搜档网
当前位置:搜档网 › 文库流程(Illumina二代测序)

文库流程(Illumina二代测序)

文库流程(Illumina二代测序)
文库流程(Illumina二代测序)

TruSeq DNA Sample Preparaton

(Illumina)

1.DNA shearing

2ug DNA for sonication(100ul)

5ul using for detection

Concentrate EB 50ul

2.End repair

a.System

b.Program

30℃,30min

c.Clean up

Add 160ul well-mixed Agencourt AMPure XP Beads:

seal with Microseal ‘B’adhesive seal,shake 1800rpm,2min RT 15min

Place on the magnetic stand at RT 15min or until the liquid appear clear

Remove and discard 127.5ul of the supernatant,repeat once Add 200ul 80% EtOH, RT 30s,remove and discard the supernatant,repeat once

RT 15min,then remove the magnetic stand

Resuspend the dried pellet with 17.5ul Resuspension Buffer ,MIX:seal ‘B’,shake 1800rpm 2min

RT 2min

Place on the magnetic stand at RT for 5min or until the liquid appear clear

Transfer 15ul the clear supernatant to the new MIDI plate labeled with ALP barcode.

3.Adenylate 3’ ends

a.System

b.Program

37℃,30min

Then immediately to ligate adapter

4.Ligate adapters

a.System

b.Program

30℃,10min

Then add 5ul STOP ligation buffer

c.Clean up

1)Add 42.5ul beads

mix:seal with Microseal ‘B’adhesive seal,shake 1800rpm,2min RT 15min

Place on the magnetic stand at RT 5min or until the liquid appear clear

Remove and discard 80ul of the supernatant

Add 200ul 80% EtOH, RT 30s,remove and discard the supernatant,repeat once

RT 15min,then remove the magnetic stand

Resuspend the dried pellet with 52.5ul Resuspension

Buffer ,MIX:seal ‘B’,shake 1800rpm 2min

RT 2min

Place on the magnetic stand at RT for 5min or until the liquid appear clear

Transfer 50ul the clear supernatant to the new MIDI plate labeled with CAP barcode.

2)Add 50ul beads

Mix:seal with Microseal ‘B’adhesive seal,shake 1800rpm,2min RT 15min

Place on the magnetic stand at RT 5min or until the liquid appear clear

Remove and discard 95ul of the supernatant

Add 200ul 80% EtOH, RT 30s,remove and discard the supernatant,repeat once

RT 15min,then remove the magnetic stand

Resuspend the dried pellet with 22.5ul Resuspension Buffer ,MIX:seal ‘B’,shake 1800rpm 2min

RT 2min

Place on the magnetic stand at RT for 5min or until the liquid appear clear

Transfer 20ul the clear supernatant to the new MIDI plate labeled with SSP barcode.

5.Pruify ligation products

a.2% agarose 120V 120min

b. Cut the gel ,ranging in size from 400-500bp

c. Incubate the gel in the QG solution at RT until completely dissolved, while vortexing every 2 min

MinElute gel Extraction Kit

25ul QIAGEN EB

d.Transfer 20ul to new 0.3ml PCR plate labeled with PCR barcode

6.Enrich DNA fragments

a.System

b.Program

Choose the pre-heat lid option and set to 100℃

c.Clean up

Add 50ul beads,using the DNA adapter tubes; Add 47.5ul beads,using DAP RT 15min

Place on the magnetic stand at RT for 5min or until the liquid appears clear

Remove and discard 95ul supernatant

Add 200ul 80% EtOH, RT 30s, remove and discard the supernatant, repeat once

RT 15min,then remove the magnetic stand

Resuspend the dried pellet with 32.5ul Resuspension Buffer ,MIX:seal ‘B’,shake 1800rpm 2min

RT 2min

Place on the magnetic stand at RT for 5min or until the liquid appear clear

Transfer 30ul the clear supernatant to the 0.3ml PCR plate labeled with TSP1 barcode.

7.Validate library

8.Normalize ang pool libraries

第二代测序技术

第二代测序技术 --以Illumina/Solexa Genome Analyzer为例 1.概述 DNA测序(DNA sequencing)作为一种重要的实验技术,在生物学研究中有着广泛的应用。早在DNA双螺旋结构(Watson and Crick,1953)被发现后不久就有人报道过DNA测序技术,但是当时的操作流程复杂,没能形成规模。随后在1977年Sanger发明了具有里程碑意义的末端终止测序法,同年A.M.Maxam和W.Gilbert发明了化学降解法。Sanger法因为既简便又快速,并经过后续的不断改良,成为了迄今为止DNA测序的主流。然而随着科学的发展,传统的Sanger 测序已经不能完全满足研究的需要,对模式生物进行基因组重测序以及对一些非模式生物的基因组测序,都需要费用更低、通量更高、速度更快的测序技术,第二代测序技术(Next-generation sequencing)应运而生。第二代测序技术的核心思想是边合成边测序(Sequencing by Synthesis),即通过捕捉新合成的末端的标记来确定DNA的序列,现有的技术平台主要包括Roche/454 FLX、 Illumina/Solexa Genome Analyzer和Applied Biosystems SOLID system。这三个技术平台各有优点,454 FLX的测序片段比较长,高质量的读长(read)能达到400bp;Solexa测序性价比最高,不仅机器的售价比其他两种低,而且运行成本也低,在数据量相同的情况下,成本只有454测序的1/10;SOLID测序的准确度高,原始碱基数据的准确度大于99.94%,而在15X覆盖率时的准确度可以达到99.999%,是目前第二代测序技术中准确度最高的。虽然第二代测序技术的工作一般都由专业的商业公司来完成,但是了解测序原理、操作流程等会对后续的数据分析有很重要的作用,下文将以Illumina/Solexa Genome Analyzer 测序为例,简述第二代测序技术的基本原理、操作流程等方面。 2.基本原理 Illumina/Solexa Genome Analyzer测序的基本原理是边合成变测序。在Sanger等测序方法的基础上,通过技术创新,用不同颜色的荧光标记四种不同的dNTP,当DNA聚合酶合成互补链时,每添加一种dNTP就会释放出不同的荧光,根据捕捉的荧光信号并经过特定的计算机软件处理,从而获得待测DNA的序列信息。 3.操作流程 1)测序文库的构建(Library Construction) 首先准备基因组DNA(虽然测序公司要求样品量要达到200ng,但是Gnome Analyzer系统所需的样品量可低至100ng,能应用在很多样品有限的实验中),然后将DNA随机片段化成几百碱基或更短的小片段,并在两头加上特定的接头(Adaptor)。如果是转录组测序,则文库的构建要相对麻烦些,RNA片段化之后需反转成cDNA,然后加上接头,或者先将RNA反转成cDNA,然后再片段化并加上接头。片段的大小(Insert size)对于后面的数据分析有影响,可根据需

二代测序NGS实验方案和应用

这里为您介绍二代测序的相关流程和应用。 随着人类基因组工程的完成,对于低花费的测序技术的需求促进了高通量二代测序技术的发展。这些新的测序平台允许进行高通量测序,具有广泛的应用: 全基因组从头测序或者重测序 目标序列重测序 转录组分析 微生物组研究 基因调控研究 NGS 序列 二代测序仪器有很多种组合,在通量、片段长度、准确度、每一轮测序成本、每百万碱基对测序成本、初始成本、规格和技术方面存在存在差异。? 从规格和初始成本的角度而言,二代测序仪器可轻松地分类为更窄的范围,也就是所谓的“台式测序仪”和高通量仪器。 台式测序仪使得任何实验室都可以像使用real-time PCR一样,自己进行测序。这些仪器可以和一些靶标序列富集技术相结合,用在一些临床的应用中,其中:选定的靶标基因用于深度分析,以检测稀有的突变,或者检测多样样本中(比如癌症样本)中的突变。目前,这些仪器的通量在10 Mb到 Gb之间,但是随着硬件,软件和试剂的持续改善,通量也在稳步增加。

高通量测序仪非常适合于大量的,基因组范围的研究,每次测序能测定600 Gb的序列。一些这样的高通量和高精度的平台,能测定的片段长度相对较短,这对于高重复性的序列和未知基因组的从头测序就可能成为问题。与此相反,也有一些仪器能测序的片段较长(达到2500 bp),但是其精度和测序能力(90 Mb)要低很多。还有一些测序能力位于两者之间的仪器(~800 bp,700 Mb)。 因此,应用决定了哪一种仪器是最合适的。 有一种新的方法被称作“纳米孔测序”。这种技术中,根据一个DNA链通过一个合成的或者蛋白纳米孔道所引起的电流的改变,可以确定通过这个孔道的碱基。这理论上可以仅用一步就测序一个完整的染色体,而不需要生成新的DNA链。 DNA测序 二代DNA测序的工作流程如下: DNA样本制备 文库构建和验证 文库分子大规模平行克隆扩增 测序 ? 二代测序DNA样本的质量控制

一代、二代、三代测序技术

一代、二代、三代测序技术 (2014-01-22 10:42:13) 转载 第一代测序技术-Sanger链终止法 一代测序技术是20世纪70年代中期由Fred Sanger及其同事首先发明。其基本原理是,聚丙烯酰胺凝胶电泳能够把长度只差一个核苷酸的单链DNA分子区分开来。一代测序实验的起始材料是均一的单链DNA分子。第一步是短寡聚核苷酸在每个分子的相同位置上退火,然后该寡聚核苷酸就充当引物来合成与模板互补的新的DNA链。用双脱氧核苷酸作为链终止试剂(双脱氧核苷酸在脱氧核糖上没有聚合酶延伸链所需要的3-OH基团,所以可被用作链终止试剂)通过聚合酶的引物延伸产生一系列大小不同的分子后再进行分离的方法。测序引物与单链DNA模板分子结合后,DNA聚合酶用dNTP延伸引物。延伸反应分四组进行,每一组分别用四种ddNTP(双脱氧核苷酸)中的一种来进行终止,再用PAGE分析四组样品。从得到的PAGE胶上可以读出我们需要的序列。 第二代测序技术-大规模平行测序 大规模平行测序平台(massively parallel DNA sequencing platform)的出现不仅令DNA测序费用降到了以前的百分之一,还让基因组测序这项以前专属于大型测序中心的“特权”能够被众多研究人员分享。新一代DNA测序技术有助于人们以更低廉的价格,更全面、更深入地分析基因组、转录组及蛋白质之间交互作用组的各项数据。市面上出现了很多新一代测序仪产品,例如美国Roche Applied Science公司的454基因组测序仪、美国Illumina公司和英国Solexa technology公司合作开发的Illumina测序仪、美国Applied Biosystems公司的SOLiD测序仪。Illumina/Solexa Genome Analyzer测序的基本原理是边合成边测序。在Sanger等测序方法的基础上,通过技术创新,用不同颜色的荧光标记四种不同的dNTP,当DNA聚合酶合成互补链时,每添加一种dNTP就会释放出不同的荧光,根据捕捉的荧光信号并经过特定的计算机软件处理,从而获得待测DNA的序列信息。以Illumina测序仪说明二代测序的一般流程,(1)文库制备,将DNA用雾化或超声波随机片段化成几百碱基或更短的小片段。用聚合酶和外切核酸酶把DNA片段切成平末端,紧接着磷酸化并增加一个核苷酸黏性末端。然后将Illumina测序接头与片段连接。(2)簇的创建,将模板分子加入芯片用于产生克隆簇和测序循环。芯片有8个纵向泳道的硅基片。每个泳道内芯片表面有无数的被固定的单链接头。上述步骤得到的带接头的DNA 片段变性成单链后与测序通道上的接头引物结合形成桥状结构,以供后续的预扩增使用。通过不断循环获得上百万条成簇分布的双链待测片段。(3)测序,分三步:DNA聚合酶结合荧光可逆终止子,荧光标记簇成像,在下一个循环开

表观遗传学测序_ _总结

Bioinformatics Analysis of Next-Generation Sequencing Data – Epigenome and Chromatin Interactome 要点: Enhancers are marked by multiple modifications Characteristic histone methylation patterns at active genes 涉及的相关技术: NGS Epigenetics CHIP-Seq 3C NGS(Next-Generation Sequencing)的原理: 最近市面上出现了很多新一代测序仪产品,例如美国Roche Applied Science公司的454基因组测序仪、美国Illumina公司和英国Solexa technology公司合作开发的Illumina测序仪、美国Applied Biosystems公司的SOLiD测序仪、Dover/Harvard公司的Polonator测序仪以及美国Helicos公司的HeliScope单分子测序仪。所有这些新型测序仪都使用了一种新的测序策略——循环芯片测序法(cyclic-array sequencing),也可将其称为“新一代测序技术或者第二代测序技术”。所谓循环芯片测序法,简言之就是对布满DNA样品的芯片重复进行基于DNA的聚合酶反应(模板变性、引物退火杂交及延伸)以及荧光序列读取反应。2005年,有两篇论文曾对这种方法做出过详细介绍。与传统测序法相比,循环芯片测序法具有操作更简易、费用更低廉的优势,于是很快就获得了广泛的应用。  传统的Sanger测序法及新一代DNA测序技术工作流程图

illumina 转录组测序简明实验流程(PE-oligodT NEB)

illumina 转录组测序简明实验流程一、实验基本流程图 mRNA Library Construction

二、mRNA建库流程 1.材料准备 1.2. 1.3.

2.样品准备和QC 选择质量合格的Total RNA作为mRNA测序的建库起始样品,其质量要求通过Agilent 2100 BioAnalyzer检测结果RIN≥7,28S和18S的RNA 的比值大于或等于1.5:1,起始量的要求范围是0.1∽1ug。用QUBIT RNA ASSAY KIT对起始的Total RNA进行准确定量。 3.建库实验步骤 3.1.mRNA纯化和片段化 3.1.1.mRNA纯化 纯化原理是用带有Oligod(T)的Beads对Total RNA中mRNA进行纯化。 3.1.2.mRNA片段化 3.2.1st Strand cDNA 合成 3.3.2nd Strand cDNA 合成 根据下表制备反应体系,然后在PCR仪上运行Program3,然后将第2链cDNA合成产物用144uL AMPure XP Beads进行纯化,最后用60μL的Nuclease free water进行重悬,取出 55.5μL以备下一步使用;

3.4.Perform End Repair/dA-tail 3.5.Adaptor Ligation 根据下表制备反应体系,然后在PCR仪上运行Program5、Program6,然后100uL AMPure XP Beads进行纯化后用52.5μL的Resuspension Buffer进行重悬,再用50uL AMPure XP Beads 3.6.PCR扩增 根据下表制备反应体系,然后在PCR仪上运行Program7,然后再45μL用AMPure XP Beads 进行纯化,最后用23μL的Resuspension Buffer进行重悬,取出20μL以备下一步使用;

分子标记的实验原理及操作流程

AFLP分子标记实验 扩增片段长度多态性 Amplified fragment length polymorphism(AFLP 是在随机扩增多态性(RAPD和限制性片段长度多态性(RFLP技术上发展起来的DNA多态性检测技术,具有RFLP技术高重复性和RAPD技术简便快捷的特点,不需象RFLP 分析一样必须制备探针,且与RAPD标记一样对基因组多态性的检测不需要知道其基因组的序列特征,同时弥补了 RAPD技术重复性差的缺陷。同其他以PCR为基础的标记技术相比,AFLP技术能同时检测到大量的位点和多态性标记。此技术已经成功地用于遗传多样性研究,种质资源鉴定方面的研究,构建遗传图谱等。 其基本原理是:以PCR(聚合酶链式反应为基础,结合了 RFLP、RAPD的分子标记技术。把DNA进行限制性内切酶酶切,然后选择特定的片段进行PCR扩增(在所有的限制性片段两端加上带有特定序列的’接头”用与接头互补的但3-端有几个随机选择的核苷酸的引物进行特异PCR扩增,只有那些与3-端严格配对的片段才能得到扩增,再在有高分辨力的测序胶上分开这些扩增产物,用放射性法、荧光法或银染染色法均可检测之。 一、实验材料 采用青稞叶片提取总DNA 实验设备 1. 美国贝克曼库尔特CEQ8000毛细管电泳系统, 2. 美国贝克曼库尔特台式冷冻离心机, 3. 美国MJ公司PCR仪,

4. 安玛西亚电泳仪等。 三、实验试剂 1. 试剂:请使用高质量产品,推荐日本东洋坊TOYOBO公司的相关产品 DNA提取试剂盒; EcoRI酶,Msel酶,T4连接酶试剂盒; Taq 酶,dNTP, PCR reactio n buffer; 琼脂糖电泳试剂:琼脂糖,无毒GeneFinder核酸染料替代传统EB染料;超纯水(18.2M ? ? cm 2. 其他实验需要物品 微量移液枪(一套及相应尺寸Tip头,PCR管,冰浴等。 四、实验流程 1、总DNA提取 使用DNA提取试剂盒提取植物基因组DNA,通过紫外分光光度计检测或用标准品跑胶检测。一般来说,100ng的基因组DNA作为反应模板是足够的。 2、EcoR1酶消化(20ul体系/样品 EcoR1 1ul

二代测序NGS实验方案和应用

这里为您介绍二代测序的相关流程与应用。 随着人类基因组工程的完成,对于低花费的测序技术的需求促进了高通量二代测序技术的发展。这些新的测序平台允许进行高通量测序,具有广泛的应用: ?全基因组从头测序或者重测序 ?目标序列重测序 ?转录组分析 ?微生物组研究 ?基因调控研究 NGS 序列 二代测序仪器有很多种组合,在通量、片段长度、准确度、每一轮测序成本、每百万碱基对测序成本、初始成本、规格与技术方面存在存在差异。 从规格与初始成本的角度而言,二代测序仪器可轻松地分类为更窄的范围,也就就是所谓的“台式测序仪”与高通量仪器。 台式测序仪使得任何实验室都可以像使用real-time PCR一样,自己进行测序。这些仪器可以与一些靶标序列富集技术相结合,用在一些临床的应用中,其中:选定的靶标基因用于深度分析,以检测稀有的突变,或者检测多样样本中(比如癌症样本)中的突变。目前,这些仪器的通量在10 Mb到7、5 Gb之间,但就是随着硬件,软件与试剂的持续改善,通量也在稳步增加。 高通量测序仪非常适合于大量的,基因组范围的研究,每次测序能测定600 Gb的序列。一些这样的高通量与高精度的平台,能测定的片段长度相对较短,这对于高重复性的序列与未知基因组的从头测序就可能成为问题。与此相反,也有一些仪器能测序的片段较长(达到2500 bp),但就是其精度与测序能力(90 Mb)要低很多。还有一些测序能力位于两者之间的仪器(~800 bp,700 Mb)。 因此,应用决定了哪一种仪器就是最合适的。 有一种新的方法被称作“纳米孔测序”。这种技术中,根据一个DNA链通过一个合成的或者蛋白纳米孔道所引起的电流的改变,可以确定通过这个孔道的碱基。这理论上可以仅用一步就测序一个完整的染色体,而不需要生成新的DNA链。 DNA测序 二代DNA测序的工作流程如下: ?DNA样本制备 ?文库构建与验证 ?文库分子大规模平行克隆扩增 ?测序 二代测序DNA样本的质量控制 首先,评价基因组DNA的质量就是非常必要的(完整性与纯度)。 凝胶电泳法

二代测序内容

二代测序: 第二代测序技术的核心思想是边合成边测序(Sequencing by Synthesis),即通过捕 捉新合成的末端的标记来确定DNA的序列,现有的技术平台主要包括Roche/454 FLX、Illumina/Solexa Genome Analyzer和Applied Biosystems SOLID system。 DNA测序(DNA sequencing)作为一种重要的实验技术,在生物学研究中有着广泛的 应用。早在DNA双螺旋结构(Watson and Crick,1953)被发现后不久就有人报道过DNA测 序技术,但是当时的操作流程复杂,没能形成规模。随后在1977年Sanger发明了具有里 程碑意义的末端终止测序法,同年A.M.Maxam和W.Gilbert发明了化学降解法。Sanger法 因为既简便又快速,并经过后续的不断改良,成为了迄今为止DNA测序的主流。然而随着 科学的发展,传统的Sanger测序已经不能完全满足研究的需要,对模式生物进行基因组重测序以及对一些非模式生物的基因组测序,都需要费用更低、通量更高、速度更快的测序 技术,第二代测序技术(Next-generation sequencing)应运而生。这三个技术平台各有优点,454 FLX的测序片段比较长,高质量的读长(read)能达到400bp;Solexa测序性价 比最高,不仅机器的售价比其他两种低,而且运行成本也低,在数据量相同的情况下,成 本只有454测序的1/10;SOLID测序的准确度高,原始碱基数据的准确度大于99.94%,而 在15X覆盖率时的准确度可以达到99.999%,是目前第二代测序技术中准确度最高的。虽 然第二代测序技术的工作一般都由专业的商业公司来完成,但是了解测序原理、操作流程 等会对后续的数据分析有很重要的作用,下文将以Illumina/Solexa Genome Analyzer 测 序为例,简述第二代测序技术的基本原理、操作流程等方面。 基本原理是:Illumina/Solexa Genome Analyzer测序的基本原理是边合成边测序。 在Sanger等测序方法的基础上,通过技术创新,用不同颜色的荧光标记四种不同的dNTP,当DNA聚合酶合成互补链时,每添加一种dNTP就会释放出不同的荧光,根据捕捉的荧光信号并经过特定的计算机软件处理,从而获得待测DNA的序列信息。 3操作流程 1)测序文库的构建(Library Construction) 首先准备基因组DNA(虽然测序公司要求样品量要达到200ng,但是Gnome Analyzer系统所需的样品量可低至100ng,能应用在很多样品有限的实验中),然后将 DNA随机片段化成几百碱基或更短的小片段,并在两头加上特定的接头(Adaptor)。如 果是转录组测序,则文库的构建要相对麻烦些,RNA片段化之后需反转成cDNA,然后加 上接头,或者先将RNA反转成cDNA,然后再片段化并加上接头。片段的大小 (Insert size)对于后面的数据分析有影响,可根据需要来选择。对于基因组测序来说, 通常会选择几种不同的insert size,以便在组装(Assembly)的时候获得更多的信息。 2)锚定桥接(Surface Attachment and Bridge Amplification) Solexa测序的反应在叫做flow cell的玻璃管中进行,flow cell又被细分成8个Lane,每个Lane的内表面有无数的被固定的单链接头。上述步骤得到的带接头的DNA 片段变性 成单链后与测序通道上的接头引物结合形成桥状结构,以供后续的预扩增使用。 3)预扩增(Denaturation and Complete Amplification)

下一代测序工作流程自动化

下一代测序(NGS)彻底改变了基因组学研究领域,使全基因组测序比以往任何时候都更有效率。然而,典型的NGS工作流程是鲜有革新的,因为它面临许多手动操作步骤和来自成本、通量以及结果变异性的诸多挑战。传统的样品制备和数据分析方法非常耗时,并更易出错。 针对这些挑战,自动化技术为此提供了相应的解决方案,并通过减少样品间变异提高了最终数据的精准度。然而,为您的NGS工作流程选择适合的自动化设备是一个复杂的过程。为了给您的实验室配备最佳的自动化整合系统,首先要对以下的四个因素进行评估,然后再作出决定: ? 自动化将如何影响您的实验流程? ? 您可选的自动化方案有哪些? ? 需要多少培训? ? 您的自动化解决方案是否需要扩展,以满足未来的需求?

Ilumina文库构建杂交选择和靶向捕获簇扩增和测序Ilumina文库构建杂交选择和靶向捕获簇扩增和测序

图3,高通量PCR纯化自动化工作流程 您是否在纯化时使用真空泵和离心过滤?图3描述了一个中高通 进一步加速:靶标富集技术 量的自动化工作流程图。 基于磁珠技术的靶标富集方法,比如SureSelect靶标富集 试剂盒和SureSelect人全外显子试剂盒,能使您仅对感兴 趣的基因片段测序,提高了几个数量级的实验效率。这些操 作很容易实现和高度扩展,凸显出Bravo自动化液体处理 平台的速度和精度的优势。

如果您的实验室需要更高的通量,您可考虑增加一个更全面的自动化系统。安捷伦BenchCel 微孔板工作站是一个灵活的、可扩展的、通量可媲美大型系统的紧凑桌面式平台。由市面上最灵活和调度高效的安捷伦VWorks 软件控制,BenchCel 工作站可用于复杂的和简单的应用流程,比起传统的手动操作方法能提供更长的无人值守时间和更大的通量。 对于超高通量、高生产率的实验室,您可能需要放弃桌面型系统。安捷伦独立的BioCel 自动化系统基于一个易于定位的直驱机械臂(DDR)。这种高度灵活的系统能与安捷伦其它自动化模块,或第三方设备组合形成定制系统,以满足您实验室的需要。 自动化方案的选择 想一想您实验室的整个工作流程。有各种不同的自动化解决方案——从垂直移液工作站到BenchCel 工作站再到BioCel 系统,可以满足不同的通量需求。自动化将提高实验数据的准确性和一致性——您是否需要一个完全无人值守的自动化解决方案?安捷伦拥有一系列的自动化设备可供选择,以适应不同实验室的需要。安捷伦的Bravo 自动液体处理平台具有宽量程的高精度移液性能、兼容不同类型微孔板的灵活性以及独特的开放式设计,易于整合到其他的自动化工作流程中。结合Bravo 自动化液体处理平台可以大大减少样品制备和检查下一代测序文库质量所花费的时间,并通过减少样本间变异提高了数据质量。 图4. 桌面型选择: A .Bravo 自动化液体处理平台 B .BenchCel 微孔板操作工作站独立的高通量系统:C. BioCel 系统 A B C

基因组DNA测序文库构建

基因组DNA测序文库构建 1.对收到的DNA样品进行检测,取2-3ul样品,用1%的琼脂糖胶检测,对于纯度不够(含 RNA或蛋白)的DNA样品需要柱纯化后重新检测。 对于细菌基因组需要扩增16S全长序列,进行验证。 对于噬菌体或者质粒样品,若用16S全长引物扩增,无目的条带则无细菌基因组污染,若出现目的条带则存在污染,需要去除后建库。 2.用Qubit检测DNA样品浓度。 3.吸取部分DNA样品,用TE或Elution Buffer稀释,终浓度在10ng/ul-30ng/ul之间, 体积为130ul。用Covaris破碎,破碎时请根据需要片段大小,按标准操作流程操作。 4.样品足够多的情况下,可以取适量破碎后的产物进行PAGE胶或者琼脂糖胶检测。 5.对破碎后的产物进行柱式法(5倍体积的B3+100-200ul异丙醇)浓缩回收,加入50-100ul TE或Elution Buffer洗脱。回收产物用Qubit测值。 6.修平和磷酸化 100ul体系

DNA 1ug 5 X T4 polymerase buffer 20ul BSA (5mg/ml) 2ul ATP (100mm) 1ul dNTP(10mm)10ul T4 DNA Polymerase (5U/ul) 1ul Klenow(10U/ul)1ul T4 PNK (10U/ ul) 1.5ul 22°C反应20min,柱式法纯化,50-100ul TE洗脱。纯化后Qubit测值。 7.加‘A’ 100ul体系 DNA 0.5-2.5ug 10 X klenow buffer 10ul dATP(10mm) 1-3ul Klenow(exon-)(5U/ul)1-3ul 37°反应20min,柱式法纯化,50-100ul TE洗脱。纯化后Qubit测值。 8.连接头 200ul体系 10 X T4 DNA ligase buffer 20ul PEG4000 30ul ATP(100mm) 2ul DNA X 接头 Y T4 DNA ligase 1.5-2ul 加水至 200ul DNA与接头的摩尔比约在1:3至1:10之间。 9.连接产物用柱式法纯化后,跑琼脂糖胶切割目的区域回收。 10.PCR扩增 10 X TagE buffer 5ul Mg2+ 4ul dNTP(10mm) 1ul lib-PCR-F 0.5ul

微生物基因组denovo测序分析流程

#流程大放送#微生物基因组Denovo测序分析 知因无限 一介绍 微生物基因组De novo测序分析也叫微生物基因组从头测序分析,指不依赖于任何参考序列信息就可对某个微生物进行分析的测序分析技术,用生物信息学的方法进行序列拼接获得该物种的基因组序列图谱,然后进行注释等后续一系列的分析。微生物Denovo基因组测序及分析技术可以应用于医药卫生等领域。 二技术应用领域 1、基因组图谱的系统性构建 例子:过去几个月,肠病毒D68令数百名美国儿童患病。华盛顿大学的研究人员测序和分析了肠病毒D68(EV-D68)的基因组,这一成果将发表在新一期的Emerging Infectious Diseases杂志上。(Genome Sequence of Enterovirus D68 from St. Louis, Missouri, USA)肠病毒D68(EV-D68)能在儿童中引起严重的呼吸道疾病。其基因组序列可以“帮助人们开发更好的诊断测试,”共同作者Gregory Storch说。“有助于解释病毒感染为什么会造成严重的疾病,以及EV-D68为什么比过去传播得更广。”(来自于生物通的报道) 2、微生物致病性和耐药性位点检测及相关基因功能研究 例子:根据分泌蛋白、毒力因子、致病岛、必需基因等结果去探讨所测物种致病性和耐药性。 3、微生物的比较基因组分析,确定各个近缘微生物中的系统发育关系 二基本分析流程图

三可能的结果展示图 示例图1 微生物基因组的功能注释

示例图2 微生物基因组的系统进化关系 注:以上图片和文字来自参考文献21。 六参考文献 [1] Hong-Bin Shen, and Kuo-Chen Chou, "Virus-mPLoc: a fusion classifier for viral protein subcellular location prediction by incorporating multiple sites", Journal of Biomolecular Structure & Dynamics, 2010, 28: 175-86. [2]Hong-Bin Shen and Kuo-Chen Chou, "Virus-PLoc: A fusion classifier for predicting the subcellular localization of viral proteins within host and virus-infected cells.", Biopolymers. 2007, 85, 233-240. [3] Ren Zhang and Yan Lin, (2009) DEG 5.0, a database of essential genes in both prokaryotes and eukaryotes. Nucleic Acids Research 37, D455-D458. [4] The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics. 2007 May 23;8(1):172. [5] The Pfam protein families database: M. Punta, P.C. Coggill, R.Y. Eberhardt, J. Mistry, J. Tate, C. Boursnell, N. Pang, K. Forslund, G. Ceric, J. Clements, A. Heger, L. Holm, E.L.L. Sonnhammer, S.R. Eddy, A. Bateman, R. D. Finn Nucleic Acids Research (2014) Database Issue 42:D222-D230. [6] Clustal W and Clustal X version 2.0.(2007 Nov 01) Bioinformatics (Oxford, England) 23 (21) :2947-8.PMID: 17846036. [7] Felsenstein, J. 2004. PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle. [8] Li et al (2010). De novo assembly of human genomes with massively parallel short read

三代基因组测序技术简介及其原理整理.

三代基因组测序技术简介及其原理整理 第一代测序技术 第一代DNA测序技术用的是1975年由桑格(Sanger)和考尔森(Coulson)开创的链终止法以及1976-1977年由马克西姆(Maxam)和吉尔伯特(Gilbert)发明的化学法(链降解)。 1977年,桑格测定了第一个基因组序列——噬菌体X174,全长5375个碱基。自此,人类获得了窥探生命遗传差异本质的能力,并以此为开端步入基因组学时代。研究人员在Sanger法的多年实践之中不断对其进行改进。在2001年,完成的首个人类基因组图谱就是以改进了的Sanger法为其测序基础。 Sanger法原理: 1)在模板指导下,DNA聚合酶不断将dNTP(N=A/G/T/ C)加到引物的3’- OH末端,合成出新的互补链。在4个DNA合成反应体系中分别加入一定比例带有放射性同位素标记的ddNTP,在互补链在DNA聚合酶作用下延伸时,一旦连接上ddNTP,由于双脱氧核糖的2’和3’都不含羟基,故不能同后续的dNTP形成磷酸二酯键而终止反应,随即形成一系列不同长度的、以同样引物为起始、以同一碱基终止的短片段混合物。 2)双脱氧核苷酸在每个DNA分子中掺入的位置不同,采用聚丙烯酰胺凝胶电泳区分长度差一个核苷酸的单链DNA,从而读取DNA核苷酸序列。 化学裂解法原理: 与Sanger法类似,将DNA模板分成4个反应。在每个反应中,先在模板5’端进行放射性标记,再加入能特异性在其中一种碱基处切开DNA的化学试剂。反应进行时,平均一个DNA分子只在随机位点产生一次裂解。接着,通过凝胶电泳和放射自显影后可以根据电泳带的位置确定待测分子的DNA序列。 第二代测序技术 第一代测序技术的主要特点是测序读长可达1000bp,准确性高达99.999%,但其测序成本高,通量低等方面的缺点,严重影响了其真正大规模的应用。因而第一代测序技术并不是最理想的测序方法。经过不

分子标记的实验原理及操作流程

一 AFLP 分子标记实验 扩增片段长度多态性 Amplified fragment length polymorphism(AFLP 是在随机扩增多态性 (RAPD 和限制性片段长度多态性 (RFLP 技术上发展起来的 DNA 多态性检测技术, 具有 RFLP 技术高重复性和 RAPD 技术简便快捷的特点, 不需象 RFLP 分析一样必须制备探针, 且与 RAPD 标记一样对基因组多态性的检测不需要知道其基因组的序列特征,同时弥补了 RAPD 技术重复性差的缺陷。同其他以 PCR 为基础的标记技术相比, AFLP 技术能同时检测到大量的位点和多态性标记。此技术已经成功地用于遗传多样性研究, 种质资源鉴定方面的研究,构建遗传图谱等。 其基本原理是:以 PCR(聚合酶链式反应为基础, 结合了 RFLP 、 RAPD 的分子标记技术。把 DNA 进行限制性内切酶酶切,然后选择特定的片段进行 PCR 扩增(在所有的限制性片段两端加上带有特定序列的“ 接头” , 用与接头互补的但 3-端有几个随机选择的核苷酸的引物进行特异 PCR 扩增, 只有那些与 3-端严格配对的片段才能得到扩增 , 再在有高分辨力的测序胶上分开这些扩增产物,用放射性法、荧光法或银染染色法均可检测之。 一、实验材料 采用青稞叶片提取总 DNA 。 二、实验设备 1. 美国贝克曼库尔特 CEQ8000毛细管电泳系统, 2. 美国贝克曼库尔特台式冷冻离心机,

3. 美国 MJ 公司 PCR 仪, 4. 安玛西亚电泳仪等。 三、实验试剂 1. 试剂:请使用高质量产品,推荐日本东洋坊 TOYOBO 公司的相关产品。 DNA 提取试剂盒; EcoRI 酶,MseI 酶,T4连接酶试剂盒; Taq 酶,dNTP, PCR reaction buffer; 琼脂糖电泳试剂:琼脂糖,无毒 GeneFinder 核酸染料替代传统 EB 染料; 超纯水(18.2M ? ·cm 2.其他实验需要物品 微量移液枪(一套及相应尺寸 Tip 头,PCR 管,冰浴等。 四、实验流程 1、总 DNA 提取 使用 DNA 提取试剂盒提取植物基因组 DNA,通过紫外分光光度计检测或用标准品跑胶检测。一般来说, 100ng 的基因组 DNA 作为反应模板是足够的。 2、 EcoR1酶消化 (20ul 体系 /样品

二代测序之建库步骤

第一部分DNA酶处理:试剂为PROMEGA( RQ1 RNase-Free DNase ) 目的:失活DNase酶 RNA(TE洗脱)8微升 RQ1 RNase-Free DNase 10X Reaction Buffer 1微升 RQ1 RNase-Free DNase 1微升/微克RNA 合计10微升 37℃ 30分钟孵育 加1微升的RQ1 DNase 终止液 65℃ 10分钟使DNase酶失活 (PS:经验这一步最好在核酸提取之前就处理好,具体步骤如下:取样本反复冻融三次,然后一万转离心十分钟,取上清,用0.22微米的滤膜过滤,加DNase,提核酸) 第二部分RNA-seq system V2(cat.7102) 目的:生成并纯化cDNA 一、第一链合成 1. 融解第一链cDNA合成试剂(蓝色盖)和无核酸酶的水(绿色) 2. 短时离心A3ver1 放在冰上,votex A1Ver4和A2ver3,离心后放在冰上;无核酸酶水放在室温; 3. 在冰上,取2ul A1和5ul total RNA (500pg到100ng)放在0.2mlPCR管里; 4. 将PCR管放在PCR仪中运行程序1: RNA量≤ 1ng时,65℃ 2min,4℃存放 RNA量> 1ng时,65℃ 5min,4℃存放; 5. PCR仪降到4℃后取出PCR管放在冰上,加入制备好的第一链合成试剂,每个样本加入3ul,混匀后,离心放在冰上: 第一链合成试剂:2.5ul buffer mixA2+ 0.5ul 酶混合液A3(共3ul)注意:加酶A3时要慢慢加入,反复吹打枪头至少5次确保酶加入进去 6. 把加入第一链合成剂和样本的PCR管放在PCR仪上运行程序2: 4℃ 1min,25℃ 10min,42℃ 10min,70℃ 15min,4℃hold 二、第二链合成

单细胞测序技术

2013年,单细胞测序技术开始成为科研界主流关注的焦点。 前言 2013年,单细胞测序技术(single-cell sequencing)荣膺《自然-方法》年度技术。单细胞测序技术有助于我们剖析细胞的异质性。它可以揭示肿瘤细胞基因组中发生的突变及结构性变异,而这些突变和变异往往有着极高的突变率。有了这些信息,我们就可以描述肿瘤细胞的克隆结构,并追踪疾病的进展及扩散范围。本文将介绍2013年单细胞测序技术在人类早期发育、癌症以及神经科学研究等几个重点领域的最新应用成果。 1. 单细胞测序技术简介 本节将概述如何获得一个单细胞的基因组及转录组。 单细胞基因组及转录组测序所需要的测序样本量要比单细胞中本身所含有的基因组及转录组分子高出好多个数量级,所以这对核酸扩增技术(amplification technology)也是一大考验。面对如此微量的分子,任何降解、样品损失、或者污染都会对测序质量带来非常严重的影响。而且多重扩增又容易带来试验误差,比如基因组或转录组覆盖不均一、背景噪声以及定量不准确等问题。 最近所取得的技术进步有望部分解决上述问题,使单细胞测序技术能

够走进更多的实验室,解决更多领域的科学问题。比较罕见的细胞、异质性的样本、与遗传嵌合或突变相关的表型、不能人工培养的微生物,这些都是单细胞测序技术能够一展所长的研究平台。使用单细胞测序技术能够发现克隆突变(clonal mutation)、隐藏的细胞类型,或者在大块组织样品研究工作中被“稀释”或平均掉的转录特征。 1.1 选择恰当的细胞 说到分离单细胞,显微操作(micromanipulation)无疑是一项非常精确的技术,而且利用毛细管(microcapillary)可以直接吸取细胞内容物,但是这项操作也需要耗费大量人力。很多组织解离之后都能够制成单细胞悬液,这种单细胞悬液很容易操作,而且可以用细胞分选器(cellsorter),根据细胞表面表达的特异性分子标志物对细胞进行分类富集操作。这种策略也被用来分离非常微量的循环肿瘤细胞。 1.2 单细胞转录组策略 现在有很多单细胞RNA测序操作流程可供选择,不过不管采用何种策略,首先都需要通过逆转录反应,利用RNA合成出cDNA。然后才会有所区别,比如有一些方法是对整个转录子进行测序,有一些方法只针对转录子的5'和3'端进行测序。不论采用何种方法,目的都只有一个,那就是捕获原始的RNA分子,然后均一的、准确地对其进行扩增。核酸的捕获效率主要受到逆转录反应的影响,不过我们可

相关主题