搜档网
当前位置:搜档网 › 高考导数问题常见题型总结

高考导数问题常见题型总结

高考导数问题常见题型总结
高考导数问题常见题型总结

高考有关导数问题解题方法总结

一、考试内容

导数的概念,导数的几何意义,几种常见函数的导数;

两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。 二、热点题型分析

题型一:利用导数研究函数的极值、最值。

1.

32

()32f x x x =-+在区间[]1,1-上的最大值是 2 2.已知函数2)()(2

=-==x c x x x f y 在处有极大值,则常数c = 6 ;

3.函数3

31x x y -+=有极小值 -1 ,极大值 3 题型二:利用导数几何意义求切线方程

1.曲线3

4y x x =-在点

()1,3--处的切线方程是2y x =- 2.若曲线x x x f -=4

)(在P 点处的切线平行于直线03=-y x ,则P 点的坐标为 (1,0) 3.若曲线4

y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为 430x y --=

4.求下列直线的方程:

(1)曲线123++=x x y 在P(-1,1)处的切线; (2)曲线2

x y =过点P(3,5)的切线;

解:(1)

123|y k 23 1)1,1(1x /2/23===∴+=∴++=-=-上,在曲线点-x x y x x y P

所以切线方程为02

11=+-+=-y x x y 即, (2)显然点P (3,5)不在曲线上,所以可设切点为),(00y x A ,则2

00x y =①又函数的导数为x y 2/=,

所以过),(00y x A 点的切线的斜率为

/

2|0x y k x x ===,又切线过),(00y x A 、P(3,5)点,所以有

3

5

2000--=

x y x ②,由①②联立方程组得,??????====25

5 110

000y x y x 或,即切点为(1,1)时,切线斜率为;2201==x k ;

当切点为(5,25)时,切线斜率为10202==x k ;所以所求的切线有两条,方程分别为

2510 12 )5(1025)1(21-=-=-=--=-x y x y x y x y 或即,或

题型三:利用导数研究函数的单调性,极值、最值

1.已知函数

))1(,1()(,)(2

3f P x f y c bx ax x x f 上的点过曲线=+++=的切线方程为y=3x+1

(Ⅰ)若函数2)(-=x x f 在处有极值,求)(x f 的表达式; (Ⅱ)在(Ⅰ)的条件下,求函数)(x f y =在[-3,1]上的最大值; (Ⅲ)若函数)(x f y =在区间[-2,1]上单调递增,求实数b 的取值范围

解:(1)由

.23)(,)(2

23b ax x x f c bx ax x x f ++='+++=求导数得 过))1(,1()(f P x f y 上点=的切线方程为:

).1)(23()1(),1)(1()1(-++=+++--'=-x b a c b a y x f f y 即

而过.13)]1(,1[)(+==x y f P x f y 的切线方程为上

故??

?-=-=+??

?-=-=++30233

23c a b a c a b a 即

∵124,0)2(,2)(-=+-∴=-'-==b a f x x f y 故时有极值在③

由①②③得 a=2,b=-4,c=5 ∴

.542)(2

3+-+=x x x x f (2)).2)(23(443)(2

+-=-+='x x x x x f

当;

0)(,32

2;0)(,23<'<≤->'-<≤-x f x x f x 时当时

13)2()(.0)(,132

=-=∴>'≤

(3)y=f(x)在[-2,1]上单调递增,又

,23)(2

b ax x x f ++='由①知2a+b=0。 依题意)(x f '在[-2,1]上恒有)(x f '≥0,即.032≥+-b bx x

①当

6,03)1()(,16min ≥∴>+-='='≥=

b b b f x f b

x 时; ②当

φ∈∴≥++=-'='-≤=

b b b f x f b

x ,0212)2()(,26min 时;

③当.

60,01212)(,1622min ≤≤≥-='≤≤-b b b x f b 则时

综上所述,参数b 的取值范围是),0[+∞

2.已知三次函数32

()f x x ax bx c =+++在1x =和1x =-时取极值,且(2)4f -=-.

① ②

(1) 求函数()y f x =的表达式; (2) 求函数()y f x =的单调区间和极值;

(3) 若函数()()4(0)g x f x m m m =-+>在区间[3,]m n -上的值域为[4,16]-,试求m 、n 应满足的条件.

解:(1) 2

()32f x x ax b '

=++,

由题意得,1,1-是2

320x ax b ++=的两个根,解得,0,3a b ==-.

再由(2)4f -=-可得2c =-.∴

3

()32f x x x =--. (2) 2()333(1)(1)f x x x x '=-=+-,

当1x <-时,()0f x '>;当1x =-时,()0f x '

=; 当11x -<<时,()0f x '<;当1x =时,()0f x '

=;

当1x >时,()0f x '

>.∴函数()f x 在区间(,1]-∞-上是增函数; 在区间[1,]-1

上是减函数;在区间[1,)+∞上是增函数. 函数()f x 的极大值是(1)0f -=,极小值是(1)4f =-.

(3) 函数()g x 的图象是由()f x 的图象向右平移m 个单位,向上平移4m 个单位得到的, 所以,函数()f x 在区间[3,]n m --上的值域为[44,164]m m ---(0m >). 而(3)20f -=-,∴4420m --=-,即4m =. 于是,函数()f x 在区间[3,4]n --上的值域为[20,0]-. 令()0f x =得1x =-或2x =.由()f x 的单调性知,142n --,即3

6n

综上所述,m 、n 应满足的条件是:4m =,且36n

3.设函数()()()f x x x a x b =--.

(1)若()f x 的图象与直线580x y --=相切,切点横坐标为2,且()f x 在1x =处取极值,求实数,a b 的值;

(2)当b=1时,试证明:不论a 取何实数,函数()f x 总有两个不同的极值点.

解:(1)2

()32().f x x a b x ab '=-++

由题意(2)5,(1)0f f ''==,代入上式,解之得:a=1,b=1.

(2)当b=1时,

()0f x '=令得方程2

32(1)0.x a x a -++= 因

,0)1(42

>+-=?a a 故方程有两个不同实根21,x x . 不妨设21x x <,由))((3)(21'x x x x x f --=可判断)('

x f 的符号如下: 当时,1x x <)('x f >0;当时,21x x x <<)('x f <0;当

时,2x x >)('

x f >0 因此1x 是极大值点,2x 是极小值点.,当b=1时,不论a 取何实数,函数()f x 总有两个不同的极值点。

题型四:利用导数研究函数的图象

1.如右图:是f (x )的导函数, )(/

x f 的图象如右图所示,则f (x )的图象只可能是( D )

(A ) (B ) (C ) (D ) 2.函数

的图像为14313

+-=

x x y ( A )

3.方程内根的个数为在)2,0(07622

3=+-x x ( B )

A 、0

B 、1

C 、2

D 、3 题型五:利用单调性、极值、最值情况,求参数取值范围

1.设函数.

10,3231

)(223<<+-+-=a b x a ax x x f

(1)求函数)(x f 的单调区间、极值.

(2)若当]2,1[++∈a a x 时,恒有a x f ≤'|)(|,试确定a 的取值范围.

x

y

o 4 -4 2 4 -4

2 -2 -2

x y

o 4 -4 2 4 -4 2 -2 -2

x

y

y 4 -4 2 4 -4

2

-2 -2

6 6 6 6 y

x

-4

-2 o

4 2 2

4

相关主题