搜档网
当前位置:搜档网 › Spectroscopy of High-Redshift Supernovae from the ESSENCE Project The First Two Years

Spectroscopy of High-Redshift Supernovae from the ESSENCE Project The First Two Years

Spectroscopy of High-Redshift Supernovae from the ESSENCE Project The First Two Years
Spectroscopy of High-Redshift Supernovae from the ESSENCE Project The First Two Years

a r X i v :a s t r o -p h /0411357v 1 12 N o v 2004

Spectroscopy of High-Redshift Supernovae from the ESSENCE Project:The

First Two Years 1

Thomas Matheson,2St′e phane Blondin,3Ryan J.Foley,4Ryan Chornock,4Alexei V.Filippenko,4

Bruno Leibundgut,3R.Chris Smith,5Jesper Sollerman,6Jason Spyromilio,3Robert P.Kirshner,7Alejandro Clocchiatti,8Claudio Aguilera,5Brian Barris,9Andrew C.Becker,10Peter Challis,7Ricardo Covarrubias,10Peter Garnavich,11Malcolm Hicken,7,12Saurabh Jha,4Kevin Krisciunas,11Weidong Li,4Anthony Miceli,10Gajus Miknaitis,13Jose Luis Prieto,14Armin Rest,5Adam G.Riess,15Maria Elena Salvo,16Brian P.Schmidt,16Christopher W.Stubbs,7,12Nicholas

B.Suntze?,5and John L.Tonry 9

ABSTRACT

We present the results of spectroscopic observations of targets discovered during the ?rst two years of the ESSENCE project.The goal of ESSENCE is to use a sample

of~200Type Ia supernovae(SNe Ia)at moderate redshifts(0.2 z 0.8)to place

constraints on the equation of state of the Universe.Spectroscopy not only provides

the redshifts of the objects,but also con?rms that some of the discoveries are indeed

SNe Ia.This con?rmation is critical to the project,as techniques developed to determine

luminosity distances to SNe Ia depend upon the knowledge that the objects at high

redshift are the same as the ones at low redshift.We describe the methods of target

selection and prioritization,the telescopes and detectors,and the software used to

identify objects.The redshifts deduced from spectral matching of high-redshift SNe Ia

with low-redshift SNe Ia are consistent with those determined from host-galaxy spectra.

We show that the high-redshift SNe Ia match well with low-redshift templates.We

include all spectra obtained by the ESSENCE project,including52SNe Ia,5core-

collapse SNe,12active galactic nuclei,19galaxies,4possibly variable stars,and16

objects with uncertain identi?cations.

Subject headings:galaxies:distances and redshifts—cosmology:distance scale—

supernovae:general

1.Introduction

The revolution wrought in modern cosmology using luminosity distances of Type Ia supernovae (SNe Ia)(Schmidt et al.1998;Riess et al.1998;Perlmutter et al.1999;Riess et al.2001;Knop et al. 2003;Tonry et al.2003;Barris et al.2004;Riess et al.2004b)relies upon the fact that the objects so employed are,in fact,SNe of Type Ia.Although the light-curve shape alone is useful(e.g., Barris&Tonry2004),the only way to be sure of the true nature of an object as a SN Ia is through spectroscopy.The calculation of luminosity distances depends upon the high-redshift objects being SNe Ia so that low-redshift calibration methods can be employed.The classi?cation scheme for SNe is based upon the optical spectrum near maximum(see Filippenko1997,for a review of SN types),so rest-wavelength optical spectroscopy is necessary to properly identify SNe Ia at high redshifts.Despite this signi?cance,relatively little attention has been paid to the spectroscopy of the high-redshift SNe Ia,with some notable exceptions(Coil et al.2000).Other publications that include high-redshift SN Ia spectra include Schmidt et al.(1998),Riess et al.(1998),Perlmutter et al.(1998),Leibundgut&Sollerman(2001),Tonry et al.(2003),Barris et al.(2004),Blondin et al. (2004),Riess et al.(2004b),and Lidman et al.(2004).

In addition to providing evidence for the acceleration of the expansion of the Universe,it was recognized at an early stage that high-redshift SNe Ia could put constraints on the equation of state for the Universe(Garnavich et al.1998),parameterized as w=P/(ρc2),the ratio of the dark energy’s pressure to its density.To further explore this,the ESSENCE project was begun.The

ESSENCE(Equation of State:SupErNovae trace Cosmic Expansion)project is a?ve-year ground-based SN survey designed to place constraints on the equation-of-state parameter for the Universe using~200SNe Ia over a redshift range of0.2 z 0.8(see Miknaitis et al.2005;Smith et al. 2005,for a more extensive discussion of the goals and implementation of the ESSENCE project).

Spectroscopic identi?cation of optical transients is a major component of the ESSENCE project.In addition to con?rming some targets as SNe Ia,the spectroscopy provides redshifts, allowing the derived luminosity distances to be compared with a given cosmological model.So many targets are discovered during the ESSENCE survey that a large amount of telescope time on6.5m to10m telescopes is required.In the?rst two years of the program,we were fortunate enough to have been awarded over60nights at large-aperture telescopes.Even with this much time,though,our resources were insu?cient to spectroscopically identify all of the potentially use-ful candidates.This remains the most signi?cant limiting factor in achieving the ESSENCE goal of?nding,identifying,and following the desired number of SNe Ia with the appropriate redshift distribution.

Nonetheless,spectroscopic observations of ESSENCE targets in the time available have been successful,with almost?fty SNe Ia clearly identi?ed,and several more characterized as likely SNe Ia. Other identi?cations include core-collapse SNe,active galactic nuclei(AGNs),and galaxies.The galaxy spectra may include an unidenti?ed SN component.

This paper will describe the results of the spectroscopic component of the?rst two years of the ESSENCE program.Year One refers to our2002Sep-Dec campaign;Year Two was our2003 Sep-Dec campaign.In Section2,we describe the process of target selection and prioritization. Section3describes the technical aspects of the observations.We discuss target identi?cation in Section4.The summary of results in terms of types of objects and success rates is given in Section 5.In addition,we present in Section5all of the spectra obtained,including those of the SNe Ia (with low-redshift templates),core-collapse SNe,AGNs,galaxies,stars,and objects that remain unidenti?ed.

2.Target Selection

The ESSENCE survey uses the Blanco4m telescope at CTIO with the MOSAIC wide-?eld CCD camera to detect many kinds of optical transients(Smith et al.2005).Temporal coverage helps to identify solar-system objects such as Kuiper Belt Objects(KBOs)and asteroids.Known AGNs and variable stars can also be eliminated from the possible SN Ia list.The remaining transients are all potentially SNe.They are also faint,requiring large-aperture telescopes to obtain spectra of the quality necessary to securely identify the object.Exposure times on8-10m telescopes are typically about half an hour,but can be as much as two hours.Such telescope time is di?cult to obtain in quantity,so not all of the detected transients can be examined spectroscopically.We apply several criteria to prioritize target selection for spectroscopic observation.

The?rst step in sorting targets is based upon the spectroscopic resources available.The equatorial?elds used for the ESSENCE program are accessible from most major astronomical sites,so the main concern with matching targets to spectroscopic telescopes is the aperture size of the telescope.The ESSENCE targets are generally in the range18 m R 24mag.When8-10m telescopes are unavailable,the fainter targets become lower in priority.The limit for low-dispersion spectroscopy to identify SNe with the6.5m telescopes is m R≈22?23mag,although this will vary with weather conditions and seeing.If the full range of telescopes is available,then targets are prioritized by magnitude for observation at a given telescope.The longitudinal distribution of spectroscopic resources can be important if con?rmation of a high-priority target is made during a night when multiple spectroscopic resources are available.By the time a target is con?rmed, the?elds may have set for telescopes in Chile,while they are still accessible from Hawaii.This requires active,real-time collaboration between the group?nding SN candidates and those running the spectroscopic observations.

One advantage of the ESSENCE program is that?elds are imaged in multiple?lters,allowing for discrimination of targets by color.Tonry et al.(2003)present a table of expected SN Ia peak magnitudes as a function of redshift;see also Poznanski et al.(2002),Gal-Yam et al.(2004),Riess et al.(2004a),Strolger et al.(2004),and Smith et al.(2005)for discussions of color selection for SN candidates.Given apparent R-band and I-band magnitudes,one can calculate the R?I color and compare that with an expected color for those magnitudes.The cadence of the ESSENCE program(returning to the same?eld every four days)will likely catch SNe at early phases(i.e., before maximum brightness).Early core-collapse SNe are bluer than SNe Ia,as are AGNs.For example,when selecting for higher-redshift targets,objects with R?I 0.2mag were considered unlikely to be SNe Ia,while objects with R?I 0.4mag were made high priority for spectroscopic observation.The exact values of R?I used for selection depended on the observed R-band magnitude.This method was used more consistently in the last month of Year Two,reducing the fraction of spectroscopic targets that were identi?ed as AGNs from~10%over the lifetime of the project to~5%during that month.

The cadence of the ESSENCE program is designed to catch SNe early.At the start of an observing campaign or after periods of bad weather,though,we may have missed SNe during their rise to maximum brightness and only caught them while they are declining from maximum.If a target is brightening,then it is a higher priority than one that is not.This prioritization by phase of the SN became even more important when our Hubble Space Telescope(HST)program to observe some of the ESSENCE SNe Ia was active(see Krisciunas et al.2005).The response time of HST for a new target,even if the rough position on the sky is known from our chosen search?elds,is still on the order of several days.To ensure that HST was not generally looking at SNe Ia after maximum brightness,we would emphasize targets for spectroscopic identi?cation that appeared to be at an early epoch.In addition,we chose fainter objects,as higher-redshift SNe Ia were a prime motivation for HST photometry.The HST observations,while still targets of opportunity,were scheduled for speci?c ESSENCE search?elds,so new targets in those?elds were given the highest

priority.

The position of the SN in the host galaxy also in?uences the priority for observation.An optical transient located at the core of a galaxy is often an AGN,rather than an SN.The color selection described above is a less-biased predictor.In addition,even if the object is an SN,the signal of the SN itself is diluted by the light of the galaxy,making proper identi?cation di?cult. Objects that are well-separated from the host galaxy are given a higher priority.Being too far from the galaxy can,however,present another problem—the di?culty in obtaining a spectrum of the host in addition to the SN.Without a high signal-to-noise ratio(S/N)spectrum of the host,there is no precise measure of the redshift.This is especially true if the host galaxy cannot be included in the slit with the target,either to orient the slit at the parallactic angle or as a result of other observational constraints.In addition,host galaxies can be faint,so the large luminosity contrast with the SN makes detection of the host problematic(the so-called“hostless”SNe),although we did not reject any candidates solely for this reason.The best compromise is to have an object well separated from the host,but with the host still in the spectrograph slit.Without narrow-line features from the host(either emission or absorption lines),the redshift can be di?cult to determine.This lack of a host-galaxy spectrum became less of a concern,though,as we found that the SN spectrum itself is a relatively accurate,if less precise,measure of the redshift(see discussion below).The light curve alone can be used to estimate distances in a redshift-independent way (Barris&Tonry2004),but only with a well-sampled and accurate light curve.

The target selection process is complex and dynamic.Biases are introduced by some of the steps;for example,SN candidates near the centers of galaxies are less likely to be observed.Since the goal is to optimize the spectroscopic telescope time to identify SNe Ia in a speci?c redshift range,we have chosen these selection processes as our best compromise.The biases introduced may make the sample of SNe Ia identi?ed problematic for uses in statistical studies of the nature of SNe Ia at high redshift.

3.Observations

Spectroscopic observations of ESSENCE targets were obtained at a wide variety of telescopes: the Keck I and II10m telescopes,the VLT8m telescopes,the Gemini North and South8m telescopes,the Magellan Baade and Clay6.5m telescopes,the MMT6.5m telescope,and the Tillinghast1.5m telescope at the F.L.Whipple Observatory(FLWO).The spectrographs used were LRIS(Oke et al.1995)with Keck I,ESI(Sheinis et al.2002)with Keck II,FORS1with VLT (Appenzeller et al.1998),GMOS(Hook et al.2002)at Gemini(North and South),IMACS(Dressler 2004)with Baade,LDSS2(Mulchaey2001)with Clay,the Blue Channel(Schmidt et al.1989)at MMT,and FAST(Fabricant et al.1998)at FLWO.Nod-and-shu?e techniques(Glazebrook& Bland-Hawthorn2001)were used with GMOS(North and South)and IMACS to improve sky subtraction in the red portion of the spectrum.

Standard CCD processing and spectrum extraction were accomplished with IRAF17.Most of the data were extracted using the optimal algorithm of Horne(1986);for the VLT data,an alternative extraction method based upon Richardson-Lucy restoration(Blondin et al.2004)was employed.Low-order polynomial?ts to calibration-lamp spectra were used to establish the wave-length scale.Small adjustments derived from night-sky lines in the object frames were applied.We employed IRAF and our own IDL routines to?ux calibrate the data and,in most cases,to remove telluric lines using the well-exposed continua of the spectrophotometric standards(Wade&Horne 1988;Matheson et al.2000).

4.Target Identi?cation

Once a calibrated spectrum is available,the next step is to properly classify the object.For brighter objects that yield high S/N spectra,an SN is often easy to distinguish and classify.Most of the ESSENCE targets are faint enough to be di?cult objects even for large-aperture telescopes.The resulting noisy spectra can be confusing.Even for well-exposed spectra,though,exact classi?cation can occasionally still be challenging.

For SNe,the classi?cation scheme is based upon the optical spectrum near maximum brightness (Filippenko1997).Type II SNe are distinguished by the presence of hydrogen lines.The Type I SNe lack hydrogen,and are further subdivided by the presence or absence of other features.The hallmark of SNe Ia is a strong Si IIλ6355absorption feature.Near maximum brightness,this absorption is blueshifted by~10,000km s?1and appears near6150?A.In SNe Ib,this line is not as strong,and the optical helium series dominates the spectrum.The SNe Ic lack all these identifying lines.

At high redshift,the Si IIλ6355feature is at wavelengths inaccessible to optical spectrographs, so the identi?cation relies upon the pattern of features in the rest-frame ultraviolet(UV)and blue-optical wavelengths.The Ca II H&Kλλ3934,3968doublet is a distinctive feature in SNe Ia,but it is also present in SNe Ib/c,so the overall pattern is important for a clear identi?cation as a SN Ia. Other important features to identify SNe Ia include Si IIλ4130,Mg IIλ4481,Fe IIλ4555,Si III λ4560,S IIλ4816,and Si IIλ5051(see,e.g.,Coil et al.2000;Je?ery et al.1992;Kirshner et al. 1993;Mazzali et al.1993).

The?rst stage of classi?cation is done by eye.Drawing upon the extensive experience of the spectroscopic observers associated with ESSENCE,we can provide a solid evaluation of the spectrum.Objects such as AGNs and normal galaxies are fairly easy to distinguish.The SNe Ia are also often clear,but some fraction of the data will require more extensive analysis.The?rst step is simply to make certain that the collective expertise is used,rather than just the individual

at the telescope.Spectroscopic results are widely disseminated via e-mail and through an internal web page,allowing rapid examination of any questionable spectrum by the entire collaboration. Broad discussion often leads to a consensus.

In addition to the traditional by-eye approach,we employ automated comparisons.If the object is likely to be a SN Ia,and if the S/N ratio is su?ciently high and the rest-wavelength coverage appropriate,we can use a spectral-feature aging routine(Riess et al.1997)that compares speci?c components of the SN Ia spectrum with a library of SN Ia spectra at known phases.This can pin down the epoch of a SN Ia to within a few days.This program,though,is limited to normal SNe Ia (i.e.,not spectroscopically peculiar objects,which are often overluminous or underluminous).In addition,it does not identify objects that do not match the Type Ia SN spectra in the library.

For a more general identi?cation routine,we use an algorithm called SuperNova IDenti?cation (SNID;Tonry et al.2005).This program takes the input spectrum and compares it against a library of objects of many types.The templates include SNe Ia of various luminosity classes and at a range of ages,core-collapse SNe,and galaxies.The o?set in wavelength caused by redshift is a free parameter,so the output includes an estimate of the redshift of the object.The routine compares the input with the library and returns the most likely match.The comparison is weighted by the amount of overlap between the input spectrum and the template.For a subset of the objects ( 10%),the SNID comparison is not optimal.This may be the result of contamination by galaxy light,the lack of a matching template in the SNID library,poor S/N of the spectrum in question, or a problem in the routine.All SNID comparisons are checked by eye for a qualitative judgment of the goodness of?t.

The redshift of the object can also be directly determined from the spectrum itself if narrow emission or absorption lines associated with the host galaxy are present.Occasionally,observations are set up to include the host galaxy in the spectrograph slit speci?cally for the purpose of obtaining a redshift.If there is a strong enough signal of a galaxy spectrum,but no clearly identi?able narrow emission or absorption lines,cross-correlation with an absorption template could be used.For the spectra that had narrow emission or absorption lines(or were cross-correlated with a template), we report the redshift to three signi?cant digits.If the redshift determination is based solely on a comparison of the SN spectrum to a low-redshift analog,the redshift is less certain,and we only report the value to two signi?cant digits.

For the objects with a more precise redshift derived from the host galaxy,we can compare the galactic redshift with the value of the redshift estimated by SNID.Figure1shows that the SNID redshifts agree well with the galaxy redshifts.Thus,for objects without precise redshifts from host galaxy spectra,the SNID redshifts can be used as reliable substitutes.In the cases where SNID did not agree with a galaxy redshift,we forced the redshift to match in order to?nd the best-?tting template,but all the supernova-based redshifts reported in this paper correspond to the“un-forced”SNID result.

Fig.1.—Comparison of redshifts as determined by SNID and from narrow emission or absorption lines in the host-galaxy spectrum.Qualitative grades for the?ts in SNID are assigned and the good?ts(solid circles)are shown as well as the poor?ts(open circles).The dispersion around one-to-one correspondence of the redshifts for the good data is excellent,withσ=0.009(when no errors are assumed for the SNID output).There is one outlier(b004)for which the redshift determination using SNID is highly degenerate as it is likely to be a peculiar SN Ia(see text); we do not show b004in the residual plot for the sake of clarity.The error bars in the lower plot correspond toσgood.Note that the mean residual is~10?4?σgood,which shows that there are

no systematic e?ects associated with the use of SNID in determining the SN redshift.

5.Results

The results of our spectroscopic observations during the?rst two years of the ESSENCE program are summarized in Table1.There are46SNe Ia(and5additional likely SNe Ia),along with5core-collapse SNe.Note also that there were54transients in the?rst two years that were not observed spectroscopically.Through the target selection methods described in Section2,we were able to prioritize the more likely candidates,but many of these were not observed solely because of the lack of su?cient spectroscopic resources.This became more of an issue toward the end of Year Two,when good weather and increasingly e?cient detection algorithms increased the number of transients discovered.

The goal of the ESSENCE project is to?nd~200SNe Ia over the redshift range0.2 z 0.8.In Figure2,we show the actual distribution in redshift of the SNe Ia from the ESSENCE project that are spectroscopically con?rmed.There are SNe over the entire targeted redshift range, although there are fewer at the high end(z 0.6).A signi?cant fraction of the signal of w is accessible at z≈0.5(Miknaitis et al.2005),but a goal for the last three years of the program is to ensure that the SNe Ia observed spectroscopically are distributed optimally over our targeted redshift range.This highlights the importance of the8-10m telescopes such as Gemini,the VLT, and Keck that are critical to spectroscopy of the faint objects at the high-redshift end of our range.

Both SNID and the spectral-feature aging method described in Section4give an indication of the age of the SN Ia.Light curves will provide a more precise measure of the age of the SN at the time of the spectroscopy,but an estimate of the epoch of the spectrum to within a few days is possible from the spectral features alone.Figure3shows the distribution in age(relative to maximum brightness)at the time of spectroscopy(not discovery,as spectra are often taken up to several days after discovery).In the15cases18where we have spectra of the same SN Ia at multiple epochs,the relative ages are consistent with the times of the spectroscopic exposures (also considering the e?ects of cosmological time dilation and probable errors of the?ts of~±3 days).There is one exception to this consistency(b027),but at later epochs when the spectra are changing less.

Table2is a list of all ESSENCE targets that were selected for spectroscopic identi?cation. The results for these?rst two years include52SNe Ia or likely SNe Ia(Figure4),4SNe II(Figure 5),1SN Ib/c(Figure5),12AGNs(Figure6),4possibly variable stellar objects(Figure7),19 galaxies(Figure8),and16objects of unknown classi?cation(Figure9).There were10objects for which we pointed the telescope at the target and did not get a spectrum,either because of poor sky conditions or the target was actually a solar-system object and had moved out of the?eld.

No attempt has been made to remove host-galaxy contamination for any object presented in Figures4and5.The amount of galaxy light is signi?cant for some objects(e.g.,f221on Figure4d).

Fig.2.—Redshift distribution of spectroscopically identi?ed SNe Ia from the?rst two years of the ESSENCE project.The SNe for which we judge that the SNID?t is good are indicated by the

cross-hatched area,while those that were poor?ts are indicated by the blank spaces.

Fig.3.—Age distribution(relative to maximum brightness)of spectroscopically identi?ed SNe Ia from the?rst two years of the ESSENCE project.Ages are determined from spectroscopic features alone.The SNe for which we judge that the SNID?t is good are indicated by the cross-hatched area,while those that were poor?ts are indicated by the blank spaces.For objects with multiple

epochs of spectroscopy,this?gure only re?ects the?rst spectrum.

3000

4000

500060007000

8000

Rest Wavelength (?)

2

4

68

10

S c a l e d f λ + C o n s t a n t

z = 0.11

b003z = 0.16d100z = 0.164

e0202003?10?27z = 0.20d0862003?11?27

z = 0.20d086z = 0.21d099z = 0.231b004z = 0.244

e132z = 0.25b017z = 0.296

d117Fig.4a.—Rest-wavelength spectra of SNe Ia (or likely SNe Ia)from the ?rst two years of the ESSENCE project in order of increasing redshift.Each ESSENCE SN (black line )is overplotted by a low-redshift SN Ia (blue line )for comparison.In addition,each spectrum is labeled with the ESSENCE identi?cation number and the deduced redshift.Spectra of the uncertain SNe Ia are indicated with an asterisk (*).The deredshifted regions of the spectra that are strongly a?ected by atmospheric absorption are shown in red.The ?ux scale is f λwith arbitrary additive o?sets

3000

400050006000

7000

Rest Wavelength (?)

2

4

68

S c a l e d f λ + C o n s t a n t

2002?11?11

z = 0.32b0272002?12?06z = 0.32b0272002?12?07

z = 0.32b027z = 0.33b016z = 0.33

d0832003?11?19z = 0.335e0292003?11?22

z = 0.335e029z = 0.339d149z = 0.340

d087Fig.4b.—Rest-wavelength spectra of ESSENCE SNe Ia as in Figure 4a.The 2003-01-03spectrum of c012is a weighted average of the Clay and GMOS spectra.

2000

3000

400050006000

Rest Wavelength (?)

2468

10S c a l e d f λ + C o n s t a n t

2002?12?04

z = 0.348c0122003?01?05

z = 0.348

c0122002?12?07z = 0.356c0152003?01?05

z = 0.356

c015z = 0.360

e1362003?10?30

z = 0.363d0932003?11?23

z = 0.363d093z = 0.39f308*z = 0.399

c023

Fig.4c.—Rest-wavelength spectra of ESSENCE SNe Ia as in Figure 4a.The spectrum of f076is a weighted average of the MMT and KI/LRIS spectra.

2000

3000

400050006000

Rest Wavelength (?)

2

46810

S c a l e d f λ + C o n s t a n t

z = 0.405

d085z = 0.408f096z = 0.406

f076z = 0.417f235z = 0.427

e148

2002?11?08

z = 0.427b013

2002?12?07z = 0.427b013z = 0.429

d0892002?11?09

z = 0.43

b0202002?12?09z = 0.43b020Fig.4d.—Rest-wavelength spectra of ESSENCE SNe Ia as in Figure 4a.

2000

3000

4000

5000

6000

Rest Wavelength (?)

2468

10

S c a l e d f λ + C o n s t a n t

z = 0.442

f221*z = 0.45

d097

2003?11?20

z = 0.47e1082003?11?21z = 0.47e108

2002?11?06

z = 0.49b008

2002?11?0z = 0.49

b008z = 0.51

e149*z = 0.52f301*2002?11?09

z = 0.52b0222002?12?05z = 0.52b022Fig.4e.—Rest-wavelength spectra of ESSENCE SNe Ia as in Figure 4a.

2000

30004000

5000

Rest Wavelength (?)

2

4

6

8

10

S c a l e d f λ + C o n s t a n t

z = 0.522

d084z = 0.524d033z = 0.54f0112002?11?11z = 0.54b0232002?12?03

z = 0.54b023z = 0.544f2442002?12?02

z = 0.56c0032002?12?07z = 0.56c003z = 0.56

f041z = 0.583

d058Fig.4f.—Rest-wavelength spectra of ESSENCE SNe Ia as in Figure 4a.

20003000

4000

5000

Rest Wavelength (?)

2

4

6

8

10

12

S c a l e d f λ + C o n s t a n t

2002?11?06

z = 0.587b0102002?11?11

z = 0.587b0102002?12?06z = 0.587b010z = 0.596

f216z = 0.606

e140z = 0.61e138z = 0.63

f231z = 0.64

e147z = 0.78

e531*z = 0.79

e315*Fig.4g.—Rest-wavelength spectra of ESSENCE SNe Ia as in Figure 4a.The GMOS and VLT spectra of b010have been combined.

3000

4000

500060007000

8000

Rest Wavelength (?)

2

4

S c a l e d f λ + C o n s t a n t

z = 0.074

e022z = 0.099e141z = 0.213c022*z = 0.27

b006*z = 0.08d010Fig.5.—Spectra of SNe II and one SN Ib/c from the ?rst two years of the ESSENCE project.Each spectrum is labeled with the ESSENCE identi?cation number and the deduced redshift.Spectra of uncertain SNe II are indicated with an asterisk (*).The deredshifted regions of the spectra that are strongly a?ected by atmospheric absorption are shown in red.The ?ux scale is f λwith arbitrary additive o?sets between the spectra.The SN Ib/c is d010=SN 2003jp.

认知心理学复习重点

第一章绪论 认知:认知是一种心理活动,包括知识的获得、贮存、转化和使用。它是人类心理学研究的重要组成部分。(选择题) 认知心理学的特点:强调心理结构和过程。 认知心理学的起源: ●19世纪心理学的发展 1.冯特:心理学应该使用一种内省的技术,研究心理过程。 2.艾宾浩斯:无意义音节(如“DAP”),重学时的节省。 3.威廉.詹姆斯:更喜欢通俗的途径,他重视日常生活中人们遇到的心理问题。 ●20世纪心理学的发展 1.华生:行为主义。统治美国心理学近半个世纪。 ●认为内省法过于主观,是不科学的,意识太模糊,以至于不能恰当地进行研究。 ●拒绝研究隐含的过程,因此,心理活动的研究当然受到了阻碍。 ●强调概念应该小心地、仔细地进行定义。对当前认知心理学的方法做出了重要的贡献。 2.格式塔心理学 ●在欧洲大陆产生影响 ●强调人有一种将他们所看到的东西组织起来的倾向 ●强烈反对内省技术将经验分析成分开的各种成分这种做法 ●强调顿悟在问题解决中的重要性 3.英国心理学家巴特利特 ●拒绝艾宾浩斯的实验法 ●使用比较自然的、有意义的材料,如长篇小说 当代认知心理学出现的背景及有什么影响因素: ●背景: 1.把1956年9月11日定为认知心理学的生日。另一个重要的转折点1967年Ulric Neisser出版了《认知心理 学》。 ●影响因素: 1.对行为主义的观点越来越不满意。 2.乔姆斯基,拒绝语言获得的行为主义途径,而强调心理过程。 3.20世纪50年代末期,人类记忆研究开始兴旺起来。 4.皮亚杰建构了新的发展心理学的理论,该理论强调了儿童如何发展对概念的鉴别。 5.信息加工途径,即来自计算机科学和通讯科学。信息加工途径有两个重要的成分。一是心理过程能过通 过与计算机的操作相比较,而得到最好的理解。二是心理过程可以解释为,系统从刺激到反应的一系列阶段中,所完成的信息加工。 当前的认知心理学: 生态学效度是指,研究所获得的结果也应该能够适用于现实世界中自然发生的行为。 计算机模拟与纯粹的人工智能的区别: ●纯粹的人工智能是一种探索尽可能高效地完成任务的途径。 ●计算机模拟试图将人的局限考虑进去。计算机不能模拟任务,也不能模拟人在语言学习、识别日常情景中的 物体,或者通过类比其它情境来解决问题等方面,所表现出来的复杂的能力。 认知神经科学的研究手段: ●脑损伤病人的研究 ●正电子发射断层摄影术(PET扫描) ●功能性磁共振成像(fMRI) ●事件相关电位(ERP) ●单细胞记录技术

包装结构与包装装潢设计

浙江省2008年1月高等教育自学考试 包装结构与包装装潢设计试题 课程代码:00715 一、单项选择题(本大题共5小题,每小题2分,共10分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.创造性思维开拓的途径:挖掘思维潜力、经验积累与思维扩散、___________、借鉴与创新。( ) A.逻辑思维 B.形象思维 C.逆向思维 D.思维空间 2.___________是用粘合剂连接不同的面或其他附加部分的结构形式。( ) A.粘合 B.粘接 C.粘结 D.粘连 3.系列化包装设计的作用:宣传了品牌、有利于产品的发展、具有良好的___________、具有良好的整体性。( ) A.视觉效果 B.信誉观念 C.信任感 D.陈列效果 4.___________是纸盒的各个面相互间进行锁扣连接的结构形式。( ) A.镗扣 B.连扣 C.结扣 D.接扣 5.___________是指包装设计在具体的市场环境下,对消费者进行直接的视觉传达的一种方式。( ) A.直观展现 B.明确表现 C.直观表现 D.直接表现 二、简答题(本大题共2小题,每小题10分,共20分) 1.简述包装设计的流程。 2.简述包装的材料。 三、综合应用设计题(本大题共70分) 题目:“翩舞”丝巾包装的结构和装潢设计 (1)手绘包装结构平面图一张(20分) (2)根据包装结构平面图,手绘包装装潢设计图一张(50分) 设计元素包括:①题目:中文字体和英文字体 ②标志 ③说明文字 ④色彩 ⑤图形 ⑥编排 (3)要求:①画面要求:左1/3画面为结构图,

形位公差练习卷

2013学年第二学期期中试卷(2014.4) 职一《零件测量与质量控制技术》 班级姓名成绩 一、填空题(共16空,每空1分) 1.图样上给出形状或位置公差要求的要素称为___________要素,用来确定被测要素方向或位置的要素称为______________要素。 2.根据零件的功能要求分,可分为给出在、和的直线度要求三种类型。 3.位置度包括、和的位置度。 4.圆度误差的近似测量方法有和两种。 5.平行度误差常用的检测方法是。 6.对于大型设备中表面较长零件的直线度误差,应该采用来测量,它的主要工作部分是。 7.对于较小平面,可以采用法检测平面度,对于较大平面,可以采用法检测平面度,对于中型平面,可以采用法检测平面度。 二、选择题(共10题,每题3分) 1. 对一些零件的重要工作面和轴线,常规定其形位误差的。 A.最小允许值 B.平均值 C.最大允许值 D.无所谓 2. 形位误差值相应的形位公差值,则认为零件合格。 A.小于 B.小于或等于 C.大于 D.大于或等于 3. 零件上的被测要素可以是。 A.理想要素和实际要素 B.理想要素和轮廓要素 C.理想要素和中心要素 D.中心要素和轮廓要素 4.用打表法测量直线度时,百分表测头应压在被测表面。 A.平行 B.直接 C.垂直 D.水平

5.形位公差的基准代号中字母应。 A.垂直方向书写 B.水平方向书写 C.应和基准符号的方向一致 D.任意方向书写 6.平面度公差带的形状是间的区域。 A.两平行直线 B.两平行平面 C.圆柱面 D.两同轴圆柱面 7.公差带形状是指半径为公差值t的圆柱面内区域。 A.直线度 B.平面度 C.圆度 D.圆柱度 8.下面不能被直线度所限制的选项是。 A.平面外的直线 B. 平面内的直线 C.直线回转体上的素线 D.平面与平面的交线 9.用打表法测量直线度时,适当的百分表压缩量为。 A.1.5~2圈 B. 1~2圈 C. 2~2.5圈 D. 2.5~3圈 10.测量平面度误差需要可调千斤顶建立测量基面。 A.2个 B. 3个 C. 4个 D.5个 11.当孔为被测要素或基准要素时,通常常用作为辅助测量工具。 A.轴心线 B. 百分表 C.内孔壁 D.心轴 12.被测平面位于距离公差值t,且垂直于基准平面的两平行平面之间的公差带是。 A.线对线垂直度公差带 B. 面对线垂直度公差带 C. 线对面垂直度公差带 D. 面对面垂直度公差带 三、判断题(共16题,每题1分) ( )1.形状公差是指被测要素对其理想要素所允许的变动全量。 ( )2.与零件上其他要素有功能关系的要素,称为功能要素。 ( )3.每个公差框格内可以表达一项或两项形位公差的要求。 ( )4.圆度公差是限制实际圆对其理想圆变动量的一项指标。 ( )5.直线度误差通过测量后可以直接读取.

包装造型与装潢设计说明书

包装造型与装潢设计说明书 设计题目:“老干爸”系列食品包装设计 指导教师:蔡汉忠 学生姓名:张松 班级:07包装工程1班 学号: 完成时间:2010年6月29日

第一部分市场调查 1.1、调查目的 通过市场调查了解食品包装现状和发展情况,以及消费者对食品包装的喜好和需求,从而加深对专业知识的系统认识,提高自己专业知识的运用能力,提升认识问题、分析问题、解决问题等各方面的能力。 1.2、调查对象及方式 我这次调查的对象是吉林市各超市及其顾客,调查的方式是问卷调查形式。 1.3、调查结果分析 食品包装设计应在造型上与众不同,只有优美的造型才能给消费者丰富的视觉享受。另外,食品包装的装潢可从色彩中体现出来,色彩的运用只能从食品的特点出发,设计需要显示出食品的特色,同时兼顾消费者的欣赏习惯。 另外,合理的食品包装应做到对食品有恰倒好处的保护性,包括物理、化学、生物性能保护和并不浮夸的精美装饰,方便贮存、运输和消费者使用。 经过以上的市场调查与分析,我设计的食品包装,市场定位在中档消费品。适合各类人群的不同需求。运用了系统化和人性化的设计观对包装进行了设计,满足了消费者的自我审美趣味、体现了绿色食品的风格,满足了人审美和认知的精神需要。 1.4 、食品包装背景 食品包装是现代食品生产的最后一个环节,起着保护食品质量和卫生、方便储藏和运输、延长或假期和提高商品价值等重要作用。包装在对食品提供保护,防止食品受外界微生物或其它物质的污染,防止或减少食品氧化和其它反应方面有着不可替代的作用。用于食品包装的材料必须有适当的阻隔性,如油脂食品要求高阻氧性和阻油性;干燥食品要求高阻湿性;芳香食品要求高保香性;而果品、菜类鲜活食品又要求包装有一定的氧气、二氧化碳和水蒸气的透过性。此外食品包装材料还要有良好的抗拉伸强度、耐撕裂、耐冲击等机械性能;良好的化学稳定性,不应与内装食品发生化学反应,确保食品安全。另外还要有较高的耐温性,适合食品的高温消毒和低温储藏等特点。 包装自古就有,但直至成为食品不可缺少的组成部分,还是第二次世界大战以后的事情。原来许多传统不包装的食品,如鲜肉、水果、蔬菜现在也使用了包装。目前我国允许使用的食品包装容器、材料主要有以下几种:塑料制品及软塑材料(如复合薄膜等);天然、合成橡胶制品;陶瓷、搪瓷容器;铝、不锈钢、铁质容器;玻璃容器;食用包装用纸。其中塑料包装容器和材料以其重量轻、不易破损、运销方便、易于加工、成本低和装饰效果好等特点而被广泛应用于食品包装上。

《认知心理学》试题及参考

1、试述认知心理学的产生条件并对这一心理学流派进行评价。(10分) 内部条件(4分):(1)早期实验心理学的影响;(2)行为主义的影响;(3)格式塔学派的影响;(4)二战后心理学的发展 外部条件(3分):(1)哲学思潮及方法论的影响;(2)计算机科学发展的影响;(3)语言学发展的影响 评价(3分):(1)进步性:具有较强的生命力,理论贡献大;(2)应用的前景十分广泛;(3)存在缺陷,受到批评。 1.认知心理学的研究原则是什么?(10分) 用实验、分析的方法研究过程。(1分) (1)经验性原则:相对于哲学思辨而言,认知心理学强调以实验、统计为主,用实证、科学的方法来研究人的认知过程。(3分) (2)分解性原则:分解实验,研究大问题中的小问题,即把复杂的心理活动分解为一个个小的部分来研究,题目小便于严格控制实验条件。但严格的实验控制带来较低的外部效度,因此要求“分解”之后再“组装”才能形成较完整的理论。(3分) (3)过程性原则:在动态的过程中(作用、交互作用、变化)分析问题。一个过程的理论模型代表了假定的信息加工阶段。过程的研究有利于确定信息加工各阶段的顺序,有利于建立精细的理论模型。(3分) 2.以实验为例评述研究反应时的主要技术。(20分) (1)相减因素法: 理论逻辑:通常安排两种不同的反应时作业,其中一种作业包含另一种作业所没有的某个心理过程,即所要测量的过程,这两种反应时的差即为该过程所需的时间。(2分)以Donders (1868)实验为例进行分析。(2分)评价:可以分解出大脑内一个完整的认知加工过程各阶段的反应时。但以系列加工为前提,研究者必须对S——R之间的阶段过程有着精确的认识,这很难;减法的观点与“整体大于部分之和”矛盾,某一阶段单独加工的反应时不一定等于他放在整体中所占的反应时。(2分) (2)相加因素法: 理论逻辑:如果两个因素的效应是相互制约的,即一个因素的效应可以改变另一个因素的效应,那么这两个因素只作用于同一个信息加工阶段;如果两个因素的效应是分别独立的,即可以相加,那么这两个因素各自作用于某一特定的加工阶段。(2分)以Sternberg(1969)短时记忆信息的提取实验为例进行分析。(2分)评价:通过严密地推理,可以间接地确定一个系列加工各阶段的存在。但仍然是一种间接测量,其系列加工假设的合理性有待检验。(2分) (3)开窗法: 一种直接测量RT的方法,在各个加工阶段的转换之际给一个外部指标(如按键),以便直接记录下每个阶段的RT。(2分)以Hamilton(1977)字母转换实验为例进行分析。(2分)评价:能够直接测量RT,但是在认知加工的后面阶段可能存在对前面阶段的复查、提取和整合等,难以区分。(2分) (4)反应时技术应注意的问题:反应速度和正确率的关系(2分) 3.以实验为例述评模式识别的三种理论模型(20分)。 (1)模板匹配理论: 基本思想:模板是长时记忆中储存的外部模式(图式)的袖珍复本,当一个外部刺激的编码和某一个模板有最佳匹配时,这个刺激就被确认为和这个模板属于同一类型,于是得到了识别。(2分)实验简析。(2分)优缺点简评。(2分) (2)原型匹配理论:

包装结构与包装装潢设计 参考答案

包装结构与包装装潢设计作业题参考答案 包装结构预包装装潢设计作业参考答案 一、单项选择 1、D 2、D 3、B 4、B 5、C 6、D 7、B 8、C 9、A 10、C 11、B 12、B 13、C 14、D 15、A 16、B 17、B 18、D 19、D 20、D 21、D 22、D 23、C 24、A 25、B 二、多项选择题 1、ABCD 2、ABC 3、ABCD 4、ABCD 5、ACD 6、ABC 7、ABC 8、ABCD 9、ABCD 10、ABC 11、ABCD 12、ABCD 13、ABCD 14、ABC 15、AD 16、BCD 17、BD 18、AC 三、填空题 1. 图形设计、文字设计 2. 包装装潢设计 3. 立体造型、包装样式 4. 商品的属性 5. 宋体字、粗黑体、绍线体 6. 具象图形、抽象图形 7. 插图、摄影技巧8. 装饰图形9. 形象代言人10. 主题明确、言简意明 11.图形、文字、空白12. 图形设计、文字设计13. 防护功能、装潢功能 14. 图案、情谊15. 品牌信息16. 人性化设计17. Photoshop 18.包装19. 包装容器造型设计20. 定位设计21.包裹 22.法国23.宝洁24.以人为本256、厚板纸盒方型、多棱型、特殊异型盒。折叠纸盒26、象图形,装饰图形。27、品牌、产品 28、促进商品销售 29、变化与统一、对比与调和、整体与局部、生动与稳定、视与错觉。30、箱、桶、罐;金属、陶瓷;食品、饮料、日用品等;充气、收缩 31、容纳、保护、便利、促销32、容器造型设计、装潢设计。 33、技术、形式、画面构成34、直观、感染力强 35、189136、可口可乐37、生产者38、品牌 39、箱体造型、内部结构、封口 四、名词解释 1. 适量包装:主要是指采用单件适量的包装,以方便各种不同的需求,也是为了控制一次性使用的数量,以避免有些产品一次消费不完而造成浪费。 2.系列化包装:是国际包装设计中较为普遍和流行的形式,它是一个企业或一个商标、牌号的不同种产品,用一种共性特征来统一的设计。 3.成套包装:是指将不同种类的商品或相似种类的商品进行成套包装的形式,它的对象可以是一起生产、一起陈列、一起销售、一起使用的。 式:就是实点广告或现场广告方式,通过纸盒结构的部分增加或延展.使纸盒结构具有保护商品的功能,又具有促销功能与展示效果。 5. 原始形态的包装:这些未做加工或仅做简单的加工就被用来盛放或贮存生活必需品的自然物,就是原始形态的包装。 6.间接表现:是比较内在的表现手法,即画面上不出现要表现的对象本身,而是借助于其他有关事物来表现该对象,这种手法具有更加宽广的表现余地,在构思上往往用于表现内容物的某种属性或牌号,意念等。

SJ-M 《表白》 歌词

表白(Off My Mind) Henry SOLO Girl 我一看到你,I go Cra Cra Crazy 我只想要你做我的Baby 我想看透你的心但是我没有办法, 我可不可以牵你的手? 也许你也正在想著我, You got me goin crazy, crazy, crazy, yea 如果我们在一起,做什麽都愿意 Oh Baby baby baby 我的爱,全都给你 我就在这裏 我的心,不会放弃 你是我唯一 Girl 这不是意外,你是我的女孩 I can't get my mind off ya, off ya 我的爱,全都给你 我就在这裏 我的心,不会放弃 你是我唯一 Girl 这不是意外,你是我的女孩 I can't get my mind off ya, off ya (off my mind) 天塌下来无所谓,一定不后悔, 在大的事都有我背(有我Babeh)

只要说一声ok,就跟我走 So take my hand and baby don't let go 也许你也正在想著我, You got me goin crazy, crazy, crazy, yea 如果我们在一起,做什麽都愿意 Oh Baby baby baby 我的爱,全都给你 我就在这裏 我的心,不会放弃 你是我唯一 Girl 这不是意外,你是我的女孩 I can't get my mind off ya, off ya 我的爱,全都给你 我就在这裏 我的心,不会放弃 你是我唯一 Girl 这不是意外,你是我的女孩 I can't get my mind off ya, off ya (off my mind) Oh 我要怎麽对你说,(我要怎麽对你) 到底要该怎麽做?(到底要该怎麽) 付出的够不够, 对你的感情太重~ 太重~ (My Love)

Super Junior-U音译歌词

U cause I can't stop yeah with Double J here we go 始源】:闹了桥/莫给/推有搜 闹我那/级按口/肯带/苏嘎/衣丝嘎 韩庚】:课咯K/破级马 那我哎/给木~啊级/西加/够内搜 希澈】:那也改扫/他不/乔乃吧 闹呀一桑要/恰加吧/就太你 丽旭】:课那/加嘎/乃嘎duai改海/就太你 ALL】:cuz i can't stop thinking about u g irl 强仁】:no类够罗/嘛对够呀~ ALL】:no i can't stop thinking about u gi rl 李特】:内无里雅内/卡度够西剖 希澈】:播呀桃/怒有/皮比不 Kin冒里个太/那嘛一嫩酿gi瓦 圭贤】:那级码/看摸/扫里罗 (那儿)共giu卡你/那里giu苏no搜oh yeah~

艺声】:no dei给/博要窘magic 拜干将米索给/送giu动半级路求给 东海】:课组win一/你嘎dui改海/组太你 ALL】:cuz i can't stop thinking about u g irl 韩庚】:闹瓦喊给/一够西剖 ALL】:no i can't stop thinking about u gi rl 东海】:那留gi图过/卡博里级马 ALL】:cuz i can't stop thinking about u g irl 晟敏】:哦内够楼/满读够呀 no i can't stop thinking about u girl 始源】:内无里雅内/卡度够西剖 RAP】:到也那扫/想个哎扫出跑奥料 爬啦报呢/课戴/怒比西戴西咋be/唔料 起唔料/海到扫用/袄西个到袄西 闹了哈渺/她料乃嘎/课戴了卡改扫 闹里kin为海扫/冒等高她/课高 穷不一课但/那海到 一米改问下等能高/恰啊啦到

模板匹配

图像模式识别中模板匹配的基本概念以及基本算法 认知是一个把未知与已知联系起来的过程。对一个复杂的视觉系统来说,他的内部常同时存在着多种输入和其他知识共存的表达形式。感知是把视觉输入与事先已有表达结合的过程,而识别与需要建立或发现各种内部表达式之间的联系。匹配就是建立这些联系的技术和过程。建立联系的目的是为了用已知解释未知。(摘自章毓晋《图像工程》) 1、模板匹配法: 在机器识别事物的过程中,常常需要把不同传感器或同一传感器在不同时间、不同成像条件下对同一景象获取的两幅或多幅图像在空间上对准,或根据已知模式到另一幅图像中寻找相应的模式,这就叫匹配。在遥感图像处理中需要把不同波段传感器对同一景物的多光谱图像按照像点对应套准,然后根据像点的性质进行分类。如果利用在不同时间对同一地面拍摄的两幅照片,经套准后找到其中特征有了变化的像点,就可以用来分析图中那些部分发生了变化;而利用放在一定间距处的两只传感器对同一物体拍摄得到两幅图片,找出对应点后可计算出物体离开摄像机的距离,即深度信息。 一般的图像匹配技术是利用已知的模板利用某种算法对识别图像进行匹配计算获得图像中是否含有该模板的信息和坐标; 2、基本算法: 我们采用以下的算式来衡量模板T(m,n)与所覆盖的子图Sij(i,j)的关系,已知原始图像S(W,H),如图所示: 利用以下公式衡量它们的相似性: 上述公式中第一项为子图的能量,第三项为模板的能量,都和模板匹配无关。第二项是模板和子图的互为相关,随(i,j)而改变。当模板和子图匹配时,该项由

最大值。在将其归一化后,得到模板匹配的相关系数: 当模板和子图完全一样时,相关系数R(i,j) = 1。在被搜索图S中完成全部搜索后,找出R的最大值Rmax(im,jm),其对应的子图Simjm即位匹配目标。显然,用这种公式做图像匹配计算量大、速度慢。我们可以使用另外一种算法来衡量T和Sij的误差,其公式为: 计算两个图像的向量误差,可以增加计算速度,根据不同的匹配方向选取一个误差阀值E0,当E(i,j)>E0时就停止该点的计算,继续下一点的计算。 最终的实验证明,被搜索的图像越大,匹配的速度越慢;模板越小,匹配的速度越快;阀值的大小对匹配速度影响大; 3、改进的模板匹配算法 将一次的模板匹配过程更改为两次匹配; 第一次匹配为粗略匹配。取模板的隔行隔列数据,即1/4的模板数据,在被搜索土上进行隔行隔列匹配,即在原图的1/4范围内匹配。由于数据量大幅减少,匹配速度显著提高。同时需要设计一个合理的误差阀值E0: E0 = e0 * (m + 1) / 2 * (n + 1) / 2 式中:e0为各点平均的最大误差,一般取40~50即可; m,n为模板的长宽; 第二次匹配是精确匹配。在第一次误差最小点(imin, jmin)的邻域内,即在对角点为(imin -1, jmin -1), (Imin + 1, jmin + 1)的矩形内,进行搜索匹配,得到最后结果。

辑SuperJunior05歌词中韩音译3对照

1.Miracle Life couldn’t get better Life couldn’t get better [??希澈] ???????????????(Without you baby) [??希澈] 迄今为止没有你的生活那样黑暗(Without you baby) [??希澈] Jigumkaji no obdon shiganun odumiojyo (without you baby) [??始源] ???????????????(baby) [??始源] 见到你后我的生活仿如做梦(baby) [??始源] Norul mannan hu naui senghwarun kumman gathayo (baby) [??韩庚] ???????(?????) a Miracle (a Miracle) ???????????? [??韩庚] 第一次见到你的瞬间(见到你的瞬间)a Miracle (a Miracle) 我能感受到奇迹就是你 [??韩庚] Norul chum bon sungan (choum bon sungan)a miracle (a miracle) nannukkyojyo gijogun baro norangol [All] Life couldn't get better(hey) [All] Life couldn't get better(hey) [??晟敏] ????????????????(ho) ?????????Life couldn't get better(hey) [??晟敏] 我把你拥在怀里飞向蓝色的天空(ho) 亲吻熟睡的你Life couldn't get better(hey) [??晟敏] Nan nol pume ango nara,jamdun noui ib machul koya, Life couldn't get better [??丽旭] ?????????????????,Life couldn't get better [??丽旭] 向我敞开你的心请紧握我的手,Life couldn't get better [??丽旭] Noui mame munul yoro jwo,Life couldn't get better [??东海] ??????????????????(a holiday) [??东海] 原来很平凡的一天现在变的不同(a holiday) [??东海] Meil meil pyongbomhetton nal duri ijen dalla jyossoyo (a holiday) [??李特] ??????????????(I wanna thank you,baby) [??李特] 世上所有的人看起来都很幸福(I wanna thank you,baby) [??李特] Sesang modun saramduri hengboghe boyoyo (I wanna thank you baby) [??丽旭] ???????(???????) a miracle (a miracle),

包装装潢设计_课程设计说明书

目录 1 绪论 2 1.1 设计思路的提出 2 1.2 设计的意义 2 2 旅游基本情况 3 2.1 旅游资源情况 3 2.2 旅游发展情况 3 3 旅游明信片的概念与发展 5 3.1 旅游明信片的概念 5 3.2 旅游明信片的发展 5 4 明信片设计方案 6 4.1 明信片设计前市场调查 6 4.1.1 市场调查6 4.1.2 调查问卷(见附件) 6 4.1.3 调查结果6 4.2 明信片设计中的定位 7 4.3 明信片设计方案的整体说明 7 4.4 明信片设计中的图片 7 4.5 明信片设计中的文字 11 4.6 明信片设计中的结构 12 4.7 图纸 14 参考文献 18 附件(调查问卷) 19

旅游明信片系列化设计 1 绪论 灵秀声名远扬,长江三峡驰名世界。道教名山武当山为道教圣地。中国南水北调中线工程水源地,亚洲最大的人工湖,被誉为“亚洲天池”的丹江口水库。避暑胜地九宫山、闯王陵。地质公园隐水洞。号称“华中屋脊”和“绿色宝库”的神农架。“鸽子花的故乡”,美丽的后河自然保护区。人文旅游景观具有时代跨度大,历史价值高的特点,那里既有古人类长阳人遗址,屈家岭文化遗址,又有众多的古三国胜迹和楚都遗址“纪南城”;既有辛亥革命遗址起义门、阅马场、又有中央农民运动讲习所旧址及八七会议会址。文物古迹与革命胜迹遍布全省。 但是由于截至目前为止我省旅游业的发展和宣传推广主要是依靠新闻媒体(电视、报纸、电台)、书籍、网络等传播形式,使得所取得的旅游业绩却并不是非常理想,旅游没有真正形成一个统一的视觉形象。影响了旅游文化形象和产品的宣传推广。 将旅游宣传与明信片结合起来,有利于宣传和推广旅游概念和景区品牌创建,有利于游客加深理解旅游特色。 1.1 设计思路的提出 由黄鹤楼游玩归来发现虽然黄鹤楼已经采用门票与明信片结合的方式,但是单一的景点不利于形成整体影响,不利于游客形成对旅游的概念理解。所以本文构思将旅游利用明信片的手段进行宣传。 1.2 设计的意义 将“灵秀”这一概念与明信片这种宣传方式有机的结合起来,将旅游以视觉形象的概念推向全国,有利于整个旅游业的发展。 截至目前为止我省旅游业的发展和宣传推广主要是依靠新闻媒体(电视、报纸、电台)、书籍、网络等传播形式,使得所取得的旅游业绩却并不是非常理想,在当今旅游业一片蓬勃的时候,不发展甚至发展速度慢就等于落后。 本文设计意欲将丰富的旅游资源以形象而富有纪念意义的明信片套装的形式宣传出去,让更多的人了解,了解旅游。

Super junior M 太完美专辑歌词

Super junior M 太完美 太完美 东海:她迷住我视线她迷住我视线 始源:在爱情里的宝藏被我发现 你就是我寻找的稀世宝贝 圭贤:你就不断地在正反我世界 连冰块遇见你都燃起火焰 Herry 银赫:太过心急不对用力爱会碎 太过缓慢不对我随你进或退 东海:oh 太完美你眼里我出现 Oh 不让谁替我在你身边woo woo wu o 周觅:你的眉眼你的侧脸你的颈间你的妩媚你的一切从头到尾我已沦陷 圭贤:我的心变成了口袋的一面

Just for you 不停地给不停地给 丽旭:这样子爱你到底是对不对 我一边疑惑一边更加迷恋 晟敏银赫:太过心急不对用力爱会碎太过缓慢不对我随你进或退圭贤:oh ~ 太完美你眼里我出现 Oh ~ 不让谁替我在你身边woo wo u o Herry 银赫:你的眉眼你的侧脸你的颈间你的妩媚 你的一切从头到尾我已沦陷 合声:Oh~ 太完美Oh~ 不让谁 周觅:每次见面时脉搏就当机了她在我全身狂跳不由己 银赫:一直跳一直跳想见你 东海:一直跳一直跳喜欢你 一直跳一直跳都是你 一直跳一直跳我爱你 一直跳一直跳一直跳一直跳 合声:太过心急不对用力爱会碎太过缓慢不对我随你进或退 始源:oh 太完美你眼里我出现 Oh 不让谁替我在你身边woo woo wu o 圭贤:你的眉眼你的侧脸你的颈间你的妩媚 你的一切从头到尾我已沦陷 银赫:Bounce to the music let your feet go round

To the floor and I’m a break it down Let me in let me show you all my bling bling And all my kicks kicks baby dance with me Herry:Boom Boom Boom Can I get another clap clap clap Let’s go shake your body move your body Pick feet now I’m moving to the groove baby (丽旭:yeah~!!) I’m going out 东海:给我说你想我给我说你爱我 给我说你想我说你想我给我说你爱我(圭贤:yeah~~!) 给我说你想我给我说你爱我 给我说你想我给我说你想我给我说你爱我 幸福微甜 圭贤:这城市夜晚闹哄哄人潮像快转的时钟 这不是我要的感动廉价的妆都太浓 这感觉我不知怎么形容 周觅:街道上闪烁的霓虹就像是短暂的笑容 能不能给我一分钟安安静静跟你沟通

图像匹配程序设计——模板匹配

摘要 模板匹配就是把不同传感器或同一传感器在不同时间、不同成像条件下对同一景物获取的两幅或多幅图像在空间上对准,或根据已知模式到另一幅图中寻找相应模式的处理方法。模板匹配是数字图像处理的重要组成部分之一。简单而言,模板就是一幅已知的小图像。模板匹配就是在一幅大图像中搜寻目标,已知该图中有要找的目标,且该目标同模板有相同的尺寸、方向和图像,通过一定的算法可以在图中找到目标,确定其坐标位置。 本文主要主要介绍了灰度相关的匹配方法,灰度相关的图像匹配算法是图像匹配算法中比较经典的一种,很多匹配技术都以它为基础进行延伸和扩展。它是从待拼接图像的灰度值出发,对待匹配图像中一块区域与参考图像中的相同尺寸的区域使用最小二乘法或者其它数学方法计算其灰度值的差异,对此差异比较后来判断待拼接图像重叠区域的相似程度,由此得到待拼接图像重叠区域的范围和位置,从而使用MATLAB软件实现图像匹配。 当以两块区域像素点灰度值的差别作为判别标准时,最简单的一种方法是直接把各点灰度的差值累计起来。另一种方法是计算两块区域的对应像素点灰度值的相关系数,相关系数越大,则两块图像的匹配程度越高。该方法的匹配效果要更好,匹配成功率有所提高。 关键词:图像匹配;MATLAB;灰度相关

目录 1 需求分析 (1) 1.1 问题描述 (1) 1.2 基本要求 (1) 2 设计方案 (2) 2.1 相关概念 (2) 2.2 算法设计 (2) 3 仿真内容 (5) 3.1 相关函数说明 (5) 3.2 模版匹配源代码 (8) 4 仿真结果及分析 (9) 结束语 (11) 参考文献 (12)

1 需求分析 1.1 问题描述 计算机模式识别所要解决的问题,就是用计算机代替人去认识图像和找出一幅图像中人们感兴趣的目标物。在机器识别物体的过程,常需把不同传感器或同一传感器在不同时间,不同成像条件下对同一景物获取的两幅或多幅图像在空间上对准,或根据已知模式到另一幅图中寻找相应的模式,这就叫做匹配。模板匹配是一种最原始、最基本的模式识别方法。研究某一特定对象物位于图像的位置,进而识别对象,这就是匹配的问题。利用模板匹配可以在一幅图像中找到已知的物体。这里的模板指的是一幅待匹配的图像,相当于模式识别的模式。基本要求如下: (1).进行匹配的两幅图像为JPG格式或BMP格式。 (2).能够进行对两幅数字图像的匹配。 (3).采用交互式程序对图像进行匹配。 1.2 基本要求 通过分析题目的基本要求,我将此使用两种方法实现匹配:一个是基于灰度的模板匹配,另一个是基于灰度的快速匹配。在以上两种方法中,用户可以对两张图像进行匹配并显示匹配结果。

Super Junior - Bonamana中文、韩文及罗马拼音对照歌词

中韩文对照: ????, ????, ????, ?????. ????, ????, ????, ?????ttanttalanttan, ttanttalanttan, ttanttalanttan, ttadattalappa. ttanttalanttan, ttanttalanttan, ttanttalanttan, ttadattalappa ????????????????. ????????????????neon alkkamalkka alkkamalkka neomu yeppeun miin-a. nal michyeossdago malhaedo nan niga johda miin-a 你是否清楚是否清楚漂亮的美人啊你说我疯了我也喜欢你美人啊 ?????My baby, to my baby ?????????. ??????(Baby, you turn it up now) nuga jeonhaejwo My baby, to my baby naega yeogi issdago mal-ya. gidalinda mal-ya (Baby, you turn it up now) 请告诉她My baby to my baby 我就在这里等待着啊(baby,you turn it up now) ?, ????, ???????????. ??????????????Winner. neon, gatabuta, gatabuta mal jom haela miin-a. ni ma-eum-eul gajyeossdamyeon geunyang naneun salm-ui Winner 你可否可否说出口美人啊如果能让你倾心那么我就是人生的winner ???????, ???, ??????????????. i sesang-ui ichilan, ichilan, yong-gi issneun jaleul ttala na gat-eun nom mal-ya. 这世上的凡夫俗子凡夫俗子说的就是我这样追逐有勇气的家伙啊 ???Say, ?????????. ??, ??, ?? yesmal-e Say, yeol beon jjig-eumyeon neom-eoganda. eusseug, eusseug, eusseug 俗话say 只要功夫深铁杵磨成针得瑟得瑟得瑟 ?????. ????. ??, ??, ?? geunyeoneun gangjeog. kkeutteog-eobsda. ppijjug, ppijjug, ppijjug 她是强敌毫不动摇倔强倔强倔强 ??????????????????, ?, ?. nan eotteoghalkka eotteoghalkka geunyeoman-i nae gwansim-in geol, geol, geol 我该如何该如何只让她对我有兴趣girl girl girl *Bounce to you, Bounce to you ???????????????????? *Bounce to you, Bounce to you nae gaseum-eun neolhyanghae jabhil sudo eobs-eul mankeum ttwigo issneungeol. Bounce to you, Bounce to you我的心为你跳动以致无法抓住

《包装结构与包装装潢设计》考试大纲及习题含答案

《包装结构与包装装潢设计》 作业题 学生姓名: 学生身份证号: 学生准考证号: 完成作业时间:

包装结构与包装装潢设计考试大纲 第一部分课程性质与目标 一、课程性质与特点 本课程是是一门理论联系实际,应用性较强的课程。包装与产品是一对孪生子,有了产品就要有包装加以保护。而且它还涉及在设计活动中如何把握消费者心理,遵循消费规律的问题,设计结构合理、适销对路的包装,能够最终促进商品的销售和提升消费者满意度。 二、课程目标与基本要求 设置本课程的设置,使考生了解和掌握包装设计的基本概念、发展历史和包装的结构及印刷工艺等,运用所学理论和方法指导设计,做出更好的满足消费者需求的设计。 通过该课程的学习,要求考生掌握现代包装设计的形式特点与规律,包装的结构与材料及经济成本核算,能够运用各种表现技法设计和制作各种类型的包装。 三、与本专业其它课程的关系 《包装设计》是工业设计专业学生必修的专业课,它与本专业的其它许多课程有着密切的关系。 第二部分考核内容与考核目标 第一章包装设计的基本概念 一、学习目的与要求 通过学习本章内容,了解包装设计的基本概念、包装的功能,了解包装设计是一门重要的平面设计基础课,从而对包装设计有一个基本的认识。 二、考核知识点与考核目标 (一)包装设计的概念(重点) 识记:传统的包装概念与扩展 理解:包装功能的重新认识 现代包装设计概念的提出 (二)包装设计是一门重要的平面设计专业课(一般)

理解:包装设计具有综合性性质 第二章包装设计发展史 一、学习目的与要求 通过学习本章内容,了解不同历史时期下的包装设计风格与形式,以及今天的设计师面临的重要课题。 二、考核知识点与考核目标 (一)包装设计的发展史(重点) 理解:手工业时代的包装 新艺术运动与装饰艺术时代的包装设计 现代主义的设计思想 CIS指导下的包装设计 自助式市场条件下的包装设计 后现代的设计思潮 (二)与环境友好的包装(次重点) 理解:今天设计师面临的重要课题 第三章现代包装设计的形式特点与规律 一、学习目的与要求 通过学习本章内容,了解包装设计视觉表达语言的特征、形式规律以及对包装设计视觉形象的战略思考。 二、考核知识点与考核目标 (一)包装设计视觉表达语言的特征(重点) 识记:包装设计自己特有的形式特点与规律 (二)包装设计的表现形式规律(重点) 识记:视觉要素及其性质

基于模板匹配算法的数字识别

中南民族大学 毕业论文(设计) 学院: 计算机科学学院 专业: 软件工程年级:2009 题目: 基于模板匹配算法的数字识别学生姓名: 李成学号:09065093指导教师姓名: 李波职称: 讲师 2013年5月

中南民族大学本科毕业论文(设计)原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。本人完全意识到本声明的法律后果由本人承担。 作者签名:2013年月日

摘要 (1) Abstract (1) 1 绪论 (2) 1.1 研究目的和意义 (2) 1.2 国内外研究现状 (2) 2 本文基本理论介绍 (3) 2.1 位图格式介绍 (3) 2.2 二值化 (3) 2.3 去噪 (3) 2.4 细化 (4) 2.5 提取骨架 (4) 3 图像的预处理 (5) 3.1 位图读取 (5) 3.2 二值化及去噪声 (5) 3.3 提取骨架 (6) 4 基于模板匹配的字符识别 (8) 4.1 样本训练 (8) 4.2 特征提取 (8) 4.3 模板匹配 (9) 4.4 加权特征模板匹配 (10) 4.5 实验流程与结果 (10) 5 结论 (16) 5.1 小结 (16) 5.2 不足 (16) 6 参考文献 (17)

基于模板匹配算法的数字识别 摘要 数字识别已经广泛的应用到日常生活中,典型的数字自动识别系统由图像采集、预处理、二值化、字符定位、字符分割和字符识别等几部分组成, 这些过程存在着紧密的联系。传统的模板匹配算法因为图像在预处理之后可能仍然存在较大的干扰,数字笔画粗细不均匀,有较大的噪声,识别效率不高。本文采的主要思想就是对字符进行分类,之后对字符进行细化,提取细化后字符的特征矢量,与模板的特征矢量进行加权匹配,误差最小的作为识别结果。本文在模板匹配法的基础上, 采用了特征值加权模板匹配法, 并且改进了匹配系数的求法。应用该法取得了满意的效果, 提高了识别率。 关键词:模板匹配;数字识别;特征值加权;字符识别; Template matching algorithm-based digital identification Abstract Digital identification has been widely applied to daily life, the typical digital automatic identification system by the image acquisition, pre-processing, binarization, character positioning, character segmentation and character recognition several parts, there is a close link these processes. Traditional template matching algorithm because the image may still exist after pre-greater interference, digital strokes uneven thickness, the noise, the identification efficiency is not high. Adopted herein main idea is to classify the character after character refinement, the characters feature vector extraction refinement, and the template feature vector is weighted matching, the minimum error as a recognition result. Template matching method based on feature weighted template matching method, and improve the matching coefficient method. The application of the method to obtain satisfactory results, to improve the recognition rate. Key words:Template matching; digital identification; characteristic value weighted; character recognition;

相关主题