搜档网
当前位置:搜档网 › 最优秀的同步整流驱动IC-UCC24610

最优秀的同步整流驱动IC-UCC24610

最优秀的同步整流驱动IC-UCC24610
最优秀的同步整流驱动IC-UCC24610

绿色同步整流器控制IC—UCC24610

在新一代绿色开关电源中,提高能效的关键技术是同步整流。二次侧控制各种电路拓扑的同步整流器控制IC—UCC24610。其为高性能控制器,即能驱动标准电平MOSFET,也可以驱动逻辑电平MOSFET,它即能大幅度减小整流的功耗,还能间接地减小初级侧的损耗。采用漏源电压检测,最适于反激变换器和LLC谐振半桥,其最适于4.5V~5.5V的输出电压,它提供一个可调节的辅助触发滤波器调节时段自动地在轻载之下开关,而且SYNC输入还可用于CCM系统,保护特色在TON和EN/TOFF端,防止由于开路或短路造成的导通运行。

主要特色如下:

◆直到600kHz工作频率;

◆V DS MOSFET检测;

◆ 1.6Ω漏入、2.0Ω源出的栅驱动阻抗;

◆自动轻载管理;

◆可调输入的保护特色;

◆20ns典型的关断比例延迟;

◆可以直接从5V输出电压供电;

◆可以从休眠和轻载模式下同步唤醒;

◆最少的外部元件;

由UCC24610作反激变换器同步整流的电路如图1:

图1 UCC24610 做反激电路同步整流的基本应用电路

由UCC24610作LLC谐振半桥同步整流的电路如图2:

图2 UCC24610 做半桥电路的同步整流驱动电路

UCC24610的内部方框电路如图3:

图3 UCC24610 的内部等效方框电路

* UCC24610外部引脚功能如下:

◆1PIN SYNC 栅关断同步端在SYNC端一个下降沿立即令栅电压为低电平,

将MOSFET关断,异步端到源漏电压,而不管TON时段的状态,当功率变换器在CCM下工作时,在开关变换器的命令下必须关断控制MOSFET,将SYNC接到初级侧变换器的信号处,用一支高压电容隔离,或变压器隔离,或其他合适的元件,连续的低电平在SYNC端将会使栅电平一直为低。

◆2PIN EN/TOFF 使能功能和关断时段调节端,当V CC电平降到V CC(OFF)以下

时,UCC24610处在UVLO模式,EN/TOFF端在IC内经过一支10K电阻接

到GND,内部电流源也关断,当V CC超过V CC(ON)之后,10KΩ电阻被移去,电流源开启,此后,当EN/TOFF超过V EN(ON)时,UCC24610进入运行模式,而EN/TOFF降到V EN(OFF)以下时,UCC24610进入休眠模式,EN/TOFF端的电压还去调节可控制MOSFET的最小关断时间,EN/TOFF在IC内部由两个水平的电流源驱动,所以EN/TOFF端上的电压可以由从EN/TOFF端到GND 连接的电阻值决定。EN/TOFF在内部驱动两倍电流I EN-STAR去实现使能阈值电压V EN(ON),然后进入正常的运转模式水平(I EN-ON),再调节TOFF时间,换句话说,所希望的EN/TOFF电压可以用一个外部电流源强制,调节TOFF 时间可以抑制栅GATE端的输出,达到所希望的间隔,并防止由谐振或关断噪声造成的可能的虚假触发。TOFF时段在VD电压超过1.5V时触发,之后GATE端从高电平到低电平。

◆3PIN TON 导通时段调节端,调节最小的导通时段,可以用从TON到GND

接一支电阻来完成。当控制的MOSFET栅导通时,一些振铃噪声会产生出来,最小导通时段消隐VD-VS比较器,保持所控制的MOSFET处在导通状态,至少可以调节最小时间,这个时间还决定轻载时的关断点。在TON时间超出前,如果VD-VS降到5mV阈值以下。控制器传输在下一个开关周期进入轻载模式。在TON超出后,当VD-VS降到5mV以下时,器件在下一个开关周期仍旧处在运行工作状态。

◆4PIN VCC IC供电端,接一个直流电压给VCC,用一支0.1μF电容旁路到

GND,PCB轨迹要最短,VCC供电给UCC24610内全部电路,欠压锁定比

以上才工作,在VCC降到VCC(OFF)以下时安全地较器可令VCC到VCC

(ON)

关断,当VCC降到VCC(OFF)以下出现时,GATE端立即降低,EN/TOFF也立即给10K电阻接到GND。

◆5PIN GATE 外部MOSFET的栅驱动端,通过小阻值电阻接到所控的

MOSFET,引线要最短,以实现最佳的开关特性。GATE输出可达到1A峰值,源出电流、漏入电流可达到2A,即驱动足够大的MOSFET,在休眠模式或UVLO时,GATE端立即降到GND,大约只有1.6Ω,当VCC=1.1V时,GATE端立即到GND,大约为80Ω。

◆6PIN GND IC的公共端,对GATE驱动器为参考电平,UVLO比较器EN/TOFF

比较器,EN/TOFF时段,TON时段,外接一0.1μF瓷介电容旁路从VCC 到GND。

◆7PIN VS端源检测电压端,将此端接到外部所控MOSFET的源极,要以最

短路径,要有最小的等效串联电感。

◆8PIN VD端漏检测电压端,将此端接到外部所控MOSFET的漏极,要以最

短路径,最小的等效串联电感,VD必须大于1.5V,TOFF时段必须在器件打开保险之前能控制MOSFET在下个周期导通。一旦保险打开控制MOSFET 在VD降到150mV低于VS时导通。在栅驱动输出为高时,TON时段被触发,GATE仍旧为高电平,至少要超过所调解的TON时段。除非在SYNC 输入的脉冲被检测。在TON超出后,GATE输出在VD-VS电压减到5mV 时关断,在TON超出前,如果VD-VS减小到5mV。控制器进入轻载模式,GATE脉冲在下一个开关周期被抑制。当VD电压增加到1.5V时,TOFF时段被触发,防止GATE输出,从导通进入TOFF时段。

◆9PIN IC底部散热端(仅QFN封装),此端接至PCB板的GND以改善散热

特性。

* UCC24610共有五种工作状态,如下:

UVLO模式

的阈值时,或者降到UVLO阈值以下时,器当VCC电压没有达到VCC

(ON)

件工作在低功耗的UVLO模式。在此模式中,多数内部功能被禁止,ICC电流低于100μA。在这种模式下,EN电流源关断,内部10KΩ电阻接于EN/TOFF 端到GND之间,EN/TOFF上的电压不相干。GATE端输出为低,对VCC>1.2V,一直如此,当VCC增加超过VCC(ON)阈值时,UVLO模式非常像休眠模式,除

水平。

非VCC电流达到ICC

(start)

Sleep模式

休眠模式为低功耗模式,与UVLO模式很相似,在由外部控制强制V EN低于V EN(off)阈值进入此模式。休眠模式可以用来减少器件工作损耗到低于1mW,VCC电流减少到I CC(stby)水平,外部控制被任何内部时间条件取代,且立即强制GATE输出为低电平,进入休眠模式,许多内部电路关闭,以减小功耗,当V EN 复原到V EN(ON)阈值以上时,器件走出休眠模式,同时在大约25μS后进入轻载模式,并允许内部电路重新加电到设置状态。

RUN模式

运行模式是控制器正常工作模式,此时已不在UVLO或休眠或轻载模式。在此模式下,VCC电流比较高,因为全部电路都在工作,GATE输出去驱动所控制的MOSFET作同步整流,VCC电流为I CC(ON)的总和加上驱动负载及GATE 输出所必须的平均电流,GATE输出占空比取决于系统线路及负载条件,可调的TON和TOFF时段,以及同步脉冲的时段。

Light-load模式

轻载模式是一个低功耗工作模式,它很像休眠模式,除非这种模式自动进入基于内部时基条件,轻载模式自动减少在轻载条件下的开关损耗。它用抑制GATE输出脉冲的方法执行。无论何时都去检测同步导通时间,令其少于可调整的最小导通时间(TON),VCC电流减小到I CC(ON)的水平。此时,轻载模式中,MOSFET的体二极管导通时间仍旧是连续监视的,此时,检测的时间超出TON 时,器件在下一个开关周期回到运行模式。

故障模式及其它保护功能

故障模式是一种自行保护的工作模式,控制器此时在可能的端子上检测出单一故障,在此模式中,器件进入关断状态(但不是休眠)器件驱动GATE输出为低电平,特定条件下,在R TON>301KΩ或R TON<8.7KΩ时,进入故障模式。故障模式防止进入过度条件,或不明确的导通时间,以及超出TON条件下的电流。

相似的保护也提供给EN/TOFF端,在故障没检测出来时,如果这段TOFF 变成开路,有最小0.65μs的时间,如果短路到GND,器件进入休眠模式,此外如果SYNC输入连续为低于触发电平阈值电压,GATE输出为低即进入此阶段,SYNC仍旧为此条件。

* 应用信息

正常工作

UCC24610为绿色电源的同步整流器控制器。在VCC从0V增加时,开始进入UVLO模式,从EN/TOFF端的使能电流被禁止,直到VCC超过VCC(ON)的阈值,保持在激活状态,直到VCC超过VCC(OFF)阈值。EN/TOFF端上的电压决定控制器使能与否。控制器工作在正常运转模式下,此时使能电压(V EN)超过使能阈值V EN(ON),一直工作到V EN超出V EN(OFF)阈值。

在控制器使能后,V EN调节最小关断时间,它反比于V EN电压,两种状态的使能电流允许一个低值电阻R EN(OFF)产生足够超出V EN(ON)的电压,进入启动状态。用一支电阻从EN/TOFF接到GND产生V EN。V EN的值基于I EN的大小,I EN流过此电阻,见图4。或者V EN由内部电压源驱动提供超过V EN(ON)的电压,100ns,然后开始启动,并达到设置水平。

图4 UCC24610 的EN/TOFF端电平变化曲线

UCC24610作为同步整流控制器,用比较MOSFET的漏源电压来决定SR-MOSFET的导通时间,应对导通阈值和关断阈值。GATE输出在V DS超过V TH(ON)时为高电平。在V DS低于V TH(OFF)时为低电平,如图5。

图5 UCC24610 检测VDS电平给出栅驱动脉冲

注意,因为有限的比例和上升时间,SR-MOSFET体二极管可能在V TH(ON)被超出后导通短暂时间,还有体二极管在V TH(OFF)被超出后会流过残余电流。波形如图5中描述,在反激电路中同步整流工作期间可以监视。

当然,在电路中实际波形很难像图5中这样清晰,寄生电感和寄生电容造成

在弯曲点处的谐振尖峰。UCC24610有控制时段并调节选择,帮助防止振铃,使之合适地工作,图6示出更实际的波形及内部控制时段。

图6 UCC24610 的栅驱动波形随时序的变化

最小导通时间Ton,用Ton端到地的电阻调节,消隐关断时的谐振,防止GATE由于噪声和振铃从假的穿过V TH(OFF)开始关断Ton由GATE导通被触发,参看下面Ton调节部分。

最小关断时间用从2PIN到GND的电阻来调节,去消除开启时的谐振,防止GATE由于超出的C oss谐振振铃,从假的穿过V TH(ON)开始导通,Toff由V DS 跨过V THARM在GATE关断后被触发。参看后面Toff调节部分。

GATE输出级在控制器有了开关周期时才导通,控制器在每个成功的SR周期Toff出现之后才装备起来。在高频应用中,一个过长的Toff可能与GATE的导通时段在下一个周期干扰。如果Toff还没有从先前的周期中出现,GATE导通将会延迟。

* 轻载工作

在正常工作期间,同步整流器导通时间比调节的最小导通时间长。如果负载电流减小到足够小,SR导通时间变得很短,超过可调的最小导通时间,轻载条件即检测出来,轻载闩锁即设置,下一个GATE输出脉冲被消隐,所以仅有的MOSFET的体二极管导通,这个SR导通时间和最小导通时间之间的比较在每个开关周期都出现,无论GATE输出脉冲使能或消隐。当负载电流增加到足够大时,体二极管导通时间变得长过可调整的最小导通时间,轻载闩锁即被消除,下一个GATE输出脉冲使能其控制的MOSFET仍作同步整流操作。

图7展示进入轻载模式的DCM的反激变换器随着负载减小的应用。在图8中,展示出返回正常运转。

图7 轻载模式下UCC24610的工作波形

图8 UCC24610 从轻载返回正常工作的波形

* 应用考虑

VD和VS检测

当开启和关断GATE时,VD和VS是用来检测SR-MOSFET上的电压的不同的输入端。当关断GATE时,控制器将不再驱动GATE导通,一直到VD超出1.5V,至少一次,而且Toff已经出现,一旦这两个条件满足,控制器装备起来,允许GATE导通,下一次漏极电压降到150mV以下,源极电压(VD-VS=150mV)此时,GATE关断SR-MOSFET可能有反转电流或正向压降,但是当150mV检测出来时,GATE已经导通令MOSFET进入同步整流器中。GATE停止导通状态,至少最小导通时间Ton会长一些,直到SR-MOSFET电流减到近0时,当电流减到足够小,使V DS电压仅有5mV时,GATE输出才关断。同时,控制器被令无效。以防止虚假的GATE输出。因为MOSFET电流在GATE关断时还没有到0。V DS将增大返回到体二极管的压降。当然附加的功耗非常小,控制器无效的状态可防止GATE重复导通。一旦电流减到0漏极电压爬上1.5V阈值。在这一次最小关断时间间隔Toff被触发,一旦V DS超过1.5V且Toff已经出现,GATE电路重新装备以便响应下一次导通条件。

由于VD和VS输入连接到跨过SR-MOSFET的体二极管。二次侧高的di/dt 通过引线串联电感可能施加很大的负电压在VD端,这个负电压可能会破坏控制器正常工作,为防止器件开关,可以用限制VD端漏出的电流小于100mA来解决,将一支电阻放在VD和SR-MOSFET漏极之间,可以限制并提供合适的电流限制。

该电阻值用下式求出:

(1)

此处,L PKG为整个SR-MOSFET在PCB板上的源漏之间的感量。

dI SEC为二次侧电流在初级开关关断时的上升速率,它包括各轨迹的电感,如果器件GND没有直接连接到SR-MOSFET的源极。

VD端通过R VD的偏置电流产生一个小的失调电压,它会导致SR-MOSFET 关断阈值的明显的偏移,比所要求的提前关断,这取决于R VD。为了计算此失调电压,将一个等值的电阻放在与VS端串联处,以便与VD-VS比较器输入平衡。

大的MOSFET的封装,诸如TO-220、TO-247通常有足够大的内部电感(10nH~20nH),在更大功率应用时,dI/dt可能会相当高。另外,在小功率应用时要用小型封装,诸如,QFN型,DPAK型或者等效的MOSFET有足够低的L ×dI/dt乘积,此时,R VD和R VS就不必用了,参看MOSFET数据表来决定整个电感的规范,给出最佳应用。

使能及Toff调节

控制器必须走出UVLO模式,或者内部电流源在EN/Toff端关断,此端电压用内部电阻拉低。在器件进入使能状态之前,电流源EN/Toff端给出20μA电流,谨慎地设计实际指标最小R EN/TOFF值,为93KΩ是必须的。以确保此端电压超过禁止阈值,在禁止之后禁止状态被锁住,源出电流减小到10μA,这个电流建起的电压决定Toff的时间,可按下面介绍调节。

一旦VCC和EN/Toff条件满足,则使能器件,内部加电次序确保控制器开始SR-MOSFET与系统导通条件同步工作,这样防止了SR-MOSFET导通进入不适当的系统状态,在25μS的延迟后,防止内部基准稳定,SR工作命令在轻载模式,负载条件在第一个完整周期被监视,此后延迟时间由下一个工作模式决定。

由于SR-MOSFET的V DS可能上涌1.5V以上,向下150mV,大约一个或多个时段,Toff时段将调整GATE进程,在系统中涌动可能是未知的,直到实际工作被监视,更长的Toff时间可能是初始时间,但最后的值的调整要在系统评估后进行。

正常Toff关断时间可用下面公式调节,此处,Toff为μS,R EN/TOFF为MΩ。

正确值为:

(2)正确值为:

(3)反之:

(4)正确值为:

(5)

对任何

对任何,VEN在1.4V和0.8V之间,器件仍被禁止,

在此状态,平均I CC大约为正常模式电流I CC(ON)的一半。

对任何,器件被禁止,工作在休眠状态。

◆Ton的调节

此端上的电压在内部调节为2V,外部电阻接到GND设置电流以下使调节最小导通时间Ton。如果噪声滤波器电容被认为是必要的,但不要超过100pF,以防止2V调整不稳定。

由于SR-MOSFET的V DS导通后有5mV以上的一个或多个振铃,Ton时间要调节直到GATE关断,要抑制此阶段的振铃,在一个系统中,振铃活动期间可能未知,直到实际原型工作给监视时,实际更长的Ton时间可以一开始就调节,最后的值在系统评估后来调定。

正常Ton最小导通时间由下面公式调节,此处,Ton为μS,R TON为MΩ。

(6)正确值:

(7)相反:

(8)正确值:

(9)

对于R ON的电阻值以上为正确值范围以外,故障保护模式细节如下:

◆栅驱动和R GA TE的考虑

栅驱动输出能力可给出1A峰值电流到SR-MOSFET的栅,而漏入电流可以达到2A,标准的低电感,低环路面积设计技术,可以用减小的电感去减缓MOSFET导通,增加栅驱动振铃。

从GATE输出到MOSFET栅串入电阻R GATE,用来抑制振铃,电阻值的选择基于下式,为LCR串联谐振槽路。

(10)此处,L g为整个栅环路电感,C iss为MOSFET整个有效输入电容,r g为内部栅回路电阻。

注意,在栅驱动路径上,整个串联电阻还可以限制峰值GATE电流,以获得GATE输出驱动级的相对较低的能力。

◆VCC范围及旁路电容

VCC正常工作范围为4.5V~5.5V,器件适于5V正常输出系统的应用。并很容易+/-10%的瞬态变化,当平均VCC电压达到VCC(off)阈值时。(UVLO)系统纹波和噪声会导致控制器关断。除非从VCC到GND有足够的去耦能力提供给控制器。

高的峰值栅驱动电流在GATE导通期间传输还需要足够的VCC旁路电容到GND,对于较小的SR-MOSFET要0.1μF去耦电容,对较大的MOSFET需要增加旁路电容以防止VCC电压纹波超出,建议VCC旁路电容为0.1μF应对2.2nf 的C iss。

SYNC输入的考虑

在应用中,同步整流器用在连续导通型(CCM)的反激变换器和LLC谐振半桥。同步整流器的MOSFET随着初级侧开关的导通而关断。为了防止SR-MOSFET反向导通,这是不可避免的。在这些应用中,一个Y型隔离电容C SYNC可以用来传递初级侧信号到SR控制器,用耦合一个负向触发电压进入SYNC端。换言之,隔离脉冲变压器可以用在饱和状态。此处耦合电容是不切实际的。当SYNC电压降下2V,低于VCC时,GATE输出立即关断,而不管Ton 时段的状态。

一个内部上拉电阻r SYNC提供电流重新给SYNC耦合电容充电,在此事故中,SYNC输入电压连续保持在V THSYNC以下,GATE输出在此相同期间为低。

SYNC输入有5100mA的最大脉冲电流,高可靠的设计将进一步减少峰值电流,这还减小了噪声及系统中的信号损耗,一个串联电阻用减小C SYNC上有效的dV /dt的方法。图9示出SYNC信号从降下的初级MOSFET的漏源电压,执行简单传输的方法。在此例中,同步整流器的MOSFET放在自由运转处的二极管处,此电路系单晶体管正激电路的应用。初次级之间的共模电容CCM形成SYNC 电流的回流路径。

图9 UCC24610 用于正激电路中做同步整流的电路

通常仅需要-1mA的电流,-2V电压加在内部2KΩ电阻上去触发SYNC功能,这个电流重复充电给SYNC耦合电容C SYNC,但是这个电阻的变化,电容的变化以及C SYNC上dV /dt的变化需要应对最坏的情况,其偏差在决定C SYNC最小值时要考虑好,此外V SYNC必须超出V THSYNC阈值,应对于20ns的最小间隔以确保控制器内部逻辑有可靠的触发。

虽然由SYNC信号给出的Ton最小导通时间栅驱动功能不予考虑,时段连续到其它功能,如果合适的条件满足进入轻载模式下。Toff时段在SR-MOSFET

的V DS超过1.5V时即被触发。

C SYNC是同步信号耦合电容,它跨越初次级之间的隔离带,它用于耦合一个负的升压信号到UCC24610的SYNC输入端,去关断GATE输出到SR-MOSFET,此时初级的MOSFET正好要导通。

R SYNC是所选的外部限流电阻,用来减小进入SYNC端的峰值电流。它还服务于减小整个电源的功耗。减小共模噪声电流。

C CM是主要共模电容,位于系统初级和次级之间。这通常是一个分立元件。容量从100pF~2200pF。此外还用于EMI的控制,它还作为SYNC信号充电放电的回流路径。此电流脉冲会跨越边界线。

在UCC24610控制器中,有一个上拉电阻r SYNC(2KΩ)接到VCC。为触发SYNC功能一个负向信号,必须将SYNC输入拉到V THSYNC阈值以下(通常低于VCC2V),最小脉宽要20ns,这需要最小1mA电流来实现,但谨慎设计将达到最高电流允许参数变化。

内部箝制二极管接到VCC和GND,还形成SYNC信号的充放电通路。最后C PIN压缩,杂散的内部和外部端子并在SYNC输入端上填入电容造成10pF电容到GND。虽然C PIN是物理上不可避免的,它是合理地减小任何外部压缩电容以保持附加延迟在SYNC上为最小延迟。

1、决定最小充电

决定电压ΔV SYNC-pri中最小的变化,特别从SYNC信号源开始,在此例中,初级侧MOSFET漏源电压V DS-pri是信号源,它的最小变化是在AC低线时的V AULK(min)。见图10。

图10 初级MOSFET的漏极电压

在低线,下降时间对其在80%和20%之间,

为了允许参数和环境变化,设置最小的峰值SYNC电流为2mA,用2mA峰值电流流过内部2KΩ电阻,SYNC电压降到VCC以下4V,最大值的限流电阻R SYNC由下式决定:

(11)在此情况下:

(12)

2、V DS-pri传输之后

在V DS-pri传输后,SYNC信号将开始由外部充电恢复到VCC,这样允许SYNC 耦合电容的值C SYNC由下式给出:

(13)

C SYNC的值选择时要确保SYNC信号在SYNC阈值以下至少20ns,选择最小停止时间t MIN到40ns,允许参数变化,在此情况下:

(14)

3、C CM值

C CM值必须大于C SYNC的值。如果必要,增加C CM的值以确保C CM>>C SYNC 不能减小C SYNC。

4、保守的功耗估算

保守地功耗估算,对内部和外部SYNC电阻为:

(15)

(16)此处,f SW是变换器开关频率,这些计算可用于预测SYNC电流的最大热阻和器件结温,并决定外部SYNC电阻的功率。实际SYNC相关损耗通常比此计算值要低。如果需要更准确的话,预测和实际电路的工作将用来决定实际损耗。

5、器件内部SYNC端到GATE端的延迟时间

器件内部SYNC到GATE的延迟时间t SDL Y是一个如何快速测量GATE输出在SYNC信号跨过V THSYNC阈值后如何关断。当然,杂散的端电容C PIN,插入一个附加延迟,使SYNC功能被减缓SYNC电压降到VCC以下2V。如果C PIN很小,这个延迟相对较短,SYNC电流大约是个恒流,允许这个计算简化成线性方程:

(17)

还有,附加延迟从信号源有限的dV /dt带来。在此情况V DS-PRI,由于从V BULK 到0V有限的传输时间,这个延迟大约为:

(18)这些延迟时间将加到内部SYNC到GATE的延迟中以决定初级侧MOSFET 漏极电压和SR-MOSFET栅驱动关断之间整个的延迟时间。

(19)

6、C SYNC电容复位

在初级侧MOSFET关断期间C SYNC电容复位,当SR-MOSFET导通时,复位电流i SYNC.RESET很象i SYNC,当然这个复位电流流过内部SYNC和VCC之间的二极管。

图11 在CCM 模式下内外信号实际的时序关系

信号故障自保护特色

如果R TON小于8.7KΩ,器件会检测剩余电流,解释这一点如同短路,并禁止GATE输出。如果R TON大于301KΩ,器件会检测不足的电流,解释这一点如同开路,并禁止GATE输出,防止模糊的导通时间。

注意,拾取过度的轨迹长度可以剥落内部2V源,导致不够的或超出的电流到R TON,并触发早熟的GATE关断。这会导致GATE输出少于TON,使得在重载时进入轻载模式,减小R TON轨迹长度。

如果R EN/TOFF少于93KΩ,器件可能检测出不足的电压给使能阈值,或许禁止GATE输出。

如果R EN/TOFF大于284KΩ,器件将在内部箝制调节电压时给出最小的0.65μs的Toff,而不管R EN/TOFF值。

同步整流技术分享

江苏宏微科技股份有限公司 Power for the Better
同步整流技术及主要拓扑电路
宏微科技市场部
2015-9-16

Contents
? 同步整流电路概述 ? 典型电路及其特点 ? 损耗分析 ? 同步整流电路中常见问题 ? MOSFET选型设计参考
Power for the Better
1 CONFIDENTIAL





Contents
? 同步整流技术概述 ? 典型电路及其特点 ? 损耗分析 ? 同步整流电路中常见问题 ? MOSFET选型设计参考
Power for the Better
2 CONFIDENTIAL





同步整流技术概述
由于中低压MOSFET具有很小的导通电阻,在有电流通过时产生的电压降很 小,可以替代二极管作为整流器件,可以提高变换器的效率。
diode
MOSFET
MOSFET作整流器时,栅源极间电压必须与被整流电压的相位保持同步关系才 能完成整流功能,故称同步整流技术。 MOSFET是电压控制型开关器件,且没有反向阻断能力,必须在其栅-源之 间加上驱动电压来控制器漏-源极之间的导通和关断。这是同步整流设计的难 点和重点。 根据其控制方式,同步整流的驱动电路分为 ?自驱动方式; ? 独立控制电路他驱方式; ? 部分自驱+部分他驱方式结合;
Power for the Better
3 CONFIDENTIAL





倍流同步整流在DCDC变换器中工作原理分析

倍流同步整流在DC/DC变换器中工作原理分析 在低压大电流变换器中倍流同步整流拓扑结构已经被广泛采用。就其工作原理进行了详细的分析说明,并给出了相应的实验和实验结果。 关键词:倍流整流;同步整流;直流/直流变换器;拓扑 0 引言 随着微处理器和数字信号处理器的不断发展,对芯片的供电电源的要求越来越高了。不论是功率密度、效率和动态响应等方面都有了新要求,特别是要求输出电压越来越低,电流却越来越大。输出电压会从过去的3.3V降低到1.1~1.8 V之间,甚至更低[1]。从电源的角度来看,微处理器和数字信号处理器等都是电源的负载,而且它们都是动态的负载,这就意味着负载电流会在瞬间变化很大,从过去的13A/μs到将来的30A/μs~50A/μs[2]。这就要求有能够输出电压低、电流大、动态响应好的变换器拓扑。而对称半桥加倍流同步整流结构的DC/DC变 换器是最能够满足上面的要求的[3]。 本文对这种拓扑结构的变换器的工作原理作出了详细的分析说明,实验结果 证明了它的合理性。 1 主电路拓扑结构 主电路拓扑如图1中所示。由图1可以看出,输入级的拓扑为半桥电路,而输出级是倍流整流加同步整流结构。由于要求电路输出低压大电流,则倍流同步 整流结构是最合适的,这是因为: 图1 主电路拓扑 1)变压器副边只需一个绕组,与中间抽头结构相比较,它的副边绕组数只有中间抽头结构的一半,所以损耗在副边的功率相对较小; 2)输出有两个滤波电感,两个滤波电感上的电流相加后得到输出负载电流,而这两个电感上的电流纹波有相互抵消的作用,所以,最终得到了很小的输出电 流纹波;

3)流过每个滤波电感的平均电流只有输出电流的一半,与中间抽头结构相比较,在输出滤波电感上的损耗明显减小了; 4)较少的大电流连接线(high current inter-connection),在倍流整流拓扑中,它的副边大电流连接线只有2路,而在中间抽头的拓扑中有3路; 5)动态响应很好。 它唯一的缺点就是需要两个输出滤波电感,在体积上相对要大些。但是,有一种叫集成磁(integrated magnetic)的方法,可以将它的两个输出滤波电感和变压器都集成到同一个磁芯内,这样可以大大地减小变换器的体积。 2 电路基本工作原理 电路在一个周期内可分为4个不同的工作模式,如图2所示,理想的波形图 如图3所示。 (a) 模式1[t0-t1] (b) 模式2[t1-t2]

同步整流电路

随着现代电子技术向高速度高频率发展的趋势,电源模块的发展趋势必然是朝着更低电压、更大电流的方向发展,电源整流器的开关损耗及导通压降损耗也就成为电源功率损耗的重要因素。而在传统的次级整流电路中,肖特基二极管是低电压、大电流应用的首选。其导通压降基本上都大于0.4V,当电源模块的输出电压随着现代电子技术发展继续降低时,电源模块的效率就低得惊人了,例如在输出电压为3.3V时效率降为80%,1.5V输出时效率不到70%,这时再采用肖特基二极管整流方式就变得不太可能了。 为了提高效率降低损耗,采用同步整流技术已成为低电压、大电流电源模块的一种必然手段。同步整流技术大体上可以分为自驱动(selfdriven)和他驱动(controldriven)两种方式。本文介绍了一种具有预测时间和超低导通电阻(低至2.8mΩ/25℃)的他驱动同步整流技术,既达到了同步整流的目的,降低了开关损耗和导通损耗,又解决了交叉导通问题,使同步整流的效率高达95%,从而使整个电源的效率也高达90%以上。 1SRM4010同步整流模块功能简介 SRM4010是一种高效率他激式同步整流模块,它直接和变压器的次级相连,可提供40A的输出电流,输出电压范围在1∽5V之间。它能够在200∽400kHz 工作频率范围内调整,且整流效率高达95%。如果需要更大的电流,还可以直接并联使用,使设计变得非常简单。 SRM4010模块是一种9脚表面封装器件,模块被封装在一个高强电流接口装置包里,感应系数极低,接线端功能强大,具有大电流低噪声等优异特性。 SRM4010引脚功能及应用方式一览表 引脚号引脚名称引脚功能应用方式 1CTCHCatch功率MOSFET漏极接滤波电感和变压器次级正端 2FWDForward功率MOSFET漏极接变压器次级负端 3SGND外控信号参考地外围控制电路公共地 4REGin内部线性调整器输入可以外接辅助绕组或悬空 5REGout5V基准输出可为次级反馈控制电路提供电压 6PGND同步整流MOSFET功率地Catch和Forward功率MOSFET公共地 7CDLY轻载复位电容端设置变压器轻载时的复位时间 8CPDT同步整流预测时间电容端Catch同步整流管设置预置时间

同步整流技术总结

同步整流总结 1概述 近年来,为了适应微处理器的发展,模块电源的发展呈现两个明显的发展趋势:低 压和快速动态响应,在过去的10年中,模块电源大大改善了分布式供电系统的面貌。即使是在对成本敏感器件如线路卡,单板安装,模块电源也提供了诱人的解决方案。然而,高速处理器持续降低的工作电压需要一个全新的,适应未来的电压方案,尤其考虑到肖特级二极管整流模块不能令人满意的效率。同步整流电路正是为了适应低压输出要求应运而生的。由于一般的肖特基二极管的正向压降为0.3V以上,在低压输出时模块的效率 就不能做的很高,有资料表明采用肖特基二极管的隔离式DC-DC模块电源的效率可以 按照下式进行估算: V out V out (0.1 V out V cu V f) 0.1 V out—原边和控制电路损耗 V cu —印制板的线路损耗 V f —整流管导通压降损耗 我们假设采用0.4V的肖特基整流二极管,印制板的线路损耗为0.1V,则1.8V的模 块最大的估算效率为 72%。这意味着28%的能量被模块内部损耗了。其中由于二极管导通压降造成的损耗占了约15%。随着半导体工艺的发展,低压功率MOS管的的有着越 来越小的通态电阻,越来越低的开关损耗,现在IR公司最新的技术可以制作30V/2.5m Q的MOS管,在电流为15A时,导通压降为0.0375,比采用肖特基二极管低了一个数量级。所以近年来对同步整流电路的研究已经引起了人们的极大关注。在中大功率低压输出的DC-DC变换器的产品开发中,采用低压功率MOSFET替代肖特基二极管的方案 得到了广泛的认同。今天,采用同步整流技术的ON-BOARD 模块已经广泛应用于通讯 的所有领域。 2同步整流电路的工作原理 图1采用同步整流的正激电路示意图(无复位绕组)

应用同步整流技术实现双向DC/DC变换

应用同步整流技术实现双向DC/DC变换 [日期:2006-11-9] 来源:电源技术应用作者:浙江大学姜德来吕征宇[字体:大中小] 摘要:在Buck同步整流技术的基础上,充分利用其电路的特点,提出了双向直流变换器,并分析了其可行性。针对双向恒压和双向恒流两种控制方式,分析了各自的开关管驱动脉冲要求,并给出了相应控制脉冲的实现方法。通过实验加以验证。 关键词:双向;同步整流;恒压;恒流 0 引言 同步整流技术是近几年研究的热点,主要应用于低压大电流领域,其目的是为了解决续流管的导通损耗问题。采用一般的二极管续流,其导通电阻较大,应用在大电流场合时,损耗很大。用导通电阻非常小的MOS管代替二极管,可以解决损耗问题,但同时对驱动电路提出了更高的要求。 此外,对Buck电路应用同步整流技术,用MOS管代替二极管后,电路从拓扑上整合了Buck和Boost两种变换器,为实现双向DC/DC变换提供了可能。在需要单向升降压且能量可以双向流动的场合,很有应用价值,如应用于混合动力电动汽车时,辅以三相可控全桥电路,可以实现蓄电池的充放电。 l 工作原理 1 1 电路拓扑 双向同步整流电路拓扑如图1所示。当电路工作于正向Buck时,Sw作为主开关管,当Sw导通时,SⅡ关断,电感L储能;当Sw关断时,SR导通续流,电感L释能给输出负载供电。当电路工作于反向Boost升压电路时,SR作为主开关管,当SR导通时,Sw关断,电感L储能;当SR关断时,Sw导通续流,电感L释能给输出负载供电。

1.2 参数设计 设置电感L是为了抑制电流脉动,因此其设计依据是电流纹波要求。电容C1主要是为了在Boost电路Sw关断时,维持输出电压恒定,而电容C2主要是为了抑制Buck输出电压脉动,其设计依据是电压纹波要求,因此两个电容的参数设计并不一致。具体算式如下。 式中:Vg为Buck电路输入电压; Vo为Boost电路输入电压; D为Sw管的占空比: △Q为对应输出电压纹波的电荷增量; △Vo为Buck电路输出电压纹波要求; △Vg为Boost电路输出电压纹波要求; △lmin为Buck和Boost电路电流纹波要求的较小值; I为电感电流。 1.3双向恒流型控制 1)当电路工作在Buck模式时,被控制的是电感电流,目的是为了维持电感电流恒定。电路参数方程为

同步整流技术最新

同步整流技术
电源网第20届技术交流会
邹超洋
2012.11

内 容 简 介
?同步整流简介。 ?同步整流的分类。 。 ?同步整流的驱动方式 ?同步整流的 MOSFET

同步整流简介
z 高速超大规模集成电路的尺寸的不断减小,功耗的不断降低,要求
供电电压也越来越低,而输出电流则越来越大。 z 电源本身的高输出电流、低成本、高频化(500kHz~1MHz)高 功率密度、高可靠性、高效率的方向发展。 z 在低电压、大电流输出DC-DC变换器的整流管,其功耗占变换器 全部功耗的50~60%。 z用低导通电阻MOSFET代替常规肖特基整流/续流二极管,可以大大 降低整流部分的功耗,提高变换器的性能,实现电源的高效率,高功 率密度。

同步整流简介
diode
=
MOSFET 代替diode
MOSFET
D
相当于二极管的功能 ?电流从S流向D ?V/I特性,工作于3rd 象限
G S
z 用MOSFET来代替二极管在电路中的整流功能
z 相对于二极管的开关算好极小 g 控制,可以根据系统的需要, z 整流的时序受到MOSFET的Vgs 把整流的损耗做到最小

同步整流简介
? 例如:一个5V?30A输出的电源
Diode
Vf=0.45V Ploss=0.45*30=13.5W Ploss/Po=13.5/45=30% /Po=13 5/45=30% Rdson=1.2m? Ploss=0.0012*30 0 0012*302=1.08W 1 08W Ploss/Po=1.08/45=2.4%
Mosfet
MBR8040(R)
SC010N04LS

一种全桥同步整流器的设计及其应用

一种全桥同步整流器的设计及其应用 2012-10-24 22:01:37 来源:21IC 关键字:全桥同步整流器 由于现代高速超大规模集成电路的尺寸不断减小,同时又对功率要求的不断增加。因此必须提高供电电源的功率密度,在有限的散热空间里增加功率密度,就必须提高电源的工作效率。近年来,通过增加输出级同步整流、引入软开关技术等,使得开关电源的效率得到了大幅提高。如何进行一步提高其工作效率,笔者从输入级的一次整流入手进行了相应分析和研究。 1 原理与设计 1.1 桥式整流与桥式同步整流分析 一般开关电源中一次整流电路结构如图1所示。因为图中电源V1由电网提供,要采用高压二极管对其进行整流,所以D1,D2,D3,D4的压降约为1 V。当输出电流为I时,将在整个整流桥上产生P(VD)=1×2×I的功率损耗。 桥式同步整流电路结构如图2所示,图中M1、M2、M3、M4为n沟道增强型功率MOS 管,其中D1、D2、D3、D4为其寄生体二极管。图中左半部分为其驱动信号产生模块。 为进一步提高电源变换器的效率,降低一次整流部分的损耗是提高电源变换器工作效率的一种有效途径。采用P-MOSFET管来实现整流功能的整流电路称为同步整流电路,P-MOSFET管不像二极管那样能自动截止反向电流,需要用P-MOSFET管来实现同步整流,必须控制P-MOSFET管的导通和关断,而P-MOSFET管的导通和关断又取决于它的栅极驱

动信号。因此,在设计同步整流P-MOSFET管栅极驱动信号的大小和时序,要确保同步整流电路的正常工作。图3为相应开关管M1、M2、M3、M4控制信号S1、S2、S3、S4波形图。 为防止开关管发生直通的现象,在上下桥臂的波形切换之间加入了死区时间Tdeadtime。 因为工作频率在50 Hz,所以无需考虑其开关损耗。桥式同步整流电路中功率损耗主要发生在其导通的直流电阻RDS上,即P=(RDS×2)I2,图4给出了相应损耗功耗曲线。 设全桥整流时整流桥的损耗功率P(VD)=2×I。设全桥同步整流时开关管的损耗功率P(VT)=Ron×I2。与全桥整流相比全桥同步整流所节省的功率损耗P(D)=P(VD)-P(VT)=2×I-Ron×I2。根据函数的增减性,当I=1/Ron时,P(D)可取得最大值。 1.2 相应参数计算 此部分主要考虑将输入正弦波变为与之同步的方波,相应电路如图5所示。为防止整流开关管发生直通的现象,在上下桥臂波形切换之间加入了死区时间。引死区时间由过零比较电压时行设定,即电阻R1与电阻R2、R3与电阻R4的比值来确定。死区时间Tdeadtime 在整个周期中所占的时间为 其中,V1-1为同步交流信号的幅值;T为输入交流信号的周期。

同步整流电路分析

同步整流电路分析作者gyf2000 日期2007-4-22 20:21:00 一、传统二极管整流电路面临的问题 近年来,电子技术的发展,使得电路的工作电压越来越低、电流越来越大。低电压工作有利于降低电路的整体功率消耗,但也给电源设计提出了新的难题。 开关电源的损耗主要由3部分组成:功率开关管的损耗,高频变压器的损耗,输出端整流管的损耗。在低电压、大电流输出的情况下,整流二极管的导通压降较高,输出端整流管的损耗尤为突出。快恢复二极管(FRD)或超快恢复二极管(SRD)可达1.0~1.2V,即使采用低压降的肖特基二极管(SBD),也会产生大约0.6V的压降,这就导致整流损耗增大,电源效率降低。 举例说明,目前笔记本电脑普遍采用3.3V甚至1.8V或1.5V的供电电压,所消耗的电流可达20A。此时超快恢复二极管的整流损耗已接近甚至超过电源输出功率的50%。即使采用肖特基二极管,整流管上的损耗也会达到(18%~40%)P O,占电源总损耗的60%以上。因此,传统的二极管整流电路已无法满足实现低电压、大电流开关电源高效率及小体积的需要,成为制约DC/DC变换器提高效率的瓶颈。 二、同步整流的基本电路结构 同步整流是采用通态电阻极低的专用功率MOSFET,来取代整流二极管以降低整流损耗的一项新技术。它能大大提高DC/DC变换器的效率并且不存在由肖特基势垒电压而造成的死区电压。功率MOSFET属于电压控制型器件,它在导通时的伏安特性呈线性关系。用功率MOSFET做整流器时,要求栅极电压必须与被整流电压的相位保持同步才能完成整流功能,故称之为同步整流。 1、基本的变压器抽头方式双端自激、隔离式降压同步整流电路

同步整流电路分析

同步整流电路分析 一、传统二极管整流电路面临的问题 近年来,电子技术的发展,使得电路的工作电压越来越低、电流越来越大。低电压工作有利于降低电路的整体功率消耗,但也给电源设计提出了新的难题。 开关电源的损耗主要由3部分组成:功率开关管的损耗,高频变压器的损耗,输出端整流管的损耗。在低电压、大电流输出的情况下,整流二极管的导通压降较高,输出端整流管的损耗尤为突出。快恢复二极管(FRD)或超快恢复二极管(SRD)可达1.0~1.2V,即使采用低压降的肖特基二极管(SBD),也会产生大约0.6V的压降,这就导致整流损耗增大,电源效率降低。 举例说明,目前笔记本电脑普遍采用3.3V甚至1.8V或1.5V的供电电压,所消耗的电流可达20A。此时超快恢复二极管的整流损耗已接近甚至超过电源输出功率的50%。即使采用肖特基二极管,整流管上的损耗也会达到(18%~40%)P O,占电源总损耗的60%以上。因此,传统的二极管整流电路已无法满足实现低电压、大电流开关电源高效率及小体积的需要,成为制约DC/DC变换器提高效率的瓶颈。 二、同步整流的基本电路结构 同步整流是采用通态电阻极低的专用功率MOSFET,来取代整流二极管以降低整流损耗的一项新技术。它能大大提高DC/DC变换器的效率并且不存在由肖特基势垒电压而造成的死区电压。功率MOSFET属于电压控制型器件,它在导通时的伏安特性呈线性关系。用功率MOSFET做整流器时,要求栅极电压必须与被整流电压的相位保持同步才能完成整流功能,故称之为同步整流。 1、基本的变压器抽头方式双端自激、隔离式降压同步整流电路

2、单端自激、隔离式降压同步整流电路 图1 单端降压式同步整流器的基本原理图 基本原理如图1所示,V1及V2为功率MOSFET,在次级电压的正半周,V1导通,V2关断,V1起整流作用;在次级电压的负半周,V1关断,V2导通,V2起到续流作用。同步整流电路的功率损耗主要包括V1及V2的导通损耗及栅极驱动损耗。当开关频率低于1MHz时,导通损耗占主导地位;开关频率高于1MHz时,以栅极驱动损耗为主。 3、半桥他激、倍流式同步整流电路

同步整流电路分析

一、传统二极管整流电路面临的问题 近年来,电子技术的发展,使得电路的工作电压越来越低、电流越来越大。低电压工作有利于降低电路的整体功率消耗,但也给电源设计提出了新的难题。 开关电源的损耗主要由3部分组成:功率开关管的损耗,高频变压器的损耗,输出端整流管的损耗。在低电压、大电流输出的情况下,整流二极管的导通压降较高,输出端整流管的损耗尤为突出。快恢复二极管(FRD)或超快恢复二极管(SRD)可达~,即使采用低压降的肖特基二极管(SBD),也会产生大约的压降,这就导致整流损耗增大,电源效率降低。 举例说明,目前笔记本电脑普遍采用甚至或的供电电压,所消耗的电流可达20A。此时超快恢复二极管的整流损耗已接近甚至超过电源输出功率的50%。即使采用肖特基二极管,整流管上的损耗也会达到(18%~40%)P O,占电源总损耗的60%以上。因此,传统的二极管整流电路已无法满足实现低电压、大电流开关电源高效率及小体积的需要,成为制约DC /DC变换器提高效率的瓶颈。 二、同步整流的基本电路结构 同步整流是采用通态电阻极低的专用功率MOSFET,来取代整流二极管以降低整流损耗的一项新技术。它能大大提高DC/DC变换器的效率并且不存在由肖特基势垒电压而造成的死区电压。功率MOSFET属于电压控制型器件,它在导通时的伏安特性呈线性关系。用功率MOSFET做整流器时,要求栅极电压必须与被整流电压的相位保持同步才能完成整流功能,故称之为同步整流。 1、基本的变压器抽头方式双端自激、隔离式降压同步整流电路 2、单端自激、隔离式降压同步整流电路 图1 单端降压式同步整流器的基本原理图 基本原理如图1所示,V1及V2为功率MOSFET,在次级电压的正半周,V1导通,V2关断,V1起整流作用;在次级电压的负半周,V1关断,V2导通,V2起到续流作用。同步整流电路的

轻载下的正激同步整流变换器分析_百度文库.

摘要:同步整流技术的广泛应用促进了低电压大电流技术的发展,但是,使用同步整流技术会造成开关电源在轻载情况下的低效率问题。以正激式同步整流变换器为例,从电感电流连续和断续两种状态,分析了轻载工况下的工作情况。 关键词:同步整流;CCM;DCM;环路电流;振铃 O 引言 随着计算机、通讯和网络技术的迅猛发展,低压大电流DC/DC变换器成为目前一个重要的研究课题。传统的二极管或肖特基二极管整流方式,由于正向导通压降大,整流损耗成为变换器的主要损耗。功率MOSFET导通电阻低、开关时间短、输入阻抗高,成为低压大电流功率变换器首选的整流器件。根据MOSFET的控制特点,应运而生了同步整流(Synchronous rectification,SR这一新型的整流技术。 1 同步整流正激变换器 图l给出的是一种电压自驱动同步整流正激变换器,图l中两个与变压器耦合的分离辅助绕组N4、N5用来分别驱动两个同步整流管S201、S202。当主开关管导通时,变压器副边绕组上正下负,S201栅极电压为高,导通整流;主开关管截止时,副边绕组下正上负,续流S202 栅极为高,导通续流。 正激变换器中,同步整流S201的运行情况与变压器磁复位方式有关。如果采用如图1所示的辅助绕组复位电路,在复位结束过程之后,变压器电压保持为零的死区时间内,输出电流流经续流同步整流管S202,但是S202栅极无驱动电压,所以输出电流必须流经S202的体二极管。M0SFET体二极管的正向导通电压高,反向恢复特性差,导通损耗非常大,这就使采用MOSFET整流的优势大打折扣,为了解决这一问题,较为简单的做法是在S202的漏极和源极之间并联一个肖特基二极管D201,在S202截止的时间内,代替S202的体二极管续流,这 一方法增加的元件不多,线路简单,也很实用。 为了优化驱动波形,可以采用分离的辅助绕组来分别驱动两个同步整流管,比起传统的副边绕组直接驱动的同步整流变换器来说,这种驱动方式无工作电流通过驱动绕组,因此不需要建立输出电流的时间,MOSFET能够迅速开通,开通时的死区时间即体二极管导通的时间减少了一半。另一方面驱动电压不只局限于副边电压,可以通过调整辅助线圈来得到合适的驱动电压。 2 轻载条件下的同步整流 对于正激变换器,在主开关管截止的时间里,输出电流是靠输出储能电感里的能量维持的,因此变换器有两种可能的运行情况:电感电流连续模式(CCM,continuous current mode和电感电流断续模式(DCM,discontinuous current mode。

倍流整流变换器中同步整流控制驱动研究 开题报告

研究生选题报告 题目:倍流整流变换器中同步整流控制驱动 的研究 学号 姓名 指导教师 院、系、专业电气与电子工程学院 电力电子与电力传动 华中科技大学研究生院制

填表注意事项 一、本表适用于攻读硕士学位研究生选题报告、学术报告,攻 读 博士学位研究生文献综述、选题报告、论文中期进展报告、 学术报告等 二、以上各报告内容及要求由相关院(系、所)做具体要求。 三、以上各报告均须存入研究生个人学籍档案。 四、本表填写要求文句通顺、内容明确、字迹工整。

倍流整流变换器中同步整流控制驱动的研究 一、课题的来源 随着高速超大规模集成电路不断发展,构成这些电路电源系统的关键部件是各种不同技术规格的DC/DC变换器模块。对于其供电电源来说,这些数据处理电路构成一类特殊的负载,工作电压较低、电流较大,各种工作状态相互转换时对应的电流变化率很高。随着集成度的不断提高,越来越多的处理器集成电路将集成在同一个芯片上,因此下一代微处理器的额定工作电流将达到50A-1OOA,甚至更高,要求微处理器有严格的功率管理措施。所有这些对微处理器这类典型负载的供电电源提出了更高的要求。 针对特殊电路的要求,电压调节器模块必须提供经过严格调整的低压和大电流输出,具有快速的动态响应。从美国开关电源市场来看,跟随着计算机通讯设备迅速、持续稳定的增长及新的网络产品市场的迅速增长,未来的开关电源市场是非常乐观的,对中小功率变换器的需求更是呈现迅速上升趋势。据权威市场专家预测:在今后五年内,小功率DC/DC变换器的主要发展趋势是:为了适应超高频CPU芯片的迅速发展,DC/DC变换器向低输出电压(最低可低到1.2V),高输出电流、低成本、高频化(400-500KHz)、高功率密度、高可靠性(MTBF >10000)、高效率、快速动态响应的方向发展。 模块电源主要分为DC/DC、AC/DC和DC/AC三种,其中DC/DC模块占据了90%的市场份额。随着通信系统对电源产品的要求越来越高,DC/DC模块电源技术正发生着巨大的变化,朝着低电压大电流方向发展。电压最低小于0.8V,负载电流最高大于100A。为了获得更高的效率,同步整流技术在这些DC/DC模块电源中的作用越来越重要,应用也越来越广泛。

轻载下的正激同步整流变换器分析

轻载下的正激同步整流变换器分析 摘要:同步整流技术的广泛应用促进了低电压大电流技术的发展,但是,使用同步整流技术会造成开关电源在轻载情况下的低效率问题。以正激式同步整流变换器为例,从电感电流连续和断续两种状态,分析了轻载工况下的工作情况。 关键词:同步整流;CCM;DCM;环路电流;振铃 O 引言 随着计算机、通讯和网络技术的迅猛发展,低压大电流DC/DC变换器成为目前一个重要的研究课题。传统的二极管或肖特基二极管整流方式,由于正向导通压降大,整流损耗成为变换器的主要损耗。功率MOSFET导通电阻低、开关时间短、输入阻抗高,成为低压大电流功率变换器首选的整流器件。根据MOSFET的控制特点,应运而生了同步整流(Synchronous rectification,SR)这一新型的整流技术。 1 同步整流正激变换器 图l给出的是一种电压自驱动同步整流正激变换器,图l中两个与变压器耦合的分离辅助绕组N4、N5用来分别驱动两个同步整流管S201、S202。当主开关管导通时,变压器副边绕组上正下负,S201栅极电压为高,导通整流;主开关管截止时,副边绕组下正上负,续流S202栅极为高,导通续流。 正激变换器中,同步整流S201的运行情况与变压器磁复位方式有关。如果采用如图1所示的辅助绕组复位电路,在复位结束过程之后,变压器电压保持为零的死区时间内,输出电流流经续流同步整流管S202,但是S202栅极无驱动电压,所以输出电流必须流经S202的体二极管。M0SFET体二极管的正向导通电压高,反向恢复特性差,导通损耗非常大,这就使采用MOSFET整流的优势大打折扣,为了解决这一问题,较为简单的做法是在S202的漏极和源极之间并联一个肖特基二极管D201,在S202截止的时间内,代替S202的体二极管续流,这一方法增加的元件不多,线路简单,也很实用。

同步整流的基本工作原理

同步整流的基本工作原理 https://www.sodocs.net/doc/fb13225214.html,文章出处:发布时间:2008/10/09 | 6869 次阅读| 1次推荐| 0条留言 Samtec连接器完整的信号来源开关,电源限时折扣最低45折每天新产品时刻新体验ARM Cortex-M3内核微控制器最新电子元器件资料免费下载完整的15A开关模式电源首款面向小型化定向照明应用代替 图1(a)所示为N沟道功率MOS管构成的同步整流管SR和SBD整流二极管的电路图形符号,整流二极管有两个极:即阳极A和阴极K。功率MOS管有三个极:即漏极D、源极S和门极G。在用做同步整流管时,将功率MOS管反接使用,即源极S接电源正端,相当于二极管的阳极A;漏极D接电压负端,相当于二极管的阴极K;当功率MOS管在门极G信号的作用下导通时,电流电源极S流向漏极D。而功率MOS管作为开关使用时,漏极D接电源正端,源极S接电压负端;导通时,相当于开关闭合,电流由漏极D流向源极S。 图1 同步整流管和整流二极管 同步整流管SR及整流二极管构成的半波整流电路如图1(b)所示。当SR的门极驱动电压ug,与正弦波电源电压仍同步变化时,则负载R上得到的是与二极管整流电路相同的半波正弦波电压波形1fR。 同步整流管的源一漏极之间有寄生的体二极管,还有输出结电容(未画出),驱动信号加在门极和源极(G-S)之间,是一种可控的开关器件。皿关断时,电流仍然可以由体二极管流通。不过m体二极管的正向导通压降和反向恢复时间都比SBD大得多,因此,一旦电流流过SR的体二极管,则整流损耗将明显增加。

由于同步整流是由可控的三端半导体开关器件来实现的,因此必须要有符合一定时序关系的门极驱动信号去控制它,使其像一个二极管一样地导通和关断。驱动方法对银的整体性能影响很大,因此,门极驱动信号往往是设计同步整流电路时必须要解决的首要问题。例如,SR开通过早或关断过晚,都可能造成短路,而开通过晚或关断过早又可能使SR的体二极管导通,使整流损耗和器件应力增大。 综上所述,当功率MOS管反接时可以作为SR使用,其特点如下: (1)SR是一个可控的三极开关器件,在门极和源极之间加人驱动信号时,可以控制功率MOS管源极S和漏极D之间的通/断。 (2)门极驱动信号和源极电压同步,如源极为高电平时,驱动信号也是高电平则MOS 管导通;反之,源极为低电平时,驱动信号也是低电平,则MOS管关断;这样就自然实现了整流,而且电流也只能由源极s流向漏极D。由于是通过门极信号和源极电压同步来实现整流的,因此把这种整流方式称为同步整流。 (3)用于PWM开关转换器中的同步整流管SD代替SBD作为整流管或续流工作时,必须保证门极有正确的控制时序,使其工作与PWM开关转换器的主开关管同步协调工作。因此不同的开关转换器主电路,其同步整流管的控制时序也是不同的。同步整流开关管的控制时序将在后面进行介绍。 (4)在功率MOS管反接的情况下,其固有的体二极管极性却是正向的。有时要利用它先导通,以便过渡到功率MOS管进入整流状态。但由于体二极管的正向压降较大,常常不希望它导通或导通时问过长。

同步整流技术的发展及应用(上)

同步整流技术的发展及应用(上) 从二十世纪末,由于MOSFET技术大幅度进步,引入开关电源技术中的同步整流技术给开关电源效率的提升带来了巨大的收益。效率提升的百分点从3%~8%,比软开关技术带来的效果要好的多。而且没有多少专利技术的限制。目前使用的同步整流有,自驱动方式的同步整流;辅助绕组控制方式的同步整流;控制IC方式的同步整流。近来已经出现了软开关技术的同步整流方式。这种软开关的含义主要指减少或消除MOSFET的开关损耗,即减少体二极管的导通时间并消除体二极管的反响恢复时间造成的损耗。它首先出现在推挽、全桥电路拓扑中,随之又出现在正激电路拓扑中。软开关方式的同步整流,由于其处理的多为大电流,低电压,所以对效率的提升比初级侧软开关处理的高电压小电流更为有效。为了更精确地控制二次侧同步整流,已有几种PWM控制IC将同步整流控制信号设计在IC内部,用外部元件调节同步整流信号的延迟时间,从而能更准确地做到同步整流的软开关控制。 ?此外功率半导体技术的进步使得MOSFET的导通电阻已经达到低于 2mΩ,开关速度小于20ns。栅驱动电荷小于25nq的先进水平。有些MOSFET的体二极管还做成了快恢复的,这使得DC/DC变换器中只要采用 同步整流技术,初级既使不用软开关技术,效果也已经很不错了。 ?同步整流技术已经成为现代开关电源技术的标志。凡是高水平开关电源,必定有同步整流技术。在使用面上早已不再局限于5V、3.3V、2.5V这些低 输出电压领域,现在上至12V,15V,19V至24V以下输出,几乎都在使用同步整流技术。下面介绍和分析各种同步整流技术的优点、缺点及实现方法。 ?一.自驱动同步整流

同步整流技术及其在DC-DC变换器中的应用

同步整流技术及其在DC/DC变换器中的应用 摘要:同步整流技术是采用通态电阻极低的功率MOSFET来取代整流二极管,因此能大大降低整流器的损耗,提高DC/DC变换器的效率,满足低压、大电流整流的需要。首先介绍了同步整流的基本原理,然后重点阐述同步整流式DC/DC电源变换器的设计。 关键词:同步整流;磁复位;箝位电路;DC/DC变换器 1 同步整流技术概述 近年来随着电源技术的发展,同步整流技术正在向低电压、大电流输出的DC/DC变换器中迅速推广应用。DC/DC变换器的损耗主要由3部分组成:功率开关管的损耗,高频变压器的损耗,输出端整流管的损耗。在低电压、大电流输出的情况下,整流二极管的导通压降较高,输出端整流管的损耗尤为突出。快恢复二极管(FRD)或超快恢复二极管(SRD)可达1.0~1.2V,即使采用低压降的肖特基二极管(SBD),也会产生大约0.6V的压降,这就导致整流损耗增大,电源效率降低。举例说明,目前笔记本电脑普遍采用3.3V甚至1.8V 或1.5V的供电电压,所消耗的电流可达20A。此时超快恢复二极管的整流损耗已接近甚至超过电源输出功率的50%。即使采用肖特基二极管,整流管上的损耗也会达到(18%~40%)PO,占电源总损耗的60%以上。因此,传统的二极管整流电路已无法满足实现低电压、大电流开关电源高效率及小体积的需要,成为制约DC/DC变换器提高效率的瓶颈。 同步整流是采用通态电阻极低的专用功率MOSFET,来取代整流二极管以降低整流损耗的一项新技术。它能大大提高DC/DC变换器的效率并且不存在由肖特基势垒电压而造成的死区电压。功率MOSFET属于电压控制型器件,它在导通时的伏安特性呈线性关系。用功率MOSFET做整流器时,要求栅极电压必须与被整流电压的相位保持同步才能完成整流功能,故称之为同步整流。 为满足高频、大容量同步整流电路的需要,近1同步整流技术概述近年来随着电源技术的发展,同步整流技术正在向低电压、大电流输出的DC/DC变换器中迅速推广应用。DC/DC变换器的损耗主要由3部分组成:功率开关管的损耗,高频变压器的损耗,输出端整流管的损耗。在低电压、大电流输出的情况下,整流二极管的导通压降较高,输出端整流管的损耗尤为突出。快恢复二极管(FRD)或超快恢复二极管(SRD)可达1.0~1.2V,即使采用低压降的肖特基二极管(SBD),也会产生大约0.6V的压降,这就导致整流损耗增大,电源效率降低。举例说明,目前笔记本电脑普遍采用3.3V甚至1.8V或1.5V的供电电压,所消耗的电流可达20A。此时超快恢复二极管的整流损耗已接近甚至超过电源输出功率的50%。即使采用肖特基二极管,整流管上的损耗也会达到(18%~40%)PO,占电源总损耗的60%以上。因此,传统的二极管整流电路已无法满足实现低电压、大电流开关电源高效率及小体积的需要,成为制约DC/DC变换器提高效率的瓶颈。 同步整流是采用通态电阻极低的专用功率MOSFET,来取代整流二极管以降低整流损耗的一项新技术。它能大大提高DC/DC变换器的效率并且不存在由肖特基势垒电压而造成的死区电压。功率MOSFET属于电压控制型器件,它在导通时的伏安特性呈线性关系。用功率MOSFET做整流器时,要求栅极电压必须与被整流电压的相位保持同步才能完成整流功能,故称之为同步整流。 为满足高频、大容量同步整流电路的需要,近年来一些专用功率MOSFET不断问世,典型产品有FAIRCHILD公司生产的NDS8410型N沟道功率MOSFET,其通态电阻为0.015Ω。Philips公司生产的SI4800型功率MOSFET是采用TrenchMOSTM技术制成的,

同步整流电路的驱动方式综述

同步整流电路的驱动方式综述 预研部余恒23343 一、问题提出: 为了适应电子、通信设备和大规模集成电路的供电要求,DC/DC 模块电源输出电压越来越低,而输出电流却越来越大。传统的肖特基整流方式逐渐被同步整流方式所取代。用低导通电阻MOSFET代替常规肖特基整流/续流二极管,可以大大降低整流部分的功耗,提高变换器的性能,实现电源的高效率,高功率密度。同步整流已经相当流行。但是用MOS代替肖特基二极管势必带来这样一个问题:同步整流MOS管如何驱动?因为二极管不需要驱动,而MOS管是需要驱动的。对于同步整流管的驱动方式,本人收集了部分资料,做了总结,向各位专家学习。 二、驱动方式探讨: 从总的来说同步整流管的驱动方式分为自驱和外驱。 1、外驱:利用原边等驱动信号来控制整流管的开关,优点是可减 小整流管的死区,而且很容易实现时序。不足之处也是显然的,增加了电路的复杂性、成本和可靠性。 *例如,单端正激谐振复位电路,副边续流管可以由原边信号驱动 (如图),也可以整流管由OUT1控制开通,续流管由OUT2控 *又例如图2,这种电路是为了设计原副边的时序。Driverl为正时,Q1导通,副边Qs2处于工作状态。由于Qs12的导通,Qs1 处于关断状态。死区时间Driverl和Driver2为0,则Qs11、Qs21 导通,Q12、Q22的关断,那么Qs1和Qs2均导通,工作在续流状态。当 Driver2为正时,Qs1导通,Qs2关断,Q2延时导通,这样Qs2处于工作状态,Qs1处于关断状态。同样死区时间Qs1 和Qs2同时续流。 可见通过外驱方式实现了原副边时序,使得在死区时间整流管处于工作状态,就不会经过整流管的体二极管续流,从而减小了续流损耗。

同步整流技术的发展及应用

同步整流技术的发展及应用 从二十世纪末,由于MOSFET技术大幅度进步,引入开关电源技术中的同步整流技术给开关电源效率的提升带来了巨大的收益。效率提升的百分点从3%~8%,比软开关技术带来的效果要好的多。而且没有多少专利技术的限制。目前使用的同步整流有,自驱动方式的同步整流;辅助绕组控制方式的同步整流;控制IC方式的同步整流。近来已经出现了软开关技术的同步整流方式。这种软开关的含义主要指减少或消除MOSFET的开关损耗,即减少体二极管的导通时间并消除体二极管的反响恢复时间造成的损耗。它首先出现在推挽、全桥电路拓扑中,随之又出现在正激电路拓扑中。软开关方式的同步整流,由于其处理的多为大电流,低电压,所以对效率的提升比初级侧软开关处理的高电压小电流更为有效。为了更精确地控制二次侧同步整流,已有几种PWM控制IC将同步整流控制信号设计在IC内部,用外部元件调节同步整流信号的延迟时间,从而能更准确地做到同步整流的软开关控制。 ?此外功率半导体技术的进步使得MOSFET的导通电阻已经达到低于 2mΩ,开关速度小于20ns。栅驱动电荷小于25nq的先进水平。有些MOSFET的体二极管还做成了快恢复的,这使得DC/DC变换器中只要采用 同步整流技术,初级既使不用软开关技术,效果也已经很不错了。 ?同步整流技术已经成为现代开关电源技术的标志。凡是高水平开关电源,必定有同步整流技术。在使用面上早已不再局限于5V、3.3V、2.5V这些低 输出电压领域,现在上至12V,15V,19V至24V以下输出,几乎都在使用同步整流技术。下面介绍和分析各种同步整流技术的优点、缺点及实现方法。 ?一.自驱动同步整流

半桥同步整流设计报告

\ 半桥倍流同步整流电源的设计 摘要:现如今,微处理器要求更低的供电电压,以降低功耗,这就要求供电系 统能提供更大的输出电流,低压大电流技术越发引起人们的广泛关注。本电源系统以对称半桥为主要拓扑,结合倍流整流和同步整流的结构,并且使用MSP430单片机控制和采样显示,实现了5V,15A大电流的供电系统。效率较高,输出纹波小。 关键词:对称半桥,倍流整流,同步整流,SG3525 一、方案论证与比较 1 电源变换拓扑方案论证 方案一:(如下图)此电路为传统的半桥拓扑。由于MOS管只承受一倍电源电压,而不像单端类的承受两倍电源电压,且较之全桥拓扑少了两个昂贵的MOS 管,因此得到很大的应用。但在低压大电流的设计中,输出整流管的损耗无疑会大大降低效率,而且电感的设计也会变得困难,因此不适合大电流的设计。 方案二:传统半桥+同步整流。将上图半桥的输出整流管改为低导通阻的MOSFET。如此可大大减小输出整流的损耗,提高效率。比较适合大电流的整流方案,但变压器的绕制和电感的设计较麻烦。 方案三:(如下图)半桥倍流同步整流。倍流整流很早就被人提出,它的特点是变压器输出没有中心抽头,这就大大简化了变压器的设计,并且提高了变压器的利用率。而流过变压器和输出电感的电流仅有输出电流的一半,这使得变压

器和电感的制作变得简单。并且由波形分析可以知道,输出电流的纹波是互相抵消的。该电路的不足是电路时序有要求,控制稍显复杂。由上分析我们选择方案三。 2 控制方案选择 方案一:由于控制芯片SG3525输出两路互补对称的PWM信号,则可将控制信号做如下设置(如下图)。 将驱动Q1的信号与Q4同步起来,Q2和Q3的信号同步,则可以实现倍流同步整流的时序同步,方案简单易行,但由于SG3525在输出较小占空比时有较大的死区,则输出MOSFET的续流二极管会产生较大的损耗。 方案二:。。。。。反激变换。。。。将SG3525的驱动信号反向后送入输出整流MOS管,如此可以极大的减少低占空比时的损耗,且仅需一对反向驱动,故选用方案二。

同步整流技术目前存在问题

同步整流专利面临问题 1、同步整流MOS晶体管在栅极电荷未被及时泄放情况下可双向导通; 2、由于MOSFET晶体管反向导通,滤波电容与滤波电感将谐振,使DC-DC变换器输出产生负压,对输入端的有极性电容和负载造成损伤,甚至使敏感负载发生逻辑错误。 3、死区时间的调整控制。 4、同步整流电路的缺点是,由于功率转换器的次级侧的接地切换操作所导致的切换损失以及电磁波干扰问题。 5、自驱动有源钳位正激变换器,其整流管和续流管在关断的时候,其栅极驱动电压是负值,这可能由于整流管和续流管的反向漏电流而产生额外的损耗,从而造成整体变换器效率的下降;另外整流管和续流管的驱动信号之间同样没有死区时间,整流管及续流管共同导通的现象依然没有解决。 6、因寄生效应而在晶体管开关上所产生的电压尖峰或高频振铃 7、由于MOSFET开通后可以双向导电,区别于二极管,因此对电路的工作带来影响。通常的电压模式的驱动方式由于不检测流过MOSFET的电流,因此,在电路中存在电流反向的可能,其驱动信号也是在电路中变压器、电感或者其他相关点得到的波形,会引起轻载条件下效率低下等其他问题。 8、传统的采用电流互感器的方式,其取样电流消耗的能量在电路中直接消耗,导致驱动电路效率低下。在实际应用中,通常的电流互感器驱动方案需要每个MOSFET带一个电流互感器检测其电流,导致电路成本上升、体积变大。 9、通常自驱动电路采用一个次级辅助绕组来为同步整流管和续流管提供驱动电压,但是,此种驱动方式由于辅助绕组藕合漏感与MOS管的栅极结电容产生振荡,致使驱动波形上升沿和平顶部分振荡,导致驱动损耗增大。 10、在大电流条件下开关电源同步整流电路结构及连接方式存在的连接、散热困难和额外发热等问题。 11、一般用变压器的副边绕组直接驱动MOS管。这时在占空比比较小的情况下,会出现续流的同步MOS管导通不足的问题。负载电流会流过MOS管的体二极管,造成较大的损耗。 12、门极通过辅助MOS管Sa至零电位,而同步整流MOS管的门极导通电压一般比较低(2~3V),所以容易受到外界千扰,也会造成共态导通的问题。 13、由于场效应管导通之后,电流可以通过该场效应管双向流动如流过负向电流。因负向电流的存在,当空载时开关信号占空比不变,使得空载时损耗增大、效率降低;另外当多个电源并联对负载进行供电时,电源的热拔插或是输出电流的瞬变容易导致电流从一个电源倒灌

相关主题