搜档网
当前位置:搜档网 › 贝叶斯推论统计在心理学研究中的应用

贝叶斯推论统计在心理学研究中的应用

贝叶斯推论统计在心理学研究中的应用
贝叶斯推论统计在心理学研究中的应用

贝叶斯分类器的matlab实现

贝叶斯分类器的matlab实现 贝叶斯分类原理: 1)在已知P(Wi),P(X|Wi)(i=1,2)及给出待识别的X的情况下,根据贝叶斯公式计算出后验概率P(Wi|X) ; 2)根据1)中计算的后验概率值,找到最大的后验概率,则样本X属于该类 举例: 解决方案: 但对于两类来说,因为分母相同,所以可采取如下分类标准:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% %By Shelley from NCUT,April 14th 2011 %Email:just_for_h264@https://www.sodocs.net/doc/f812730458.html, %此程序利用贝叶斯分类算法,首先对两类样本进行训练, %进而可在屏幕上任意取点,程序可输出属于第一类,还是第二类%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% clear; close all %读入两类训练样本数据 load data %求两类训练样本的均值和方差 u1=mean(Sample1); u2=mean(Sample2); sigm1=cov(Sample1); sigm2=cov(Sample2); %计算两个样本的密度函数并显示 x=-20:0.5:40; y= -20:0.5:20; [X,Y] = meshgrid(x,y); F1 = mvnpdf([X(:),Y(:)],u1,sigm1); F2 = mvnpdf([X(:),Y(:)],u2,sigm2); P1=reshape(F1,size(X)); P2=reshape(F2,size(X)); figure(2) surf(X,Y,P1) hold on surf(X,Y,P2) shading interp colorbar title('条件概率密度函数曲线'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% %以下为测试部分 %利用ginput随机选取屏幕上的点(可连续取10个点)

贝叶斯统计方法(可编辑修改word版)

贝叶斯方法 贝叶斯分类器是一种比较有潜力的数据挖掘工具,它本质上是一种分类手段,但是它的优势不仅仅在于高分类准确率,更重要的是,它会通过训练集学习一个因果关系图(有向无环图)。如在医学领域,贝叶斯分类器可以辅助医生判断病情,并给出各症状影响关系,这样医生就可以有重点的分析病情给出更全面的诊断。进一步来说,在面对未知问题的情况下,可以从该因果关系图入手分析,而贝叶斯分类器此时充当的是一种辅助分析问题领域的工具。如果我们能够提出一种准确率很高的分类模型,那么无论是辅助诊疗还是辅助分析的作用都会非常大甚至起主导作用,可见贝叶斯分类器的研究是非常有意义的。 与五花八门的贝叶斯分类器构造方法相比,其工作原理就相对简单很多。我们甚至可以把它归结为一个如下所示的公式: 选取其中后验概率最大的c,即分类结果,可用如下公式表示

贝叶斯统计的应用范围很广,如计算机科学中的“统计模式识别”、勘探专家所采用的概率推理、计量经济中的贝叶斯推断、经济理论中的贝叶斯模型等。 上述公式本质上是由两部分构成的:贝叶斯分类模型和贝叶斯公式。下面介绍贝叶斯分类器工作流程: 1.学习训练集,存储计算条件概率所需的属性组合个数。 2.使用1 中存储的数据,计算构造模型所需的互信息和条件互信息。 3.使用2 种计算的互信息和条件互信息,按照定义的构造规则,逐步构建出贝叶斯分类模型。 4.传入测试实例 5.根据贝叶斯分类模型的结构和贝叶斯公式计算后验概率分布。 6.选取其中后验概率最大的类c,即预测结果。 一、第一部分中给出了7 个定义。 定义1 给定事件组,若其中一个事件发生,而其他事件不发生,则称这些事件互不相容。 定义2 若两个事件不能同时发生,且每次试验必有一个发生,则称这些事件相互对立。 定义3 若定某事件未发生,而其对立事件发生,则称该事件失败 定义4 若某事件发生或失败,则称该事件确定。 定义5 任何事件的概率等于其发生的期望价值与其发生所得到

贝叶斯网络研究现状与发展趋势的文献计量分析

Computer Science and Application 计算机科学与应用, 2020, 10(3), 493-504 Published Online March 2020 in Hans. https://www.sodocs.net/doc/f812730458.html,/journal/csa https://https://www.sodocs.net/doc/f812730458.html,/10.12677/csa.2020.103052 The Bibliometric Analysis of Current Studies and Developing Trends on Bayesian Network Research Zhongzheng Xiao1, Nurbol2, Hongyang Liu3 1College of Information Science and Engineering, Xinjiang University, Urumqi Xinjiang 2Network Center, Xinjiang University, Urumqi Xinjiang 3Xichang Satellite Launch Center, Xichang Sichuan Received: Feb. 26th, 2020; accepted: Mar. 12th, 2020; published: Mar. 19th, 2020 Abstract In this paper, 2,930 literatures related to Bayesian network in the recent 10 years in the web of science were taken as the research object. Based on the literature metrological content analysis method, the focus, development rules of research context, existing commonalities and differences, and research status at home and abroad were systematically reviewed. The study found that, as of now, especially in the prevalence of neural networks, Bayesian networks can be deepened and have great potential because of their strong mathematical interpretability. The analysis results are helpful to provide reference for the research status and progress of scholars in the field of Bayesian network research in China. Keywords Bayesian Network, Map Analysis, Citespace, Research Context 贝叶斯网络研究现状与发展趋势的文献计量 分析 肖中正1,努尔布力2,刘宏阳3 1新疆大学信息科学与工程学院,新疆乌鲁木齐 2新疆大学网络中心,新疆乌鲁木齐 3西昌卫星发射中心,四川西昌 收稿日期:2020年2月26日;录用日期:2020年3月12日;发布日期:2020年3月19日

五种贝叶斯网分类器的分析与比较

五种贝叶斯网分类器的分析与比较 摘要:对五种典型的贝叶斯网分类器进行了分析与比较。在总结各种分类器的基础上,对它们进行了实验比较,讨论了各自的特点,提出了一种针对不同应用对象挑选贝叶斯网分类器的方法。 关键词:贝叶斯网;分类器;数据挖掘;机器学习 故障诊断、模式识别、预测、文本分类、文本过滤等许多工作均可看作是分类问题,即对一给定的对象(这一对象往往可由一组特征描述),识别其所属的类别。完成这种分类工作的系统,称之为分类器。如何从已分类的样本数据中学习构造出一个合适的分类器是机器学习、数据挖掘研究中的一个重要课题,研究得较多的分类器有基于决策树和基于人工神经元网络等方法。贝叶斯网(Bayesiannetworks,BNs)在AI应用中一直作为一种不确定知识表达和推理的工具,从九十年代开始也作为一种分类器得到研究。 本文先简单介绍了贝叶斯网的基本概念,然后对五种典型的贝叶斯网分类器进行了总结分析,并进行了实验比较,讨论了它们的特点,并提出了一种针对不同应用对象挑选贝叶斯分类器的方法。 1贝叶斯网和贝叶斯网分类器 贝叶斯网是一种表达了概率分布的有向无环图,在该图中的每一节点表示一随机变量,图中两节点间若存在着一条弧,则表示这两节点相对应的随机变量是概率相依的,两节点间若没有弧,则说明这两个随机变量是相对独立的。按照贝叶斯网的这种结构,显然网中的任一节点x均和非x的父节点的后裔节点的各节点相对独立。网中任一节点X均有一相应的条件概率表(ConditionalProbabilityTable,CPT),用以表示节点x在其父节点取各可能值时的条件概率。若节点x无父节点,则x的CPT为其先验概率分布。贝叶斯网的结构及各节点的CPT定义了网中各变量的概率分布。 贝叶斯网分类器即是用于分类工作的贝叶斯网。该网中应包含一表示分类的节点C,变量C的取值来自于类别集合{C,C,....,C}。另外还有一组节点x=(x,x,....,x)反映用于分类的特征,一个贝叶斯网分类器的结构可如图1所示。 对于这样的一贝叶斯网分类器,若某一待分类的样本D,其分类特征值为x=(x,x,....,x),则样本D属于类别C的概率为P(C=C|X=x),因而样本D属于类别C的条件是满足(1)式: P(C=C|X=x)=Max{P(C=C|X=x),P(C=C|X=x),...,P(C=C|X=x)}(1) 而由贝叶斯公式 P(C=C|X=x)=(2) 其中P(C=Ck)可由领域专家的经验得到,而P(X=x|C=Ck)和P(X=x)的计算则较困难。应用贝叶斯网分类器分成两阶段。一是贝叶斯网分类器的学习(训练),即从样本数据中构造分类器,包括结构(特征间的依赖关系)学习和CPT表的学习。二是贝叶斯网分类器的推理,即计算类结点的条件概率,对待分类数据进行分类。这两者的时间复杂性均取决于特征间的依赖程度,甚至可以是NP完全问题。因而在实际应用中,往往需

贝叶斯统计习题答案

第一章 先验分布与后验分布 1.1 解:令120.1,0.2θθ== 设A 为从产品中随机取出8个,有2个不合格,则 22618()0.10.90.1488P A C θ== 22628()0.20.80.2936P A C θ== 从而有 5418 .03 .02936.07.01488.07 .01488.0)()|()()|()()|()|(2211111=?+??=+= θπθθπθθπθθπA P A P A P A 4582 .0)|(1)|(4582 .03.02936.07.01488.03 .02936.0)()|()()|()()|()|(122211222=-==?+??=+= A A or A P A P A P A θπθπθπθθπθθπθθπ 1.2 解:令121, 1.5λλ== 设X 为一卷磁带上的缺陷数,则()X P λ ∴3(3)3! e P X λ λλ-== R 语言求:)4(/)exp(*)3(^gamma λλ- 1122(3)(3)()(3)()0.0998P X P X P X λπλλπλ∴===+== 从而有 111222(3)() (3)0.2457 (3)(3)() (3)0.7543 (3) P X X P X P X X P X λπλπλλπλπλ======== == 1.3 解:设A 为从产品中随机取出8个,有3个不合格,则 33 58()(1)P A C θθθ=- (1) 由题意知 ()1,01πθθ=<< 从而有 .10,)1(504)|(504)6,4(/1) 6,4(1 )6,4()1() 1()1()1()1()1()1()()|() ()|()|(53531 1 61 45 31 5 3 5 31 53 3 8 5 33810 <<-==-= --= --= --= =????--θθθθπθθθ θθ θθθ θθ θθθ θθ θθθθπθθπθθπA beta B R B d d d C C d A P A P A :语言求 (2)

1选题:本课题国内外研究现状述评,提出选题的背景及意义.doc

1.选题:本课题国内外研究现状述评,提出选题的背景及意义。 2.目标与内容: 本课题研究拟完成的研究目标和主要研究内容,研究内容要对?拟解决的问题进行具体化。3、研究思路与方法:本课题研究的技术路线、方法和计划。4.预期价值:本课题理论创新程度和实践应用价值。(课题设计论证限3000字以内) 一直以来如何有效的提高学生的学习效率和教师的教学效率不断的得到大量的研究,近二十年以来,随着计算机信息技术和互联网应用的飞速发展,在教育心理学中正在发生着一场革命,应用建构主义的学习理论(Slavin, 1994)来指导改革教学成为一大趋势。建构主义学习理论从“学习的含义”(即关于“什么是学习”)与“学习的方法”(即关于“如何进行学习”)这两个角度说明学习的影响因素及提高学习效率的方法,建构主义学习理论认为学习是在一定的基础知识之上,在一定的情境即社会文化背景下,借助其他人的帮助即通过人际间的协作活动而实现的意义建构过程。“情境”、“协作”、“会话”和“意义建构”是学习环境中的四大要素或四大属性。所谓“情境”即是学习的综合环境;“协作”: 指学习中与他人的沟通与合作;“会话”:学习小组成员之间通过会话商讨如何完成规定的学习任务的计划;“意义建构”:建构事物的性质、规律以及事物之间的内在联系,是整个学习过程的最终目标。建构主义的学生观、教师观和知识观和以往的学习理论有了很大的变化,应用建构主义学习理论来提高教学效率正成为当前的研究热点,但目前的研究多从学习的方法论和学习技术本身入手,考虑学生的具体群体的学习特点较少,不能很好的有的放矢,在分析学生的学习影响因素时多直接用常规的数理统计理论进行分析与讨论,而实际上影响学生的学习因素是相当复杂与繁多的,而且学习因素之间W能存在相互的因果关系,而这种因果关系有时往往不知道,因素之间的影响到底多大,定量的关系不明确,甚至可能有很多隐藏的因素在起作用,发现学习的各种影响因素及其因果关系与比重,以及它们的变化分布规律对我们找出主要因素从而正确指导教学以及设计调查问卷摸查学生的学习基础与学习特点对教师的教学设计和提高教学效率具有重要意义,目前对此的研究还比较少。 贝叶斯网络又称信度网络,是Bayes方法的扩展,是目前不确定知识表达和推理领域最有效的理论模型之一。自1988年由Pearl提出后,己知成为近几年来研究的热点一般的贝叶斯网络结构是一个有向无环图(Directed Acyclic Graph,DAG),如图1所示,由代表变量节点及连接这些节点有向边构成。节点代表随机变量,节点间的有向边代表了节点间的互相关系(由父节点指向其后代节点),用条件概率进行表达关系强度,没有父节点的用先验概率进行信息表达, 节点变量可以是任何问题的抽象(如知识表达),适用于表达和分析不确定性和概率性的事件,可以从不完全、不精确或不确定的知识或信息中做出推理。贝叶斯网络本身是一种不确定性因果关联模型,贝叶斯网络与其他决策模型不同,它本身是将多元知识图解可视化为一种概率知识表近与推理模型,更为贴切地蕴含了网络节点,变量之间的因果关系及条件相关关系,如果节点表达为学习因素,

贝叶斯网络结构学习及其应用研究_黄解军

收稿日期:2004-01-23。 项目来源:国家自然科学基金资助项目(60175022)。 第29卷第4期2004年4月武汉大学学报#信息科学版 Geomatics and Information Science of Wuhan U niversity V ol.29No.4Apr.2004 文章编号:1671-8860(2004)04-0315-04文献标识码:A 贝叶斯网络结构学习及其应用研究 黄解军1 万幼川1 潘和平 1 (1 武汉大学遥感信息工程学院,武汉市珞喻路129号,430079) 摘 要:阐述了贝叶斯网络结构学习的内容与方法,提出一种基于条件独立性(CI)测试的启发式算法。从完全潜在图出发,融入专家知识和先验常识,有效地减少网络结构的搜索空间,通过变量之间的CI 测试,将全连接无向图修剪成最优的潜在图,近似于有向无环图的无向版。通过汽车故障诊断实例,验证了该算法的可行性与有效性。 关键词:贝叶斯网络;结构学习;条件独立性;概率推理;图论中图法分类号:T P18;T P311 贝叶斯网络学习是贝叶斯网络的重要研究内容,也是贝叶斯网络构建中的关键环节,大体分为结构学习和参数学习两个部分。由于网络结构的空间分布随着变量的数目和每个变量的状态数量呈指数级增长,因此,结构学习是一个NP 难题。为了克服在构建网络结构中计算和搜索的复杂性,许多学者进行了大量的探索性工作[1~5]。至今虽然出现了许多成熟的学习算法,但由于网络结构空间的不连续性、结构搜索和参数学习的复杂性、数据的不完备性等特点,每种算法都存在一定的局限性。本文提出了一种新算法,不仅可以有效地减少网络结构的搜索空间,提高结构学习的效率,而且可避免收敛到次优网络模型的问题。 1 贝叶斯网络结构学习的基本理论 1.1 贝叶斯网络结构学习的内容 贝叶斯网络又称为信念网络、概率网络或因果网络[6] 。它主要由两部分构成:1有向无环图(directed acyclic graph,DAG),即网络结构,包括节点集和节点之间的有向边,每个节点代表一个变量,有向边代表变量之间的依赖关系;o反映变量之间关联性的局部概率分布集,即概率参数,通常称为条件概率表(conditional probability table,CPT),概率值表示变量之间的关联强度或置信度。贝叶斯网络结构是对变量之间的关系描 述,在具体问题领域,内部的变量关系形成相对稳定的结构和状态。这种结构的固有属性确保了结构学习的可行性,也为结构学习提供了基本思路。贝叶斯网络结构学习是一个网络优化的过程,其目标是寻找一种最简约的网络结构来表达数据集中变量之间的关系。对于一个给定问题,学习贝叶斯网络结构首先要定义变量及其构成,确定变量所有可能存在的状态或权植。同时,要考虑先验知识的融合、评估函数的选择和不完备数据的影响等因素。 1.2 贝叶斯网络结构学习的方法 近10年来,贝叶斯网络的学习理论和应用取得了较大的进展。目前,贝叶斯网络结构学习的方法通常分为两大类:1基于搜索与评分的方法,运用评分函数对网络模型进行评价。通常是给定一个初始结构(或空结构),逐步增加或删减连接边,改进网络模型,从而搜索和选择出一个与样本数据拟合得最好的结构。根据不同的评分准则,学习算法可分为基于贝叶斯方法的算法[3,7]、基于最大熵的算法[8]和基于最小描述长度的算法[1,2]。o基于依赖关系分析的方法,节点之间依赖关系的判断通过条件独立性(CI )测试来实现,文献[9,10]描述的算法属于该类算法。前者在DAG 复杂的情况下,学习效率更高,但不能得到一个最优的模型;后者在数据集的概率分布与DAG 同构的条件下,通常获得近似最优的模型[11],

贝叶斯分类多实例分析总结

用于运动识别的聚类特征融合方法和装置 提供了一种用于运动识别的聚类特征融合方法和装置,所述方法包括:将从被采集者的加速度信号 中提取的时频域特征集的子集内的时频域特征表示成以聚类中心为基向量的线性方程组;通过求解线性方程组来确定每组聚类中心基向量的系数;使用聚类中心基向量的系数计算聚类中心基向量对子集的方差贡献率;基于方差贡献率计算子集的聚类中心的融合权重;以及基于融合权重来获得融合后的时频域特征集。 加速度信号 →时频域特征 →以聚类中心为基向量的线性方程组 →基向量的系数 →方差贡献率 →融合权重 基于特征组合的步态行为识别方法 本发明公开了一种基于特征组合的步态行为识别方法,包括以下步骤:通过加速度传感器获取用户在行为状态下身体的运动加速度信息;从上述运动加速度信息中计算各轴的峰值、频率、步态周期和四分位差及不同轴之间的互相关系数;采用聚合法选取参数组成特征向量;以样本集和步态加速度信号的特征向量作为训练集,对分类器进行训练,使的分类器具有分类步态行为的能力;将待识别的步态加速度信号的所有特征向量输入到训练后的分类器中,并分别赋予所属类别,统计所有特征向量的所属类别,并将出现次数最多的类别赋予待识别的步态加速度信号。实现简化计算过程,降低特征向量的维数并具有良好的有效性的目的。 传感器 →样本及和步态加速度信号的特征向量作为训练集 →分类器具有分类步态行为的能力 基于贝叶斯网络的核心网故障诊断方法及系统 本发明公开了一种基于贝叶斯网络的核心网故障诊断方法及系统,该方法从核心网的故障受理中心采集包含有告警信息和故障类型的原始数据并生成样本数据,之后存储到后备训练数据集中进行积累,达到设定的阈值后放入训练数据集中;运用贝叶斯网络算法对训练数据集中的样本数据进行计算,构造贝叶斯网络分类器;从核心网的网络管理系统采集含有告警信息的原始数据,经贝叶斯网络分类器计算获得告警信息对应的故障类型。本发明,利用贝叶斯网络分类器构建故障诊断系统,实现了对错综复杂的核心网故障进行智能化的系统诊断功能,提高了诊断的准确性和灵活性,并且该系统构建于网络管理系统之上,易于实施,对核心网综合信息处理具有广泛的适应性。 告警信息和故障类型 →训练集 —>贝叶斯网络分类器

朴素贝叶斯分类器应用

朴素贝叶斯分类器的应用 作者:阮一峰 日期:2013年12月16日 生活中很多场合需要用到分类,比如新闻分类、病人分类等等。 本文介绍朴素贝叶斯分类器(Naive Bayes classifier),它是一种简单有效的常用分类算法。 一、病人分类的例子 让我从一个例子开始讲起,你会看到贝叶斯分类器很好懂,一点都不难。 某个医院早上收了六个门诊病人,如下表。 症状职业疾病 打喷嚏护士感冒 打喷嚏农夫过敏 头痛建筑工人脑震荡 头痛建筑工人感冒 打喷嚏教师感冒 头痛教师脑震荡 现在又来了第七个病人,是一个打喷嚏的建筑工人。请问他患上感冒的概率有多大? 根据贝叶斯定理: P(A|B) = P(B|A) P(A) / P(B)

可得 P(感冒|打喷嚏x建筑工人) = P(打喷嚏x建筑工人|感冒) x P(感冒) / P(打喷嚏x建筑工人) 假定"打喷嚏"和"建筑工人"这两个特征是独立的,因此,上面的等式就变成了 P(感冒|打喷嚏x建筑工人) = P(打喷嚏|感冒) x P(建筑工人|感冒) x P(感冒) / P(打喷嚏) x P(建筑工人) 这是可以计算的。 P(感冒|打喷嚏x建筑工人) = 0.66 x 0.33 x 0.5 / 0.5 x 0.33 = 0.66 因此,这个打喷嚏的建筑工人,有66%的概率是得了感冒。同理,可以计算这个病人患上过敏或脑震荡的概率。比较这几个概率,就可以知道他最可能得什么病。 这就是贝叶斯分类器的基本方法:在统计资料的基础上,依据某些特征,计算各个类别的概率,从而实现分类。 二、朴素贝叶斯分类器的公式 假设某个体有n项特征(Feature),分别为F1、F2、...、F n。现有m个类别(Category),分别为C1、C2、...、C m。贝叶斯分类器就是计算出概率最大的那个分类,也就是求下面这个算式的最大值: P(C|F1F2...Fn) = P(F1F2...Fn|C)P(C) / P(F1F2...Fn) 由于 P(F1F2...Fn) 对于所有的类别都是相同的,可以省略,问题就变成了求 P(F1F2...Fn|C)P(C) 的最大值。

Promedas—贝叶斯网络在医学诊断中的应用

Promedas—贝叶斯网络在医学诊断中的应用1. 综述 现代的医学诊断是一个非常复杂的过程,要求具备患者准确的资料,以及对医学著作深刻的理解,还有多年的临床经验。这样的情况尤其适用在内科诊断中,因为它涵盖了一个巨大范围的诊断门类。而且也因此使得内科诊断成为了一个需要专攻的学科。 诊断是一个过程。通过这个过程,医生为病人的症状寻找拥有最佳解释的病因。这个研究的过程是一个连续的过程,即病人的症状会指示医生对其进行一些初步的检查。基于这些初步检查的结果,一个关于可能的病因的试探性的假设形成了。这个过程可能会在若干个循环中推进,直到病人被以充分的确定性来做了诊断,而且其症状的病因也被建立起来。 诊断过程的一个很重要的部分是标准化诊断的形式。这里有若干的规则来限制:依据病人的症状以及检验的结果,什么样的检查应该被执行,它们的顺序应该是什么样的。这些规则形成了一个决策树,其节点是诊断的中间过程;依据当前诊断的结果,其枝干指向额外的检查。这些规则是由每个国家的一个医学专家委员会制定的。 在平时遇到的大部分诊断里,上面提到的指南已经足以准确的指导我们做出正确的诊断。对于这种“一般”的情形,一个“决策支持系统”是没有必要的。在10%~20%的案例中,进行诊断的过程是很困难的。因为对于正确的诊断结果的不确定性,以及对下一步进行什么检查的不确定性,不同的医生在不同的诊断过程中做出的决策是不一样的,而且缺乏“推理”。在这些案例中,通常一个专攻此类疾病的专家或者详细描述此类疾病的著作将会被咨询。对于这种困难的情形,基于计算机的决策支持系统可以作为一个可供选择的信息来源。而且,这样一个由计算机提供帮助的决策支持系统在指出其他一些原来可能被忽略的疾病方面是有帮助的。它可能就此导致一个被提高的,更加理性的诊断过程,并且更见高效和廉价。

Python实现贝叶斯分类器

关于朴素贝叶斯 朴素贝叶斯算法是一个直观的方法,使用每个属性归属于某个类的概率来做预测。你可以使用这种监督性学习方法,对一个预测性建模问题进行概率建模。 给定一个类,朴素贝叶斯假设每个属性归属于此类的概率独立于其余所有属性,从而简化了概率的计算。这种强假定产生了一个快速、有效的方法。 给定一个属性值,其属于某个类的概率叫做条件概率。对于一个给定的类值,将每个属性的条件概率相乘,便得到一个数据样本属于某个类的概率。 我们可以通过计算样本归属于每个类的概率,然后选择具有最高概率的类来做预测。 通常,我们使用分类数据来描述朴素贝叶斯,因为这样容易通过比率来描述、计算。一个符合我们目的、比较有用的算法需要支持数值属性,同时假设每一个数值属性服从正态分布(分布在一个钟形曲线上),这又是一个强假设,但是依然能够给出一个健壮的结果。 预测糖尿病的发生 本文使用的测试问题是“皮马印第安人糖尿病问题”。 这个问题包括768个对于皮马印第安患者的医疗观测细节,记录所描述的瞬时测量取自诸如患者的年纪,怀孕和血液检查的次数。所有患者都是21岁以上(含21岁)的女性,所有属性都是数值型,而且属性的单位各不相同。 每一个记录归属于一个类,这个类指明以测量时间为止,患者是否是在5年之内感染的糖尿病。如果是,则为1,否则为0。 机器学习文献中已经多次研究了这个标准数据集,好的预测精度为70%-76%。 下面是pima-indians.data.csv文件中的一个样本,了解一下我们将要使用的数据。 注意:下载文件,然后以.csv扩展名保存(如:pima-indians-diabetes.data.csv)。查看文件中所有属性的描述。 Python 1 2 3 4 5 6,148,72,35,0,33.6,0.627,50,1 1,85,66,29,0,26.6,0.351,31,0 8,183,64,0,0,23.3,0.672,32,1 1,89,66,23,94,28.1,0.167,21,0 0,137,40,35,168,43.1,2.288,33,1 朴素贝叶斯算法教程 教程分为如下几步: 1.处理数据:从CSV文件中载入数据,然后划分为训练集和测试集。 2.提取数据特征:提取训练数据集的属性特征,以便我们计算概率并做出预测。 3.单一预测:使用数据集的特征生成单个预测。 4.多重预测:基于给定测试数据集和一个已提取特征的训练数据集生成预测。 5.评估精度:评估对于测试数据集的预测精度作为预测正确率。 6.合并代码:使用所有代码呈现一个完整的、独立的朴素贝叶斯算法的实现。 1.处理数据

教学大纲_贝叶斯统计(双语)

《贝叶斯统计(双语)》教学大纲 课程编号:120872B 课程类型:□通识教育必修课□通识教育选修课 □专业必修课□√专业选修课 □学科基础课 总学时:32 讲课学时:32实验(上机)学时:0 学分:2 适用对象:经济统计学 先修课程:微积分、概率论与数理统计学 毕业要求: 1.应用专业知识,解决数据分析问题 2.可以建立统计模型,获得有效结论 3.掌握统计软件及常用数据库工具的使用 4.关注国际统计应用的新进展 5.基于数据结论,提出决策咨询建议 6.具有不断学习的意识 一、课程的教学目标 贝叶斯统计是上世纪50年代后,才迅速发展起来的一门统计理论。目前,在欧美等西方国家,贝叶斯统计已经成为了与经典统计学派并驾齐驱的当今两大统计学派之一;随着贝叶斯理论和方法的不断发展和完善,以及相应的计算软件的研制,贝叶斯方法在实践中获得了日趋广泛的应用;特别是,贝叶斯决策问题在统计应用中占有越来越重要的地位。在商业经济预测、政府宏观经济管理、国防工业中对武器装备系统可靠性评估、生物医学研究;知识发现和数据挖掘技术等都获得了广泛应用。

本课程通过贝叶斯统计的教学使学习过传统的数理统计课程的学生了解贝叶斯统计的基本思想和基本观点,了解贝叶斯统计与传统的数理统计在理论和处理方法上的区别,了解贝叶斯统计的最新进展,能够系统的掌握贝叶斯统计的基本理论、基本方法,特别是贝叶斯统计极具特色的一些处理方法,引进一个效用函数(utility function)并选择使期望效用最大的最优决策,这样就把贝叶斯的统计思想扩展到在不确定时的决策问题。很好的将统计学与最优化的思想方法和技术很好的进行了结合。贝叶斯统计理论和方法技术的学习,不仅能够提高学生分析和解决实际问题的能力,还能够更进一步提高对经典数理统计的深入理解。 二、教学基本要求 根据贝叶斯统计课程的教学内容,本课程将重点介绍贝叶斯统计推断理论,贝叶斯决策理论。并且注重贝叶斯统计处理方法和基本观点与传统数理统计相应内容对比的讲授方式。注重案例教学,安排学生课后查阅文献资料,以及课堂研讨等方式,了解贝叶斯统计理论和应用最新成果及前沿研究进展。对最新贝叶斯网络和贝叶斯统计的方法除了传统讲授方式外,适当的安排上机实验,了解贝叶斯统计相关软件的使用方法。课程的考核方式:期末开卷+ 论文方式,卷面60%,平时和论文40%。 三、各教学环节学时分配 以表格方式表现各章节的学时分配,表格如下: 教学课时分配

算法杂货铺——分类算法之贝叶斯网络(Bayesian networks)

算法杂货铺——分类算法之贝叶斯网络(Bayesian networks) 2010-09-18 22:50 by EricZhang(T2噬菌体), 2561 visits, 网摘, 收藏, 编辑 2.1、摘要 在上一篇文章中我们讨论了朴素贝叶斯分类。朴素贝叶斯分类有一个限制条件,就是特征属性必须有条件独立或基本独立(实际上在现实应用中几乎不可能做到完全独立)。当这个条件成立时,朴素贝叶斯分类法的准确率是最高的,但不幸的是,现实中各个特征属性间往往并不条件独立,而是具有较强的相关性,这样就限制了朴素贝叶斯分类的能力。这一篇文章中,我们接着上一篇文章的例子,讨论贝叶斯分类中更高级、应用范围更广的一种算法——贝叶斯网络(又称贝叶斯信念网络或信念网络)。 2.2、重新考虑上一篇的例子 上一篇文章我们使用朴素贝叶斯分类实现了SNS社区中不真实账号的检测。在那个解决方案中,我做了如下假设: i、真实账号比非真实账号平均具有更大的日志密度、各大的好友密度以及更多的使用真实头像。 ii、日志密度、好友密度和是否使用真实头像在账号真实性给定的条件下是独立的。 但是,上述第二条假设很可能并不成立。一般来说,好友密度除了与账号是否真实有关,还与是否有真实头像有关,因为真实的头像会吸引更多人加其为好友。因此,我们为了获取更准确的分类,可以将假设修改如下: i、真实账号比非真实账号平均具有更大的日志密度、各大的好友密度以及更多的使用真实头像。 ii、日志密度与好友密度、日志密度与是否使用真实头像在账号真实性给定的条件下是独立的。 iii、使用真实头像的用户比使用非真实头像的用户平均有更大的好友密度。

贝叶斯统计复习

如对你有帮助,请购买下载打赏,谢谢! 贝叶斯统计习题 1. 设θ是一批产品的不合格率,从中抽取8个产品进行检验,发现3个不合格品,假如 先验分布为 (1)U 0,1θ() (2)21-0<<1=0,θθπθ?? ?(),()其它 求θ的后验分布。 解: 2. 设12,, ,n x x x 是来自均匀分布U 0,θ()的一个样本,又设θ的先验分布为Pareto 分布, 其密度函数为 其中参数0>0,>0θα,证明:θ的后验分布仍为Pareto 分布。 解:样本联合分布为: 因此θ的后验分布的核为11/n αθ++,仍表现为Pareto 分布密度函数的核 即1111()/,()0,n n n x αααθθθθπθθθ+++?+>=?≤? 即得证。 3. 设12,,,n x x x 是来自指数分布的一个样本,指数分布的密度函数为-(|)=,>0x p x e x λλλ, (1) 证明:伽玛分布(,)Ga αβ是参数λ的共轭先验分布。 (2) 若从先验信息得知,先验均值为0.0002,先验标准差为0.0001,确定其超参数,αβ。 解: 4. 设一批产品的不合格品率为θ,检查是一个接一个的进行,直到发现第一个不合格品停止检查,若设X 为发现第一个不合格品是已经检查的产品数,则X 服从几何分布,其分布列为 ()-1(=|)=1-,=1,2,x P X x x θθ θ 假如θ只能以相同的概率取三个值1/4, 2/4, 3/4,现只获得一个观察值=3x ,求θ的最大后 验估计?MD θ。 解:θ的先验分布为 在θ给定的条件下,X=3的条件概率为 联合概率为 X=3的无条件概率为 θ的后验分布为 5。设x 是来自如下指数分布的一个观察值, 取柯西分布作为θ的先验分布,即 求θ的最大后验估计?MD θ。

贝叶斯分类器工作原理

贝叶斯分类器工作原理原理 贝叶斯分类器是一种比较有潜力的数据挖掘工具,它本质上是一 种分类手段,但是它的优势不仅仅在于高分类准确率,更重要的是,它会通过训练集学习一个因果关系图(有向无环图)。如在医学领域,贝叶斯分类器可以辅助医生判断病情,并给出各症状影响关系,这样医生就可以有重点的分析病情给出更全面的诊断。进一步来说,在面对未知问题的情况下,可以从该因果关系图入手分析,而贝叶斯分类器此时充当的是一种辅助分析问题领域的工具。如果我们能够提出一种准确率很高的分类模型,那么无论是辅助诊疗还是辅助分析的作用都会非常大甚至起主导作用,可见贝叶斯分类器的研究是非常有意义的。 与五花八门的贝叶斯分类器构造方法相比,其工作原理就相对简 单很多。我们甚至可以把它归结为一个如下所示的公式: 其中实例用T{X0,X1,…,Xn-1}表示,类别用C 表示,AXi 表示Xi 的 父节点集合。 选取其中后验概率最大的c ,即分类结果,可用如下公式表示 () ()()() ()( ) 0011111 00011111 0|,, ,|,,, ,C c |,i i n n n i i X i n n n i i X i P C c X x X x X x P C c P X x A C c P X x X x X x P P X x A C c ---=---========= ===∝===∏∏()() 1 0arg max |A ,i n c C i i X i c P C c P X x C c -∈=====∏

上述公式本质上是由两部分构成的:贝叶斯分类模型和贝叶斯公式。下面介绍贝叶斯分类器工作流程: 1.学习训练集,存储计算条件概率所需的属性组合个数。 2.使用1中存储的数据,计算构造模型所需的互信息和条件互信息。 3.使用2种计算的互信息和条件互信息,按照定义的构造规则,逐步构建出贝叶斯分类模型。 4.传入测试实例 5.根据贝叶斯分类模型的结构和贝叶斯公式计算后验概率分布。6.选取其中后验概率最大的类c,即预测结果。 其流程图如下所示:

贝叶斯统计-习题答案)知识讲解

贝叶斯统计-习题答案)

第一章 先验分布与后验分布 1.1 解:令120.1,0.2θθ== 设A 为从产品中随机取出8个,有2个不合格,则 22618()0.10.90.1488P A C θ== 22628()0.20.80.2936P A C θ== 从而有 5418 .03 .02936.07.01488.07 .01488.0)()|()()|()()|()|(2211111=?+??=+= θπθθπθθπθθπA P A P A P A 4582 .0)|(1)|(4582 .03.02936.07.01488.03 .02936.0)()|()()|()()|()|(122211222=-==?+??=+= A A or A P A P A P A θπθπθπθθπθθπθθπ 1.2 解:令121, 1.5λλ== 设X 为一卷磁带上的缺陷数,则()X P λ: ∴3(3)3! e P X λ λλ-== R 语言求:)4(/)exp(*)3(^gamma λλ- 1122(3)(3)()(3)()0.0998P X P X P X λπλλπλ∴===+== 从而有 111222(3)() (3)0.2457 (3)(3)() (3)0.7543 (3) P X X P X P X X P X λπλπλλπλπλ======== == 1.3 解:设A 为从产品中随机取出8个,有3个不合格,则 33 58()(1)P A C θθθ=- (1) 由题意知 ()1,01πθθ=<< 从而有

.10,)1(504)|(504)6,4(/1) 6,4(1 )6,4()1() 1()1()1()1()1() 1()()|() ()|()|(53531 1 61 4531 5 3 5 31 53385 338 1 <<-==-= --= --= --= =??? ? --θθθθπθθθθθ θθθ θθ θθθθθθθθ θπθθπθθπA beta B R B d d d C C d A P A P A :语言求 (2) .10,)1(840)|(840)7,4(/1) 7,4(1 ) 7,4()1() 1()1()1()1()1(2)1() 1(2)1()()|() ()|()|(63631 1 71 4631 6 3 6 31 533853381 <<-==-= --= --= ----= =??? ? --θθθθπθθθθθ θθθ θθ θθθθθθθθθθ θπθθπθθπA beta B R B d d d C C d A P A P A :语言求 1.5 解:(1)由已知可得 . 5.125.11, 110110 /1)()|() ()|()|(,2010,10 1)(5.125.111)|(2 1 12211)|(12,2121, 1)|(5.125.1120 10 11111111<<== = <<= <<=+<<-==+<<-=?? θθ θ θπθθπθθπθθπθθθθθθθθd d x p x p x x p x p x x x p ,,即 ,时, 当 (2)由已知可得

贝叶斯网络研究

黄友平 构建一个指定领域的贝叶斯网络包括三个任务: ①标识影响该领域的变量及其它们的可能值; ②标识变量间的依赖关系,并以图形化的方式表示出来; ③学习变量间的分布参数,获得局部概率分布表。 实际上建立一个贝叶斯网络往往是上述三个过程迭代地、反复地交互过程。 一般情况下,有三种不同的方式来构造贝叶斯网:①由领域专家确定贝叶 斯网的变量(有时也成为影响因子)节点,然后通过专家的知识来确定贝叶斯网络的结构,并指定它的分布参数。这种方式构造的贝叶斯网完全在专家的指导下进行,由于人类获得知识的有限性,导致构建的网络与实践中积累下的数据具有很大的偏差;②由领域专家确定贝叶斯网络的节点,通过大量的训练数据,来学习贝叶斯网的结构和参数。这种方式完全是一种数据驱动的方法,具有很强的适应性。而且随着人工智能、数据挖掘和机器学习的不断发展,使得这种方法成为可能。如何从数据中学习贝叶斯网的结构和参数,已经成为贝叶斯网络研究的热点。③由领域专家确定贝叶斯网络的节点,通过专家的知识来指定网络的结构,而通过机器学习的方法从数据中学习网络的参数。这种方式实际上是前两种方式的折中,当领域中变量之间的关系较明显的情况下,这种方法能大大提高学习的效率。 在由领域专家确定贝叶斯网络的节点后,构造贝叶斯 网的主要任务就是学习它的结构和参数。 为使贝叶斯网作为知识模型是可用的, 在学习过程中致力于寻找一种最简单的网络结构是非常必要的,这种简单的结构模型称之为稀疏网络,它含有最少可能的参数及最少可能的依赖关系。 Bayesian 网是联合概率分布的简化表示形式,可以计算变量空间的任意概 率值。当变量数目很大时,运用联合概率分布进行计算通常是不可行的,概率数目是变量数目的指数幂,计算量难以承受。Bayesian 网利用独立因果影响关系解决了这个难题。Bayesian 网中三种独立关系:条件独立、上下文独立及因果影响独立。三种独立关系旨在把联合概率分布分解成更小的因式,从而达到节省存储空间、简化知识获取和领域建模过程、降低推理过程中计算复杂性的目的,因此可以说独立关系是Bayesian 网的灵魂。 贝叶斯网络结构的方法分成两类: 基于评分的方法(Based on scoring)和 基于条件独立性的方法(Based on Conditional independence)。 。基于评分的方法把贝叶斯网络看成是含有属性之

贝叶斯分类器在机器学习中的研究

贝叶斯分类器在机器学习中的研究 摘要:贝叶斯分类器作为机器学习中的一种分类算法,在有些方面有着其优越的一面,在机器学习中有着广泛的应用,本文通过对机器学习中贝叶斯分类器的解析,指出了贝叶斯分类器在机器学习中的适用方面和不足之处。使其能更加清楚认识了解贝叶斯算法,并能在适合的方面使用贝叶斯算法。 关键词:机器学习贝叶斯算法适用 1. 引言 机器学习是计算机问世以来,兴起的一门新兴学科。所谓机器学习是指研究如何使用计算机来模拟人类学习活动的一门学科,研究计算机获得新知识和新技能,识别现有知识,不断改善性能,实现自我完善的方法,从而使计算机能更大性能的为人类服务。 机器学习所适用的范围广阔,在医疗、军事、教育等各个领域都有着广泛的应用,并发挥了积极的作用。而分类是机器学习中的基本问题之一,目前针对不同的分类技术,分类方法有很多,如决策树分类、支持向量机分类、神经网络分类等。贝叶斯分类器作为机器学习分类中的一种,近年来在许多领域也受到了很大的关注,本文对贝叶斯分类器进行总结分析和比较,提出一些针对不同应用对象挑选贝叶斯分类器的方法。 2. 贝叶斯公式与贝叶斯分类器: 2.1贝叶斯公式: 在概率论方面的贝叶斯公式是在乘法公式和全概率公式的基础上推导出来的,它是指设■是样本空间Ω的一个分割,即■互不相容,且,如果■,■,■,则 ,■ 这就是贝叶斯公式,■称为后验概率,■为先验概率,一般是已知先验概率来求后验概率,贝叶斯定理提供了“预测”的实用模型,即已知某事实,预测另一个事实发生的可能性大小。 2.2 机器学习中的贝叶斯法则: 在机器学习中,在给定训练数据D时,确定假设空间H中的最佳假设,我们用■来代表在没训练数据前假设■拥有的初始概率。■为■的先验概率,用■代表将要观察训练数据D的先验概率,以■代表假设■成立的情况下观察到数据D的概率,以■为给定训练数据D时■成立的概率,■称为■的后验概率,机器学习中

相关主题