搜档网
当前位置:搜档网 › solidworks进行有限元分析的一般步骤说课材料

solidworks进行有限元分析的一般步骤说课材料

solidworks进行有限元分析的一般步骤说课材料
solidworks进行有限元分析的一般步骤说课材料

s o l i d wo r k s进行有限元分析的一般步骤

1.软件形式:

㈠. SolidWorks的内置形式:

◆COSMOSXpress——只有对一些具有简单载荷和支撑类型的零件的静态分

析。

㈡. SolidWorks的插件形式:

◆COSMOSWorks Designer——对零件或装配体的静态分析。

◆COSMOSWorks Professional——对零件或装配体的静态、热传导、扭曲、频率、掉落测试、优化、疲劳分析。

◆COSMOSWorks Advanced Professional——在COSMOSWorks Professional的所有功能上增加了非线性和高级动力学分析。

㈢. 单独发行形式:

◆ COSMOS DesignSTAR——功能与COSMOSWorks Advanced Professional相同。

2.使用FEA的一般步骤:

FEA=Finite Element Analysis——是一种工程数值分析工具,但不是唯一的

数值分析工具!其它的数值分析工具还有:有限差分法、边界元法、有限体

积法…

①建立数学模型——有时,需要修改CAD几何模型以满足网格划分的需要,

(即从CAD几何体→FEA几何体),共有下列三法:

▲特征消隐:指合并和消除在分析中认为不重要的几何特征,如外圆角、圆

边、标志等。

▲理想化:理想化是更具有积极意义的工作,如将一个薄壁模型用一个平面

来代理(注:如果选中了“使用中面的壳网格”做为“网格类型”,COSMOSWorks 会自动地创建曲面几何体)。

▲清除:因为用于划分网格的几何模型必须满足比实体模型更高的要求。如

模型中的细长面、多重实体、移动实体及其它质量问题会造成网格划分的困难

甚至无法划分网格—这时我们可以使用CAD质量检查工具(即SW菜单: Tools →Check…)来检验问题所在,另外含有非常短的边或面、小的特征也必须清除

掉(小特征是指其特征尺寸相对于整个模型尺寸非常小!但如果分析的目的是

找出圆角附近的应力分布,那么此时非常小的内部圆角应该被保留)。

②建立有限元模型——即FEA的预处理部分,包括五个步骤:

▲选择网格种类及定义分析类型(共有静态、热传导、频率…等八种类别)——这时将产生一个FEA算例,左侧浏览器中之算例名称之后的括号里是配置

名称;

▲添加材料属性: 材料属性通常从材料库中选择,它不并考虑缺陷和表面条件

等因素,与几何模型相比,它有更多的不确定性。

◇右键单击“实体文件夹”并选择“应用材料到所有”——所有零部件将被赋予相同的材料属性。

◇右键单击“实体文件夹”下的某个具体零件文件夹并选择“应用材料到所有实体”——某个零件的所有实体(多实体)将被赋予指定的材料属性。

◇右键单击“实体文件夹”下具体零件的某个“Body”并选择“应用材料到实体”——只有该“Body”被赋予指定的材料属性。

▲施加约束:定义约束是最容易产生误差的地方。通常的误差来自于过约束

模型,其后果是:结构过于刚硬并低估了实际变形量和应力值。对装配体而

言,还要定义“接触/间隙”这种特殊的“约束”。约束的目的是禁止模型的刚体位移。

在COSMOSWorks中共有十种约束(不包括“接触/间隙”)。它也意味着处

于指定的“点、线、面”上的全部这些节点所受到的约束。

约束符号中的箭头表示“平移”约束,而圆盘则表示“回转”约束(实体单元的每个节点仅有3个移动自由度,而壳单元有6个自由度)。

对“Solid mesh”而言,因为节点无转动自由度,所以选择“固定”和“不可移动”的效果是完全一样的。定义完约束之后,模型的空间位置就被固定下来了。此

时,模型不可能再发生除弹形变形之外的位移(在FEA的静态分析中,可能存

在的也只能是弹形位移),称之为“模型没有刚体位移”。

▲定义载荷:在现实中,只能大概地知道载荷的大小、分布、时间依赖关

系。所以,必须在FEA分析中通过简化的假设做出近似的估计。因此,定义载

荷会产生较大的建模误差(理想化误差)。

注:前面的四项统称为FEA分析的“预处理”,它们的不确定性程度从高到低依

次为:约束、载荷、材料、几何模型。

▲网格划分:

a). COSMOSWorks中只有两类单元:一阶单元(草稿品质单元)和二阶单

元(高品质单元)。或:实体四面体单元和三角形壳单元。这样,

COSMOSWorks共有四种单元类型:一阶实体四面体单元(只有4个角节点,1个高斯点)、二阶实体四面体单元(有4个角节点和6个中间节点,共计10个节点,4个高斯点)、一阶三角形壳单元(只有3个角节点,1个高斯点)、二阶三角形壳单元(有3个角节点和3个中间节点,共计6个节点,3个高斯点)——这里的四面体不一定是正四面体,而三角形也不一定是正三角形。此外,

二阶单元的边和面都可以是曲线形状,以模拟单元因加载而变形的实际情形。

b).单元的品质可通过SW菜单: COSMOSWorks→Options…→选Mesh标签…

c).一般FEA中拥有最少节点的单元是横梁单元,它只有2个节点(即梁的两个端点),但每个节点处均有6个自由度(即三个平移分量加三个转动位移

分量)。

d). 二阶实体四面体单元和二阶三角形壳单元适用于曲线形的几何体。

e).某些类型的形状既可以使用实体单元也可以使用壳单元,具体选用什么

类型的单元取决于分析的目的。然而,通常情况下,几何体的天然形状决定了

所使用的单元类型,比如,一些铸件只能用实体网格划分,而一张金属板材最

好使用壳单元。

f).有限单元网格中的自由度是指单元节点的自由度。实体单元的每个节点

有三个自由度(三个平移分量),壳单元的每个节点有六个自由度(三个平移

分量加三个转动位移分量)。节点的位移即为这些分量的几何合成矢量。

g).在进行网格划分时,单元在匹配几何体的过程中会经历变形扭曲,但过

度的扭曲会导致单元的恶化,从而导致计算量徒增和计算精度大大地降低,甚

至会无法计算。为此,需要通过控制默认单元的大小(即SW菜单: COSMOSWorks→Mesh→Create…,其中:Coarse对应大,Fine对应小)或应用

局部网格控制(即SW菜单: COSMOSWorks→Mesh→Apply Control…)来避免单元的过度扭曲。

h).网格质量保证:包括长宽比检查和Jacobian检查, 这些检查由程序自动执行。

长宽比检查:正四面体的长宽比通常被用做计算其它单元的长宽比。一个单元

的长宽比定义为:四面体的最长边的长度值/四面体的顶点到其相对面的法向距离的最小长度值。这里,顶点的相对面需用正四面体正则化,并假定四面体的

4个角点之间用直线相连。非常小的正四面体单元的长宽比可近似地认为是

1.0。作为长宽比检查的一部分,COSMOSWorks还自动执行边长检查、内切圆和外接圆检查,以及法向长度检查。

Jacobian检查:即检查雅可比行列式的值,用于判断单元的弯曲程度。一个极

端扭曲单元的雅可比行列式是负值,而负的雅可比行列式会导致FEA程序的终止。Jacobian检查是基于一系列点(高斯点或节点),这些点位于每个单元

中。通常情况下,雅可比率小于或等于40是可以接受的。COSMOSWorks会自动调整扭曲单元的中节点位置,以确保所有的单元能通过雅可比检查。在二次

单元中,单元边界上的中节点放置在真实的几何体上;但在尖劈和弯曲边界,

将中节点放置在真实几何体上会导致产生边缘下相互重叠的扭曲单元。对正四

面体而言,所有中节点均精确地定位在直边中点,其雅可比率为 1.0,随着边缘曲率的增加,其雅可比率也增大。Jacobian检查设置可通过COSMOSWorks→options…→Mesh标签来实现。

i).局部网格控制:由三个参数来控制——所选实体的单元尺寸、层与层之

间的单元尺寸比、受局部优化影响的单元层数。它们的缺省值分别为 2.2、

1.5、3。网格控制可用在点(顶点)、线(边界)、面(表面)、及装配体组

件上。三个控制参数可通过命令:COSMOSWorks→Mesh→Apply Control…来实现。为了找出仍在工作的最大单元,可勾选COSMOSWorks→options…→Mesh 标签中的Automatic Looping选项,“自动为实体循环”功能要求网格划分程序利用更小的全局单元尺寸网格对模型进行重新划分,用户可以控制:循环实验的

最大次数、全局单元尺寸每次减少的幅度、公差。

对于应用于组件的网格控制由“Component significance (零件有效数)”来定义,对于不同的Slide位置,指示网格划分程序选用不同的单元尺寸来对每个选定的组

件进行网格划分。但如果“use same element size”已勾选,那么所有组件均按“网格控制”窗口中指定相同单元尺寸来进行划分。

j).实际的网格划分过程,共分三个步骤:

第一步,评估几何模型——检查CAD几何体有无缺陷;

第二步,处理边界——即先将节点置于边界上,这一步被称做表面划分;

第三步,创建网格——用四面体单元来填充实体体积。

k).如果第一步失败,则最有可能的是几何模型错误,为了验证几何模型是

否错误,以IGES输出模型,观察是否出现错误信息“处理修整的表面实体失败”。

l). 如果第二步失败,分两种情况:i.在进度指示条到达最右端之前出现错误,则说明至少在一个面上的划分出现错误,此时,右键单击网格,选择“失败

诊断”,以找出有问题的表面,再有分割线或网格控制来帮助划分该表面;ii.在进度指示条到达最右端之后且在第三步开始之前出现错误,此时,需要将公差

从5%(默认)到10%对单元尺寸进行增加后重新划分网格,但如果公差为

10%时仍旧失败,则可以继续增加公差,但最大不要超过25%。设置命令为:COSMOSWorks→Mesh→Create…→…

m). 如果第三步失败,则表明错误发生在体积填充阶段。此时,可将单元

尺寸公差从5%减少到1%,如果仍然失败,则可以25%的幅度减少单元尺寸,并设公差为1%.

n). “失败诊断”工具只对实体单元有效,对壳单元不起作用。

o). 从2008版开始,COSMOSWorks实现了自动“局部网格控制”,因而“网格划分”完全不再需要人工干预。

③求解有限元模型——在结构分析中,FEA首先计算的是网格中每个节点的

位移(矢

量),再在此基础上计算应变和应力等其它物理量;在热分析中,FEA首先计算的是网格中每个节点的温度(标量),再在此基础上计算温度梯度和热流等

其它物理量.

一般如果模型可划分网格,那么它就可以求解,但如果没有定义材料或载

荷,则求解会终止。解算器也可检查出由于约束不足而引起的刚体运动。但刚

体运动可用解算器选项来处理,比如,使用软弹簧来稳定模型,或使用平面内

作用、惯性卸除。影响选择合适的解算器的五个因素:

1).问题的大小——通常,FFEPlus在处理自由度(DOF)超过100,000时,速度比较快。FFEPlus随着问题的变大会变得更有效率。

2).计算机资源——在计算机可用的内存足够多时,Direct Sparse解算器的

速度比较快。

3).分析选项;

4).单元类型;

5).材料属性——当模型中使用的材料弹性模量差异较大时(比如钢和尼

龙),FFEPlus(迭代法)求解比Direct Sparse(直接法)求解的精度低。

如果不能确定选择哪个解算器是分析的最佳选择时,可将解算器的类型设为“自动”。

选择求解器的命令为:COSMOSWorks→Options…→选Results标签.

④结果分析——对结果的正确解释需要我们熟悉理解:i).各种假设,如在静

态分析中的

材料线性假设、小变形假设、静态载荷假设;ii).简化约定;iii).前面三步中产生的误差,如建模误差(也称理想化误差)、离散误差(划分网格时产生的误

差)、数值误差(求解过程中产生的误差)。在这三种误差当中,只有离散化

误差是FEA特有的,故只有这个误差能够在使用FEA时被控制——网格单元

越小,离散误差越低;影响数学几何模型的建模误差,是在FEA之前引入的,故只能通过正确的建模技术来控制;数值误差(求解误差)是在计算过程中产

生的,难于控制,但它们通常比较小。

执行“COSMOSWorks→Options…→Results标签→Automatic Results Plots按钮”,可确定要在程序界面中显示的计算项目的结果。

结果中的波节应力(Node values)是指单元节点上的应力,而单元应力(Element values)则是指单元高斯点上的应力。

单元应力和波节应力一般是不同的,但若两者相差过大,则说明网格划分不够

精细。

解析解(用数学公式求出的解)只有在平面应力假设下,板的厚度非常薄时才

有效——因为它不考虑应力沿板厚方向的分布(梯度分布:中间最大,两边缘

最小),认为板厚方向的截面上的应力处处相等。所以,FEA解能够比较真实地反映应力的实际状况。

abaqus有限元分析过程

一、有限单元法的基本原理 有限单元法(The Finite Element Method)简称有限元(FEM),它是利用电子计算机进行的一种数值分析方法。它在工程技术领域中的应用十分广泛,几乎所有的弹塑性结构静力学和动力学问题都可用它求得满意的数值结果。 有限元方法的基本思路是:化整为零,积零为整。即应用有限元法求解任意连续体时,应把连续的求解区域分割成有限个单元,并在每个单元上指定有限个结点,假设一个简单的函数(称插值函数)近似地表示其位移分布规律,再利用弹塑性理论中的变分原理或其他方法,建立单元结点的力和位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程组,从而求解结点的位移分量. 进而利用插值函数确定单元集合体上的场函数。由位移求出应变, 由应变求出应力 二、ABAQUS有限元分析过程 有限元分析过程可以分为以下几个阶段 1.建模阶段: 建模阶段是根据结构实际形状和实际工况条件建立有限元分析的计算模型――有限元模型,从而为有限元数值计算提供必要的输入数据。有限元建模的中心任务是结构离散,即划分网格。但是还是要处理许多与之相关的工作:如结构形式处理、集合模型建立、单元特性定义、单元质量检查、编号顺序以及模型边界条件的定义等。

2.计算阶段:计算阶段的任务是完成有限元方法有关的数值计算。 由于这一步运算量非常大,所以这部分工作由有限元分析软件控制并在计算机上自动完成 3.后处理阶段: 它的任务是对计算输出的结果惊醒必要的处理, 并按一定方式显示或打印出来,以便对结构性能的好坏或设计的合理性进行评估,并作为相应的改进或优化,这是惊醒结构有限元分析的目的所在。 下列的功能模块在ABAQUS/CAE操作整个过程中常常见到,这个表简明地描述了建立模型过程中要调用的每个功能模块。 “Part(部件) 用户在Part模块里生成单个部件,可以直接在ABAQUS/CAE环境下用图形工具生成部件的几何形状,也可以从其它的图形软件输入部件。 Property(特性) 截面(Section)的定义包括了部件特性或部件区域类信息,如区域的相关材料定义和横截面形状信息。在Property模块中,用户生成截面和材料定义,并把它们赋于(Assign)部件。 Assembly(装配件) 所生成的部件存在于自己的坐标系里,独立于模型中的其它部件。用户可使用Assembly模块生成部件的副本(instance),并且在整体坐标里把各部件的副本相互定位,从而生成一个装配件。 一个ABAQUS模型只包含一个装配件。

有限元分析方法和材料断裂准则

一、有限元模拟方法 金属切削数值模拟常用到两种方法,欧拉方法和拉格朗日方法。欧拉方法适合在一个可以控制的体积内描述流体变形,这种方法的有限元网格描述的是空间域的,覆盖了可以控制的体积。在金属切削过程中,切屑形状的形成过程不是固定的,采用欧拉方法要不断的调整网格来修改边界条件,因此用欧拉方法进行动态的切削过程模拟比较困难。欧拉方法适用于切削过程的稳态分析(即“Euler方法的模拟是在切削达到稳定状态后进行的”[2]),仿真分析之前要通过实验的方法给定切屑的几何形状和剪切角[1]。 而拉格朗日方法是描述固体的方法,有限元网格由材料单元组成,这些网格依附在材料上并且准确的描述了分析物体的几何形状,它们随着加工过程的变化而变化。这种方法在描述材料的无约束流动时是很方便的,有限元网格精确的描述了材料的变形情况。实际金属切削加工仿真中广泛采用的拉格朗日方法,它可以模拟从初始切削一直到稳态的过程,能够预测切屑的形状和工件的残余应力等参数[2]。但是用这种方法预定义分离准则和切屑分离线来实现切屑和工件的分离,当物质发生大变形时常常使网格纠缠,轻则严重影响了单元近似精度,重则使计算中止或者引起严重的局部变形[1]。 为了克服欧拉描述和拉格朗日描述各自的缺点,Noh和Hirt在研究有限差分法时提出了ALE(Arbitrary Lagrange-Euler)描述,后来又被Hughes,liu和Belytschko等人引入到有限元中来。其基本思想是:计算网格不再固定,也不依附于流体质点,而是可以相对于坐标系做任意运动。由于这种描述既包含Lagrange的观点,可应用于带自由液面的流动,也包括了Euler观点,克服了纯Lagrange 方法常见的网格畸变不如意之处。自20世纪80年代中期以来,ALE描述己被广泛用来研究带自由液面的流体晃动问题、固体材料的大变形问题、流固祸合问题等等。金属的高速切削过程是一个大变形、高应变率的热力祸合过程,正适合采用ALE方法。 采用ALE方法进行高速切削仿真克服了拉格朗日方法和欧拉方法需要预先定义分离线、切屑和工件分离准则,假定切屑形状等缺点,避免了网格畸变以及网格再划分等问题,使切屑和工件保持良好的接触,使计算易于收敛[1][4]。 二、材料断裂准则 在金属切削成形有限元模拟中提出了多种切屑分离准则,这些准则可以分为两种类型:物理准则和几何准则。 优点: 几何分离准则需要预定义加工路径,在加工路径上判断刀尖与刀尖前单元节点的距离变化来判断分离与否。当两点的距离小于某个临界值时,刀尖前单元的节点被分成两个,其中一个节点沿前刀面向上移动形成切屑,另一个保留在加工表面上形成己加工表面[1][2]。。 物理分离准则是基于刀尖前单元节点的应力、应变及应变能等物理量定义分离条件,当单元中的该物理量的值超过给定材料的对应值时,单元节点就会分离[2]。(物理标准主要是基于制定的一些物理量的值是否达到临界值而进行判断的,主要有基于等效塑性应变准则、基于应变能密度准则、断裂应力准则等[5])。 Carroll和Strenkowski使用了等效塑性应变作为物理分离准则的标准,在一些有限元软件中该标准的演化得到了应用,ABAQUS/Explicit中的剪切失效准则(shear failure)就是这样一种物理准则,它根据单元积分点处的等效塑性应变值是否到达预设值来判断材料是否失效[1]。 缺点:

matlab有限元分析实例

MATLAB: MATLAB是美国MathWorks公司出品的商业数学软件,用于数据分析、无线通信、深度学习、图像处理与计算机视觉、信号处理、量化金融与风险管理、机器人,控制系统等领域。 MATLAB是matrix&laboratory两个词的组合,意为矩阵工厂(矩阵实验室),软件主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式。 MATLAB和Mathematica、Maple并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等。MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。在新的版本中也加入了对C,FORTRAN,C++,JAVA的支持。 MATLAB有限元分析与应用:

《MATLAB有限元分析与应用》是2004年4月清华大学出版社出版的图书,作者是卡坦,译者是韩来彬。 内容简介: 《MATLAB有限元分析与应用》特别强调对MATLAB的交互应用,书中的每个示例都以交互的方式求解,使读者很容易就能把MATLAB用于有限分析和应用。另外,《MATLAB有限元分析与应用》还提供了大量免费资源。 《MATLAB有限元分析与应用》采用当今在工程和工程教育方面非常流行的数学软件MATLAB来进行有限元的分析和应用。《MATLAB有限元分析与应用》由简单到复杂,循序渐进地介绍了各种有限元及其分析与应用方法。书中提供了大量取自机械工程、土木工程、航空航天工程和材料科学的示例和习题,具有很高的工程应用价值。

精讲solidworks有限元分析步骤

2013-08-29 17:31 by:有限元来源:广州有道有限元 1. 软件形式: ㈠. SolidWorks的内置形式: ◆COSMOSXpress——只有对一些具有简单载荷和支撑类型的零件的静态分析。 ㈡. SolidWorks的插件形式: ◆COSMOSWorks Designer——对零件或装配体的静态分析。 ◆COSMOSWorks Professional——对零件或装配体的静态、热传导、扭曲、频率、掉落测试、优化、疲劳分析。 ◆COSMOSWorks Advanced Professional——在COSMOSWorks Professional的所有功能上增加了非线性和高级动力学分析。 ㈢. 单独发行形式: ◆COSMOS DesignSTAR——功能与COSMOSWorks Advanced Professional相同。 2. 使用FEA的一般步骤: FEA=Finite Element Analysis——是一种工程数值分析工具,但不是唯一的数值分析工具!其它的数值分析工具还有:有限差分法、边界元法、有限体积法… ①建立数学模型——有时,需要修改CAD几何模型以满足网格划分的需要, (即从CAD几何体→FEA几何体),共有下列三法: ▲特征消隐:指合并和消除在分析中认为不重要的几何特征,如外圆角、圆边、标志等。▲理想化:理想化是更具有积极意义的工作,如将一个薄壁模型用一个平面来代理(注:如果选中了“使用中面的壳网格”做为“网格类型”,COSMOSWorks会自动地创建曲面几何体)。 ▲清除:因为用于划分网格的几何模型必须满足比实体模型更高的要求。如模型中的细长面、多重实体、移动实体及其它质量问题会造成网格划分的困难甚至无法划分网格—这时我们可以使用CAD质量检查工具(即SW菜单: Tools→Check…)来检验问题所在,另外含有非常短的边或面、小的特征也必须清除掉(小特征是指其特征尺寸相对于整个模型尺寸非常小!但如果分析的目的是找出圆角附近的应力分布,那么此时非常小的内部圆角应该被保留)。 ②建立有限元模型——即FEA的预处理部分,包括五个步骤: ▲选择网格种类及定义分析类型(共有静态、热传导、频率…等八种类别)——这时将产生一个FEA算例,左侧浏览器中之算例名称之后的括号里是配置名称; ▲添加材料属性: 材料属性通常从材料库中选择,它不并考虑缺陷和表面条件等因素,与几何模型相比,它有更多的不确定性。

金属切削过程韧性断裂的有限元仿真现状

金属切削过程韧性断裂的有限元仿真现状 工件材料的断裂准则是金属切削加工有限元仿真的关键技术。分析了国内外金属切削加工有限元仿真的研究现状,并进一步对不同工件材料的断裂仿真技术的特点、适用条件进行了比较分析,指出了现阶段工件材料断裂准则仿真技术尚存在的问题,探讨了切削过程有限元仿真技术的发展趋势,为切削过程有限元建模发展提供一定的参考。 标签:金属切削:韧性断裂;有限元模型 引言 金属切削加工在21世纪依然是机械制造业的主要加工方法。它在保证高效率和低成本的基础上,通过刀具和工件的相互作用,去除工件表面的多余材料,来获得所需工件形状、加工精度和表面质量要求。而在在金属切削加工工艺中,不可避免地出现材料断裂现象,所以必须合理地利用材料产生的断裂,才能实现切削工艺过程[1]。 现代工业研究方法主要包括三种:理论分析、试验研究和有限元仿真,这三种方法可以综合利用。有限元技术以其周期短、结果准确、成本低等诸多优点,获得了广大工程技术和研究人员的青睐。基于有限元仿真技术强大的数值分析能力,它已成为定量研究金属切削加工过程的有效手段,该技术对减少制造成本,缩短产品制造周期和提高产品质量具有重要意义。 1 应用背景 19世纪中期,人们开始对金属切削过程的研究,到现在已经有一百多年历史。由于金属切削本身具有非常复杂的机理,对其研究一直是国内外研究的重点和难点。过去通常采用实验法,它具有跟踪观测困难、观测设备昂贵、实验周期长、人力消耗大、综合成本高等不利因素。 传统的切削过程研究中,试验法是最主要的研究方法,即根据试验结果得出经验公式,从而预报切削力。日益增长的时间设备材料和人力成本的消耗促使人们寻找更通用、更有效的研究方法。而有限元法在分析弹塑性大变形问题,包括分析需要考虑与温度相关的材料性能参数和具有很大的应变速率的问题方面有着杰出的表现。 在金属断裂行为的预测方面,有限元技术可以对其进行模拟仿真,仿真过程能否顺利进行,对断裂行为的预测准确与否,取决于很多因素,其中断裂准则的准确获得以及有限元仿真过程断裂行为网格的调整和重新划分技术,成为工艺顺利进行和结果准确的关键。应用表明,合理利用有限元模拟仿真技术对金属断裂行为进行分析,可以准确预测金属成形缺陷,优化工艺路线和工艺参数[2]。

Ansys有限元分析实例[教学]

Ansys有限元分析实例[教学] 有限元分析案例:打点喷枪模组(用于手机平板电脑等电子元件粘接),该产品主要是使用压缩空气推动模组内的顶针作高频上下往复运动,从而将高粘度的胶水从喷嘴中打出(喷嘴尺寸,0.007”)。顶针是这个产品中的核心零件,设计使用材料是:AISI 4140 最高工作频率是160HZ(一个周期中3ms开3ms关),压缩空气压力3-8bar, 直接作用在顶针活塞面上,用Ansys仿真模拟分析零件的强度是否符合要求。 1. 零件外形设计图:

2. 简化模型特征后在Ansys14.0 中完成有限元几何模型创建:

3. 选择有限元实体单元并设定,单元类型是SOILD185,由于几何建模时使用的长度单位是mm, Ansys采用单位是长度:mm 压强: 3Mpa 密度:Ton/M。根据题目中的材料特性设置该计算模型使用的材料属性:杨氏模量 2.1E5; 泊松比:0.29; 4. 几何模型进行切割分成可以进行六面体网格划分的规则几何形状后对各个实体进行六面体网格划分,网格结果: 5. 依据使用工况条件要求对有限元单元元素施加约束和作用载荷:

说明: 约束在顶针底端球面位移全约束; 分别模拟当滑块顶断面分别以8Bar,5Bar,4Bar和3Bar时分析顶针的内应力分布,根据计算结果确定该产品允许最大工作压力范围。 6. 分析结果及讨论: 当压缩空气压力是8Bar时: 当压缩空气压力是5Bar时:

当压缩空气压力是4Bar时: 结论: 通过比较在不同压力载荷下最大内应力的变化发现,顶针工作在8Bar时最大应力达到250Mpa,考虑到零件是在160HZ高频率在做往返运动,疲劳寿命要求50百万次以上,因此采用允许其最大工作压力在5Mpa,此时内应力为156Mpa,按线性累积损伤理论[3 ]进行疲劳寿命L-N疲劳计算,进一部验证产品的设计寿命和可靠性。

裂纹扩展的扩展有限元(xfem)模拟实例详解

基于ABAQUS 扩展有限元的裂纹模拟 化工过程机械622080706010 李建 1 引言 1.1 ABAQUS 断裂力学问题模拟方法 在abaqus中求解断裂问题有两种方法(途径):一种是基于经典断裂力学的模型;一种是基于损伤力学的模型。 断裂力学模型就是基于线弹性断裂力学及其基础上发展的弹塑性断裂力学等。如果不考虑裂纹的扩展,abaqus可采用seam型裂纹来分析(也可以不建seam,如notch型裂纹),这就是基于断裂力学的方法。这种方法可以计算裂纹的应力强度因子,J积分及T-应力等。 损伤力学模型是指基于损伤力学发展而来的方法,单元在达到失效的条件后,刚度不断折减,并可能达到完全失效,最后形成断裂带。这两个模型是为解决不同的问题而提出来的,当然他们所处理的问题也有交叉的地方。 1.2 ABAQUS 裂纹扩展数值模拟方法 考虑模拟裂纹扩展,目前abaqus有两种技术:一种是基于debond的技术(包括VCCT);一种是基于cohesive技术。 debond即节点松绑,或者称为节点释放,当满足一定得释放条件后(COD 等,目前abaqus提供了5种断裂准则),节点释放即裂纹扩展,采用这种方法时也可以计算出围线积分。 cohesive有人把它译为粘聚区模型,或带屈曲模型,多用于模拟film、裂纹扩展及复合材料层间开裂等。cohesive模型属于损伤力学模型,最先由Barenblatt 引入,使用拉伸-张开法则(traction-separation law)来模拟原子晶格的减聚力。这样就避免了裂纹尖端的奇异性。Cohesive 模型与有限元方法结合首先被用于混凝土计算和模拟,后来也被引入金属及复合材料。Cohesive界面单元要服从cohesive 分离法则,法则范围可包括粘塑性、粘弹性、破裂、纤维断裂、动力学失效及循环载荷失效等行为。 此外,从abaqus6.9版本开始还引入了扩展有限元法(XFEM),它既可以模拟静态裂纹,计算应力强度因子和J积分等参量,也可以模拟裂纹的开裂过程。被誉为最具有前途的裂纹数值模拟方法。本文将利用abaqus6.9版本中的扩展有限元法功能模拟常见的Ⅰ型裂纹的扩展。 2 Ⅰ型裂纹的扩展有限元分析 本文针对断裂力学中的平面Ⅰ型裂纹扩展问题用abaqus中的扩展有限元方法进行数值模拟,获得了裂纹扩展的整个过程,裂尖单元的应力变化曲线,以及裂纹尖端塑性区的形状。在此基础上绘制裂纹扩展的能量历史曲线变化趋势图。

solidworks进行有限元分析的一般步骤

1.软件形式: ㈠. SolidWorks的内置形式: ◆COSMOSXpress——只有对一些具有简单载荷和支撑类型的零件的静态分析。 ㈡. SolidWorks的插件形式: ◆COSMOSWorks Designer——对零件或装配体的静态分析。 ◆COSMOSWorks Professional——对零件或装配体的静态、热传导、扭曲、频率、掉落测试、优化、疲劳分析。 ◆COSMOSWorks Advanced Professional——在COSMOSWorks Professional的所有功能上增加了非线性和高级动力学分析。 ㈢. 单独发行形式: ◆COSMOS DesignSTAR——功能与COSMOSWorks Advanced Professional相同。 2.使用FEA的一般步骤: FEA=Finite Element Analysis——是一种工程数值分析工具,但不是唯一的数值分析工具!其它的数值分析工具还有:有限差分法、边界元法、有限体积法… ①建立数学模型——有时,需要修改CAD几何模型以满足网格划分的需要, (即从CAD几何体→FEA几何体),共有下列三法: ▲特征消隐:指合并和消除在分析中认为不重要的几何特征,如外圆角、圆边、标志等。▲理想化:理想化是更具有积极意义的工作,如将一个薄壁模型用一个平面来代理(注:如果选中了“使用中面的壳网格”做为“网格类型”,COSMOSWorks会自动地创建曲面几何体)。▲清除:因为用于划分网格的几何模型必须满足比实体模型更高的要求。如模型中的细长面、多重实体、移动实体及其它质量问题会造成网格划分的困难甚至无法划分网格—这时我们可以使用CAD质量检查工具(即SW菜单: Tools→Check…)来检验问题所在,另外含有非常短的边或面、小的特征也必须清除掉(小特征是指其特征尺寸相对于整个模型尺寸非常小!但如果分析的目的是找出圆角附近的应力分布,那么此时非常小的内部圆角应该被保留)。 ②建立有限元模型——即FEA的预处理部分,包括五个步骤: ▲选择网格种类及定义分析类型(共有静态、热传导、频率…等八种类别)——这时将产生一个FEA算例,左侧浏览器中之算例名称之后的括号里是配置名称; ▲添加材料属性: 材料属性通常从材料库中选择,它不并考虑缺陷和表面条件等因素,与几何模型相比,它有更多的不确定性。 ◇右键单击“实体文件夹”并选择“应用材料到所有”——所有零部件将被赋予相同的材料属性。 ◇右键单击“实体文件夹”下的某个具体零件文件夹并选择“应用材料到所有实体”——某个零件的所有实体(多实体)将被赋予指定的材料属性。 ◇右键单击“实体文件夹”下具体零件的某个“Body”并选择“应用材料到实体”——只有

有限元法的基本思想及计算 步骤

有限元法的基本思想及计算步骤 有限元法是把要分析的连续体假想地分割成有限个单元所组成的组合体,简称离散化。这些单元仅在顶角处相互联接,称这些联接点为结点。离散化的组合体与真实弹性体的区别在于:组合体中单元与单元之间的联接除了结点之外再无任何关联。但是这种联接要满足变形协调条件,即不能出现裂缝,也不允许发生重叠。显然,单元之间只能通过结点来传递内力。通过结点来传递的内力称为结点力,作用在结点上的荷载称为结点荷载。当连续体受到外力作用发生变形时,组成它的各个单元也将发生变形,因而各个结点要产生不同程度的位移,这种位移称为结点位移。在有限元中,常以结点位移作为基本未知量。并对每个单元根据分块近似的思想,假设一个简单的函数近似地表示单元内位移的分布规律,再利用力学理论中的变分原理或其他方法,建立结点力与位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程,从而求解结点的位移分量。然后利用插值函数确定单元集合体上的场函数。显然,如果单元满足问题的收敛性要求,那么随着缩小单元的尺寸,增加求解区域内单元的数目,解的近似程度将不断改进,近似解最终将收敛于精确解。 用有限元法求解问题的计算步骤比较繁多,其中最主要的计算步骤为: 1)连续体离散化。首先,应根据连续体的形状选择最能完满地描述连续体形状的单元。常见的单元有:杆单元,梁单元,三角形单元,矩形单元,四边形单元,曲边四边形单元,四面体单元,六面体单元以及曲面六面体单元等等。其次,进行单元划分,单元划分完毕后,要将全部单元和结点按一定顺序编号,每个单元所受的荷载均按静力等效原理移植到结点上,并在位移受约束的结点上根据实际情况设置约束条件。 2)单元分析。所谓单元分析,就是建立各个单元的结点位移和结点力之间的关系式。现以三角形单元为例说明单元分析的过程。如图1所示,三角形有三个结点i,j,m。在平面问题中每个结点有两个位移分量u,v和两个结点力分量F x,F y。三个结点共六个结点位移分量可用列

基于有限元计算的金属断裂准则的应用与分析

第32卷第3期Vo l 32 No 3 锻 压 技 术 FORGING &STAMPING TECHNOLOGY 2007年6月 Jun.2007 基于有限元计算的金属断裂准则的应用与分析 * 胡建军1**,许洪斌1,金 艳2,陈元芳1 (1 重庆工学院材料学院,重庆 400050;2 重庆工学院计算机学院,重庆 400050) 摘要:为获得金属各种断裂行为的有限元分析与实际情况的符合度,论述了金属材料在有限元分析中常见断裂的判断方法。介绍了断裂行为有限元分析关键技术和常见延性断裂准则,并提出一种获得金属断裂准则的方法,以及此方法在断裂行为有限元分析中的成功应用。介绍了断裂行为有限元分析过程中有限元网格的调整和重划分,有限元技术在挤压、金属切削、切断和精冲工艺中断裂行为的成功分析,得出断裂行为有限元分析中的关键因素。关键词:断裂行为;有限元;断裂准则 中图分类号:TG111 91;TG301 文献标识码:A 文章编号:1000 3940(2007)03 0100 04 Application and analysis of metal fracture behavior based on FEM calculation HU Jian jun 1,XU Hong bin 1,JIN Yan 2,CHEN Yuan fang 1 (1 Depar tment o f M ater ial Science and Eng ineering ,Cho ng qing Institute of T echno lo gy ,Cho ng qing 400050,China;2 Depart ment o f Co mputer Science and Eng ineering ,Chongqing Institute of T echnolog y,Cho ng qing 400050,China)Abstract:In or der to o btain the confor mity betw een F EM analysis and the r eal conditio n of the metal fr actur e behav io r,the general judgement met ho d of metal fracture FEM analy sis w as discussed T he key technolog y of FEM used fo r metal fracture behavio r w as introduced in detail T he g ener al ductility fr act ur e criterion w as discussed and a fracture cr iter ion method was put fo rw ard T he adjustment and re meshing of f inite element gr id fo r met al fracture behavio r and t he successful applicat ion of FEM t echnolog y to metal fracture behavio r during ex trusion,cutt ing and stamping w ere int roduced T he key facto r of F EM used for metal fr act ur e behavior w as acquired Keywords:fracture behav io r;f inite element metho d;fracture cr iterion *重庆科委自然科学基金资助项目(CSTC2006BB3407,CSTC2005BB3080) **男,32岁,硕士,讲师 收稿日期:2006 06 13;修订日期:2006 08 25 1 引言 制造业是现代工业的基础,其中金属材料成形占有相当大的比重。在金属成形和加工工艺中,不可避免地出现材料断裂现象。对于拉深、挤压、拉 拔、轧制和锻造等工艺,是通过材料的塑性变形来获得工件最终的形状,材料的断裂是成形过程中需要避免的主要缺陷之一,在设计这些工艺时必须避免。对于通过塑性变形和断裂过程结合来实现工件的成形,例如冲裁、切料、剪切以及切削工艺,断裂往往是不可避免的,必须合理地利用材料产生的断裂,才能实现这些工艺过程 [1] 。现代工业研究方 法主要包括3种:理论分析、试验研究和有限元仿真,这3种方法可以综合利用。有限元技术以其周期短、结果准确、成本低等诸多优点,获得了广大工程技术和研究人员的青睐。本文利用有限元技术 研究材料断裂行为,准确分析金属加工和成形过程的裂纹产生和材料断裂,预测出给定加工工艺最终的产品质量,为设计工艺给出准确评判并为进一步改进工艺指明方向。 2 有限元分析技术中的断裂判断 有限元法分析在预测断裂问题上提供了强有力的工具,在实际应用中,必须针对具体情况来选择适用的断裂判据,主要用到的断裂判据如下。2 1 FLD (变形界限图) 这种判据在以平面应变为主的板料成形分析中应用广泛,不同变形模式下的板厚应变极限不同。在冲压成形中,有各种各样的变形模式,FLD 的实质就是断裂和没有断裂的变形模式的界限,判断某点是否产生断裂,就是判断该点的变形模式是落在哪个区域中。通过软件分析材料的应变,将其放在FLD 中考察,若有点落在断裂区域,则表示该点处产生断裂,反之则未产生断裂。这种方式可以判断材料的断裂,但不能直观显示断裂后材料的具体形貌特征 [2] 。

有限元分析案例

有限元分析案例 图1 钢铸件及其砂模的横截面尺寸 砂模的热物理性能如下表所示: 铸钢的热物理性能如下表所示: 一、初始条件:铸钢的温度为2875o F,砂模的温度为80o F;砂模外边界的对流边界条件:对流系数0.014Btu/hr.in2.o F,空气温度80o F;求3个小时后铸钢及砂模的温度分布。 二、菜单操作: 1.Utility Menu>File>Change Title, 输入Casting Solidification; 2.定义单元类型:Main Menu>Preprocessor>Element Type>Add/Edit/Delete, Add, Quad 4node 55; 3.定义砂模热性能:Main Menu>Preprocessor>Material Props>Isotropic,默认材料编号1, 在Density(DENS)框中输入0.054,在Thermal conductivity (KXX)框中输入0.025,在S pecific heat(C)框中输入0.28; 4.定义铸钢热性能温度表:Main Menu>Preprocessor>Material Props>-Temp Dependent->Temp Table,输入T1=0,T2=2643, T3=2750, T4=2875; 5.定义铸钢热性能:Main Menu>Preprocessor>Material Props>-Temp Dependent ->Prop Table, 选择Th Conductivity,选择KXX, 输入材料编号2,输入C1=1.44, C2=1.54, C3=1.22, C4=1.22,选择Apply,选择Enthalpy,输入C1=0, C2=128.1, C3=163.8, C4=174.2; 6.创建关键点:Main Menu>Preprocessor>-Modeling->Create>Keypoints>In Active

板结构有限元分析实例详解

板结构有限元分析实例详解1:带孔平板结构静力分析本节介绍带孔平板结构静力分析问题,同时介绍布尔操作的基本用法。 8.3.1 问题描述与分析 有孔的矩形平板,左侧边缘固定,长400mm,宽200 mm,厚度为10 mm,圆孔在板的正中心,半径为40 mm,左侧全约束,右侧边缘均布应力1MPa,如图8.7所示。求板的变形、位移及应力变化情况。(材料的材料属性为:弹性模量为300000 MPa,剪切模量为0.31。) 图8.7 带孔的矩形平板 由于小孔处边缘不规则,本文采用PLANE82高阶平面单元进行分析。 8.3.2 求解过程 8.3.2.1 定义工作目录及文件名 启动ANSYS Mechanical APDL Product Launcher窗口,如图8.8所示。在License下 拉选框中选择ANSYS Multiphysics产品,在Working Directory输入栏中输入工作目 录:C:\ANSYS12.0 Structural Finite Elements Analysis and Practice\Chapter 8\8-1,在Job Name一栏中输入工作文件名:Chapter8-1。以上参数设置完毕后,单 击Run按钮运行ANSYS。

图8.8 ANSYS设置窗口菜单 可以先在目标文件位置建立工作目录,然后单击Browse按钮选择工作目录;也 可以通过单击Browse按钮选择工作文件名。 8.3.2.2 定义单元类型和材料属性 选择Main Menu>Preferences命令,出现Preferences for GUI Filtering对话框, 如图8.9所示,在Individual discipline(s) to show in the GUI中勾选Structural,过滤掉ANSYS GUI菜单中与结构分析无关的选项,单击OK按钮关闭该对话框。 图8.9 Preferences for GUI Filtering对话框

国内外主要有限元分析软件比较

有限元分析是对于结构力学分析迅速发展起来的一种现代计算方法。它是50年代首先在连续体力学领域--飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。有限元分析软件目前最流行的有:ANSYS、ADINA、ABAQUS、MSC四个比较知名比较大的公司。 常见软件 有限元分析软件目前最流行的有:ANSYS、ADINA、ABAQUS、MSC四个比较知名比较大的公司,其中ADINA、ABAQUS在非线性分析方面有较强的能力目前是业内最认可的两款有限元分析软件,ANSYS、MSC进入中国比较早所以在国内知名度高应用广泛。目前在多物理场耦合方面几大公司都可以做到结构、流体、热的耦合分析,但是除ADINA以外其它三个必须与别的软件搭配进行迭代分析,唯一能做到真正流固耦合的软件只有ADINA。 软件对比 ANSYS是商业化比较早的一个软件,目前公司收购了很多其他软件在旗下。ABAQUS 专注结构分析目前没有流体模块。MSC是比较老的一款软件目前更新速度比较慢。ADINA 是在同一体系下开发有结构、流体、热分析的一款软件,功能强大但进入中国时间比较晚市场还没有完全铺开。 结构分析能力排名:1、ABAQUS、ADINA、MSC、ANSYS 流体分析能力排名:1、ANSYS、ADINA、MSC、ABAQUS 耦合分析能力排名:1、ADINA、ANSYS、MSC、ABAQUS 性价比排名:最好的是ADINA,其次ABAQUS、再次ANSYS、最后MSC ABAQUS软件与ANSYS软件的对比分析 1.在世界范围内的知名度 两种软件同为国际知名的有限元分析软件,在世界范围内具有各自广泛的用户群。ANSYS 软件在致力于线性分析的用户中具有很好的声誉,它在计算机资源的利用,用户界面开发等方面也做出了较大的贡献。ABAQUS软件则致力于更复杂和深入的工程问题,其强大的非线性分析功能在设计和研究的高端用户群中得到了广泛的认可。 由于ANSYS产品进入中国市场早于ABAQUS,并且在五年前ANSYS的界面是当时最好的界面之一,所以在中国,ANSYS软件在用户数量和市场推广度方面要高于ABAQUS。但随着ABAQUS北京办事处的成立,ABAQUS软件的用户数目和市场占有率正在大幅度和稳步提高,并可望在今后的几年内赶上和超过ANSYS。 2.应用领域

ANSYS 有限元分析基本流程

第一章实体建模 第一节基本知识 建模在ANSYS系统中包括广义与狭义两层含义,广义模型包括实体模型和在载荷与边界条件下的有限元模型,狭义则仅仅指建立的实体模型与有限元模型。建模的最终目的是获得正确的有限元网格模型,保证网格具有合理的单元形状,单元大小密度分布合理,以便施加边界条件和载荷,保证变形后仍具有合理的单元形状,场量分布描述清晰等。 一、实体造型简介 1.建立实体模型的两种途径 ①利用ANSYS自带的实体建模功能创建实体建模: ②利用ANSYS与其他软件接口导入其他二维或三维软件所建立的实体模型。 2.实体建模的三种方式 (1)自底向上的实体建模 由建立最低图元对象的点到最高图元对象的体,即先定义实体各顶点的关键点,再通过关键点连成线,然后由线组合成面,最后由面组合成体。 (2)自顶向下的实体建模 直接建立最高图元对象,其对应的较低图元面、线和关键点同时被创建。 (3)混合法自底向上和自顶向下的实体建模 可根据个人习惯采用混合法建模,但应该考虑要获得什么样的有限元模型,即在网格划分时采用自由网格划分或映射网格划分。自由网格划分时,实体模型的建立比较1e单,只要所有的面或体能接合成一体就可以:映射网格划分时,平面结构一定要四边形或三边形的面相接而成。 二、ANSYS的坐标系 ANSYS为用户提供了以下几种坐标系,每种都有其特定的用途。 ①全局坐标系与局部坐标系:用于定位几何对象(如节点、关键点等)的空间位置。 ②显示坐标系:定义了列出或显示几何对象的系统。 ③节点坐标系:定义每个节点的自由度方向和节点结果数据的方向。 ④单元坐标系:确定材料特性主轴和单元结果数据的方向。 1.全局坐标系 全局坐标系和局部坐标系是用来定位几何体。在默认状态下,建模操作时使用的坐标系是全局坐标系即笛卡尔坐标系。总体坐标系是一个绝对的参考系。ANSYS提供了4种全局坐标系:笛卡尔坐标系、柱坐标系、球坐标系、Y-柱坐标系。4种全局坐标系有相同的原点,且遵循右手定则,它们的坐标系识别号分别为:0是笛卡尔坐标系(cartesian),1是柱坐标系 (Cyliadrical),2是球坐标系(Spherical),5是Y-柱坐标系(Y-aylindrical),如图2-1所示。

ANSYS有限元分析实例

有限元分析 一个厚度为20mm的带孔矩形板受平面内张力,如下图所示。左边固定,右边受载荷p=20N/mm作用,求其变形情况 P 一个典型的ANSYS分析过程可分为以下6个步骤: ①定义参数 ②创建几何模型 ③划分网格 ④加载数据 ⑤求解 ⑥结果分析 1定义参数 1.1指定工程名和分析标题 (1)启动ANSYS软件,选择File→Change Jobname命令,弹出如图所示的[Change Jobname]对话框。 (2)在[Enter new jobname]文本框中输入“plane”,同时把[New log and error files]中的复选框选为Yes,单击确定 (3)选择File→Change Title菜单命令,弹出如图所示的[Change Title]对话框。 (4)在[Enter new title]文本框中输入“2D Plane Stress Bracket”,单击确定。 1.2定义单位

在ANSYS软件操作主界面的输入窗口中输入“/UNIT,SI” 1.3定义单元类型 (1)选择Main Menu→Preprocessor→Element Type→Add/Edit/Delete命令,弹出如图所示[Element Types]对话框。 (2)单击[Element Types]对话框中的[Add]按钮,在弹出的如下所示[Library of Element Types]对话框。 (3)选择左边文本框中的[Solid]选项,右边文本框中的[8node 82]选项,单击确定,。 (4)返回[Element Types]对话框,如下所示 (5)单击[Options]按钮,弹出如下所示[PLANE82 element type options]对话框。

橡胶件的静、动态特性及有限元分析

橡胶件的静、动态特性及有限元分析 北方交通大学 硕士学位论文   橡胶件的静、动态特性及有限元分析   姓名:郑明军 申请学位级别:硕士 专业:车辆工程 指导教师:谢基龙   2002.2.1 file:///E|/Material/new download/Y476948/Paper/pdf/fm.htm2007-7-3 11:31:00

目录 文摘 英文文摘 第一章绪论 1.1引言 1.2选题背景 1.3本论文的主要研究内容第二章橡胶类材料的本构关系 2.1引言 2.2橡胶材料的本构关系2.2.1橡胶材料的统计理论2.2.2橡胶材料的唯象理论2.3橡胶材料的应力应变关系2.4小结 第三章非线性橡胶材料的有限单元法 3.1引言 3.2非线性橡胶材料的罚有限元法3.3非线性橡胶材料的混合有限元法3.4非线性橡胶材料的杂交有限元法 3.5ANSYS软件的非线性有限元分析方法3.6小结 第四章橡胶材料常数的研究 4.1引言 4.2测定橡胶材料常数的实验方法 4.3 Mooney-Rivlin型橡胶材料常数C1和C2的测定4.4橡胶硬度对Mooney-Rivlin型橡胶材料常数的影响 4.4.1橡胶硬度与弹性模量的关系4.4.2橡胶柱的压缩试验 4.4.3橡胶柱的有限元分析 4.4.4橡胶支座的有限元分析 4.4.5不同硬度下橡胶材料常数C1和C2的确定5小结 第五章橡胶夹层的断裂分析 5.1引言 5.2双悬臂橡胶夹层梁的有限元分析5.2.1试验研究 5.2.2有限元分析 5.2.3计算结果分析 5.3双悬臂橡胶夹层梁的断裂力学分析5.3.1双悬臂橡胶夹层梁界面J积分5.3.2双悬臂橡胶夹层梁应变能释放率G 5.3.3双悬臂橡胶夹层梁的断裂力学分析5.4双剪切橡胶夹层的有限元分析 5.5双剪切橡胶夹层的断裂力学分析 5.5.1双剪切橡胶夹层界面断裂韧性 5.5.2双剪切橡胶夹层的断裂力学分析 6小结 第六章橡胶弹性车轮动态特性分析 6.1引言 6.2橡胶弹性车轮的特点 6.3橡胶弹性车轮的结构 6.4橡胶弹性车轮的有限元分析6.4.1橡胶弹性车轮的有限元分析 6.4.2橡胶弹性车轮的减振效果 6.4.3橡胶硬度对弹性车轮动态特性的影响6.5小结 第七章结论 7.1橡胶材料常数的研究 7.2橡胶夹层的断裂分析 7.3橡胶弹性车轮动态特性分析 参考文献 致谢

有限元与断裂力学

有限元与断裂力学 2013024122 王增贤 1.1研究背景及意义 断裂力学是最近半个世纪才发展起来的一门新兴科学,它是对经典连续介质 力学的一个重要贡献"断裂力学主要研究带裂纹固体的强度和裂纹传播的规律, 它的主要任务是研究裂纹尖端应力应变情况,掌握裂纹在荷载作用下的扩展规律, 了解带裂纹体的承载能力,从而提出抗裂纹设计方法,以保证构件的安全工作=.l" 断裂力学产生于人们对各种工程断裂事故的思考"为了避免断裂事故,人们 与之进行了长期的!艰苦的和卓有成效的斗争"起初凭经验,后来发展成为理论" 在断裂力学出现以前,传统的控制构件不发生断裂而能够安全工作的理论,称为 强度条件或安全设计,其基本思想是保证构件的工作应力不超过材料的许用应力, 即 安全设计对确保构件安全工作起了重大作用,至今仍然是必不可少的"但人 们在长期的生产实践中,逐步认识到在某种情况下,/安全设计0设计出的构件并 不安全,断裂事故仍不断发生,特别是对于高强度材料构件,焊接结构,处在低 温或腐蚀环境中的结构等,断裂事故就更加频繁"例如,1938一1940年比利时阿 尔伯运河上几座大桥的断裂;1943一1947年美国5000余艘焊接船竟然连续发生 了一千多起断裂事故,其中238艘完全毁坏;1949年东俄亥俄煤气公司的圆柱形 液态天然气罐爆炸使周围街市变为废墟"这些接连不断的工程断裂事故引起了人 们高度的警觉,这些事故发生在工作应力低于材料的屈服极限的条件下,用传统 的安全设计观点是无法解释的"从大量断裂事故分析中发现,断裂皆起源于构件 有缺陷"传统的设计思想的一个严重问题是把材料视为无缺陷的均匀连续体,而 实际上构件总是存在着形式不同的缺陷,因而实际材料的强度大大低于理论模型 的强度"断裂力学正好弥补了传统设计思想的不足" 根据国际坝工委员会(ICOLD)1988年所作关于大坝工作状态的调查报告, 在失事的243座混凝土坝中,有30座是由裂纹问题而引起的"我国曾对98座大 中型水电工程进行耐久性调查,结果发现70%大坝存在不同程度的裂纹"混凝土 坝存在各种类型的裂纹,裂纹的存在和扩展,使大坝的承载力受到一定程度的削弱,同时还会引起坝体渗漏!加速混凝土碳化!降低混凝土抵抗各种侵蚀性介质 的耐腐蚀性能力等,甚至危害大坝的正常运行或缩短大坝使用寿命,因此裂纹问 题是影响工程结构质量和耐久性的重要因素之一"结构中裂纹的存在并不可怕, 可怕的是裂纹的发展问题,因此研究裂纹的稳定性!预测裂纹的发展是评估结构 的安全性!可靠性和耐久性必不可少的重要内容和关键技术" 1.2断裂力学的研究现状 断裂力学的基本概念最早是英国物理学家Griffith于1920年在对玻璃的断裂 研究中提出来的"Griffith用材料内部有缺陷(裂纹)的观点,解释了材料实际强度 仅为理论强度的千分之一的现象,同时认为,裂纹体受载时,如果裂纹扩展所需 的表面能小于弹性能的释放值,则裂纹就扩展并将最后导致断裂"这一理论在玻

相关主题