搜档网
当前位置:搜档网 › 注塑模具设计中浇口位置和结构形式的选用

注塑模具设计中浇口位置和结构形式的选用

注塑模具设计中浇口位置和结构形式的选用
注塑模具设计中浇口位置和结构形式的选用

注塑模具设计中浇口位置和结构形式的选用

摘要:注塑模具的浇口对于制件的外型以及产品质量的影响是较为直接的。如

果浇口的位置选择不合理,必然会成为制件的一种缺陷,同时海水出现缩孔甚至

是降解等问题。严重影响到制件的使用寿命。在实际的浇口位置以及形式的选择

过程中,技术人员需要根据制品的特点,选择浇口的科学位置,提升注塑模具设

计的高效性和科学性。本文中,笔者主要从浇口位置以及结构形式等方面进行深

入研究,希望能够给相关的研究人员提供借鉴和参考。

关键词:注塑模具;浇口位置;结构形式;选用

浇口位置的重要性不言而喻,无论是对于保压压力还是流动前沿都会产生直

接地影响。浇口位置选择合理必然会提升注塑制件的整体强度和性能。一般来说,影响浇口位置的主要方面包括注塑制品的形状、壁厚以及尺寸等等。除此之外,

还包括对浇口的加工以及清理等方面。如果浇口位置选择正确,就会降低不稳定

影响因素出现的几率。

1 浇口的类型和位置

(1)直浇口。直浇口就是主流道浇口,这种浇口类型主要是以非限制性浇口为主。主要的优点就是阻力小,流程相对较短,而且补给的时间相对较长。这种

浇口主要是从熔体的底面流入到分型面。可以提升排气的畅通性,还可以提升模

具本身的紧凑程度,保证受力程度的均匀性。在清除浇口痕迹时,不仅难度相对

较大,其美观程度也会受到严重地影响。因此,较大的浇口往往都会直接应用到

流程较长以及筒形等类型的注塑制品中。在对这一类型浇口进行设计的过程中,

技术人员应该尽量降低塑制品和浇口接触的面积,减低缺陷出现的可能性,同时

还应该选择2°-4°的锥角,同时减低定模扳的厚度。见图1。

(2)侧浇口。侧浇口就是人们常说的标准浇口,一般情况下,在分型面上可以看到侧浇口,塑料熔体的截面主要是以矩形为主,可以直接改变浇口的厚度以

及熔体冻结的时间。在注塑制品中,侧浇口的应用范围也相对较广,无论是从其

形状上,还是从加工的便利性上,都具有一定的应用价值。侧浇口优点和缺点并存,其主要的优点就是浇口本身的截面相对较小,消耗量较低,而且所留痕迹不

明显。可以在各种不同类型的注塑制品中得到广泛地应用。但是,主要的缺点就

是无法实现自行分离,压力损失相对较大,排气不是很畅通。见图2。

(3)扇形浇口。一般情况下,扇形浇口主要应用在分型面上,浇口方向在加宽的同时厚度在降低。直接进入到型腔内部的熔体相对比较平直,可以降低变形

的可能性。从以上这些特点中可以看出,扇形的浇口可以在宽度较大的注塑制品

中得到广泛地应用。

(4)薄片浇口。薄片的优缺点也比较明显。由于这种浇口和型腔的侧面呈现出一定的平行关系,因此其宽度相对较大。可以在短时间内使得熔体直接进入到

型腔当中。使得熔体呈现出平行的方式流动。这样就可以直接避免翘曲出现变形

的问题。最好的应用领域就是平直的薄壁塑料制品。但是,这种浇口由于祛除方

式较为复杂,因此,直接增加了制作的经济成本。

2 常见塑料制品进胶形式的选用

对于一些转速相对较高的注塑制品来说,其表面的光滑程度相对较高,而且

很少会出现气泡的现象。因此,这类注塑制品对于浇口的平整度就提出了较高的

要求。浇口在制作的过程中需要做到隐蔽,不能以潜伏浇口的形式存在,同时还

浇口位置(入水口)的选择技巧介绍

浇口对制件的影响及位置的选择 一、浇口位置的要求: 1.外观要求(浇口痕迹, 熔接线) 2.产品功能要求 3.模具加工要求 4.产品的翘曲变形 5.浇口容不容易去除 二、对生产和功能的影响: 1.流长(Flow Length)决定射出压力,锁模力,以及产品填不填的满 流长缩短可降低射出压力及锁模力 2.浇口位置会影响保压压力 保压压力大小 保压压力是否平衡 将浇口远离产品未来受力位置(如轴承处)以避免残留应力 浇口位置必须考虑排气,以避免积风发生不要将浇口放在产品较弱处或嵌入处,以避免偏位(Core Shaft) 三、选择浇口位置的技巧 1.将浇口放置于产品最厚处,从最厚处进浇可提供较佳的充填及保压效果。 如果保压不足,较薄的区域会比较厚的区域更快凝固 避免将浇口放在厚度突然变化处,以避免迟滞现象或是短射的发生 2.可能的话,从产品中央进浇 将浇口放置于产品中央可提供等长的流长 流长的大小会影响所需的射出压力 中央进浇使得各个方向的保压压力均匀,可避免不均匀的体积收缩 3 澆口(Gate) 澆口是一條橫切面面積細小的短槽,用以連接流道與模穴.橫切面面積所以要小,目的是要獲得 以下效果: 1.模穴注不久, 澆口即冷結. 2.除水口簡易. 3.除水口完畢,僅留下少許痕跡 4.使多個模穴的填料較易控制. 5.減少填料過多現象. 1.3.1 設計澆口的方法並無硬性規定,大都是根據經驗而行,但有兩個基本要素須加以折衷考慮: 1. 澆口的橫切面面積愈大愈好,而槽道之長度則愈短愈佳,以減少塑料通過時的壓力損失. 2. 澆口須細窄,以便容易冷結及防止過量塑料倒流.故此澆口在流道中央,而它的橫切面 應盡可能成圓形.不過, 澆口的開關通常是由模件的開關來決定的. 1.3.2澆口尺寸 澆口的尺寸可由橫切面積和澆口長度定出,下列因素可決定澆口最佳尺寸: 1.膠料流動特性 2.模件之厚薄 3.注入模腔的膠料量 4.熔解溫度 5.工模溫度 1.3.3 決定澆口位置時,應緊守下列原則: 1.注入模穴各部份的膠料應盡量平均.

注塑模具浇口型式及选择

注塑模具浇口型式及选择 塑料模具的浇口是指连接分流道和性强之间的一段细短流道,是树脂注入型腔的入口。在模具中浇口的形状、数量和尺寸和位置等会对塑料件的质量产生很大影响。所以浇口的选择是塑料模具设计的关键点之一,下面通过几个方面对于浇口进行介绍。 一、浇口的主要作用有: 1、型腔充满后,熔体在浇口处首先凝结,防止其倒流。 2、易于切除浇口尾料。 3、对于多腔模具,用以控制熔接痕的位置。 二、浇口的型式 浇口一般分为非限制性浇口和限制性浇口两种型式。限制性浇口又分为侧浇口、点浇口和盘环形浇口等3个系列。 2.1非限制性浇口。 非限制性浇口又叫直浇口(如图1所示)。其特点是塑料熔体直接流入型腔,压力损失小进料速度快成型较容易,对各种塑料都适用。具有传递压力好,保压补缩作用强,模具结构简单紧凑,制造方便等优点。但去除浇口困难,浇口痕迹明显;浇口附近热量集中冷凝迟缓容易产生较大的内应力,也易于产生缩坑或表面凹缩。适用于大型塑件、厚壁塑件等。

图1直浇口型式 2.2限制浇口。 型腔与分流道之间采用一端距离很短、截面很小的通道相连接,此通道称为限制性浇口,它对浇口的厚度及快速凝固等可以进行限制。限制浇口的主要类型有: 2.2.1 点浇口。 点浇口是一种截面尺寸特小的圆形浇口(如图2所示)。点浇口的特点有:1、浇口位置限制小;2、去除浇口后残留痕迹小,不影响塑件外观;3、开模时浇口可自动拉断,有利于自动化操作;4、浇口附件补料造成的应力小。缺点是:1、压力损失大,模具必须采用三板模结构,模具结构复杂,并且要有顺序分模机构,也可应用于无流道的两板模具结构。 图2 点浇口的型式 2.2.2潜伏式浇口。 潜伏式浇口是由点浇口演变而来,其分流道开设在分型面上,浇口潜入分型

注塑模具设计中浇口位置和结构形式的选用

注塑模具设计中浇口位置和结构形式的选用 付 伟 范士娟 张 海 (华东交通大学机电工程学院,南昌 330013) 摘要 浇口直接影响注塑制品的外观、变形、成型收缩率及强度,如果选用不当,容易使注塑制品产生缺料、熔接痕、缩孔、浇口白斑、翘曲、变脆及降解等缺陷。根据注塑制品的不同特点,探讨了11种浇口形式的优缺点,进一步阐述了选用浇口类型与位置的方法及原则。 关键词 浇口 注塑模具 注塑制品 浇口亦称进料口,是连接分流道与型腔熔体的通道。浇口选择恰当与否直接关系到注塑制品能否完好、高质量地注射成型 [1] 。浇口设计包括浇口截 面形状与尺寸的确定和浇口位置的选择。关于浇口截面形状及尺寸的确定,很多教科书都有提及,这里不再重复。笔者现根据不同注塑制品的特点,比较各种类型浇口的差异,讨论浇口位置及其结构形式的选择方法和原则。 浇口位置对熔体流动前沿的形状和保压压力的效果都起着决定性的作用,因此也决定了注塑制品的强度和其它性能。对于影响确定浇口位置的因素来说,包括制品的形状、大小、壁厚、尺寸精度、外观质量及力学性能等。此外,还应考虑浇口的加工、脱模及清除浇口的难易程度。正确的浇口位置可以避免出现那些可以预见的问题[2-3] 。 1 浇口的类型与位置 在注塑模设计中,按浇口的结构形式和特点,常用的浇口形式有下列11种。 1.1 直浇口 即是主流道浇口,属于非限制性浇口,见图1 。 图1 直浇口 (1)优点 塑料熔体由主流道的大端直接进入型腔,因此具有流动阻力小、流程短及补给时间长等特点。这样的浇口有良好的熔体流动状态,熔体从型腔底面中心部位流向分型面,有利于排气;这种浇口形式使注塑制品和浇注系统在分型面上的投影面 积最小,模具结构紧凑,注塑机受力均匀。 (2)缺点 进料处有较大的残余应力,容易导 致注塑制品翘曲变形,同时浇口较大,去除浇口痕迹较困难且痕迹较大,影响美观,所以这类浇口多用于注射成型大中型长流程、深型腔、筒形或壳形注塑制品,尤其适合于聚碳酸酯、聚砜等高粘度塑料。另外,这种形式的浇口只适合于单型腔模具。 在设计这类浇口时,为了减小与注塑制品接触处的浇口面积,防止该处产生缩口、变形等缺陷,一方面应尽量选用较小锥度的主流道锥角(为2~4 ),另一方面应尽量减小定模板和定模座的厚度。1.2 侧浇口 国外将侧浇口称为标准浇口,见图2。侧浇口一般开设在分型面上,塑料熔体从内侧或外侧充满模具型腔,其截面形状多为矩形(扁槽),改变浇口宽度与厚度可以调节熔体的剪切速率及浇口的冻结时间。这类浇口可根据注塑制品的形状特征选择其位置,加工和修整方便,因此它的应用较广泛。 图2 侧浇口 (1)优点 浇口截面小,能减小浇注系统熔料 的消耗量,去除浇口容易,痕迹不明显。适合于各种形状的注塑制品,但对细长桶形注塑制品不宜采用。 (2)缺点 注塑制品和浇口不能自行分离,存在熔接痕,注塑压力损失较大,对深型腔注塑制品的排气不利。1.3 扇形浇口 扇形浇口如图3所示,一般开设在分型面上,从 收稿日期:2007 07 22

浇口位置的选择

注塑模浇口位置的选择|无锡模具设计培训 模具设计时,浇口的位置及尺寸要求比较严格,初步试模之后有时还需修改浇口尺寸。无论采用什么形式的浇口,其开设的位置对塑件的成型性能及成型质量影响均很大,因此合理选择浇口的开设位置是提高塑件质量的重要环节,同时浇口位置的不同还影响模具结构。总之,如果要使塑件具有良好的性能与外表,要使塑件的成型在技术上可行、经济上合理,一定要认真考虑浇口位置的选择。一般在选择浇口位置时,需要根据塑件的结构工艺及特征、成型质量和技术要求,并综合分析塑料熔体在模内的流动特性、成型条件等因素。 下面是由无锡模具设计培训整理的设计浇口时的注意点: (1)尽量缩短流动距离 浇口位置的安排应保证塑料熔体迅速和均匀地充填模具型腔,尽量缩短熔体的流动距离,这对大型塑件更为重要。 (2)浇口应开设在塑件壁最厚处 当塑件的壁厚相差较大时,若将浇口开设在塑件的薄壁处,这时塑料熔体进入型腔后,不但流动阻力大,而且还易冷却,以致影响了熔体的流动距离,难以保证其充满整个型腔。另外从补缩的角度考虑,塑件截面最厚的部位经常是塑料熔体最晚固化的地方,若浇口开在薄壁处,则厚壁处极易因液态体积收缩得不到补缩而形成表面凹陷或真空泡。因此为保证塑料熔体的充模流动性,也为了有利于压力有效地传递和较易进行因液态体积收缩时所需的补料,一般浇口的位置应开设在塑件壁最厚处。 (3)必须尽量减少或避免熔接痕 由于成型零件或浇口位置的原因,有时塑料充填型腔时会造成两股或多股熔体的汇合,汇合之处,在塑件上就形成熔接痕。熔接痕降低塑件的强度,并有损于外观质量,这在成型玻璃纤维增强塑料的制件时尤其严重。一般采用直接浇口、点浇口、环形浇口等可避免熔接痕的产生。有时为了增加熔体汇合处的熔接牢度,可以在熔接处外侧设一冷料穴,使前锋冷料引入其内,以提高熔接强度。在选择浇口位置时,还应考虑熔接痕的方位对塑件质量及强度的不同影响。 (4)应有利于腔中气体的排除 要避免从容易造成气体滞留的方向开设浇口。如果这一要求出现缺料、气泡就是出现焦斑,同时熔体充填时也不顺畅,虽然有时可用排气系统来解决,但在选择浇口位置时应先行加以考虑。 (5)考虑分子定向影响 充填模具型腔期间,热塑性塑料会在熔体流动方向上呈现一定的分子取向,这将影响塑件的性能。对某一塑件而言,垂直流向和平行于流向的强度、应力开裂倾向等都是有差别的,一般在垂直于流向的方位上强度降低,容易产生应力开裂。/ (6)避免产生喷射和蠕动(蛇形流) 塑料熔体的流动主要受塑件的形状和尺寸以及浇口的位置和尺可的支配,良好的流动将保证模具型腔的均匀充填并防止形成分层。塑料溅射进入型腔可能增加表面缺陷、流线、熔体破裂及夹气,如果通过一个狭窄的浇口充填一个相对较大的型腔,这种流动影响便可能出现。 (7)在承受弯曲或冲击载荷的部位设置浇口 一般塑件的浇口附近强度最弱。产生残余应力或残余变形的附近只能承受一般拉伸力,而无法承受弯曲和冲击力。 (8)浇口位置的选择应注意塑件外观质量 浇口的位置选择除了保证成型性能和塑件的使用性能外,还应注意外观质量,即选择在不影响塑件商品价值的部位或容易处理浇口痕迹的部位开设浇口。

两板式注塑模浇口和流道的优化设计

两板式注塑模浇口和流道的优化设计作者:M.A.阿姆兰,M. 哈德斯雷,S.阿姆里,R. 艾木莎,A.哈桑,S.斯姆西,和K.沙希尔 马来西亚Teknikal大学制造工程学院 邮箱:mohdamran@https://www.sodocs.net/doc/fa17863772.html,.my 摘要 本文主要介绍了两板式注塑模浇口和流道的大小。此次研究以ECR 塑料产品中的上壳,下壳,支架三个产品作为研究对象,目的是找出浇口,流道的最佳尺寸和型腔的合理布局,并以最优布局消除因浇口和流道不合理产生的缺陷。这项研究使用了三种类型的软件:使用UG软件作为计算机辅助设计工具用来3D建模;使用犀牛软件后期处理工具设计浇口和流道;使用Moldex软件作为仿真工具来分析塑性流动。最终修改了一些两板式注塑模中浇注系统的大小和位置,来消除填充时缺料产生的空腔和熔接痕等问题。 关键词:计算机建模;流体分析;优化 PACS: 07.05Tp 1.介绍 注塑通常包括注射,补缩和冷却三个阶段。随着计算机在工程设计中的大量使用,仿真软件在模具制造行业中产生了重要的影响。目前,市场上这方面商用软件也越来越多地涌现出来[1]。ECR塑料产品的三部分使用相同的材料和颜色,但形状大小却各不相同。原本每一部分都需要独自的模具,此项研究中只需要一个一模多腔的模具便可完成。其难点在于型腔的位置、浇注系统的位置尺寸、以及冷却水道的位置[2]、[6]、[7]。Moldex软件就是用于分析塑性流动的仿真软件。 2.方法 本研究从设计通过UG软件对ECR产品进行3D建模,然后将建好的模型转移到犀牛软件上进行文件处理。在犀牛软件中对浇注系统如浇口,主流道,分流道,以及冷却水道和模架的设计。最后,使用从犀牛软件导出文件到Moldex软件。通过对注射、补缩、冷却、翘曲的分析 1

注塑浇口设计

浇口设计 浇口是连接分流道与型腔之间的一段细短通道,是浇注系统的最后部分,其作用是使塑料以较快速度进入并充满型腔。它能很快冷却封闭,防止型腔内还未冷却的熔体倒流。设计时须考虑产品的尺寸、截面积尺寸、模具结构、成型条件及塑料性能。浇口应尽量小,与产品分离容易,不造成明显痕迹。其类型多种多样。 浇口的作用 (1)防止倒流。当注射压力消失后,封锁型腔,使尚未冷却固化的塑料不会倒流回分流道。 (2)升高熔体温度。熔体经过浇口时,会因剪切及挤压而升温,有利于熔体的填充型腔。 (3)调节及控制进料量,使各腔能在差不多相同的时间内同时充满。这叫做人工平衡进料。 (4)提高成型质量。浇口设计不合理时,易产生填充不足、收缩凹陷、蛇纹、震纹、熔接痕及翘曲变形等缺陷。 浇口的分类 浇口形式很多,包括侧浇口、潜伏式浇口、点浇口、直接浇口、扇形浇口、薄片浇口、爪形浇口、环形浇口、伞形浇口及二次浇口等。 其中点浇口又称细水口,常用于三板模的浇注系统,熔体可由型腔任何位置一点或多点地进入型腔。适合PE、PP、PC、PS、PA、POM、AS、ABS等多种塑料。 点浇口优点: (1)位置有较大的自由度,方便多点进料。 (2)浇口可自行脱落,留痕小。 (3)浇口附近残余应力小。 (4)本浇口对桶形,壳形,盒形制品及面积较大的平板类制品的成型非常适用。 本塑件属于小型塑件,为盒盖形,用一模多腔,其表面要求较高,要求从中心进浇。结合上述对浇口的介绍本次应选用点浇口。 浇口位置的选择: (1)浇口位置尽量选择在分型面上,以便于清除及模具加工,因此能用侧浇口时不用点浇口。 (2)浇口位置距型腔各部位距离相等,并使流程最短,使熔体能在最短的时间内同时填满型腔的各部位。 (3)浇口位置应选择对型腔宽畅、厚壁部位,便于补缩,不致形成气泡和

GATE-浇口设计

技术专栏 : 塑料射出成型模具的浇口设计 浇口(Gate)在射出成型模具的浇注系统(Feed System)中是连接流道(Runner)和型腔(Cavity)的熔胶通道。浇口设计和塑件质量有着密不可分的关系。 1. 浇口的位置和数目 1.1. 浇口位置与喷流(Jetting)的关系 浇口若能布置成冲击型浇口 -- 也就是使得进浇后的塑料熔体立刻冲击到一阻挡物(如型腔壁、芯型销等),让塑流稳定下来,就可以减少喷流的机率。 1.2. 浇口的位置和数目与熔接线(Weld Line)的关系 熔接线是两股熔胶的波前(Melt Front)相遇后所形成的线条。就塑件的外观或是强度而言,熔接线都是负面的。 每增加一个浇口,至少要增加一条熔接线,同时还要增加一个浇口痕(Gate Mark)、较多的积风(Air Trap)以及流道的体积。所以在型腔能够如期充填的前提下,浇口的数目是愈少愈好。为了减少浇口的数目,每一浇口应在塑流力所能及的流动比之内(Flow Length to Thickness Ratio),找出可以涵盖最大塑件面积的进浇位置。 更改浇口位置以后,能够将熔接线自敏感处移除为上策。如果熔接线无法移除,那么增加波前的熔胶温度(Melt Temperature);或是减少两相遇波前的熔胶温度差(Melt Temperature Difference);或是增加两波前相遇后的熔胶压力(Melt Pressure);或是增加熔胶波前相遇时的遇合角(Meeting Angle),都可以改善熔接线的质量。 1.3. 浇口的位置和数目与积风(Air Trap)的关系 积风是型腔内的空气和熔胶释出的气体被熔胶包围后的缺陷。积风的存在,重则导致短射(Short Shot)或焦痕(Burn Mark),轻亦影响外观和强度。 每增加一个浇口,就会增加积风发生的机率。当塑件厚薄差异大时,如果浇口位置设置不当,就会因为跑道现象(Race Track Effect)而导致积风。 1.4. 浇口位置与迟滞效应(Hesitation Effect)的关系 迟滞效应是熔胶流到厚薄交接处的时候,由于薄处的流阻较大,而在该处阻滞不前的效应。这种效应重则产生短射,轻亦形成迟滞痕(亦即高残余应力带)。 浇口应置于距离可能发生迟滞效应的最远处,以消除或减轻迟滞。 1.5. 浇口位置与缩痕(Sink Mark)和缩孔(Void)的关系 浇口应置于厚壁处以确保补缩的塑流(Compensation Flow)能够维持得最久,厚壁处才不会因为较大的收缩,而使得缩痕和缩孔更容易发生。 1.6. 浇口位置与溢料(Flash)的关系 型腔布置和浇口开设部位应立求对称,防止模具承受偏载而产生溢料现象。如(图一)所示,b) 的布置较之a)为合理。 1.7. 浇口位置与流动平衡(Flow Balance)的关系 就单型腔模具而言,熔胶波前于同一时间抵达型腔各末端,就叫做流动平衡。流动平衡的设计使得熔胶的压力、温度以及体积收缩率的分布比较均匀,塑件的质量较好。所以浇口位置的选择以是否达成流动平衡为准。 流动平衡与否,可以模拟充模的CAE进行确认。对浇口数目相同但是浇口位置不同的设计而言,能以最小的射压 (Injection Pressure)和锁模力(Clamp Force)充模的设计是流动最平衡的设计。

注塑模具浇口设计说明

浇口类型 选择浇口类型和选择最佳的浇口尺寸以及浇口位置一样重要。浇口类型可分为人工和自动去除式浇口。 人工去除式浇口 人工去除式浇口主要是指那些要求操作者在进行制件再加工时将其与流道分离。使用人工去除式浇口的原因有: ?浇口体积过大,以至于当模具打开时无法从制件处剪切。 ?一些剪切敏感的材料(如PVC)不能存在高剪切率,从而不能应用自动去除式浇口设计。 ?在穿过较宽处的时候,为了保证流动分布的同时性,以达到特定的分子纤维排列,通常不使用自动浇口去除方式。 型腔的人工去除式浇口类型包括: ?注道式浇口 ?边缘浇口 ?凸片浇口 ?重叠式浇口 ?扇形浇口 ?薄膜浇口 ?隔膜浇口 ?外环浇口 ?轮辐或多点浇口 自动去除式浇口 自动去除式浇口的特点是,在打开制模模具顶出制件的过程中,可以切断或剪切浇口。自动去除式浇口应用于: ?避免在再加工时去除浇口 ?保持所有顶出的周期时间一致 ?浇口残留最小化 自动去除式浇口包括: ?针点浇口 ?潜入式(隧道式)浇口 ?热流道浇口 ?阀门浇口 注道浇口

推荐这种浇口应用于单型腔模具或要求对称充填的制件。这种类型的浇口适合于较大壁厚处,这样保压压力将更为有效。较短的浇口最好,这样模具充填更为快速,且压力损失较低。浇口另一侧需配备一个冷料井。使用这种浇口的劣势在于,流道(或注道)被修整之后,制件表面会产生浇口痕迹。可以通过制件厚度来控制凝固,但凝固并不取决于制件厚度。一般而言,在注道浇口附近的收缩率较低,而注道浇口处的收缩率较大。这会导致浇口附近具有较高的拉伸应力。 尺寸 起初,注道直径由机器射嘴来控制。该注道直径必须比射嘴口直径大 0.5mm左右。标准注道衬套的锥度为2.4度,开口面向制件。因此可以通过注道长度来控制制件处附近的浇口直径,该直径应当比该处壁厚至少大 1.5mm或约为该处壁厚的两倍。注道和制件的连结点应为放射状的,以避免应力裂化。 ?锥角较小(最小为1度),可能导致在喷射过程中注道无法与注道衬套脱离。 ?锥度较大,造成材料浪费且冷却时间延长。 ?非标准注道锥度,更昂贵而收益很少。 注道浇口 边缘浇口 边缘浇口或侧边浇口适用于具有中等厚度和较厚的部分,也可用于多型腔双板模具中。浇口位于分型面处,制件从侧边、顶部或底部进行充填。 尺寸 浇口尺寸一般为制件厚度的80%至100%,最大为3.5mm,宽度为1.0至12mm。浇口段长度不超过1.0, 0.5mm 最佳。 边缘浇口 凸片浇口 凸片浇口一般用于扁平的薄制件,以减少型腔内的剪切应力。应用凸片浇口,在注塑成型后进行修剪,可以将浇口附近的高剪切应力限制在辅力片上。凸片浇口通常用于精密注塑成型。 尺寸

注塑模具的设计过程

注塑模具的设计过程 注塑模具的设计过程 注塑模具是一种生产塑胶制品的工具;也是赋予塑胶制品完整结构和精确尺寸的工具。下面yjbys为大家分享的是注塑模具的设计过程,仅供参考! 一.浇注系统的组成 普通的流道系统(Runner System),也称作浇道系统,或是浇注系统,是熔融塑料自射出机射嘴(Nozzle)到模穴的必经通道。流道系统包括主流道(Primary Runner)、分流道(Sub-Runner)以及浇口(Gate)等。 1.主流道 也称作主浇道、注道(Sprue)或竖浇道,是指自射出机射嘴与模具主流道衬套接触的部分起算,至分流道为止的流道。此部分是熔融塑料进入模具后最先流经的部分。 2.分流道 也称作分浇道或次浇道。随模具设计,可再区分为第一分流道(First Runner)以及第二分流道(Secondary Runner)。分流道是主流道至浇口间的过渡区域,能使熔融塑料的流向获得平缓转换;对于多模穴模具,同时具有均匀分配塑料到各模穴的功能。 3.浇口 也称为进料口,是分流道和模穴间的狭小通口,也是最为短小肉薄的部分。其作用在于利用紧缩流动面而使塑料达到加速的效果,高剪切率可使塑料流动性良好(由于塑料的切变致稀特性);黏滞加热的升温效果也有提升料温、降低黏度的作用。 在成型完毕后,浇口最先固化封口,有防止塑料回流,以及避免模穴压力下降过快,使成型品产生收缩凹陷的功能。成型后,则方便剪除,以分离流道系统及塑件。 4.冷料井

也称作冷料穴。目的'在于储存补集充填初始阶段较冷的塑料波前,防止冷料直接进入模穴,影响充填品质或堵塞浇口。冷料井通常设置在主流道末端,当分流道长度较长时,在末端也应开设冷料井。 二.浇注系统设计的基本原则 1.模穴布置(Cavity Layout)的考虑 1)尽量采用平衡式布置(Balances Layout); 2)模穴布置与浇口开设力求对称,以防止模具受力不均产生偏载,而发生撑模溢料的问题; 3)模穴布置尽可能紧凑,以缩小模具尺寸。 2.流动导引的考虑 1)能顺利地引导熔融塑料填满模穴,不产生涡流,且能顺利排气; 2)尽量避免塑料熔胶正面冲击直径较小的型芯和金属嵌件,以防止型芯位移(Core Shift)或变形。 3.热量散失及压力降的考虑 1)热量损耗及压力降越小越好; 2)流程要短; 3)流道截面积要够大;

模具注塑浇口位置的正确选取

不正确的浇口位置 浇口位置对流动熔料前沿的形状和保压压力的效果都起着决定性作用,因此也决定了模制零 件的强度和其它性能。 鉴于浇口的位置通常是同注塑零件设计人员和模具设计人员指定的,因此本文特别为这些人 员而撰写。不过,注塑加工厂商也应从计划阶段开始参与,以避免出现那些可以预见的问题。浇口位置不当可能导致的不利影响 半晶质工程聚合物制成的零件即使设计正确,但如果浇口位置不正确,其性能也可能遭到破 坏。无论是增强型树脂还是非增强型树脂,以下症状都明显说明了其性能受到影响:流动熔 料前沿形状导致的熔合线和空气气穴都可能影响零件的外观,特别是增强纤维材料,其机械 性能将会受到影向。更改加工条件对这些影响也是无济于事。 如果浇口设在模制件的较薄部分,厚壁的部分会形成收缩痕迹和空隙。尽管厚壁部分需要更 长的保压时间,但由于材料在薄壁部分结晶较快(图1),厚壁部分将不再有熔料供应。结果 是,除了会产生光学和机械问题之外,还会在厚壁区域增大收缩量,在非增强型塑料中甚至 会导致翘曲变形。 如果浇口过少并且位置不当,熔料的流动距离可能过长以及注射填充压力过高。若模具锁定 力不足,或者所使用的聚合物粘度低并且结晶速度过慢,这种情况可能导致飞边的增加。 另外,加工工艺“窗口”受到很大限制,因此不再能够通过模制条件微调误差。

最佳浇口位置建议 ★必须将浇口设计在壁厚最大的区域。 ★浇口不能设在高应力区域附近。 ★对于长零件,特别是增强型配混料,如电动机可能,应该沿纵向而不是沿横向或在中心设置浇口。 ★如果在两个或以上的型腔,零件和浇口应与沿注道对称布置。 ★轴向对称零件,例如齿轮、盘、叶片等,最好使用隔板浇口并且应在中心设置浇口,或者在三板模具上设多个浇口,以获得良好的实际流动特性。 ★有一体式铰接的零件在布置浇口时,应使熔合线远离铰接点。在任何情况下。都应避免将熔料停止流动部分设计在铰接点附近。 ★杯形零件(例如小壳体、电容器杯等)的浇口应设计在底座附近,以避免产生空气气穴。 ★对于管形零件,应使熔料首先填充一端的圆周,然后再填充管本身的全长部分。这样,可使熔料流动前沿避免产生不对称形状。 ★在塑孔栓、熔出型芯和其它金属镶嵌件周围镶嵌模塑时,熔化的树脂应能够在镶嵌件周围流动,以尽可能减少镶嵌件位置的不准确。 ★对于不可见缺陷(例如浇口痕迹)的外露表面,可以将浇口设在内部,用遂道式浇口供料至弹出销上。 ★在复杂的零件及具有不同形状的多型腔模具上,浇口位置应尽可能使熔料流动前沿在填充过程中避免产生短暂停止。 这些建议显然并不能函盖所有应用情况,在实际情况中总是要妥协以求得平衡,这取决于具体模制工艺的复杂程度。不过,应在计划阶段就尽可能深入地考虑我们的上述建议。模拟模具填充试验对该情况极为有帮助,应尽可能采用。

课程设计 手机壳注塑模具设计

主要阐述手机壳的注塑模设计,提供了使用 PRO/E软件进行整个注塑模设计 的流程,以及塑件的CAE分析。 手机壳、塑料、注塑模、PRO/E模具设计 该同学在手机外壳的注射模具设计中,经过认真调研和方案论证,确定了具体设计方案, 在产品造型上有较强的创新意识,深入钻研每个重要环节,对产品的可行性和工艺进行了详细分析。采 用Pro/E+EMX建立模型并进行模型的受力分析,模拟模型在现实情况下的使用情况,并得出模型检验 结果,以认真负责的工作态度出色的完成了整个注塑模设计的全过程,具备了设计人员应有的基本素质 和能力。 一.调研报告 1.手机壳的造型结构发展状况 移动电话的普及速度大大超越了专家的预测与想象。它已从最初的模拟系统发展到目前 的数字系统。在此期间,移动电话的功能越来越丰富,体积越来越小,造型越来越美观,充 分体现了技术与艺术结合。除了最基本的实用功能外,移动电话还要考虑美观和舒适,在设 计上必须充分考虑使用对象、使用场合、功能要求、人机工效学等因素。2.材料确定 PC/ABS合金在汽车、机械、家电、计算机、通讯器材、办公设备等方面获得了广泛应

用,如移动电话的机壳、手提式电脑的外壳、以及汽车仪表盘〔板)等。资料显示:PC/ABS 已广泛应用于制造手机外壳。 3.薄壳制品与模具设计 薄壳制品成型时模具设计是至关重要的一步。成型薄壳制品时需要特别设计的薄壳件专 用模具。与常规制品的标准化模具相比,薄壳制品模具从模具结构、浇注系统、冷却系统、 排气系统、脱模系统都发生了重大变化,成本也增加了30%---40% 4.塑件选择 据调查,东亚尤其是中国的用户对于翻盖手机却相当青睐,在中国市场销售的全部手机 中,翻盖手机的数量超过了一半。国产手机厂商了解本土消费者的心理,摒弃欧美崇尚的直 板机而主推折叠机,开发出符合东方人审美趣味的机型,款式漂亮,内容丰富,得到了广大 消费者的喜爱。针对以上情况,选用翻盖式手机壳注塑模设计。 二、产品工艺分析 1 .产品造型设计 塑件的选择:女性翻盖手机 本人负责的部分是翻盖部分,翻盖部分的特点是上盖采用复杂曲面设计,上下盖的分型 面都比较复杂,而且下盖需要侧向抽芯。见图1: a)

注塑模具浇口型式及选择

注塑模具浇口型式及选择 塑料模具的浇口就是指连接分流道与性强之间的一段细短流道,就是树脂注入型腔的入口。在模具中浇口的形状、数量与尺寸与位置等会对塑料件的质量产生很大影响。所以浇口的选择就是塑料模具设计的关键点之一,下面通过几个方面对于浇口进行介绍。 一、浇口的主要作用有: 1、型腔充满后,熔体在浇口处首先凝结,防止其倒流。 2、易于切除浇口尾料。 3、对于多腔模具,用以控制熔接痕的位置。 二、浇口的型式 浇口一般分为非限制性浇口与限制性浇口两种型式。限制性浇口又分为侧浇口、点浇口与盘环形浇口等3个系列。 2、1非限制性浇口。 非限制性浇口又叫直浇口(如图1所示)。其特点就是塑料熔体直接流入型腔,压力损失小进料速度快成型较容易,对各种塑料都适用。具有传递压力好,保压补缩作用强,模具结构简单紧凑,制造方便等优点。但去除浇口困难,浇口痕迹明显;浇口附近热量集中冷凝迟缓容易产生较大的内应力,也易于产生缩坑或表面凹缩。适用于大型塑件、厚壁塑件等。 图1直浇口型式 2、2限制浇口。 型腔与分流道之间采用一端距离很短、截面很小的通道相连接,此通道称为限制性浇口,它对浇口的厚度及快速凝固等可以进行限制。限制浇口的主要类型有: 2、2、1 点浇口。 点浇口就是一种截面尺寸特小的圆形浇口(如图2所示)。点浇口的特点有:1、浇口位置限制小;2、去除浇口后残留痕迹小,不影响塑件外观;3、开模时浇口可自动拉断,有利于自动化操作;4、浇口附件补料造成的应力小。缺点就是:1、压力损失大,模具必须采用三板模结构,模具结构复杂,并且要有顺序分模

机构,也可应用于无流道的两板模具结构。 图2 点浇口的型式 2、2、2潜伏式浇口。 潜伏式浇口就是由点浇口演变而来,其分流道开设在分型面上,浇口潜入分型面下面,沿斜向进入型腔,潜伏式浇口除了具有点浇口的特点外,其进料浇口一般都在塑件的内表面或侧面隐蔽处,因此不影响塑件外观,塑件与流道分别设置推出机构,开模时浇口即被自动切断,流道凝料自动脱落。 图3 外侧潜伏式浇口 图4 内侧潜伏式浇口 2、2、3侧浇口 侧浇口又叫边缘浇口,一般开设在分型面上,从型腔(塑件)外侧面进料(如图5所示)。侧浇口就是典型的矩形截面浇口,能方便的调整充模时的剪切速率与浇口封闭时间,因而也称之为标准浇口。侧浇口的特点就是浇口截面形状简单,加工方便,能对浇口尺寸进行精密加工;浇口位置选择灵活,以便改善充模状况;不必从注塑机上卸模就能进行修正;去除浇口方便,痕迹小。侧浇口特别适用于两板式多腔模具。但就是塑件容易形成熔接痕、锁孔、凹陷等缺陷,注塑压力损失大、对于壳体形塑件排气不良。 图5 侧浇口基本型式 2、2、4重叠式浇口 重叠式浇口又叫搭接浇口,基本上与侧浇口相同,但浇口不就是在型腔侧面边,而就是在型腔的一个侧面(如图6所示)。就是典型的冲击型浇口,可有效的防止塑料熔体的喷射流动。如成形条件不当,会在浇口处产生表面凹坑。切除浇口比较困难,会在塑件表面留下明显的浇口痕迹。 图8重叠式浇口基本型式

浇口位置选择

浇口位置的选择 浇口位置与数目对塑件质量的影响较大,选择浇口位置时应遵循如下原则: 1、避免塑件上产生缺陷 如果浇口的尺寸比较小,同时正对着一个宽度和厚度都比较大的型腔空间,则高速的塑料熔体通过浇口注入型腔时,因受到很高的剪切应力,将产生喷射和蠕动(蛇纹)等熔体破裂现象。 有两种办法克服喷射现象,一是加大浇口断面尺寸,降低熔体流速,从而避免产生喷射;二是采用冲击型浇口(附耳式浇口)。 2、浇口应开设在塑件截面最厚处 当塑件壁厚相差较大时,在避免喷射的前提下浇口应开设在塑件截面最厚处(远离薄壁部位),以利于熔体流动、排气和补料,避免塑件产生缩孔、缺胶或表面凹陷。 3、有利于塑料熔体流动 当塑件上有加强筋时,可利用加强筋作为改善熔体流动的通道(沿加强筋方向流动)。 4、有利于型腔排气 在浇口位置确定后,应在型腔最后充满处或远离 浇口的部位,开设排气槽或利用分型面、顶杆间隙等 模内活动部分的间隙排气。 5、考虑塑件受力状况 通常浇口位置不能设置在塑件承受弯曲负荷或受冲击力的部位;由于塑件浇口附近残余应力大、强度较差,一般只能承受拉应力,而不能承受弯曲应力和冲击力。 熔体 熔体 不良设计 较佳设计

6、增加熔接痕牢度 塑料熔体在型腔内的汇合处常会形成熔接痕,导致该处强度降低,浇口位置和数量决定着熔接痕的数量及位置,因此正确选择浇口形式、位置及数量十分重要。浇口数量增多,熔接痕增多;当流程不长时,不必开设多个浇口,将轮辐式浇口改为盘形浇口,可以消除熔接痕。此外,还应重视熔接痕的位置,为了增加熔接痕牢度,可以在熔接痕处的外侧开设冷料井,使前锋冷料溢出;对大型框架形塑件,可以增设过渡浇口。 7、流动定向对塑件性能的影响 佳 张力 张力 夹水纹 浇口 不良 A B C E

注塑模具浇口位置的选择

注塑模具浇口位置的选择 浇口位置与数目对注塑加工件质盈有极大影响,在选择浇口位景时应遵循如下原则: (1)避免制件上产生喷射等缺陷浇口的尺寸比较小,如果正对着一个宽度和厚度都比较大的充填空间,则高速的塑料熔体通过浇口注人型腔时,将受到很高的剪切应力,会产生喷射和蠕动(蛇形流)等现象,形成塑料制品内部和表面的缺陷。同时喷射还会使型腔内空气难以排除,造成注塑加工件内有空气泡,甚至在某角落出现焦痕。避免喷射有两种方法,一是加大浇口截面尺寸,降低熔体流速;二是采用冲击型浇口,改善塑料熔体流动状况。 (2)浇口应开设在注塑加工件截面最厚处当注塑加工件壁厚相差较大时,在避免喷射的前提下,浇口开设在注塑加工件截面最厚处,以利于熔体流动、排气和补料,避免产生缩孔或表面凹陷。 (3)有利于塑料熔体流动当注塑加工件上有加强筋时,可利用加强筋作为改普流动的通道(沿加强筋方向流动),防止注不满。 (4)有利于型腔排气在浇口位置确定后,应在型腔最后充填处或远离浇口的部位,开设排气槽;或利用分型面、推杆间隙等模内的活动部分排气。图6-19为一盖形注塑加工件,四周壁厚,顶部壁薄,若采用侧浇口,则顶部最后填完,易形成封闭气囊,如图6-19 (a)所示,留下明显的熔接痕或焦痕,改进的办法有增加制品顶部的厚度图6-19 (b),改变浇口的位v图6-19 (c)。 (5)考虑塑件使用时的载荷状况(受力状况)通常浇口位置不能设置在塑件承受弯曲载荷或受冲击力的部位,原因在于塑件浇口附近残余应力大、强度差,一般能承受拉应力,不能承受弯曲应力和冲击力。 (6)减少或避免塑件的熔接痕,增加熔接牢度塑料熔体流动前沿的汇合处常会形成熔接痕,导致该处强度降低。浇口位置和数量决定着熔接痕的数量及位置,一般说来,浇口数增多,熔接痕增多。当流程不长时,不必开设多个浇口。将轮辐式浇口改为盘形浇口,可以消除熔接痕。此外.还应重视熔接痕的方位,图6-20 (a)中,熔接线与小孔在一个方位,大大降低了制品的强度,相比之下,图6-20 (b)浇口位置较为合理。 (7)考虑分子取向对塑件性能的影响塑料熔体在型腔内流动产生流动取向,并有一部分保留在塑件内,使塑件具有各向异性,设计时应考虑分子取向的影响。图6-21是一个口部带有金属嵌件的聚苯乙烯杯子。当浇口开设在A处时,分子取向方向与周向应力方向垂直,杯子容易产生应力裂纹;当浇口开设在B处时,分子定向方向与周向应力方向一致,则应力开裂现象大大减少。在特殊悄况下,如聚丙烯铰链盒,铰链处要经受住几千万次的弯折.则要求该处要充分利用分子取向。 (8)考虑浇口位里和数目.对塑件成型尺寸的影响平板形塑件翘曲变形的原因在于垂直和平形于流动方向上的收缩率不同而致。如改用多点浇口或平缝式浇口,则可有效地克服这种翘曲变形。 对于大型圆盘形或箱式壳体塑件,通常采用多点浇口,以减少翘曲变形。如用30%玻璃纤维增强的PBTP

怎样选择浇口的位置

怎样选择浇口的位置? 浇口的位置对制品质量有直接影响,在确定浇口位置时需遵守以下几个原则。 1、浇口应尽量开设在塑件截面最厚处,这样,浇口处冷却较慢,有利于熔料通过浇口往型腔中补料,故不易出现凹陷等缺陷。 2、浇口的位置应使熔料的流程最短、流向变化最小,能量损失最小,一般浇口处于塑件中心处效果较好。 3、浇口的位置应有利于型腔内气体的排出。若进入型腔的熔料过早地封闭了排气系统,会使型腔中的气体难以排出,以至影响制品质量,这时,应在熔料到达型腔的最后位置开设排气槽,以利排气。 4、浇口位置应开设在正对型腔壁或粗大型芯的位置,使高速熔料流直接冲击在型腔或型芯壁上,从而改变流向、降低流速,平稳地充满型腔,可消除塑件上明显的熔接痕,避免熔体出现破裂。 5、浇口的数量切忌过多,若从几个浇口进入型腔,产生熔接痕的可能性会大大增加,如无特殊需要,不要设置两个以上浇口。 6、浇口位置应使熔料流从主流道到型腔各处的流程相同或相近,以减少熔接痕的产生。 7、对于有型芯或嵌件的塑件,特别是有细长型芯的筒形塑件,应避免偏心进料,以防型芯弯曲或嵌件移位。 8、浇口的位置应避免引起熔体断裂的现象,当小浇口正对着宽度和厚度很大的型腔时,高速熔料流通过浇口会受到很高的剪切应力,由此产生喷射和蠕动等熔体断裂现象。而喷射的熔体易造成折叠,使制品上产生波纹痕迹。 9、塑料熔体在通过浇口高速射入型腔时,会产生定向作用,浇口位置应尽量避免高分子的定向作用产生的不利影响,而应利用这种定向作用对塑件产生有利影响。 10、在确定一种模具的浇口位置和数量时,须校核流动比,以保证熔体能充满型腔,流动比是由总流动通道长度与总流动通道厚度之比来确定。其充许值随熔体的性质、温度、注射压力等不同而变化。 11、对于平板类塑件,由于它易于产生翘曲,变形,这是因为它在各方向上的收缩率不一致而引起,若采用多点浇口,效果要好得多。 12、对于框架式塑件,可按对角设置浇口,可改善因收缩引起的塑件变形。 13、对于圆环形塑件,浇口应安置在切向,可减少熔接痕,提高熔接部位强度,并有利排气。 14、对于壁厚不均匀的塑件,浇口位置应尽量保持流程一致。避免产生涡流。 15、对于壳体塑件,可采用中心全面进料的浇口布置,可减少熔接痕。 16、对于罩形、细长筒形、薄壁形塑件,为防止缺料,可设置多个浇点,并设置工艺筋。 上述浇口位置的选择原则,在应用时可能会产生矛盾,这时需根据实际情况灵活处理。什么是直浇口,其特点和应用如何? 直浇口,又叫中心浇口、直接浇口、大浇口,其结构形式,它一般处于塑件中心,在多型腔模具中又叫进料口,在单型腔模具中,熔体可直接进入型腔。 一、直浇口的优点 1、熔体从喷嘴直接通过浇口进入型腔,流程最短,进料速度快,成型效果好。 2、直浇口的截面一般较大,因此,压力和热量损失都较小,保压补缩作用强。 3、模具结构简单,易于制造,成本较低。 二、直浇口的缺点 1、直浇口的截面积大,将浇口去除较困难,且浇口去除后痕迹明显,影响制品美观。 2、浇口部位熔体多,热量集中,冷却后内应力大,易产生气孔及缩孔缺陷。

模具浇口设计

模具浇口设计 1、从流道来的熔融塑料以最快的速度进入充满型腔。 2、型腔充满后,浇口能迅速冷却封闭,防止型腔能还未冷却的塑料回流。浇口的设计和塑件的尺寸、形状模具结构,注射工艺条件及塑件性能等因素有关、但是根据上述两句基本作用来说,浇口截面小,长度要短,因为只有这样才能满足增大流料速度,快速冷却封闭,便于塑件分离以及浇口残痕最小等要求、「浇口」(Gate)对於成形性及内部应力有较大的影响,通常依据成形品的形状来决定适当形式,可分为「限制浇口」与「非限制浇口」两大类、限制性浇口是整个浇注系统中截面尺寸最小的部位,通过截面尺寸的突然变化使分流道送来的塑料熔体产生突变的流速增加,提高剪切速率,降低粘度,使其成为理想的流动状态,从而迅速均均衡的充满型腔、对于多型腔模具,调节浇口的尺寸,还可以使非平衡布置的型腔达到同时进料的目的,提高塑件质量、另外限制性浇口还起着较早固化防止型腔中的熔体倒流的作用, 加工容易,易从浇道切断成形品,可减少残留应力、又可分为「侧状浇口」(Side Gate)、「重叠浇口」(Overlap Gate)、「凸片浇口」(Tab Gate)、「扇形浇口」(Fan Gate)、「膜状浇口」(Film Gate)、「环形浇口」(Ring Gate)、「盘状浇口」(Disk Gate)、「点状浇口」(Point Gate)及「潜状浇口」(Submarine Gate)等非限制性浇口是由竖浇道直接将塑料注入模穴的浇口,整个浇注系统中

截面尺寸最大的部位,它主要是对中大型筒类,壳类塑件型腔起引 料和进料后的施压作用、浇口的种类、位置、大小、数目等,直 接影响成形品的外观、变形、成形收缩率及强度,所以在设计上 应考虑下列事项: 在注塑模设计中, 按浇口的结构形式和特点,常用的浇口形式有如下几种: 1、直接浇口既是主流道浇口,属于非限制性浇口、塑料熔 体由主流道的大端直接进入型腔,因儿具有流动阻力小,流动流程 短及补给时间长等特点、但是也有一定的缺点如进料处有较大的 残余应力而导致塑件翘曲变形,由于浇口较大驱除浇口痕迹较困难,而且痕迹较大,影响美观、所以这类浇口多用于注射成型大,中型 长流程深型腔筒型或翘型塑件,尤其适合与如聚碳酸脂,聚砜等高 粘度塑料、另外,这种形式的浇口只适合于单型腔模具、在设计 浇口时,为了减小与塑件接触处的浇口面积,防止该处产生缩口,变形等缺陷,一方面应尽量选用较小锥度的主流道锥角a(a=2~4度),另一方面尽量减小定模板和定模座的厚度、这样的浇口有良好的 熔体流动状态,塑料熔体从型腔底面中心部位流向分型面,有利于 排气;这样的形式使塑件和浇注系统在分型面上的投影面积最小,模具结构紧凑,注射机受力均匀、直接澆口(Direct Gate)或大水口(Sprue Gate)、澆道直接供應塑料到制成品、澆道黏附在制成品上、在兩板的工模、大水口通常是一出一隻,但在三板模或熱流道工模的設計上,可以一啤多隻。缺點:在制成品表面形成水口

moldflow6.1中文教程第8 章 最佳浇口位置和流道平衡分析实例

第8 章最佳浇口位置和流道平衡分析实例在moldflow中,系统从产品上进浇点开始分析熔融塑胶在型腔内部的流动行为。熔融塑胶在型腔内的流动形态在很大程度上决定了产品的成型质量。在产品造型和成型材料已定的情况下,合理的进浇位置是决定熔融塑胶在型腔内流动形态的关键因素。如果要成型质量上乘的产品,就必须在产品上选择最佳进浇位置。最佳进浇位置可以保证平衡的流动路径和均衡的压力分布。合理地选择浇口的数量与位置可以使注射压力和保压压力有效传递,达到预期的产品成型效果。 当一副模具同时成型几个形状和尺寸不同的产品时,浇注系统的尺寸就很难控制,容易出现模穴之间填充不平衡、个别型腔过保压、产品残余应力过大等问题。这时可以通过moldflow 的“流道平衡”分析功能优化流道的尺寸,保证各个型腔同时完成填充,同时使流道的尺寸最小化,节约塑胶原料成本。 8.1 最佳浇口位置分析 最佳浇口位置分析可以找出产品上最佳进浇位置。如果产品上没有设定进浇点,在已定塑胶材料的情况下,最佳浇口位置分析会产生一个最佳进浇位置;如果产品上需要两个或几个浇口,在给定塑胶材料的情况下,最佳浇口位置分析会多个最佳进浇位置,以满足产品整体填充平衡。 最佳浇口位置分析设置过程如下: 1. 选择成型工艺。点击案例浏览区“分析”按钮,点击“设置成型工艺”中“热塑性注塑成型”。 2. 点击菜单栏“分析”按钮,点击“设置分析顺序”中“浇口位置”,或直接点 击案例浏览区“设置分析顺序”指令按钮

验”的分析。点击“确定”,分析正式开始。勾选案例浏览区中“日志”,用鼠标将主窗口下边缘向上拖动直到顶部,查看屏幕输出结果。 8.2 最佳浇口位置分析结果解析 图 8-2 最佳进浇位置显示 勾选,在主窗口显示产品模型。红色区域为最佳进浇位置, 相比之下,其它颜色区域进浇合理性均低于红色区域,其中蓝色区域进浇合理性最差,如图8-2 所示。在案例浏览区点击“工艺”,将主窗口下边缘向上拖动,在屏幕结果输出中查看经系统得出的最佳进浇点,如8-3所示,显示本产品的最佳进浇点在节点N9560附近。 图 8-3 最佳进浇点 查看最佳进浇点位置,点击“建模”工具条上“查询实体”按钮

相关主题