的主要技术参数如下: 额定蒸发量:22.5t/h 额定工作压力:14MPa 额定蒸汽温度:360℃热效率:90.0% 过热度:2-23℃燃料:天然气 控制方式:触摸屏 + PLC控制承载方式:撬座 外形尺寸(长×宽×高):35900×5798×9985mm 设备重量:125816Kg 由于注油过热注汽锅炉结构的特殊性及较高的安全要求,特制定本说明以指导安装、操作和维护。 2.1 原理 2.1.1 水汽系统 从油田水处理装置来的合格软化水,进入给水泵升至工作压力后,经孔板流量计、单向阀、截止阀后进入水—水换热器外管,与对流段出来的热水换热后,温度(90℃-120℃)升高到露点温度以上,然后进入对流段。对流段入口水温可用旁路阀门来进行调节。水在对流段中经高温烟气对流换热(吸收约40%的热量),再进入水—水换热器内管,与锅炉给水换热后进入辐射段(吸收约50%的热量)继续加热蒸发,使其转变为干度为80%的高温高压湿饱和蒸汽。进入汽水分离器,由于汽和水存在的重度差,干蒸汽在汽水分离器内螺旋上升运动并形成汽柱,而饱和含盐水则旋转下降,从而实现汽水分离。分离出来的干饱和蒸汽在额定工作条件下流量为22.5t/h,温度为340℃,进入过热器,过热器烟气侧烟温可达928℃,干饱和蒸汽被加热为过热蒸汽,过热器出口蒸汽温度可达456℃,工作压力为14MPa,经长颈喷嘴,测量过热蒸汽流量,进入喷水掺混器,过热蒸汽与汽水分离器出来的高温饱和水进行混合,混合过程中,饱和水被汽化,过热蒸汽的温度降低,经单向阀、截止阀后,进入注汽管网的过热蒸汽温度为360℃,工作压力为14Mpa。

组态王课程设计--锅炉温度控制系统

锅炉温度控制系统上位机设计 1. 设计背景 锅炉是化工、炼油、发电等工业生产过程中必不可少的重要的动力设备。它所产生的高压蒸汽,既可以作为风机、压缩机、大型泵类的驱动透平的动力源,又可作为蒸馏、化学反应、干燥和蒸发等过程的热源。随着工业生产规模的不断扩大,生产设备的不断创新,作为全厂动力和热源的锅炉,办向着大容量、高参数、高效率发展。为了确保安全,稳定生产,锅炉设备的控制系统就显得愈加重要。随着经济的迅猛发展,自动化控制水平越来越高,用户对锅炉控制系统的工作效率要求也越来越高,为了提高锅炉的工作效率,较少对环境的污染问题,所以利用计算机与组态软件技术对锅炉生产过程进行自动控制有着重要的意义。 2.任务要求 (1) 按照题目设计监控画面及动态模拟; (2) 在数据字典中定义需要的内存变量和I/O变量; (3) 实现监控系统的实时、历史曲线及报警界面显示; (4) 实现保存数据和参数报表打印功能; (5) 实现登陆界面和帮助界面。 3. 界面功能 3.1 系统说明 本系统的目的是实现锅炉的温度控制,所以在监控界面设置了加热部分和降温部分,同时通过观察相应仪表,操作者手动的实现对锅炉温度的控制,而且在加热过程和降温过程中有信号灯可以清楚地显示系统工作在什么阶段。此外,在监控界面加入了液位控制部分,通过对进水量和出水量的控制实现液位平衡。实时曲线和历史曲线可以让操作者清楚地观察到锅炉内液体的液位高度和温度,从而更加准确的操作系统,达到控制要求。实时报警界面可以随时进行提醒,防止发生意外情况。帮助界面可以让初次登陆该系统的用户快速学会如何操作系统。登陆界面中加入用户登陆部分,只有有相应权限的操作者也可以控制系统。该系统还加入历史曲线打印功能和对系统相关变量的保存功能,用户可以随时查看历史记录。 3.2主监控界面 主控界面实现的是操作者观察仪表,得到锅炉内液体温度和液位的实时信息,通过调节电磁阀1、2,使得锅炉内液体液位保持在要求范围内,通过加热按钮和降温按钮对温度进行控制,使得温度在要求范围内。这样,就实现了锅炉温度的控制。在该界面加入菜单项,可以查看历史系统报警。加入实时曲线、历史曲线和帮助界面按钮,可以使操作者更加快捷、准确的实现对系统的控制。如图1所示:

锅炉的自动控制系统

锅炉自动控制系统 摘要 锅炉是国民经济中主要的供热设备之一。电力、机械、冶金、化工、纺织、造纸、食品等工业和民用采暖都需要锅炉供给大量的蒸汽。各种工业的生产性质与规模不同,工业和民用采暖的规模大小不尽相同。锅炉是供热之源,锅炉及其设备的任务在于安全,可靠,有效把燃料的化学能转化成热能,进而将热能传递给水,以生产热水和蒸汽。为了生产工艺有特殊要求外,所生产的热水不需要过高温的压力和温度,容量也无需很大。 随着现代工业技术的飞速发展,对能源利用率的要求越来越高。锅炉作为将一次能源转化为二次能源的重要设备之一,其控制和管理的水平也日趋提高。但在我国,大部分锅炉还采用仪表和继电器控制,甚至人工操作,已无法满足生产需求。因此,对锅炉控制系统采用先进的控制技术,不仅能够保证安全生产,而且能够节能增效,具有很好的市场发展空间和投资收益前景。 本论文的主要方向就是采用过程控制对工业锅炉进行控制。 关键字:锅炉;过程控制;控制算法;DCS;现场总线;工业以太网;监控软件 一、锅炉的基本构造及其工作原理 锅炉的主要设备包括汽锅、炉子、炉膛、锅筒、水冷壁、过热器、省煤器、燃烧热备、引风设备、送风设备、给水设备、空气预热器、水处理设备、燃烧供给设备以及除灰除尘设备等。 锅炉的原理及过程 锅炉的工作过程概括起来应该包括三个同时进行的过程:燃料的燃烧过程,烟气向水的传热过程,水的汽化过程。 一个锅炉进行工作,其主要任务是:(1) 要使锅炉出口蒸汽压力稳定;(2)保证燃烧过程的经济性;(3)保持锅炉负压稳定,通常我们是炉膛负压保持在微负压(-10~80Pa)。为了完成上述三项任务,我们对三个变量进行控制:燃烧

基于单片机的锅炉控制系统毕业论文

1 绪论 本文详细介绍了一款基于单片机的锅炉监控系统,该系统能根据锅炉现场检测出各个状态,如实现温度、压力、水位、液位等的监控,具有数码管显示、报警的功能。能够快速、稳定、安全、可靠地对工业锅炉进行智能化监控。 1.1 背景资料及研究意义 当今,环境与发展已成为人类社会面临的两大课题,而这些问题的解决无一不与能源密切相关。我国的锅炉目前以煤为主要燃料,耗煤量接近全国煤产量的三分之一。同时,锅炉燃用的主要是中、低质煤,工业污染十分严重;而且锅炉形式比较陈旧,生产效率和自动化程度低,这又进一步加重了环境污染的程度。因此,调整能源消费结构,逐步提高使用液体燃料和气体燃料的比例是加强环境保护、实施可持续发展战略的措施之一。其中油、气燃料作为优质、高效、环保型清洁能源有着广阔的应用前景。 由于历史条件的原因,我国的锅炉生产自动化程度长期以来一直都较发达国家落后许多。目前运行的各行业的锅炉有50多万台,其中相当一部分还在使用常规仪表进行控制,有的甚至还处在人工加常规仪表的半自动控制状态。这样不仅难以做到平稳操作,安全生产也没有确定的保证,人工的劳动强度大,生产条件差。 工业锅炉是工业生产和生活上应用广泛的热能动力设备,锅炉汽包水位的平衡是保证锅炉安全生产运行的必要条件,也是锅炉正常生产运行的重要指标之一。水位过高会影响汽水分离产生蒸汽带液现象影响汽水分离装置的正常工作,导致锅炉出口蒸汽带水和含盐量过大,使过热器受热面结垢甚至破坏,影响机组的正常运行和经济性指标。若汽包水位过低,会使锅炉水循环工况破坏,导致水冷壁供水不足而烧坏,可能造成重大锅炉事故。工业锅炉汽包水位控制的任务是监测锅炉的蒸发量并及时报警,使汽包水位维持在工艺允许的范围内。所以这就要求我们对锅炉的温度、流量、水位、压力等参数实行实时的监控,以便于工作人员更好地对锅炉进行控制,以免事故的发生。

锅炉温度自动控制

综述 锅炉汽包燃烧系统是工业蒸汽锅炉安全、稳定运行的重要指标,温度过高,会使蒸汽带水过多,汽水分离差,使后续的过热器管壁结垢,传热效率下降,过热蒸汽温度下降,严重时将引起蒸汽品质下降,影响生产和安全;温度过低又将破坏部分水冷壁的水循环不能满足工艺要求,严重时会发生锅炉爆炸。尤其是大型锅炉,一旦控制不当,容易使汽包满水或汽包内的水全部汽化,造成重大事故。因此,在锅炉运行中,保证温度在正常范围是非常重要的。 本文设计了一种数字式锅炉温度控制系统,并给出了硬件原理图。该控制系统是用MCS-51系列单片机及其相关硬件来实现,利用传感器测量温度数据、CPU循环检测传感器输出状态,并用光柱和LED指示温度的高度。当锅炉温度低于用户设定的值时,系统自动打开燃料通道,当温度到达设定值时,系统自动关闭燃料通道。通过定量的计算表明该控制系统设计合理、可行。

一.系统总体设计 1.1 系统总体设计方案 设计框图如下所示: 图1-1系统框图 1.2 单元电路方案的论证与选择 硬件电路的设计是整个实验的关键部分,我们在设计中主要考虑了这几个方面:电路简单易懂,较好的体现物理思想;可行性好,操作方便。在设计过程中有的电路有多种备选方案,我们综合各种因素做出了如下选择。 1.2.1 温度信号采集电路的论证与选择 采用温度传感器DS18B20 美国DALLAS公司的产品可编程单总线数字式温度传感器DS18B20可实现室内温度信号的采集,有很多优点:如直接输出数字信号,故省去了后继的信号放大及模数转换部分,外围电路简单,成本低;单总线接口,只有一根信号线作为单总线与CPU连接,且每一只都有自己唯一的64位系列号存储在其内部的ROM存储器中,故在一根信号线上可以挂接多个DS18820,便于多点测量且易于扩展。 DS 18 B2 0的测温范围较大,集成度较高,但需要串口来模拟其时序才能使用,故没有选用此方案。

火力发电厂锅炉自动控制系统

火力发电厂锅炉给水自动控制系统 工业锅炉的汽包水位是运行中的一个重要参数,维持汽包水位是保持汽轮机和锅炉安全运行的重要条件,锅炉汽包水位过高会造成汽包出口蒸汽中水分过多,使过热器受热面结垢而导致过热器烧坏,同时还会使过热汽温急剧变化,直接影响机组运行的经济性和安全性;汽包水位过低则可能导致锅炉水循环工况破坏,造成水冷壁管供水不足而烧坏。 1.串级三冲量给水控制 如今的汽包水位自动控制基本上都是通过分散控制系统(DCS)来实现的,而控制策略基本上已串级三冲量给水控制为主,单回路调节已不能适应大型锅炉汽包水位的控制,如今已很少采用,串级三冲量给水控制由于引入了蒸汽流量和给水流量信号,对快速消除,平衡水位有着明显的效果,因此被广泛采用。 1.1 串级三冲量给水控制系统工作原理 如图 4.1 所示,串级三冲量给水控制系统由主调节器PI1(控制器1)和副调节器PI2(控制器2)串联构成。主调节器接受水位信号H f为主控信号,其输出去控制副调节器。副调节器接受主调节器信号I H外,还接受给水量信号I W和蒸汽流量信号I D。副调节器的作用主要是通过内回路进行蒸汽流量D 和给水流量W 的比值调节,并快速消除水侧和汽侧的扰动。主调节器主要是通过副调节器对水位进行校正,使水位保持在给定值。 串级三冲量给水控制系统有以下特点:两个调节器任务不同,参数整定相对独立。主调节器的任务是校正水位,副调节器的任务是迅速消除给水和蒸汽流量扰动,保持给水和蒸汽量平衡。给各整定值的整定带来很大的便利条件。在负荷变化时,可根据对象在内外扰动下虚假水位的严重程度来适当调整给水流量和蒸汽流量的作用强度,更好的消除虚假水位的影响,改善蒸汽负荷扰动下水位控制的品质。给水流量和蒸汽流量的作用强度之间是相互独立的,这也使整定工作更加方便自由。

锅炉过热蒸汽温度控制系统设计

课程设计任务书 题目: 锅炉过热蒸汽温度控制系统设计 摘要 本文是针对锅炉过热蒸汽温度控制系统进行的分析和设计。控制系统采用串级控制以提高系统的控制性能,在系统中采用了主控-串级控制的切换装置,使系统可以适用于不同的工作环境。通过使用该系统,可以使得锅炉过热器出口蒸汽温度在允许的范围内变化,并保护过热器营壁温度不超过允许的工作温度。 关键字:过热蒸汽控制串级控制系统自动控制主控-串级切换 目录 1 生产工艺介绍 .................................................. 错误!未定义书签。 1.1 锅炉设备介绍............................................................................ 3 1.2 蒸汽过热系统的控制................................................................ 52控制原理简介 ..................................................................................... 6 2.1控制方案选择............................................................................. 6 2.1.1单回路控制方案................................................................. 6

锅炉蒸汽温度控制系统

引言 随着科学技术的发展,自动控制在现代工业中起着主要的作用,目前已广泛应用于工农业生产及其他建设方面。生产过程自动化是保持生产稳定、降低成本、改善劳动成本、促进文明生产、保证生产安全和提高劳动生产率的重要手段,是20世纪科学与技术进步的特征,是工业现代化的标志之一。可以说,自动化水平是衡量一个国家的生产技术和科学水平先进与否的一项重要标志。电力工业中电厂热工生产过程自动化技术相对于其他民用工业部门有较长的历史和较高的自动化水平,电厂热工自动化水平的高低是衡量电厂生产技术的先进与否和企业现代化的重要标志。 本次毕业设计的主要是针对单元机组汽温控制系统的设计。锅炉汽温控制系统主要包括过热蒸汽和再热蒸汽温度的调节。主蒸汽温度与再热蒸汽温度的稳定对机组的安全经济运行是非常重要的。过热蒸汽温度控制的任务是维持过热器出口蒸汽温度在允许的范围之内,并保护过热器,使其管壁温度不超过允许的工作温度。过热蒸汽温度是锅炉汽水系统中的温度最高点,蒸汽温度过高会使过热器管壁金属强度下降,以至烧坏过热器的高温段,严重影响安全。一般规定过热器的温度与规定值的暂时偏差不超过±10℃,长期偏差不超过±5℃。 如果过热蒸汽温度偏低,则会降低电厂的工作效率,据估计,温度每降低5℃,热经济性将下降约1%;且汽温偏低会使汽轮机尾部蒸汽温度升高,甚至使之带水,严重影响汽轮机的安全运行。一般规定过热汽温下限不低于其额定值10℃。通常,高参数电厂都要求保持过热汽温在540℃的范围内。 由于汽温对象的复杂性,给汽温控制带来许多的困难,其主要难点表现在以下几个方面: (1)影响汽温变化的因素很多,例如,蒸汽负荷、减温水量、烟气侧的过剩空气系数和火焰中心位置、燃料成分等都可能引起汽温变化。 (2)汽温对象具有大延迟、大惯性的特点,尤其随着机组容量和参数的增加,蒸汽的过热受热面的比例加大,使其延迟和惯性更大,从而进一步加大了汽温控制的难度。 (3)汽温对象在各种扰动作用下(如负荷、工况变化等)反映出非线性、时变等特性,使其控制的难度加大。

基于PLC控制的锅炉自动输煤系统设计..

摘要 本论文主要是以锅炉的自动输煤系统为研究对象,自动输煤系统的出现不仅仅解决了在锅炉输煤过程中只能使用人力的现状,也解决了工作强度大、工作时间长的问题。论文首先简述了锅炉概况,对自动输煤系统的工艺流程进行分析设计,然后对输入输出点进行分配,设计了主电路,对PLC进行分析选择,最后画出梯形图。通过对原有锅炉输煤系统控制方面存在的问题进行分析,采用PLC 控制系统选用日本三菱F1-30MR型PLC,通过硬件选取,软件调试,实现整体控制系统结构合理,运转良好的目的。个机械之间均涉及安全连锁保护控制共嫩:系统的输煤电机启停有严格控制顺序,彼此间有相应的联锁互动关系,当启停某台输煤系统设备时。从该设备下面流程的最终输煤设备开始向上逐级启用,最后才能使该台设备启动;当停止某台输煤设备或某台设备故障时,从该设备上面流程的源头给煤设备开始向下逐级停机,左后才能使该台设备停止。这样就保证了上煤传输的正常运行在线控制煤流量,避免了皮带上煤的堆积,也保护了皮带。PLC控制系统硬件设计布局合理,工作可靠,操作,维护方便,工作良好。用PLC 输煤程控系统。用PLC来对锅炉输煤系统进行控制。锅炉输煤系统,是指从卸煤开始,一直到将合格的煤块送到煤仓的整个工艺过程,它包括以下几个主要环节:卸煤生产线、煤场、输煤系统、破碎与筛分、配煤系统以及一些辅助生产环节。本设计中主要研究的是其中的输煤系统部分,即煤块从给煤机传输到原煤仓的过程。采用了顺序控制的方法。不但实现了设备运行的自动化管理和监控。提高了系统的可靠性和安全性,而且改善了工作环境,提高了企业经济效益和工作效率。因此PLC电气控制系统具有一定的工程引用和推广价值。 关键词:PLC;自动输煤系统;煤料自动控制

注汽锅炉安装使用说明书

8安装 8.1技术资料 8.1.1油田注汽锅炉安装之前应具备的技术资料应按《蒸汽锅炉安全技术监察规程》执行。 8.1.2注汽锅炉出厂时,必须有发货清单和随机配件的装箱清单。 8.1.3注汽锅炉出厂时,必须附有与安全使用有关的技术资料,应包括以下内容: 1锅炉总图。 2锅炉工艺流程图。 3流程图设备名称对照表。 4锅炉质量证明书。 5热力计算结果汇总表。 6水阻力计算书。 7强度计算书。 8烟风阻力计算书。 9安全阀排放量计算书。 10热膨胀系统图。 11安装使用说明书。 12锅炉程序控制图。 13锅炉动力原理图。 14各项报警整定值。 15锅炉配件说明书。 8.2到货验收 8.2.1注汽锅炉和随机配件到货后,供方、需方及安装单位共同检查技术随机文件及设备,并按标识方向拆包装,按发货清单和装箱清单进行清点。 8.2.2对运输中内外部件破损及保温耐火材料破损情况进行检查。 8.2.3所有运输件的损坏及丢失均应向承运方报告。 8.2.4检查验收后履行交接手续。 8.3基础 8.3.1基础必须经验收合格方可安装。 8.3.2安装前必须对基础进行下列复测检查: 1基础表面不应有裂纹、蜂窝、空洞及露筋等缺陷。 2基础上平面水平度的允许偏差在全长范围内不应该大于10mm,基础水平位置的偏差不应大于20mm,基础标高的允许偏差为+10mm。 8.3.3基础表面应修整,表面不应该有油污或疏松层。 8.3.4放置垫铁处(至周边约50mm)的基础表面应铲平。 8.3.5设备安装强应在基础上标出安装中心线和标高基准线。 8.3.6基础混凝土强度必须达到设计要求的75%以上方可吊装设备。 8.4就为及连接 8.4.1安装单位必须熟悉安装技术资料。 8.4.2拆除防护材料时,不得损坏设备。 8.4.3设备吊装应按制造厂推荐的方法进行。 8.4.4应按基础中心线先安装辐射段橇座,以此段为基准依次安装过渡段、对流段及炉前操作平台,然后安装滑道。 8.4.5用垫铁找平撬座上平面,全长范围内的水平度允许偏差不应大于10mm,相临两垫铁组间的距离宜为500mm~1000mm。找平后在垫铁组的两侧进行层间点焊固定,垫铁与撬座

锅炉蒸汽温度自动控制系统——模糊控制

锅炉蒸汽温度自动控制系统 摘要: 电厂实现热力过程自动化,能使机组安全、可靠、经济地运行。锅炉是火力 发电厂最重要的生产设备,过热蒸汽温度是锅炉运行质量的重要指标之一,过热蒸汽温度控制是锅炉控制系统中的重要环节。在实现过程控制中,由于电站锅炉系统的被控对象具有大延迟,大滞后、非线性、时变、多变量耦合的复杂特性,无法建立准确的数学模型,对这类系统采用常规PID控制难以获得令人满意的控制效果。在这种情况下,先进的现代控制理论和控制方法已经越来越多地应用在锅炉汽温控制系统。 本文以电厂锅炉汽温系统为研究对象,对其进行了计算机控制系统的改造。考虑到锅炉汽温系统的被控对象特点,本文分别采用了常规PID控制器和模糊-PID 控制器,对两种控制系统对比研究,同时进一步分析了一般模糊-PID控制器的控制特点,在此基础之上给出了一种改进算法,通过在线调整参数,实现模糊-自调整比例常数PID控制。在此算法中,比例常数随着偏差大小而变化,有效地解决了在小偏差范围内,一般的模糊-PID控制器无法实现的静态无偏差的问题,提高了蒸汽温度控制系统的控制精度。 关键词:锅炉蒸汽温度模糊控制 随着我国经济的高速发展,对重要能源“电”的要求快速增长,大容量发电机组的投入运行以及超高压远距离和赢流输电的混和电网的建设,以三峡电网为中心的全国性电力系统的形成,电力系统的不断扩大,对其自动控制技术水平的要求也越来越高。同时,地方性的自备热电厂亦有长足发展,随着新建及改造工程的进行,其生产过程自动控制与时俱进,小容量机组“麻雀虽小,五脏俱全”,自备热电厂其自身特点:自供电、与主电网的关系疏及相互影响小,供热及采暖季节性等,可以提供更多的应用、尝试新技术、新产品的机会和可能性。这样做的重要目标是提高和保证电力,热力及牛产过程的安全可靠、经济高效。为了适应发展并实现上述目标,必须采取最新的技术和控制手段对电力系统的各种运铲状态和设备进行有效的自动控制。 火力发电厂在我国电力工业中占有主要地位,是我国重点能源工业之一。其单元发电机组由锅炉、汽轮发电机和辅助设备组成的庞大的设备群。由于其工艺流程复杂,设备众多,管道纵横交错,大型机组多至上千个参数需要监视、操作或控制,而且电能生产还要求有高度的安全可靠性和经济性,因此,单元机组自动化水平受到特别的重视。 锅炉蒸汽温度自动控制系统的分析: 过热蒸汽温度自动控制是维持过热器出口蒸汽温度在允许范围内,并且保护过热器,使管壁温度不超过允许的工作温度。过热蒸汽温度是锅炉运行质量的重要指标之一,过热蒸汽温度过高或过低都会显著地影响电厂的安全性和经济性。目前,汽包锅炉的过热器侧调温都是以喷水减温方式为主的。它的原理是将洁净的给水直接喷进蒸汽,水吸收蒸汽的汽化潜热,从而改变过热蒸汽温度。汽温的变化通过减温器喷水量的调节加以控制。 影响过热器出口蒸汽温度变化的原因很多,如蒸汽流量变化、燃烧工况变化、

工业炉温自动控制系统

1 设计题目 要求: 1.查阅相关资料,分析系统的工作原理,指出被控对象、被控量和给定量,画出系统方框图。 2.分析系统每个环节的输入输出关系,代入相关参数求取系统传递函数。 3.分析系统时域性能和频域性能。 4.运用根轨迹法或频率法校正系统,使之满足给定性能指标要求。(已知条件和性能要求待定)

摘要 炉温控制系统---是指根据炉温对给定温度的偏差,自动接通或断开供给炉子的热源能量,或连续改变热源能量的大小,使炉温稳定有给定温度范围,以满足热处理工艺的需要。炉温自动控制用热电偶测量温度,与给定温度进行比较,将偏差信号放大后作为驱动信号,通过电机、减速器调节加热器上的电压来实现准确的温度控制。本文经过正确分析系统工作过程,建立系统数学模型,画出系统结构图后,设计与校正前系统性能分析和可采取的解决方案、方法及分析。运用matlab软件进行复杂的系统时域验证和计算机仿真,通过具体设计校正步骤、思路、计算分析过程和结果,对于炉温控制系统的研究与改进具有现实意义。 关键字炉温控制系统系统校正 matlab软件

1 工业炉温自动控制系统的工作原理 加热炉采用电加热方式运行,加热器所产生的热量与调压器电压c u 的平方成正比,c u 增高,炉温就上升,c u 的高低由调压器滑动触点的位置所控制,该触 点由可逆转的直流电动机驱动。炉子的实际温度用热电偶测量,输出电压f u 。 f u 作为系统的反馈电压与给定电压r u 进行比较,得出偏差电压e u ,经电压放大器、功率放大器放大成a u 后,作为控制电动机的电枢电压。 在正常情况下,炉温等于某个期望值T °C ,热电偶的输出电压f u 正好等于给定电压r u 。此时,0e r f u u u =-=,故1a u u =,可逆电动机不转动,调压器的滑动触点停留在某个合适的位置上,使c u 保持一定的数值。这时,炉子散失的热量正好等于从加热器吸取的热量,形成稳定的热平衡状态,温度保持恒定。 当炉膛温度T °C 由于某种原因突然下降(例如炉门打开造成的热量流失),则出现以下的控制过程: 控制的结果是使炉膛温度回升,直至T °C 的实际值等于期望值为止。 ?→T C ?→↑→↑→↑→↑→↑→↓→↓T u u u u u c a e f θ1C ↑ 系统中,加热炉是被控对象,炉温是被控量,给定量是由给定电位器设定的电压r u (表征炉温的希望值)。系统方框图见下图:

范例-PLC在工业锅炉自动控制系统中的应用

PLC在工业锅炉自动控制系统中的应用 1 引言 锅炉是发电厂及其它工业企业中最普遍的动力设备之一,它的功能是把燃料中的贮能,通过燃烧转化成热能,以蒸汽或热水的形式输向各种设备。目前,国内大多数工业锅炉都是人工控制的,或简单的仪表单回路调节系统,燃料浪费很大。工业锅炉作为一个设备总体,有许多被控制量与控制量,扰动因数也很多,许多参数之间明显地存在着复杂的耦合关系。对于工业锅炉这个复杂的系统,由于其内部能量转换机理过于复杂,采用常规的方式进行控制,难以达到理想的控制效果,因此,必须采用智能控制方式控制,才能获得最佳控制效果。 2 系统的组成 系统运行的示意图如图1所示。 图1 系统运行示意图 由图1可知,燃料和空气按一定比例进入燃烧室燃烧,产生的热量传递给蒸汽发生系统,产生饱和蒸汽,经负荷设备调节阀供给负荷设备使用。与此同时,燃烧过程中产生的烟气,除将饱和蒸汽变成过热蒸汽外,还经省煤器预热锅炉给水和空气预热器预热空气,最后经引风机送往烟囱排入大气。

锅炉是个较复杂的调节对象,为保证提供合格的蒸汽以适应负荷的需要,生产过程各主要工艺参数必须加以严格控制。主要调节项目有;负荷、锅炉给水、燃烧量、减温水、送风等。主要输出量是:汽包水位、蒸汽压力、过热蒸汽温度、炉膛负压、过剩空气等。这些输入量与输出量之间是互相制约的,例如,蒸汽负荷变化时,必然会引起汽包水位、蒸汽压力和过热蒸汽温度的变化;燃料量的变化不仅影响蒸汽压力,同时还会影响汽包水位、过热蒸汽温度、空气量和炉膛负压等。对于这样复杂的对象,工程处理上作了一些简化,将锅炉控制系统划分为若干个调节系统。主要的调节系统有: (1) 汽包水位调节系统 被调量是汽包水位,调节量是给水流量,它主要考虑汽包内部物料平衡,使给水量适应锅炉的蒸发量,维持汽包水位在工艺允许范围内。 (2) 过热蒸汽温度调节系统 维持过热器出口温度在允许范围之内,并保证管壁温度不超过允许工作温度。 (3) 燃烧调节系统 使燃料燃烧所产生的热量适应蒸汽负荷的需要;使燃料量与空气量之间保持一定比例,以保证经济燃烧;使引风量与送风量相适应,以保持炉膛负压稳定。 这里将讨论锅炉汽包水位调节系统、燃烧调节系统及蒸汽温度调节系统。 2.1 系统的检测信号及锅炉的控制任务 锅炉设备的检测信号包括:蒸汽流量、汽包水位、汽包蒸汽压力、加水量、炉膛负压、鼓风量、烟气含氧量、当已知检测信号的情况下,锅炉的控制任务是:在用户蒸汽机需要的情况下,PLC控制加水阀、输煤量、鼓风量与引风量,使保持锅炉汽包水位稳定,蒸汽压力稳定,炉膛负压稳定,烟气稳定,使燃料能量最充分地燃烧,以取得最大的热效率。 2.2锅炉的主要控制流程 (1) 锅炉水位控制流程 水位自动控制的主信号为水位差压变送器输出的信号。前馈信号可以

锅炉温度控制系统的设计

齐鲁理工学院 课程设计说明书 题目基于PID的锅炉温度控制系统的设计 课程名称过程控制系统与仪表 二级学院机电工程学院 专业自动化 班级2014级自动化二班 学生姓名金高翔 学号201410532019 指导教师黄丽丽 设计起止时间:2016年12月5日至2016年12月18日

? 目录 摘要 .................................................... 错误!未定义书签。 1 绪论?错误!未定义书签。 1.1 课程设计的背景: ................................. 错误!未定义书签。 1.2 课程设计的任务:?错误!未定义书签。 1.3 课程设计的基本要求:?错误!未定义书签。 2 PLC和组态软件介绍?错误!未定义书签。 2.1 可编程控制器?错误!未定义书签。 2.1.1 可编程控制器的工作原理 .................. 错误!未定义书签。 2.2 组态软件?错误!未定义书签。 2.2.1 组态的定义 .............................. 错误!未定义书签。 2.2.2组态王软件的特点?错误!未定义书签。 2.2.3组态王软件仿真的基本方法.................. 错误!未定义书签。 3 PID控制及参数整定?错误!未定义书签。 3.1.PID控制器的组成?错误!未定义书签。 3.2.采样周期的分析................................... 错误!未定义书签。 4 被控对象的建模?错误!未定义书签。 5 PLC控制系统的软件设计................................. 错误!未定义书签。 5.1.程序编写........................................ 错误!未定义书签。 5.2用指令向导编写PID控制程序?错误!未定义书签。 6 组态的设计 ............................................ 错误!未定义书签。 7 系统测试?错误!未定义书签。 7.1 启动组态王...................................... 错误!未定义书签。 7.2实时曲线界面?错误!未定义书签。 7.3历史曲线界面 ..................................... 错误!未定义书签。8结论 ................................................. 错误!未定义书签。参考文献: ............................................... 错误!未定义书签。致谢: ................................................... 错误!未定义书签。

锅炉燃烧系统的控制系统设计

目录 1锅炉工艺简介 (1) 1.1锅炉的基本结构 (1) 1.2工艺流程 (2) 1.2煤粉制备常用系统 (3) 2 锅炉燃烧控制 (4) 2.1燃烧控制系统简介 (4) 2.2燃料控制 (4) 2.2.1燃料燃烧的调整 (4) 2.2.2燃烧调节的目的 (5) 2.2.3直吹式制粉系统锅炉的燃料量的调节 (5) 2.2.4影响炉内燃烧的因素 (6) 2.3锅炉燃烧的控制要求 (11) 2.3.1 锅炉汽压的调整 (11) 3锅炉燃烧控制系统设计 (14) 3.1锅炉燃烧系统蒸汽压力控制 (14) 3.1.1该方案采用串级控制来完成对锅炉蒸汽压力的控制 (14) 3.2燃烧过程中烟气氧含量闭环控制 (17) 3.2.1 锅炉的热效率 (18) 3.2.2反作用及控制阀的开闭形式选择 (20) 3.2.3 控制系统参数整定 (20) 3.3炉膛的负压控制与有关安全保护保护系统 (21) 3.3.1炉膛负压控制系统 (22) 3.3.2防止回火的连锁控制系统 (23) 3.3.3防止脱火的选择控制系统 (24) 3.4控制系统单元元件的选择(选型) (24) 3.4.1蒸汽压力变送器选择 (24) 3.4.2 燃料流量变送器的选用 (24) 4 DCS控制系统控制锅炉燃烧 (26) 4.1DCS集散控制系统 (26) 4.2基本构成 (27)

锅炉燃烧系统的控制 4.3锅炉自动燃烧控制系统 (31) 总结 (33) 致谢 (34) 参考文献 (35)

1锅炉工艺简介 1.1锅炉的基本结构 锅炉整体的结构包括锅炉本体和辅助设备两大部分。 1、锅炉本体 锅炉中的炉膛、锅筒、燃烧器、水冷壁、过热器、省煤器、空气预热器、构架和炉墙等主要部件构成生产蒸汽的核心部分,称为锅炉本体。锅炉本体中两个最主要的部件是炉膛和锅筒。 炉膛又称燃烧室,是供燃料燃烧的空间。将固体燃料放在炉排上进行火床燃烧的炉膛称为层燃炉,又称火床炉;将液体、气体或磨成粉状的固体燃料喷入火室燃烧的炉膛称为室燃炉,又称火室炉;空气将煤粒托起使其呈沸腾状态燃烧、适于燃烧劣质燃料的炉膛称为沸腾炉,又称流化床炉;利用空气流使煤粒高速旋转并强烈火烧的圆筒形炉膛称为旋风炉。炉膛的横截面一般为正方形或矩形。燃料在炉膛内燃烧形成火焰和高温烟气,所以炉膛四周的炉墙由耐高温材料和保温材料构成。在炉墙的内表面上常敷设水冷壁管,它既保护炉墙不致烧坏,又吸收火焰和高温烟气的大量辐射热。炉膛的结构、形状、容积和高度都要保证燃料充分燃烧,并使炉膛出口的烟气温度降低到熔渣开始凝结的温度以下。当炉内的温度超过灰熔点时,灰便呈熔融状态。熔融的灰渣颗粒在触及炉内水冷壁管或其他构件时会粘在上面。粘结的灰粒逐渐增多,遂形成渣块,称为结渣。结渣会降低锅炉受热面的传热效果。严重时会堵塞烟气流动的通道,影响锅炉的安全和经济运行。一般用炉膛容积热负荷和炉膛截面热负荷或炉排热负荷表示其燃烧强烈程度。炉膛容积热负荷是单位炉膛容积中每单位时间内释放的热量。在锅炉技术中常用炉膛容积热负荷来衡量炉膛大小是否恰当。容积热负荷过大,则表示炉膛容积过小,燃料在炉内的停留时间过短,不能保证燃料完全燃烧,使燃烧效率下降;同时这还表示炉墙面积过小,难以敷设足够的水冷壁管,结果炉内和炉膛出口处烟气温度过高,受热面容易发生结渣。室燃炉的炉膛截面热负荷是单位时间内单位炉膛横截面上燃料燃烧所释放的热量。在炉膛容积确定以后,炉膛截面热负荷过大会使局部区域的壁面温度过高而引起结渣。层燃炉的炉排热负荷是单位时间内燃料燃烧所释放的热量与炉排面积的比值。炉排热负荷过高会使飞灰大大增加。炉膛设计需要充分考虑使用燃料的特性。每台锅炉应尽量燃用原设计的燃料。燃用特性差别较大的燃料时,锅炉运行的经济性和可靠性都可能降低。 锅筒它是自然循环和多次强制循环锅炉中接受省煤器来的给水、联接循环回路,并向过热器输送饱和蒸汽的圆筒形容器。锅筒筒体由优质厚钢板制成,是锅炉中最重的部件之一。锅筒的主要功能是储水,进行汽水分离,在运行中排除锅水中的盐水和泥渣,

自动控制技术在热力注汽锅炉中的应用

自动控制技术在热力注汽锅炉中的应用 随着我国社会水平的提升,经济步伐的推进,我国的油田事业也在这个过程中得到了较大程度的发展。目前,油田在实际生产当中更多的应用注汽锅炉,其也由于所具有的高压、高温、安全性以及高效率特征成为了稠油开采中非常重要的一项注汽设备。在本文中,将就自动控制技术在热力注汽锅炉中的应用进行一定的研究与分析。 标签:自动控制技术热力注汽锅炉应用 1 概述 热力采油是我国目前稠油开采过程中较为经济与成熟的一种方式,其通过油田注气锅炉以及注气站所产生的高温、高压蒸汽将其注入到油层之中,以此在使稠油粘度得到降低的同时使我们的稠油采收率得到提升。而随着近年来我国稠油开展规模以及数量的增加,也使得我国原油的供热站数量已经不能够满足稠油开发的热采要求。而对于所建设的注气站来说,其会由于其中所具有的锅炉都是以人工的方式进行监控的,如果锅炉在实际运行过程中出现了一定的问题故障,很难被现场操作人员在第一时间发现,仅仅在问题出现之后、报警停炉发生时才能够对这部分问题进行处理,大大影响了锅炉注汽质量以及运行时间。同时,由于部分汽站中工作人员技术、数量的缺乏,也会使注气站在工作中往往存在较大的人员操作隐患。近年来,我国的数据通讯技术以及网络技术都得到了较大程度的发展,在这种环境下,使用自动控制技术对注汽锅炉进行操作与监控已经成为了我们稠油充汽过程中的一项重要目标。对此,就需要我们在对该种自动控制技术进行充分把握的基础上掌握其应用要点。 2 以往自控系统存在问题 2.1 在以往自动系统中,油田注汽锅炉更多的是以较为常规的PLC模式进行控制,且能够对多个点实施监控工作。但是,对于这种方式而言,其所具有的参数往往以较为分散的方式分布于监测点中,在工艺流程以及设备参数方面仅能够依靠人工的方式进行调查与分析,所具有的准确性也较低。 2.2 对于锅炉设备运行情况的监控与注汽数据的采集来说,也仅仅依靠现场操作人员的巡查完成。且部分仪表设备如辐射段压力表、温度表等都被安装在锅炉上方,不仅所具有的高度非常难以进行检查,且安装位置处的温度也较高,不利于设备的长久运行。 2.3 原有系统对于各项参数所具有的测量精度较低,且在显示方面也存在着较大的误差。另外测量结果在很大程度上会受到振动情况以及环境温度的影响。 2.4 不能够实现故障预警,很容易出现停炉现象,并对注汽质量以及工作稳定性产生一定的影响。

相关主题