搜档网
当前位置:搜档网 › 智能控制课程设计(报告)

智能控制课程设计(报告)

智能控制课程设计(报告)
智能控制课程设计(报告)

HUNAN UNIVERSITY 智能控制课程设计(报告)

课程设计题目:基于模糊控制光伏并网发电系

统的研究

学生姓名:

学生学号:

专业班级:

学院名称:

指导老师:

2017年5月 30 日

目录

第1章绪论 (1)

第2章光伏并网发电系统MPPT的研究进展 (2)

光伏发电系统最大功率跟踪控制 (2)

几种最大功率点跟踪方法的比较 (3)

第3章光伏并网发电系统MPPT模糊控制器 (7)

模糊化 (7)

模糊控制规则库的建立 (7)

解模糊 (7)

第4章 MPPT模糊控制器设计 (8)

选择观测量和控制量 (8)

输入量和输出量的模糊化 (8)

制定模糊规则 (9)

求解模糊关系 (9)

进行模糊决策 (10)

控制量的反模糊化 (10)

第5章模糊控制光伏并网发电系统仿真 (11)

附录 (15)

第1章绪论

在应对全球能源危机和保护环境的双重要求下,开发利用清洁可再生的太阳能越来越受到人们的关注。伴随着太阳能光电转换技术的不断发展,大规模的利用太阳能成为可能。光伏并网发电系统将成为太阳能利用的主要形式。目前,转换效率低是光伏并网发电系统面临的主要问题,这成为阻碍光伏并网发电系统广泛应用的一个重点问题。智能控制是这门新兴的理论和技术,它是传统控制发展的高级阶段,主要用来解决那些用传统方法难以解决的复杂系统的控制。智能控制包括专家系统、神经网络和模糊控制,而模糊控制是目前在控制领域中所采用的三种智能控制方法中最具实际意义的一种方法。在光伏系统MPPT控制中,由于外界光照强度和温度变化的不确定性以及并网逆变器的非线性特性,则使用模糊逻辑的MPPT控制方法进行控制,有望获得理想的控制效果。

随着近年智能控制的不断发展和完善,模糊控制技术也日趋成熟,被人们广泛接受。模糊控制的优点很多,例如:模糊控制器设计简单,不需要依赖被控对象的精确数学模型;模糊规则用自然语言表述,易于被操作人员接受;模糊控制规则可以转换成数学函数,易与其他物理规律结合,便于用计算机软件实现;模糊控制抗干扰能力强,且响应快,对复杂的被控对象能有效控制,鲁棒性和适应性都易达到要求。模糊控制以其适应面广泛和易于普及等特点,成为智能控制领域最重要,最活跃和最实用的分支之一。目前,模糊控制已经在工业控制领域、经济系统、人文系统以及医学系统中解决了传统控制方法难以解决甚至无法解决的实际控制问题。本文正是基于光伏发电系统存在的处理复杂,外界不确定因素多等特点,将模糊控制理论应用于光伏发电最大功率跟踪系统中,跟踪系统最大功率工作点,提高光电转换效率,充分利用太阳能资源。

本文以光伏并网发电系统最大功率点跟踪为研究对象,将模糊控制理论应用于光伏并网系统最大功率跟踪控制中,从光伏阵列的原理和特性、光伏并网系统的结构设计、最大功率点跟踪的原理和模糊控制理论等方面进行详细的分析和探讨。本设计报告比较多种最大功率点跟踪控制技术,实现光伏并网发电系统的研究,根据其不同的优缺点,

然后选用模糊控制方法来实现最大功率跟踪。通过对模糊论域、隶属度函数计算,制定处模糊规则,设计出模糊控制器。最后建立光伏并网发电系统仿真模型,并对仿真结果进行了分析。

第2章光伏并网发电系统MPPT的研究进展

太阳能电池在工作时,随着日照强度、环境温度的不同,其端电压将发生变化,使输出功率也产生很大变化,故太阳能电池本身是一种极不稳定的电源。如何能在不同日照、温度的条件下输出尽可能多的电能,提高系统的效率,这就在理论上和实践上提出了太阳能电池阵列的最大功率点跟踪问题。

在太阳能光伏发电系统的开发和应用过程中,由于太阳能电池的转换效率比较低,所以对于其最大功率跟踪技术的研究一直是这一课题的重要内容,现已取得了多种控制算法。常用的最大功率点跟踪(MPPT)方法有如下几类:功率扰动观察法、滞环比较法、增量电导法、固定电压控制法、人工神经网络法气由于微处理器、以及各种数字控制器的飞速发展,人们将MPPT算法与逆变器统一起来以并网发电系统的最优效率作为出发点研究最大功率点的跟踪控制,从而提出了多种有效的MPPT控制方法。

光伏发电系统最大功率跟踪控制

光伏阵列是一种非线性的电源,所以在利用光伏发电的过程中,必须尽量避免外界

环境的影响它不仅受日照辐射度、结点温度的影响,也受到它所接的负载的影响,所以为了实现能量的高效利用,并且降低成本,提高光伏发电系统的效率,我们必须采用最大功率跟踪控制技术,来使系统输出尽可能大的功率,可供我们使用。

图1 光伏电池电流(功率)-电压曲线

图1 光伏电池电流(功率)-电压曲线,曲线1 是I-U 曲线,曲线2 是P-U 曲线,从这一曲线我们可以看出,在光照强度和温度不变的情况下,光伏电池的功率—电压曲线是一个单峰值曲线,只有一个最高点,这个最高点就是最大功率点,我们的目的就是让光伏电池工作在这一点处,这样输出的功率才会最大。而根据第二章介绍的光伏电池的等效电路可以看出,在理想状态下,当外接负载的阻抗和光伏电池的输出阻抗相等时,也就是我们常说的电路内阻和外阻相等时,光伏电池的输出功率最大。但是实际情况是光伏电池的内阻是随着外界环境的变化而变化的,如果有云遮挡或者温度变低,相应的光伏电池的输出阻抗也会跟着变动,所以这种方法对光伏发电系统是不可用的。所以就需要不断寻求新的方法来实现最大功率跟踪控制。而目前常用的两级式的光伏发电系统就是通过第一级的DC/DC 电路来实现最大功率跟踪控制。这一过程是通过改变直流变换电路中开关器件的通断时间,从而不断改变外接负载,实现最大功率跟踪。因此现在光伏发电的一大核心技术就是设计最大功率跟踪控制器。

在设计最大功率点跟踪控制器时,也需要设计直流变换电路、测量电路、控制电

路、采集电路等,我们需要根据实时地采集回来的光伏阵列的电压和电流,来进行计算功率,这就需要控制器中的乘法器,然后进行比较、调整和寻优,最终确定出光伏电池板向最大功率点不断靠近的变化工作点。其中,最大功率点跟踪算法有很多种,因为不同的算法其跟踪快慢、跟踪精度、跟踪效率、成本价格、稳定性都不相同,所以不同的算法有不同的优缺点。在实际应用中,可以根据不同的要求来选择不同的算法。这些算法主要有:扰动观察法、定电压跟踪法、电导增量法、滞环比较法、模糊控制法等,这些都是最大功率点跟踪的常用方法,下面对这些跟踪方法进行比较。

几种最大功率点跟踪方法的比较

扰动观察法

扰动观察法,俗称爬山法。这种方法比较简单,测量的参数很少,所以应用起来比较方便。其工作原理是:通过扰动光伏阵列的输出电压,采集出实时变化的电压电流值,然后计算出功率,与上一次扰动的结果比较,如果这次的功率值增加了,说明此次功率值更加接近最大功率点,则应该继续维持这一次的扰动方向,如果功率值减小了,则说明离最大功率点越来越远了,扰动方向应向相反的方向进行。要使光伏阵列的工作点越来越接近最大功率点,就需要这样反复的扰动、观察和比较。通过比较调整电路前后的光伏电池板的输出电压及功率的变化情况来调节DC/DC 电路的升压占空比,保持光伏系统输出最大功率。

其中,扰动过程中采用的步长可以是定步长也可以是变步长。如果采用的是定步长扰动,则当步长较短时,光伏系统在最大功率点附近上下波动的幅度越小,那么能量的损失就会小,但是由于步长较短,所以需要扰动的次数就会多,所用的跟踪时间就会更长。相反地,如果采用的步长较大,光伏系统在最大功率点附近振荡的幅度就越大,能量损失就比较多,而且其跟踪精度和速度就难以保证。这就是定步长扰动的特点。为了解决定步长这些缺点,可以采用变步长扰动方法。

定电压跟踪法

如图2所示,当温度一定时,根据不同光照的光伏电池板的P-U 曲线,连接出最大

功率线,可以看出最大功率点处的电压几乎都在某个固定的电压两侧,所以根据这一思路就可以将光伏电池输出电压控制在这一电压处,则系统将近似工作在最大功率点处。这种方法忽略了很多其他影响因素,所以实际上并不是工作在真正的最大功率点。

图2 光伏电池板的P-U-P 曲线图

电导增量法

电导增量法的工作原理也是依据最大功率点处的斜率为0 来运算的。当外界因素如光照强度或者温度发生变化时使用电导增量法来实现最大功率点跟踪比较有优势,因为电压的纹波系数相对来说会比较小,但是因为复杂的计算,会使这种算法的缺点显现。滞环比较法

功率扰动观察法的基本设计思想是进行扰动,并对扰动后的功率与未扰动的功率进行比较,通过判断功率的变化方向,来决定工作电压的移动方向。这种方法不仅会发生程序失序现象,还会造成比较多的扰动损失。由于太阳的日照量不会快速的变化,多余扰动会带来更多损失,滞环比较法可以避免这种缺陷。当日照量快速变化时,这种算法可以不用立即跟随并且快速移动工作点(避免干扰或误判错误),只需在日照量比较稳定时,再跟踪最大功率点,减少扰动损耗。

模糊控制法

模糊控制是智能化控制的一个重要分支,它的模糊基础是模糊语言、模糊集合理论、以及模糊逻辑推理。在控制系统中,它是一种非线性智能控制,是将模数学应用于控制系统。

模糊控制的形式一般为:“if条件,then结果"。它是用人的知识来控制控制对象。因此,又可称为语言控制。模糊控制可以利用人的经验或知识对控制对象模型无法用严密的数学表示时,进行控制。所以,模糊控制就是用人的智力来模糊地对系统进行控制的方法。

最大功率点跟踪(MPPT)通过测量电流、电压或者功率,对它们之间的变化关系进行比较,来决定峰值功率点与当前工作点之间的位置关系,然后控制电压(或电流)向峰值功率点靠近,直到达到峰值功率点,最后将电压(或电流)在峰值功率点一定范围附近来回摆动。由于工作点的来回摆动,使实际得到的平均功率比峰值功率稍低一点,差值就称作搜索损失,而这种将控制系统工作点保持在最优点附近的特点,正是自寻优控制特有的。负载的电池阵列的I—V特性或功率需求发生变化后,引起峰值功率点漂移或工作点偏移。这就要求最大功率点跟踪系统在探测到这种变化后,进行下一次寻优。最大功率点跟踪不用知道电池阵列的精确数学模型,也不用知道外界环境的温度和照度,只要在运行的过程中将可控参数的整定值不断改变,使当前的工作点向峰值功率点逐渐靠近,最后在峰值功率点附近工作。所以说,最大功率点跟踪本身就是个通过不断测量和调整来达到最优的过程,运用模糊自寻优的方法可以对最大功率点进行跟踪。选取光伏电池的输出功率为目标函数,可控量是控制变换器PWM信号占空比D。

第3章光伏并网发电系统MPPT模糊控制器

模糊控制器是模糊控制的核心部分。由计算机程序来实现控制器的控制规律。模糊控制算法实现的过程是:先对控制量采样,获得一个精确的被控制量。再将精确的被控量与给定值进行比较,得到一个误差信号E。一般选择误差信号E作为模糊控制器的一个输入量,将E的精确量变成模糊量,并可以用相应的模糊语言表示误差E的模糊量表示。使得到误差E的模糊语言集合中的一个子集e(e是一个模糊向量),再根据推理的合成规则进行模糊控制规则R和e的模糊决策。模糊控制量U如公式(3-1):

u=eR (3-1)

式中,u是一个模糊量,需要将模糊量u通过非模糊化转换处理为精确量,再经数模转换将精确的数字量转换成模拟量,送到执行机构,从而对被控对象进行精确控制,实现对被控对象的第一步控制;接着,进行第二次采样,完成第二步的控制??一直循环,就实现了对被控对象的模糊控制。

模糊控制的原理如下图3所示:

图3 模糊控制的原理

模糊控制是将被控量的测量值与给定值比较后得到的误差e作为输入,模糊控制可以由两个输入或三个输入,两个输入的是再加上误差e的变化率作为输入。将这些输入量经A/D 转换后作模糊化处理后,得出模糊变量,然后根据模糊规则来进行判断,将判断出的结果再进行清晰化处理,经过D/A 转换成能够用执行机构操作的模拟量,从而完成对被控对象的控制。

模糊化

模糊控制的应用中,被观测量一般是确定的量,即可以通过测量得到该确定量是精确的数值量并在一定精度范围内。由于模糊控制中的操作以模糊集合理论为基础。所以,必须先进行模糊化。比较常用的模糊化方法有线性划分法、非线性划分法、训练法、语义关系生成法。四种方法中,线性划分法是最简单的一种,它根据研究对象具体的情况,并选择对应的自然语言描述符号,再均匀地划分研究对象的论域。

3.2 模糊控制规则库的建立

模糊控制器设计的核心工作是确定模糊语言控制规则。根据输入和输出物理量的数目以及所需的控制精度来确定控制规则的多少。规则的数目随着语言变量级数的平方变化关系而快速增加,控制规则增多,推理质量就会下降。所以,在设计规则库时,要先确定控制规则数目和合适的语言变量级数以及建立正确的控制规则形式。建立模糊控制规则主要有四种方法:经验归纳法、根据手工操作系统的测量和观察生成控制规则、根据模糊模型的过程生成控制规则、根据算法的学习生成控制规则。前三种方法较直观、简单,也较常用,但也较粗糙。第四种方法较复杂,但控制性能方面比较好,一般用于控制要求比较高的系统。这种方法目前仍在发展。模糊算子的确定要涉及推理规则的运算。

解模糊

经过模糊推理得到的是一个模糊量,也可以看成是一个模糊集合,须经过精确化处理,才能对被控对象进行控制。解模糊是在模糊推理得到的模糊量中,求出一个相对来说最能代表这个模糊集合的单值过程。关于解模糊的方法有很多,较常用的有最大隶属度法、重心法、隶属度限幅元素平均法、系数加权平均法、中位数法等。

第4章 MPPT模糊控制器设计

选择观测量和控制量

一般选择偏差e,即目标功率和当前功率的差值作为观察量,选取占空比D为控制量。输入量和输出量的模糊化

将偏差e划分为5个模糊集,负大(NB)、负小(NS)、零(ZO)、正小(PS)、正大(PB),e为负表示当前水位低于目标水位,e为正表示当前水位高于目标水位。设定e的取值范围为[-3,3],隶属度函数如下图4 所示。

图4 偏差e隶属度函数

同样将控制量u划分为5个模糊集,负大(NB)、负小(NS)、零(ZO)、正小(PS)、正大(PB),u为负表示增大进水阀门S1的开度(同时减小出水阀门S2的开度),u为正表示占空比D。设定u的取值范围为[-4,4],隶属度函数如下图5所示。

图5 控制量u隶属度函数

制定模糊规则

模糊规则的制定是模糊控制的核心内容,控制性能的好坏很大程度上由模糊规则决定,目前主要是根据经验来制定相应的规则。

(1)若e负大,则u负大;

(2)若e负小,则u负小;

(3)若e为零,则u为零;

(4)若e正小,则u正小;

(5)若e正大,则u正大。

求解模糊关系

根据制定的模糊规则,通过相应的模糊集合运算,可得到模糊关系集合R。

进行模糊决策

我们最终需要获得的控制量u即为模糊控制的输出,u可由偏差矩阵e和模糊关系矩阵R合成得到。

u=eR

控制量的反模糊化

我们模糊决策得到的控制量u是一个矩阵,并不能直接应用在工程上,因此需要将u解释为实际中的特定行为,即反模糊化操作。

5、模糊控制光伏并网发电系统仿真

在matlab模糊控制工具箱中求解矩阵运算的操作,在Matlab 的Command Window 中输入fuzzy就能打开模糊控制编辑器,直接调用evalfis函数就得到相应的决策控制量图6所示。

图6 决策控制量

通过matlab集成的模糊控制模块,我们能够更加方便地对应偏差e和控制量u的关系,并可以调节e在不同值下u的对应输出图7所示。

图7 偏差e和控制量u的关系

程序如下: clear all; close all;

a = newfis('fuzzy MPPT'); a = addvar(a,'input','e',[-3,3]); a

=

addmf(a,'input',1,'NB','zmf',[-3,-1]); a

=addmf(a,'input',1,'NS','trimf',[-3,-1,1]); a

=addmf(a,'input',1,'ZO','trimf',[-2,0,2]); a

=addmf(a,'input',1,'PS','trimf',[-1,1,3]); a

=

addmf(a,'input',1,'PB','smf',[1,3]); a = addvar(a,'output','u',[-4,4]); a

=

addmf(a,'output',1,'NB','zmf',[-4,-2]); a

=addmf(a,'output',1,'NS','trimf',[-4,-2,0]);

a

=addmf(a,'output',1,'ZO','trimf',[-2,0,2]); a

=addmf(a,'output',1,'PS','trimf',[0,2,4]); a

=

addmf(a,'output',1,'PB','smf',[2,4]);

%建立模糊规则 rulelist=[1 1 1 1; 2 2 1 1; 3 3 1 1; 4 4 1 1; 5 5 1 1]; a = addrule(a,rulelist); %设置反模糊化算法

a1 = setfis(a,'DefuzzMethod','mom');

writefis(a1,'MPPT'); a2 = readfis('MPPT'); figure(1); plotfis(a2); figure(2);

plotmf(a,'input',1); figure(3);

plotmf(a,'output',1);

showrule(a); ruleview('MPPT'); for i=1:1:7 e(i)=i-4;

Ulist(i)=evalfis([e(i)],a2); end

打开MATLAB,根据前文介绍的模糊规则设计模糊控制器。根据设计的模糊控制器建立光伏阵列最大功率跟踪控制模型图8所示。

图8 光伏阵列最大功率跟踪控制模型

得出并网电流和并网电压波形图如图9所示.

图9 并网电流和并网电压波形

电流谐波含量THD 如图10所示。

图10 电流谐波含量THD

由仿真结果可以看出,直流母线电压400V,经过逆变桥、滤波电感后得出交流220V电压,从仿真结果可以看出并网电流与电网电压同相,完成并网。分析并网电流谐波分量THD 为%,满足并网要求。可以看出来模糊控制的最大功率跟踪控制方法的可行性,当光照强度发生变化时,模糊控制器能够实时得跟踪变化后的光伏阵列的输出参数,

并对之进行算法运算,然后控制,最后使系统快速工作在最大功率点处。模糊控制方法跟踪速度较快,反应灵敏,最后能使系统稳定在最大功率点处,虽然这个方法会有运算调节的时间延迟,但是控制性能较好,所以这个方法具有很大的优点。实际运用中可以针对这些缺点不断调节,进行改善,从而得到更好的控制结果。

附录

参考文献

[1] 孙龙林.单相非隔离型光伏并网逆变器的研究[D].合肥:合肥工业大学,2009:

[2] 柴文野.三相光伏发电并网系统及其控制方法的研究[D].合肥:安徽大学,2012:

[3] 王飞.单相光伏并网系统的分析与研究[D].合肥:合肥工业大学,2005:

[4] 田勤曼.光伏发电系统中最大功率跟踪控制方法的研究[D].天津:天津大学,2008:

[5] 王翔.6kW 单相光伏并网系统的研制[D].北京:北京交通大学,2012:

[6] 王晓曦.光伏并网发电系统的研究[D].哈尔滨:哈尔滨工业大学,2009:

[7]方波,陈兰莉.光伏电路的PSpice 仿真与实验研究[J].微型机与应用,2010,2:71-74.

[8]陈瑞睿.光伏并网发电系统运行控制技术研究[D].杭州:浙江大学,2013:

[9]王雨,邢晶.基于MATLAB 的光伏模块输出特性及MPPT 的建模与仿真[J].半

导体光电,2012,33(1):18-21.

基于单片机的智能电饭煲的控制毕业设计

华北水利水电学院 North China Institute of Water Conservancy and Hydroelectric Power 毕业设计 题目:基于单片机的电饭煲智能控制系统的设计

华北水利水电学院 毕业设计任务书 题目:基于单片机的电饭煲智能控制系统的设计 专业:电子信息工程 班级学号:200915512 姓名: 李玉平 指导教师:郑辉 设计期限:2011 年2 月21日开始 2011年5 月27日结束 院、系:信息工程学院 2011年2月21 日

一、毕业设计的目的 通过本次设计掌握产品设计的流程,能熟练的使用AT89C51单片机,并根据设计要求选择合适的元器件,充分理解相关软件,对整个产品设计时的调试等必要的环节有更深刻的体会。 本设计通过选认元件、连线焊接、调试检测等过程,培养了搜集资料和调查研究的能力,方案论证选择的能力,理论分析与设计运算的能力,巩固了计算机软硬件和应用系统设计方面的能力。 二、主要设计内容及基本要求 1.本设计包含以下部分:按键电路、上电复位电路、晶振电路、电源电路、显示电路、MCU系统部分、机械控制电路等部分。 2.基本要求: (1)要求定时工作时间和实时时间对比达到长时间精确地定时功能。 (2)要求定时时间和实时时间相同时通过51单片机控制光耦驱动电路来控制电饭煲的工作。 三、重点研究问题 1.单片机的内部结构,显示电路的调试。 2.部分功能电路的软件设计:键盘显示电路、报警电路、工作指示电路。 四、主要技术指标或主要设计参数 根据模块电路,设计出完整的电路原理图,焊接出实物,并对产品进行调试。电源部分为单片机系统提供的电压为5V,为光耦提供的电压为12V。 五、设计成果 拟做出一个基于AT89C51单片机对电饭煲的智能控制系统的设计,设计出整体原理图,并做出实物,同时做出一份符合要求的毕业论文。

智能家居控制系统课程设计报告20

XXXXXXXXXXXXXX 嵌入式系统原理及应用实践 —智能家居控制系统(无操作系统) 学生姓名XXX 学号XXXXXXXXXX 所在学院XXXXXXXXXXX 专业名称XXXXXXXXXXX 班级XXXXXXXXXXXXXXXXX 指导教师XXXXXXXXXXXX 成绩 XXXXXXXXXXXXX 二○XX年XX月

综合实训任务书

目录 前言 (1) 1 硬件设计 (1) 1.1 ADC转换 (3) 1.2 SSI控制数码管显示 (3) 1.3 按键和LED模块 (5) 1.4 PWM驱动蜂鸣器 (6) 2 软件设计 (7) 2.1 ADC模块 (7) 2.1.1 ADC模块原理描述 (7) 2.1.2 ADC模块程序设计流程图 (8) 2.2 SSI 模块 (8) 2.2.1 SSI模块原理描述 (9) 2.2.2 SSI模块程序设计流程图 (10) 2.3 定时器模块 (10) 2.3.1 定时器模块原理描述 (10) 2.3.2 定时器模块流程图 (11) 2.4 DS18B20模块 (11) 2.4.1 DS18B20模块原理描述 (11) 2.4.2 DS18B20模块程序设计流程图 (12) 2.5 按键模块 (13) 2.5.1 按键模块原理描述 (13) 2.5.2 按键模块程序设计流程图 (13) 2.6 PWM模块 (13) 2.6.1 PWM模块原理描述 (14) 2.6.2 PWM模块程序设计流程图 (14) 2.6 主函数模块 (14) 2.6.1 主函数模块原理描述 (14) 2.6.2主函数模块程序设计流程图 (15)

自动控制原理课程设计

审定成绩: 自动控制原理课程设计报告 题目:单位负反馈系统设计校正 学生姓名姚海军班级0902 院别物理与电子学院专业电子科学与技术学号14092500070 指导老师杜健嵘 设计时间2011-12-10

目录一设计任务 二设计要求 三设计原理 四设计方法步骤及设计校正构图五课程设计总结 六参考文献

一、 设计任务 设单位负反馈系统的开环传递函数为 ) 12.0)(11.0()(0 ++= s s s K s G 用相应的频率域校正方法对系统进行校正设计,使系统满足如下动态和静态性能: (1) 相角裕度0 45 ≥γ ; (2) 在单位斜坡输入下的稳态误差05.0<ss e ; (3) 系统的剪切频率s /rad 3<c ω。 二、设计要求 (1) 分析设计要求,说明校正的设计思路(超前校正,滞后校正或滞后-超前 校正); (2) 详细设计(包括的图形有:校正结构图,校正前系统的Bode 图,校正装 置的Bode 图,校正后系统的Bode 图); (3) 用MATLAB 编程代码及运行结果(包括图形、运算结果); (4) 校正前后系统的单位阶跃响应图。 三、设计原理 校正方式的选择。按照校正装置在系统中的链接方式,控制系统校正方式分为串联校正、反馈校正、前馈校正和复合校正4种。串联校正是最常用的一种校正方式,这种方式经济,且设计简单,易于实现,在实际应用中多采用这种校正方式。串联校正方式是校正器与受控对象进行串联连接的。本设计按照要求将采用串联校正方式进行校。校正方法的选择。根据控制系统的性能指标表达方式可以进行校正方法的确定。本设计要求以频域指标的形式给出,因此采用基于Bode 图的频域法进行校正。 几种串联校正简述。串联校正可分为串联超前校正、串联滞后校正和滞后-超前校正等。 超前校正的目的是改善系统的动态性能,实现在系统静态性能不受损的前提下,提高系统的动态性能。通过加入超前校正环节,利用其相位超前特性来增大系统的相位裕度,改变系统的开环频率特性。一般使校正环节的最大相位超前角出现在系统新的穿越频率点。

智能控制课程设计(报告)

HUNAN UNIVERSITY 智能控制课程设计(报告) 课程设计题目:基于模糊控制光伏并网发电系 统的研究 学生姓名: 学生学号: 专业班级: 学院名称: 指导老师: 2017年5月30 日

目录 第1章绪论 (1) 第2章光伏并网发电系统MPPT的研究进展 (2) 2.1 光伏发电系统最大功率跟踪控制 (2) 2.2 几种最大功率点跟踪方法的比较 (3) 第3章光伏并网发电系统MPPT模糊控制器 (7) 3.1 模糊化 (7) 3.2 模糊控制规则库的建立 (7) 3.3 解模糊 (7) 第4章 MPPT模糊控制器设计 (8) 4.1选择观测量和控制量 (8) 4.2 输入量和输出量的模糊化 (8) 4.3 制定模糊规则 (9) 4.4 求解模糊关系 (9) 4.5进行模糊决策 (10) 4.6 控制量的反模糊化 (10) 第5章模糊控制光伏并网发电系统仿真 (11) 附录 (15)

第1章绪论 在应对全球能源危机和保护环境的双重要求下,开发利用清洁可再生的太阳能越来越受到人们的关注。伴随着太阳能光电转换技术的不断发展,大规模的利用太阳能成为可能。光伏并网发电系统将成为太阳能利用的主要形式。目前,转换效率低是光伏并网发电系统面临的主要问题,这成为阻碍光伏并网发电系统广泛应用的一个重点问题。智能控制是这门新兴的理论和技术,它是传统控制发展的高级阶段,主要用来解决那些用传统方法难以解决的复杂系统的控制。智能控制包括专家系统、神经网络和模糊控制,而模糊控制是目前在控制领域中所采用的三种智能控制方法中最具实际意义的一种方法。在光伏系统MPPT控制中,由于外界光照强度和温度变化的不确定性以及并网逆变器的非线性特性,则使用模糊逻辑的MPPT控制方法进行控制,有望获得理想的控制效果。 随着近年智能控制的不断发展和完善,模糊控制技术也日趋成熟,被人们广泛接受。模糊控制的优点很多,例如:模糊控制器设计简单,不需要依赖被控对象的精确数学模型;模糊规则用自然语言表述,易于被操作人员接受;模糊控制规则可以转换成数学函数,易与其他物理规律结合,便于用计算机软件实现;模糊控制抗干扰能力强,且响应快,对复杂的被控对象能有效控制,鲁棒性和适应性都易达到要求。模糊控制以其适应面广泛和易于普及等特点,成为智能控制领域最重要,最活跃和最实用的分支之一。目前,模糊控制已经在工业控制领域、经济系统、人文系统以及医学系统中解决了传统控制方法难以解决甚至无法解决的实际控制问题。本文正是基于光伏发电系统存在的处理复杂,外界不确定因素多等特点,将模糊控制理论应用于光伏发电最大功率跟踪系统中,跟踪系统最大功率工作点,提高光电转换效率,充分利用太阳能资源。 本文以光伏并网发电系统最大功率点跟踪为研究对象,将模糊控制理论应用于光伏并网系统最大功率跟踪控制中,从光伏阵列的原理和特性、光伏并网系统的结构设计、最大功率点跟踪的原理和模糊控制理论等方面进行详细的分析和探讨。本设计报告比较多种最大功率点跟踪控制技术,实现光伏并网发电系统的研究,根据其不同的优缺点,然后选用模糊控制方法来实现最大功率跟踪。通过对模糊论域、隶属度函数计算,制定处模糊规则,设计出模糊控制器。最后建立光伏并网发电系统仿真模型,并对仿真结果进行了分析。

自动控制原理课程设计速度伺服控制系统设计样本

自动控制原理课程设计题目速度伺服控制系统设计 专业电气工程及其自动化 姓名 班级 学号 指引教师 机电工程学院 12月

目录一课程设计设计目 二设计任务 三设计思想 四设计过程 五应用simulink进行动态仿真六设计总结 七参照文献

一、课程设计目: 通过课程设计,在掌握自动控制理论基本原理、普通电学系统自动控制办法基本上,用MATLAB实现系统仿真与调试。 二、设计任务: 速度伺服控制系统设计。 控制系统如图所示,规定运用根轨迹法拟定测速反馈系数' k,以 t 使系统阻尼比等于0.5,并估算校正后系统性能指标。 三、设计思想: 反馈校正: 在控制工程实践中,为改进控制系统性能,除可选用串联校正方式外,经常采用反馈校正方式。常用有被控量速度,加速度反馈,执行机构输出及其速度反馈,以及复杂系统中间变量反馈等。反馈校正采用局部反馈包围系统前向通道中一某些环节以实现校正,。从控制观点来看,采用反馈校正不但可以得到与串联校正同样校正效果,并且尚有许多串联校正不具备突出长处:第一,反馈校正能有效地变化

被包围环节动态构造和参数;第二,在一定条件下,反馈校正装置特性可以完全取代被包围环节特性,反馈校正系数方框图从而可大大削弱这某些环节由于特性参数变化及各种干扰带给系统不利影响。 该设计应用是微分负反馈校正: 如下图所示,微分负反馈校正包围振荡环节。其闭环传递函数为 B G s ()=00t G s 1G (s)K s +()=22t 1T s T K s ζ+(2+)+1 =22'1T s 21Ts ζ++ 试中,'ζ=ζ+t K 2T ,表白微分负反馈不变化被包围环节性质,但由于阻尼比增大,使得系统动态响应超调量减小,振荡次数减小,改进了系统平稳性。 微分负反馈校正系统方框图

智能照明控制系统方案设计

灯光控制系统方案

一、系统概述 系统原理概述 系统所有的单元器件(除电源外)均内置微处理器和存储单元,由一对信号线(UTP5)连接成网络。每个单元均设置唯一的单元地址并用软件设定其功能,通过输出单元控制各回路负载。输入单元通过群组地址和输出组件建立对应联系。当有输入时,输入单元将其转变为数字信号在系统总线上广播,所有的输出单元接收并做出判断,控制相应回路输出。 系统通过两根总线连接成网络。总线上不仅为每个组件提供24伏直流电源,还加载了控制信号。通过系统编程使控制开关与输出回路建立逻辑对应关系。 系统元件采用 模块化结构、并已 经有系统化产品、 系统扩展方便。同 时,通过专用接口 元件及软件,可能 直截接入电脑进行实时监控,或接入以太网进行远程实时监控。因此在设计时更加简单、灵活。 系统为分布式控制,模块化结构,可靠性高。任何控制模块均内置CPU,每个输入模块(场景开关、多键开关、红外传感器等)都可直接与输出模块(调光器、输出继电器)通讯(发送指令→接受指令→执行指令),避免了集中式结构中央CPU一旦出现故障造成整个系统瘫痪的弱点。 与BA系统的集成

诺雅照明控制系统是一个开放的系统,通过专用接口软件,可方便地与其他系统连接,如楼宇自控系统、门禁系统、保安监控系统、消防系统等。

系统结构图

二、系统功能和优点 智能照明控制系统在学校应用的功能和优点: 1、实现照明控制智能化 可用手动控制面板,根据一天中的不同时间,不同用途精心地进行灯光的场景预设置,使用时只需调用预先设置好的最佳灯光场景,使人产生新颖的视觉效果。随意改变各区域的光照度。 2、美化环境以达到吸引学生的注意力 好的灯光设计,能营造出一种温馨、舒适的环境,增添其艺术的魅力。良好的环境可以培养学生对其产生更大的兴趣,从而得到更好的学习效果。 利用灯光的颜色、投射方式和不同明暗亮度可创造出立体感、层次感,不同色彩的环境气氛,不仅使学生有个很好的学习环境,而且还可以产生一种艺术欣赏感,对课程产生强烈的研究精神。 3、可观的节能效果 由于智能照明控制系统能够通过合理的管理,根据不同日期、不同时间按照各个功能区域的运行情况预先进行光照度的设置,不需要照明的时候,保证将灯关掉;在大多数情况下很多区域其实不需要把灯全部打开或开到最亮,智能照明控制系统能用最经济的能耗提供最舒适的照明;系统能保证只有当必需的时候才把灯点亮,或达到所要求的亮度,从而大大降低了学校的能耗。 4、延长灯具寿命 灯具损坏的致命原因是电压过高。灯具的工作电压越高,其寿命则成倍降低。反之,灯具工作电压降低则寿命成倍增长。因此,适当降低灯具工作电压是延长灯具寿命的有

智能照明控制系统毕业设计

智能照明控制系统毕业设计 篇一:基于单片机的智能照明控制系统设计 本科生毕业论文(设计) 题目室内智能照明控制系统的研究与设计学生姓名李天顺学号 XX专业班级建筑电气与智能化10101班指导老师曾进辉 XX年11月 基于单片机的智能照明控制系统设计 摘要 随着电子技术的飞速发展,基于单片机的控制系统已广泛应用于工业、农业、电力、电子、智能楼宇等行业,微型计算机作为嵌入式控制系统的主体与核心,代替了传统的控制系统的常规电子线路。楼宇智能化的发展与成熟,也为基于单片机的照明控制系统的普及与应用奠定了坚实的基础。 本文介绍了基于单片机AT89C51的室内灯光控制系统及其原理,提出了有效的节能控制方法。该系统采用了当今比较成熟的传感技术和计算机控制技术,利用多参数来实现对学校教室室内照明的控制。 系统设计包括硬件设计和软件设计两部分。该照明控制系统的主控制器、分控制器分别是以AT89C51和AT89C2051单片机为基础,实现了通信、信号采集、控制与显示等功能。使用光电子镇流器,使光源具备自动调节功能。文中详细地

描述了控制电路的设计过程,包括:光信号取样电路、人体信号采集电路、键盘与LED显示电路、RS485通信电路、照明灯控制电路、看门狗电路以及信号处理电路等。对于软件设计主要有主控制器、分控制器的有线通信程序设计以及灯光控制、定时控制、键盘扫描与LED显示等程序设计。 工作时,光信号取样电路采集光照强弱、人体信号采集电路采集室内是否有人、是否为工作时间等信息并将信号送到单片机,单片机根据这些信息通过控制电路对照明设备进行开关操作,从而实现照明控制,以达到节能的目的。 关键词:智能控制,主控制器,分控制器,单片机,定时控制 The Control System for Intelligent Lighting Based on Single–chip Microcomputer Author: Li Guozhong Tutor: Sun Man Abstract With the rapid development of electronic technology, the system of control based on Single-chip Microcomputer is widely applied in industry, agriculture, electric power, electron, intelligent building and so on. Microcomputer, as the subject and

智能控制课程设计报告书

《智能控制》课程设计报告题目:采用BP网络进行模式识别院系: 专业: 姓名: 学号: 指导老师: 日期:年月日

目录 1、课程设计的目的和要求 (3) 2、问题描述 (3) 3、源程序 (3) 4、运行结果 (6) 5、总结 (7)

课程设计的目的和要求 目的:1、通过本次课程设计进一步了解BP网络模式识别的基本原理,掌握BP网络的学习算法 2、熟悉matlab语言在智能控制中的运用,并提高学生有关智能控制系统的程序设计能力 要求:充分理解设计容,并独立完成实验和课程设计报告 问题描述 采用BP网络进行模式识别。训练样本为3对两输入单输出样本,见表7-3。是采用BP网络对训练样本进行训练,并针对一组实际样本进行测试。用于测试的3组样本输入分别为1,0.1;0.5,0.5和 0.1,0.1。 表7-3 训练样本 说明:该BP网络可看做2-6-1结构,设权值wij,wjl的初始值取【-1,+1】之间的随机值,学习参数η=0.5,α=0.05.取网络训练的最终指标E=10^(-20),在仿真程序中用w1,w2代表wij,wjl,用Iout代表 x'j。 源程序 %网络训练程序

clear all; close all; xite=0.50; alfa=0.05; w2=rands(6,1); w2_1=w2;w2_2=w2; w1=rands(2,6); w1_1=w1;w1_2=w1; dw1=0*w1; I=[0,0,0,0,0,0]'; Iout=[0,0,0,0,0,0]'; FI=[0,0,0,0,0,0]'; k=0; E=1.0; NS=3; while E>=1e-020 k=k+1; times(k)=k; for s=1:1:NS xs=[1,0; 0,0; 0,1]; ys=[1,0,-1]'; x=xs(s,:); for j=1:1:6 I(j)=x*w1(:,j); Iout(j)=1/(1+exp(-I(j))); end y1=w2'*Iout;

自动控制课程设计~~~

指导教师评定成绩: 审定成绩: 重庆邮电大学 移通学院 自动控制原理课程设计报告 系部: 学生姓名: 专业: 班级: 学号: 指导教师: 设计时间:2013年12 月 重庆邮电大学移通学院制

目录 一、设计题目 二、设计报告正文 摘要 关键词 设计内容 三、设计总结 四、参考文献

一、设计题目 《自动控制原理》课程设计(简明)任务书——供2011级机械设计制造及其自动化专业(4-6班)本科学生用 引言:《自动控制原理》课程设计是该课程的一个重要教学环节,既有别于毕业设计,更不同于课堂教学。它主要是培养学生统筹运用自动控制原理课程中所学的理论知识,掌握反馈控制系统的基本理论和基本方法,对工程实际系统进行完整的全面分析和综合。 一设计题目:I型二阶系统的典型分析与综合设计 二系统说明: 该I型系统物理模拟结构如图所示。 系统物理模拟结构图 其中:R=1MΩ;C =1uF;R0=41R 三系统参量:系统输入信号:x(t); 系统输出信号:y(t);

四设计指标: 设定:输入为x(t)=a×1(t)(其中:a=5) 要求动态期望指标:M p﹪≤20﹪;t s≤4sec; 五基本要求: a)建立系统数学模型——传递函数; b)利用根轨迹方法分析和综合系统(学号为单数同学做); c)利用频率特性法分析和综合系统(学号为双数同学做); d)完成系统综合前后的有源物理模拟(验证)实验; 六课程设计报告: 1.按照移通学院课程设计报告格式写课程设计报告; 2.报告内容包括:课程设计的主要内容、基本原理; 3.课程设计过程中的参数计算过程、分析过程,包括: (1)课程设计计算说明书一份; (2)原系统组成结构原理图一张(自绘); (3)系统分析,综合用精确Bode图一张; (4)系统综合前后的模拟图各一张(附实验结果图); 4.提供参考资料及文献 5.排版格式完整、报告语句通顺; 6.封面装帧成册。

基于MATLAB的智能控制系统的介绍与设计实例最新毕业论文

(此文档为word格式,下载后您可任意编辑修改!) 武汉科技大学 智能控制系统 学院:信息科学与工程学院 专业:控制理论与控制工程 学号: 姓名:李倩

基于MATLAB的智能控制系统的介绍与设计实例 摘要 现代控制系统,规模越来越大,系统越来越复杂,用传统的控制理论方法己不能满控制的要求。智能控制是在经典控制理论和现代控制理论的基础上发展起来的,是控制理论、人工智能和计算机科学相结合的产物。MATLAB是现今流行的一种高性能数值计算和图形显示的科学和工程计算软件。本文首先介绍了智能控制的一些基本理论知识,在这些理论知识的基础之上通过列举倒立摆控制的具体实例,结合matlab对智能控制技术进行了深入的研究。 第一章引言 自动控制就是在没有人直接参与的条件下,利用控制器使被控对象(如机器、设备和生产过程)的某些物理量能自动地按照预定的规律变化。它是介于许多学科之间的综合应用学科,物理学、数学、力学、电子学、生物学等是该学科的重要基础。自动控制系统的实例最早出现于美国,用于工厂的生产过程控制。美国数学家维纳在20世纪40年代创立了“控制论”。伴随着计算机出现,自动控制系统的研究和使用获得了很快的发展。在控制技术发展的过程中,待求解的控制问题变得越来越复杂,控制品质要求越来越高。这就要求必须分析和设计相应越来越复杂的控制系统。智能控制系统(ICS)是复杂性急剧增加了的控制系统。它是由控制问题的复杂性急剧增加而带来的结果,其采用了当今其他学科的一些先进研究成果,其根本目的在于求解复杂的控制问题。近年来,ICS引起了人们广泛的兴趣,它体现了众多学科前沿研究的高度交叉和综合。 作为一个复杂的智能计算机控制系统,在其建立投入使用前,必要首先进行仿真实验和分析。计算机仿真(Compeer Simulation)又称计算机模拟(Computer Analogy)或计算机实验。所谓计算机仿真就是建立系统模型的仿真模型进而在计算机上对该仿真模型

智能控制系统课程设计

目录 有害气体的检测、报警、抽排.................. . (2) 1 意义与要求 (2) 1.1 意义 (2) 1.2 设计要求 (2) 2 设计总体方案 (2) 2.1 设计思路 (2) 2.2 总体设计方框图 2.3 完整原理图 (4) 2.4 PCB制图 (5) 3设计原理分析 (6) 3.1 气敏传感器工作原理 (7) 3.2 声光报警控制电路 (7) 3.3 排气电路工作原理 (8) 3.4 整体工作原理说明 (9) 4 所用芯片及其他器件说明 (10) 4.1 IC555定时器构成多谐振荡电路图 (11) 5 附表一:有害气体的检测、报警、抽排电路所用元件 (12) 6.设计体会和小结 (13)

有害气体的检测、报警、抽排 1 意义与要求 1.1.1 意义 日常生活中经常发生煤气或者其他有毒气体泄漏的事故,给人们的生命财产安全带来了极大的危害。因此,及时检测出人们生活环境中存在的有害气体并将其排除是保障人们正常生活的关键。本人运用所学的电子技术知识,联系实际,设计出一套有毒气体的检测电路,可以在有毒气体超标时及时抽排出有害气体,使人们的生命健康有一个保障。 1.2 设计要求 当检测到有毒气体意外排时,发出警笛报警声和灯光间歇闪烁的光报警提示。当有毒气体浓度超标时能自行启动抽排系统,排出有毒气体,更换空气以保障人们的生命财产安全。抽排完毕后,系统自动回到实时检测状态。 2 设计总体方案 2.1 设计思路 利用QM—N5气敏传感器检测有毒气体,根据其工作原理构成一种气敏控制自动排气电路。电路由气体检测电路、电子开关电路、报警电路、和气体排放电路构成。当有害气体达到一定浓度时,QM—N5检测到有毒气体,元件两极电阻变的很小,继电器开关闭合,使得555芯片组成的多谐电路产生方波信号,驱动发光二极管间歇发光;同时LC179工作,驱使蜂鸣器间断发出声音;此时排气系统会开始抽排有毒气体。当气体被排出,浓度低于气敏传感器所能感应的范围时,电路回复到自动检测状态。

智能控制课程设计(报告)(DOC)

HUNAN UNIVERSITY 智能控制课程设计(报告) 课程设计题目:基于模糊控制光伏并网发电系 统的研究 学生姓名: 学生学号: 专业班级: 学院名称: 指导老师: 2017年5月30 日

目录 第1章绪论 (1) 第2章光伏并网发电系统MPPT的研究进展 (2) 2.1 光伏发电系统最大功率跟踪控制 (2) 2.2 几种最大功率点跟踪方法的比较 (3) 第3章光伏并网发电系统MPPT模糊控制器 (7) 3.1 模糊化 (7) 3.2 模糊控制规则库的建立 (7) 3.3 解模糊 (7) 第4章 MPPT模糊控制器设计 (8) 4.1选择观测量和控制量 (8) 4.2 输入量和输出量的模糊化 (8) 4.3 制定模糊规则 (9) 4.4 求解模糊关系 (9) 4.5进行模糊决策 (10) 4.6 控制量的反模糊化 (10) 第5章模糊控制光伏并网发电系统仿真 (11) 附录 (15)

第1章绪论 在应对全球能源危机和保护环境的双重要求下,开发利用清洁可再生的太阳能越来越受到人们的关注。伴随着太阳能光电转换技术的不断发展,大规模的利用太阳能成为可能。光伏并网发电系统将成为太阳能利用的主要形式。目前,转换效率低是光伏并网发电系统面临的主要问题,这成为阻碍光伏并网发电系统广泛应用的一个重点问题。智能控制是这门新兴的理论和技术,它是传统控制发展的高级阶段,主要用来解决那些用传统方法难以解决的复杂系统的控制。智能控制包括专家系统、神经网络和模糊控制,而模糊控制是目前在控制领域中所采用的三种智能控制方法中最具实际意义的一种方法。在光伏系统MPPT控制中,由于外界光照强度和温度变化的不确定性以及并网逆变器的非线性特性,则使用模糊逻辑的MPPT控制方法进行控制,有望获得理想的控制效果。 随着近年智能控制的不断发展和完善,模糊控制技术也日趋成熟,被人们广泛接受。模糊控制的优点很多,例如:模糊控制器设计简单,不需要依赖被控对象的精确数学模型;模糊规则用自然语言表述,易于被操作人员接受;模糊控制规则可以转换成数学函数,易与其他物理规律结合,便于用计算机软件实现;模糊控制抗干扰能力强,且响应快,对复杂的被控对象能有效控制,鲁棒性和适应性都易达到要求。模糊控制以其适应面广泛和易于普及等特点,成为智能控制领域最重要,最活跃和最实用的分支之一。目前,模糊控制已经在工业控制领域、经济系统、人文系统以及医学系统中解决了传统控制方法难以解决甚至无法解决的实际控制问题。本文正是基于光伏发电系统存在的处理复杂,外界不确定因素多等特点,将模糊控制理论应用于光伏发电最大功率跟踪系统中,跟踪系统最大功率工作点,提高光电转换效率,充分利用太阳能资源。 本文以光伏并网发电系统最大功率点跟踪为研究对象,将模糊控制理论应用于光伏并网系统最大功率跟踪控制中,从光伏阵列的原理和特性、光伏并网系统的结构设计、最大功率点跟踪的原理和模糊控制理论等方面进行详细的分析和探讨。本设计报告比较多种最大功率点跟踪控制技术,实现光伏并网发电系统的研究,根据其不同的优缺点,然后选用模糊控制方法来实现最大功率跟踪。通过对模糊论域、隶属度函数计算,制定处模糊规则,设计出模糊控制器。最后建立光伏并网发电系统仿真模型,并对仿真结果进行了分析。

自动控制设计(自动控制原理课程设计)

自动控制原理课程设计 本课程设计的目的着重于自动控制基本原理与设计方法的综合实际应用。主要内容包括:古典自动控制理论(PID)设计、现代控制理论状态观测器的设计、自动控制MATLAB 仿真。通过本课程设计的实践,掌握自动控制理论工程设计的基本方法与工具。 1 内容 某生产过程设备如图1所示,由液容为C1与C2的两个液箱组成,图中Q 为稳态液体流量)/(3s m ,i Q ?为液箱A 输入水流量对稳态值的微小变化)/(3s m ,1Q ?为液箱A 到液箱B 流量对稳态值的微小变化)/(3s m ,2Q ?为液箱B 输出水流量对稳态值的微小变化)/(3s m ,1h 为液箱A 的液位稳态值)(m ,1h ?为液箱A 液面高度对其稳态值的微小变化)(m ,2h 为液箱B 的液位稳态值)(m ,2h ?为液箱B 液面高度对其稳态值的微小变化)(m ,21,R R 分别为A,B 两液槽的出水管液阻))//((3s m m 。设u 为调节阀开度)(2m 。 已知液箱A 液位不可直接测量但可观,液箱B 液位可直接测量。 图1 某生产过程示意图

要求 1. 建立上述系统的数学模型; 2. 对模型特性进行分析,时域指标计算,绘出bode,乃示图,阶跃反应曲线 3. 对B 容器的液位分别设计:P,PI,PD,PID 控制器进行控制; 4. 对原系统进行极点配置,将极点配置在-1+j 与-1-j;(极点可以不一样) 5. 设计一观测器,对液箱A 的液位进行观测(此处可以不带极点配置); 6. 如果要实现液位h2的控制,可采用什么方法,怎么更加有效?试之。 用MATLAB 对上述设计分别进行仿真。 (提示:流量Q=液位h/液阻R,液箱的液容为液箱的横断面积,液阻R=液面差变化h ?/流量变化Q ?。) 2 双容液位对象的数学模型的建立及MATLAB 仿真过程 一、对系统数学建模 如图一所示,被控参数2h ?的动态方程可由下面几个关系式导出: 液箱A:dt h d C Q Q i 111?=?-? 液箱B:dt h d C Q Q 22 21?=?-? 111/Q h R ??= 222/Q h R ??= u K Q u i ?=? 消去中间变量,可得: u K h dt h d T T dt h d T T ?=?+?++?222122221)( 式中,21,C C ——两液槽的容量系数 21,R R ——两液槽的出水端阻力 111C R T =——第一个容积的时间常数 222C R T =——第二个容积的时间常数 2R K K u =_双容对象的放大系数

基于单片机的智能家居控制系统毕业设计

摘要 智能家居作为家庭信息化的实现方式,已经成为社会信息化发展的重要组成部分,物联网因其巨大的应用前景,将是智能家居产业发展过程中一个比较现实的突破口,对智能家居的产业发展具有重大意义。本文基于容易实现,方便操作,贴近使用的设计理念,采用STC89C52单片机为控制核心,为控制终端,并采用包括红外遥控、按键、Web界面等在内的多个控制源来控制家用电器。本文的二至四章描述了整个设计的软、硬件部分的具体实现,第五章是根据设计好的功能搭建了一个具体的环境实例。 关键词:物联网、智能家居、单片机、STC89C52、多源控制

Abstract Smart Home as the implement mode of Family Information has become an important part of the social information development .The networking because of its huge prospect to develop .It will be a real way during the Smart Home`s development .Networking means a lot to the Smart Home .This article base on the design concept of trying to use easiest way to deliver handle and closing to use .We take the STC89C52 as the control core of the design .The relay as the control terminal mean .While we also use the trared remote control key webpage etc to control the home appliances . Two to four chapters of this paper describes the design of software and hardware to achieve the specific. Chapter V is based on features designed to build a specific environment instance. Key word:Networking、Intelligent、Home、Microcontroller、STC89C52、multi-source control

自动控制理论课程设计

一、课程设计的目的与要求 本课程为《自动控制原理》的课程设计,是课堂的深化。 设置《自动控制原理》课程设计的目的是使MATLAB 成为学生的基本技能,熟悉MATLAB 这一解决具体工程问题的标准软件,能熟练地应用MATLAB 软件解决控制理论中的复杂和工程实际问题,并给以后的模糊控制理论、最优控制理论和多变量控制理论等奠定基础。使相关专业的本科学生学会应用这一强大的工具,并掌握利用MATLAB 对控制理论内容进行分析和研究的技能,以达到加深对课堂上所讲内容理解的目的。通过使用这一软件工具把学生从繁琐枯燥的计算负担中解脱出来,而把更多的精力用到思考本质问题和研究解决实际生产问题上去。 通过此次计算机辅助设计,学生应达到以下的基本要求: 1.能用MATLAB 软件分析复杂和实际的控制系统。 2.能用MATLAB 软件设计控制系统以满足具体的性能指标要求。 3.能灵活应用MATLAB 的CONTROL SYSTEM 工具箱和SIMULINK 仿真软件,分析系统的性能。 二、设计正文 1.控制系统的数学建模 相关知识: 研究一个自动控制系统,单是分析系统的作用原理及其大致的运动过程是不够的,必须同时进行定量的分析,才能作到深入地研究并将其有效地应用到实际工程上去。这就需要把输出输入之间的数学表达式找到,然后把它们归类,这样就可以定量地研究和分析控制系统了。 1.有理函数模型 线性系统的传递函数模型可一般地表示为: m n a s a s a s b s b s b s b s G n n n n m m m m ≥++???++++???++= --+- )(11 11 1 21 (1) 将系统的分子和分母多项式的系数按降幂的方式以向量的形式输入给两个变量num 和den ,就可以轻易地将传递函数模型输入到MATLAB 环境中。命令格式为: ],,,,[121+???=m m b b b b num ; (2) ],,,,,1[121n n a a a a den -???=; (3) 在MATLAB 控制系统工具箱中,定义了tf() 函数,它可由传递函数分子分母给

智能温度控制系统毕业设计开题报告

毕业设计开题报告 题目名称智能温度控制系统设计 学生姓名郑如顺专业电气信息工程班级10级一、选题的目的意义 温度控制无论是在工业生产过程中,还是在日常生活中都起着非常重要的作用,而当今,我国农村的锅炉取暖等大多数都没有温度监控系统,部分厂矿,企业还一直沿用简单的温度设备和纸质数据记录仪。无法实现温度数据的测量与控制。随着社会经济的高速发展,越来越多的生产部门和生产环节对温度控制精度的可靠性和稳定性等有了更高的要求。传统的温度控制器控制精度普遍不高,不能满足对温度要求较为苛刻的生产环节。 在温度控制中,由于受到温度被控对象特性(如惯性大、滞后大、非线性等)的影响,使得控制性能难以提高,有些工艺过程其温度控制的好坏直接影响着产品的质量,因而设计一种较为理想的温度控制系统是非常有价值的。 此次的智能温度控制系统的设计基于此而设计,针对一些大型公共场合,为达到对其温度的良好控制,从实用的角度以AT89C51为核心设计一套温度智能控制系统。其控制温度不是一个点,而是一个范围。系统以AT89C51单片机为核心,组成一个集温度的采集、处理、显示、自动控制为一身的闭环控制系统。利用单片机采集环境温度值,以数字量的形式存储和显示,可以独立作为一种设备对温室温度进行有一定精度的控制,经过简单的运算发出各种控制命令,并能动态的显示当前温度值,设定目标控制温度值。同时,也可以作为数据采集装置,为上位机进行复杂运算决策提供数据来源。 该智能温度控制系统功耗低,本系统运行情况良好且经济可靠。能利用最少的资源对不同温度进行高精度的测量,信息性能可靠、操作便利,复杂的工作通过软件编程来完成,可以方便的获取结果,在实际的使用中获得了理想的效果。

智能控制课程设计报告书

《智能控制》课程设计报告 题目:采用BP网络进行模式识别院系: 专业: 姓名: 学号: 指导老师:

日期:年月日 目录 1、课程设计的目的和要求 (3) 2、问题描述 (3) 3、源程序 (3) 4、运行结果 (6) 5、总结 (7)

课程设计的目的和要求 目的:1、通过本次课程设计进一步了解BP网络模式识别的基本原理,掌握BP网络的学习算法 2、熟悉matlab语言在智能控制中的运用,并提高学生有关智能控制系统的程序设计能力 要求:充分理解设计内容,并独立完成实验和课程设计报告 问题描述 采用BP网络进行模式识别。训练样本为3对两输入单输出样本,见表7-3。是采用BP网络对训练样本进行训练,并针对一组实际样本进行测试。用于测试的3组样本输入分别为1,0.1;0.5,0.5和 0.1,0.1。 输入输出 1 0 1

0 0 0 0 1 -1 表7-3 训练样本 说明:该BP网络可看做2-6-1结构,设权值wij,wjl的初始值取【-1,+1】之间的随机值,学习参数η=0.5,α=0.05.取网络训练的最终指标E=10^(-20),在仿真程序中用w1,w2代表wij,wjl,用Iout代表 x'j。 源程序 %网络训练程序 clear all; close all; xite=0.50; alfa=0.05; w2=rands(6,1);

w2_1=w2;w2_2=w2; w1=rands(2,6); w1_1=w1;w1_2=w1; dw1=0*w1; I=[0,0,0,0,0,0]'; Iout=[0,0,0,0,0,0]'; FI=[0,0,0,0,0,0]'; k=0; E=1.0; NS=3; while E>=1e-020 k=k+1; times(k)=k; for s=1:1:NS xs=[1,0;

自动控制原理课程设计

扬州大学水利与能源动力工程学院 课程实习报告 课程名称:自动控制原理及专业软件课程实习 题目名称:三阶系统分析与校正 年级专业及班级:建电1402 姓名:王杰 学号: 141504230 指导教师:许慧 评定成绩: 教师评语: 指导老师签名: 2016 年 12月 27日

一、课程实习的目的 (1)培养理论联系实际的设计思想,训练综合运用经典控制理论和相关课程知识的能力; (2)掌握自动控制原理的时域分析法、根轨迹法、频域分析法,以及各种校正装置的作用及用法,能够利用不同的分析法对给定系统进行性能分析,能根据不同的系统性能指标要求进行合理的系统设计,并调试满足系统的指标; (3)学会使用MATLAB语言及Simulink动态仿真工具进行系统仿真与调试; (4)学会使用硬件搭建控制系统; (5)锻炼独立思考和动手解决控制系统实际问题的能力,为今后从事控制相关工作打下较好的基础。 二、课程实习任务 某系统开环传递函数 G(s)=K/s(0.1s+1)(0.2s+1) 分析系统是否满足性能指标: (1)系统响应斜坡信号r(t)=t,稳态误差小于等于0.01; (2)相角裕度y>=40度; 如不满足,试为其设计一个pid校正装置。 三、课程实习内容 (1)未校正系统的分析: 1)利用MATLAB绘画未校正系统的开环和闭环零极点图 2)绘画根轨迹,分析未校正系统随着根轨迹增益变化的性能(稳定性、快速性)。 3)作出单位阶跃输入下的系统响应,分析系统单位阶跃响应的性能指标。 4)绘出系统开环传函的bode图,利用频域分析方法分析系统的频域性能指标(相角裕度和幅值裕度,开环振幅)。 (2)利用频域分析方法,根据题目要求选择校正方案,要求有理论分析和计算。并与Matlab计算值比较。 (3)选定合适的校正方案(串联滞后/串联超前/串联滞后-超前),理论分析并计算校正环节的参数,并确定何种装置实现。

智能家居控制系统设计

智能生活智慧人生智能家居控制系统解决方案 广东领航者科技有限公司

一、概述 本方案设计采用witlife智能家居控制系统。 维德莱夫品牌源自澳大利亚,始创于1989年, Witlife维德莱夫—智能生活·智慧人生,系智能化酒店,智能化家居的领航者,在大洋洲和大中华地区设有研发和业务机构。在全球40多个国家和地区设有经销商和代表处。为智能化生活的进一步发展奠定了厚实的基础,为智能化领航起到了决定性作用。公司自创立以来始终不变的核心理念:为智能生活,提供人性化、专业化的全程智能服务,实现超乎客户满意的惊喜。 Witlife维德莱夫大中华地区总部成立于2010年,Wit life维德莱夫是一家专业从事家庭智能化控制产品与解决方案的研发、生产、销售和服务的全球知名企业,是全球知名的智能家居公司。 Witlife维德莱夫智能家居系统,是采用自动化控制系统、计算机网络系统、网络通讯技术、无线射频(RF)技术于一体的智能控制系统。具有实时显示、即时控制、预设控制、远程控制等功能,可以用家用电脑、手机、平板电脑、RF遥控器、触控面板等多种方式进行控制。通过网络可以完全掌控家庭、酒店所有的灯光、空调、电视、音响、热水器、饮水机、电饭煲、房门、窗帘、供养、浇花等。 Witlife维德莱夫,智能生活,智慧人生,一切尽在掌握之中。 推出的世界上最先进的网络家居控制系统,广泛应用于现代住宅中的安防监控、灯光窗帘、温度湿度、音乐影院等智能控制,并能无

缝接入小区网络对讲、家庭物联网。 二、网络家居控制系统的设计标准 本设计方案主要参照以下设计标准: 1、JGJ/T16-92 (民用建筑电气设计规范) 2、EN50090 (欧洲电工标准) 三、智能家居系统结构原理 智能家居控制系统采用目前最先进的网络架构,分散控制各个子系统,最适合现代家居的应用,其结构如下: 智能家居控制系统结构 智能家居控制系统的基本构成是网络点,网络点通过网络线接入路由器构成的家庭局域网。可以高速双向传输控制、信息、视频、音频等。 由上图可看出,智能家居控制系统平台能够搭载各种控制子系统,除了继电器控制信号,它能控制任何控制协议,传输任何音频、视频、信息数据,并能双向反馈。 智能家居控制系统具有: ?居家安防控制 ?居家监控系统 ?灯光智能控制

相关主题