搜档网
当前位置:搜档网 › 牛顿定律1

牛顿定律1

牛顿定律1
牛顿定律1

1、如图所示,水平光滑细杆上套一环A,环A与球B间用一不可伸长轻质绳相连,质量分别为m A和m B,由于B球受到水平风力作用,环A与B球一起向右匀加速运动,已知细绳与竖直方向的夹角为θ,

则下列说法中正确的是

A.轻质绳对B球的拉力为 B.匀加速的加速度大小为

C.若风力增大时,轻质绳与竖直方向的夹角θ一定增加D.杆对A球的支持力随着风

力的增加而减小

2、一个小孩在蹦床上作游戏,他从高处落到蹦床上后又被弹起到原

高度。小孩从高处开始下落到弹回的整个过程中,他的运动速度随时

间变化的图象如图所示,图中oa段和cd段为直线。则根据此图象可

知,小孩和蹦床相接触的时间为

A.t2 ~ t4 B.t1 ~ t4

C.t1 ~ t5 D.t2 ~ t5

3、如图所示,一木块在光滑水平面上受到一个恒力F作用而运动,前方固定一个轻质弹簧,当木块接触弹簧后,下列判断正确的是

A.将立即做匀减速直线运动 B.将立即做变减速直线运动

C.在弹簧弹力大小等于恒力F时,木块的速度最大

D.在弹簧处于最大压缩量时,木块的加速度为零

4、斜面上的物体受到平行于斜面向下的拉力F的作用,力F随时间变化的图象及物体运动的v-t图象如图所示。由图象中的信息能够求出的量或可以确定的关系是(g取10 m/s2)()

A、物体的质量m

B、斜面的倾角θ

C、物体与斜面间的动摩擦因数μ

D、μ

5、如图所示,斜面体M放置在水平地面上,位于斜面上的

物块m受到沿斜面向上的推力F作用。设物块与斜面之间

的摩擦力大小为F1,斜面与地面之间的摩擦力大小为F2。增大推力F,斜面体始终保持静止,下列判断正确的是A.如果物块沿斜面向上滑动,则F1、F2一定增大

B.如果物块沿斜面向上滑动,则F1、F2一定不变

C.如果物块与斜面相对静止,则F1、F2一定增大

D.如果物块沿斜面相对静止,则F1、F2一定不变

6、竖直悬挂的轻弹簧下连接一个小球,用手托起小球,使弹簧处于压缩状态,如图所示。则迅速放手后()

A.小球开始向下做匀加速运动

B.弹簧恢复原长时小球加速度为零

C.小球运动到最低点时加速度小于g

D.小球运动过程中最大加速度大于g

7、如图所示,在水平桌面上叠放着质量均为M的A、B两块木板,在木板A的上方放着一个质量为m的物块C,木板和物块均处于静止状态。A、B、C之间以及B与地面之间的动摩擦因数都为μ。若用水平恒力F向右拉动木板A,使之从C、B之间抽出来,已知重力加速度为g。则拉力F的大小应该满足的条件是()

A.F > μ(2m+M)g B.F > μ(m+2M)g C.F > 2μ(m+M)

g D.F > 2μmg

8、如图所示,两个质量分别为m12kg、m2 = 3kg的物体置于光滑的水平面上,中间

用轻质弹簧秤连接.两个大小分别为F1=30N、F2 = 20N的水平拉力分别作用在m1、m2

上,则

A.弹簧秤的示数是25N B.弹簧秤的示数是50N

C.在突然撤去F2的瞬间,m1的加速度大小为5m/s2

D.在突然撤去F1的瞬间,m1的加速度大小为13m/s2

9、一个物体在多个力的作用下处于静止状态,如果仅使其中一个力的大小逐渐减小到零,然后又从零逐渐恢复到原来的大小(此力的方向始终未变),在这过程中其余各力均不变。那么,下列各图中能正确描述该过程中物体速度变化情况的是

10、如图所示,三个物块A、B、C叠放在斜面上,用方向与斜面平行的拉力F作用在B上,使三个物块一起沿斜面向上做匀速运动。设物块C对A的摩擦力为f A,对B的摩擦力为f B,下列说法正确的是

A.如果斜面光滑,f A与f B方向相同,且f A>f B B.如果斜面光滑,f A与f B方向相反,且

f A< f B

C.如果斜面粗糙,f A与f B方向相同,且f A> f B D.如果斜面粗糙,f A与f B方向相反,且

f A

11、如图甲、乙所示,在水平面上运动的小车内,有一质量为M的物体与两根劲度系数分别为k1、k2的弹簧连接。开始时两弹簧均未发生形变,不计物体与小车间的摩擦。当小车以加速度a向右做匀加速直线运动时,甲、乙两图中物体相对于小车的位移量分别为:

A.,B.,

C.,D.,

12、如图a所示,一轻质弹簧的下端固定在水平面上,上端放置一物体(物体与弹簧不连接),初始时物体处于静止状态。现用竖直向上的拉力F作用在物体上,使物体开始向上做匀加速运动,拉力F与物体位移x的关系如图b所示(g=10 m/s2),则正确的结论是

A.物体与弹簧分离时,弹簧处于压缩状态 B.弹簧的劲度系数为7.5 N/cm

C.物体的质量为3 kg D.物体的加速度大小为5 m/s2

13、“蹦极”就是跳跃者把一端固定的长弹性绳绑在踝关节等处,从几十米高处跳下的一种极限运动。某人做蹦极运动,所受绳子拉力F的大小随时间t变化的情况如图所示。将蹦极过程近似为在竖直方向的运动,重力加速度为g。据图可知,此人在蹦极过程中最大加速度约为:

(A)g(B)2g(C)3g(D)4g

14、如图所示,木盒中固定一质量为m的砝码,木盒和砝码在桌面上一起以一定的初速度滑行一段距离后停止。今拿走砝码,而持续加一个竖直向下的恒力F(F=mg),其他条件不变,则木盒滑行的距离()

(A)不变(B)变小(C)变大(D)变大变小均可能

15、如图所示,质量相同的木块A、B,用轻弹簧连接置于光滑水平面上,开始弹簧处于

自然状态,现用水平恒力F推木块A,则弹簧在第一次被压缩到最短的过程中

A.当A、B速度相同时,加速度a A= a B

B.当A、B速度相同时,加速度a A> a B

C.当A、B加速度相同时,速度v A<v B

D.当A、B加速度相同时,速度v A>v B

16、如图甲所示,一轻质弹簧的下端固定在水平面上,上端叠放两个质量均为M的物体A、B(B物体与弹簧连接),弹簧的劲度系数为k,初始时物体处于静止状态。现用竖直向上的拉力F用在物体A上,使物体A开始向上做加速度为a的匀加速运动,测得两个物体的v—r图象如图乙所示(重力加速度为g),则

A.施加外力前,弹簧的形变量为2g/k B.外力施加的瞬间,AB间的弹力大小为M(g-a)

C.AB在t1时刻分离,此时弹簧弹力恰好为零 D.弹簧恢复到原长时,物体B的速度达到最大值

17、如图所示,小车上有一个定滑轮,跨过定滑轮的绳一端系一重球,另一端系在弹簧秤上,弹簧秤固定在小车上,开始时小车处于静止状态。当小车匀加速向右运动时,与静止状态相比较,下述说法中正确的是()

A.弹簧秤读数变大,小车对地面压力变大

B.弹簧秤读数变大,小车对地面压力变小

C.弹簧秤读数变大,小车对地面的压力不变

D.弹簧秤读数不变,小车对地面的压力变大

18、如图所示,一质量为m的小球在水平细线和与竖直方向成θ角的轻质弹簧作用下处于静止状态

则下列说法正确的是()

A. 剪断细线的瞬间小球加速度的大小为,方向水平向右

B. 剪断细线的瞬间小球加速度的大小为,方向与水平方向夹角为向右下

C. 若将弹簧剪断的瞬间小球加速度的大小为,方向竖直向下

D. 若将弹簧剪断的瞬间小球加速度的大小为零

19、如图所示,在倾角为θ的光滑斜劈P的斜面上有两个用轻质弹簧相连的物块A、B,C为一垂直固定在斜面上的挡板。A、B质量均为m,斜面连同挡板的质量为M,弹簧的劲度系数为k,系统静止于光滑水平面。现开始用一水平恒力F作用于P,(重力加速度为g)下列说法中正确的是

A、若F=0,挡板受到B物块的压力为

B、力F较小时A相对于斜面静止,F大于某一数值,A相对于斜面向上滑动

C、若要B离开挡板C,弹簧伸长量需达到

D、若且保持两物块与斜劈共同运动,弹簧将保持原长

20、如图甲所示,劲度系数为k的轻弹簧竖直放置,下端固定在水平地面上,一质量为m的小球,从离弹簧上端高h 处自由下落,接触弹簧后继续向下运动。若以小球开始下落的位置为原点,沿竖直向下建立一坐标轴ox,小球的速度v随时间t变化的图象如图乙所示。其中OA段为直线,切于A点的曲线AB和BC都是平滑的曲线,则关于A、B、C三点对应的x坐标及加速度大小,下列说法正确的是

A. B.C. D.

21、质量为0.3kg的物体在水平面上做直线运动,其v-t图象如图所示,其中图线b表示物体受到水平拉力作用时的图象,图线a表示物体不受水平拉力时的图象,重力加速度g取10m/s2,则下列说法正确的是()

A.水平拉力等于0.6N

B.水平拉力等于0.2N

C.物体与水平面间的动摩擦因数等于0.2

D.物体与水平面间的动摩擦因数等于

22、如图10甲所示,一根质量可以忽略不计的轻弹簧,劲度系数为k,下面悬挂一个质量为m的砝码A。手拿一块质量为M的木板B,用木板B托住A向上压缩弹簧到一定程度,如图乙所示。此时如果突然撤去木板B,则A向下运动的加速度a(a>g)。现用手控制使B以加速度a/3向下做匀加速直线运动。(1)求砝码A做匀加速直线运动的时间。(2)求出这段运动过程的起始和终止时刻手对木板B的作用力大小的表达式。

23、如图所示,一长为L=18m的传送带水平放置,可以看成质点的物块静止于传

送带的左端,物块与传送带之间的动摩擦因数为μ=0.2o(g=10m/s2)

(1)若传送带突然以v=4m/s的速度顺时针匀速转动,求物块在传送带上运

动的时间;

(2)若传送带先以a=3m/s2的加速度顺时针匀加速启动,2s后做匀速运动。求物块

在传送带上运动的时间。

24、一个行星探测器从所探测的行星表面竖直升空,探测器的质量为1500 kg,

发动机推力恒定.发射升空后9 s末,发动机突然间发生故障而关闭.下图是

从探测器发射到落回地面全过程的速度图象.已知该行星表面没有大气.不考

虑探测器总质量的变化.求:

(1)探测器在行星表面上升达到的最大高度H;

(2)该行星表面附近的重力加速度g;

(3)发动机正常工作时的推力F.

25、如图所示,质量M = 8kg的小车放在水平光滑的平面上,在小车左端加一水平恒力F,F = 8N,当小车向右运动的速度达到1.5m/s时,在小车前端轻轻地放上一个大小不计,质量为m = 2kg的小物块,物块与小车间的动摩擦因数μ = 0.2,小车足够长(取g = 10m/s2)。求:

(1)从小物块放上小车开始,经过多长时间小物块开始相对小车静止?此时二者速度多大?

(2)从小物块放上小车开始,经过t = 1.5s小物块通过的位移大小为多少?

26、如图所示,质量为m=1kg,长为L=3m的平板车,其上表面距离水平地面的高度为h=0.2m,以速度v0=5m/s向右做匀速直线运动,A、B是其左右两个端点。从某时刻起对平板车施加一个大小为4N的水平向左的恒力F,并同时将

一个小球轻放在平板车上的P点(小球可视为质点,放在P点时相对于地面的速度为零),。经过一段时

间,小球从平板车左端的A点脱离平板车落到地面上。不计所有摩擦力,g取10m/s2。求

(1)小球从放到平板车上开始至落到地面所用的时间;

(2)小球落地瞬间,平板车的速度多大?

27、如图所示,长12m质量为50kg的木板右端有一立柱。木板置于水平地面上,木板与地面间的动摩擦因数为0.1,质量为50kg的人立于木板左端,木板与人均静止,当人以4m/s2的加速度匀加速向右奔跑至板的右端时,立刻抱住立柱,取(g=10m/s)试求:

(1)人在奔跑过程中受到的摩擦力的大小。

(2)人在奔跑过程中木板的加速度。

(3)人从开始奔跑至到达木板右端所经历的时间。

28、某校课外活动小组自制一枚土火箭,火箭质量为3kg。点火后火箭始终垂直于地面向上运动,开始一段时间可视为做匀加速运动。经过4s到达离地面40m高处,燃料恰好用完。若空气阻力忽略不计,g取10m/s2。求

(1)燃料恰好用完时火箭的速度大小;

(2)火箭上升离地面的最大高度;

(3)火箭上升时受到的最大推力。

29、如图甲所示,一小滑块可视为质点从斜面上A点由静止释放,经过时间4t0到达B处,在5t0时刻滑块运动到水平面上的C点停止,滑块与斜面和水平面的动摩擦因数相同.已知滑块在运动过程中与接触面间的摩擦力大小与时间的关系如图乙所示,设滑块运动到B点前后速率不变.试求:(1)斜面的倾角θ;(2)滑块与接触面间的动摩擦因数μ.

30、如图(a)所示,木板OA可绕轴O在竖直平面内转动,某研究小组利用此装置探索物块在方向始终平行于斜面、大小为F=8N的力作用下加速度与斜面倾角的关系。已知物块的质量m=1kg,通过DIS实验,得到如图(b)所示的加速度与斜面倾角的关系图线。若物块与木板间的动摩擦因数为0.2,假定物块与木板间的最大静摩擦力始终等于滑动摩擦力,g取10m/s2。试问:

(1)图(b)中图线与纵坐标交点a o多大?

(2)图(b)中图线与θ轴交点坐标分别为θ1和θ2,木板处于该两个角度时的摩擦力指向何方?说明在斜面倾角处于θ1和θ2之间时物块的运动状态。

(3)θ1为多大?

(4)如果木板长L=2m,倾角为37°,物块在F的作用下由O点开始运动,为保证物块不冲出木板顶端,力F最多作用多长时间?(取sin37°=0.6,cos37°=0.8)

31、如图所示,倾角为37°的斜面固定在水平地面上,质量m=1kg的物体在平行于斜面向上的恒力F作用下,从A 点由静止开始运动,到达B点时立即撤去拉力F,此后,物体到达C点时速度为零。通过速度传感器测得这一过程中

物体每隔0.2s的瞬时速度,下表给出了部分数据()。求:

(1) 物体与斜面间的动摩擦因数;

(2) 恒力F的大小;

(3) AC间的距离。

32、如图所示,质量M=8kg的小车放在水平光滑的平面上,在小车左端加一水平推力F=8 N,当小车向右运动的速度达到1.5 m/s时,在小车前端轻轻地放上一个大小不计,质量为m=2 kg的小物块,小物块与小车间的动摩擦因数

=0.2,当二者达到相同速度时,物块恰好滑到小车的最左端。取g=l0 m/s2.求:

(1)小物块放后,小物块及小车的加速度各为多大?

(2)小车的长度是多少?

33、如图甲所示为学校操场上一质量不计的竖直滑竿,滑竿上端固定,下端悬空。为了研究学生沿竿的下滑情况,在竿顶部装有一拉力传感器,可显示竿顶端所受拉力的大小。现有一质量为50kg的学生(可视为质点)从上端由静止开始滑下,5s末滑到竿底时速度恰好为零。以学生开始下滑时刻为计时起点,传感器显示的拉力随时间变化情况如图乙所示,g取10m/s2。求:

(1)该学生下滑过程中的最大速度;

(2)滑竿的长.

34、某传动装置的水平传送带以恒定速度v0=5m/s运行。将一块底面水平的粉笔轻轻地放到传送带上,发现粉笔块在传送带上留下一条长度l=5m的白色划线。稍后,因传动装置受到阻碍,传送带做匀减速运动,其加速度a0=5m/s2,问传动装置受阻后:(1)粉笔块是否能在传送带上继续滑动?若能,它沿皮带继续滑动的距离l′=?(2)若要粉笔块不能继续在传送上滑动,则皮带做减速运动时,其加速度a0应限制在什么范围内?

35、如图所示,倾角为的光滑斜面与光滑水平面平滑连接,在斜面底部有一物体B自静止开始向左做匀加速直线运动,与此同时在斜面顶端有一物体A,自静止开始自由下滑。试求:

(1)物体A在斜面上运动时的速度与下滑时间的关系式。

(2)为使A不能追上B,物体B的加速度的取值范围.(重力加速度为)

36、有一个推矿泉水瓶的游戏节目,规则是:选手们从起点开始用力推瓶一段时间后,放手让瓶向前滑动,若瓶最后停在桌上有效区域内,视为成功;若瓶最后未停在桌上有效区域内或在滑行过程中倒下,均视为失败。其简化模型如图所示,AC为水平桌面,选手们可将瓶子放在A点,从A点开始用一恒定不变的水平推力推瓶,BC为有效区域。已知AB长度为L1=4 m,BC长度为L2=1m,瓶子质量为m=l kg,瓶子与桌面间的动摩擦因数为μ=0.5。某选手作用在瓶子上的水平推力F=10 N,瓶子沿AC做直线运动(g取10m/s2),假设瓶子可视为质点,那么该选手要想在游戏中获得成功,试问:推力作用在瓶子上的时间最长不得超过多少?

37、如图所示,在光滑的桌面上叠放着一质量为m A=2.0kg的薄木板A和质量为m B=3 kg的金属块B.A的长度L=2.0m.B 上有轻线绕过定滑轮与质量为m C=1.0 kg的物块C相连.B与A之间的滑动摩擦因数μ =0.10,最大静摩擦力可视为等于滑动摩擦力.忽略滑轮质量及与轴间的摩擦.起始时令各物体都处于静止状态,绳被拉直,B位于A的左端(如图),然后放手,求:(1)A、C的加速度各为多少?

(2)经过多长时间t后B从A的右端脱离(设 A的右端距滑轮足够远)(取g=10m/s2).

38、“神舟”五号飞船完成了预定空间科学和技术试验任务后,返回舱开始从太空向地球表面按预定轨道返回.返回舱开始时通过自身制动发动机进行调控变速下降,穿越大气层后,在一定的高度打开阻力降落伞进一步减速下降.这一过程中若返回舱所受空气阻力与速度的平方成正比,比例系数(空气阻力系数)为k,所受空气浮力恒定不变,且认为竖直降落,从某时刻开始计时,返回舱运动的v—t图象如图中的AD曲线所示.图中AB是曲线AD在A点的切线,切线交于横轴一点B,其坐标为(8,0),CD是曲线AD的渐近线.假如返回舱总质量M=400 kg,g取10 m/s2.试问:

(1)返回舱在这一阶段是怎样运动的?

(2)在初始时刻v=160 m/s,此时它的加速度多大?

(3)推证空气阻力系数k的表达式并计算其值。

39、消防队员在某高楼进行训练,他要从距地面高h=36 m处的一扇窗户外沿一条竖直悬挂的绳子滑下,在下滑过程中,他先匀加速下滑,此时手脚对悬绳的挤压力F N1=640 N,紧接着再匀减速下滑,此时手脚对悬绳的挤压力F N2=2080 N,滑至地面时速度恰为零。已知消防队员的质量为m=80 kg,g=10m/s2,手脚和悬绳间的动摩擦因数为μ=0.5,身体其他部分与绳子的摩擦不计,求:

(1)他在加速下滑、减速下滑两过程中的加速度大小;

(2)他沿绳滑至地面所用的总时间t。

40、质量为0.5kg的小物块A放在质量为1kg的足够长木板B的左端,木板B在水平拉力的作用下沿地面匀速向右滑动,且A、B相对静止。某时刻撤去水平拉力,则经过一段时间后A在B上相对于B向右滑行了1.5m的距离,最后A和B都停下来。已知A、B间的动摩擦系数为μ1=0.2,B与地面间的动摩擦系数为μ2=0.4。求B在地面上滑行的距离。

1、BC

2、C

3、C

4、A

5、B

6、D

7、C

8、D

9、【答案】D【解析】当物体受多个力而处于平衡状态时,这些力的合力为零,当其中一个力的大小逐渐减小时,合力逐渐增大,且与减小的力反向,因此加速度逐渐增大,在v-t

图象中,图线的斜率逐渐增大;同样当该力又从零逐渐增大时,合力逐渐减小,加速度逐渐减小,图线的斜率逐渐减小,D图满足变种变化规律。10、 BD 11、A12、D 13、B 14、B 15、D 16、AB 17、.C 18、AC 19、AD 20、B C

21、BD解析:物体受到水平拉力作用时做匀减速运动的加速度更大,说明拉力与运动方向相反,由F+f=ma b,f=ma a,

解得F=f=0.2N;物体与水平面间的动摩擦因数,所以BD正确。

22、16.(1)设最初弹簧被压缩的长度为x0,根据牛顿第二定律对A有kx0+mg=ma解得x0=m(a-g)/k

设A和B以加速度a/3向下做匀加速运动过程的终止时刻弹簧的压缩量为x1,根据牛顿第二定律对A

有kx1+mg=ma/3 解得x1=m(a/3-g)/k 设A和B一起做匀加速运动的时间为t1,在这段时间内,A运动的位移为

s=x0-x1根据s=,可解得(2)起始时刻A受三个力,满足mg+kx0-N1=ma/3 B受三个力,满足Mg+N1-F1=Ma/3 解得:F1=M(g-a/3)+2ma/3A与B脱离时B受二个力,满足Mg-F2=Ma/3解得:F2= M(g-a/3)

23、

共速后做速度为v的匀速运动,直至离开传送带。设经物块速度为v,在此期间物块的位移为,则

…(1分)…(1分)此后物块与传送带一起匀速运动。设经离开传送带,则

………(1分)物块在传送带上运动的总时间为…(1分)代入数值后可得:s

24、(1)0~25 s内一直处于上升阶段,上升的最大高度在数值上等于△OAB的面积,即H=×25×64 m=800 m (4分)(其它方法得出也给分) (2)9 s末发动机关闭,此后探测器只受重力作用,故在这一阶段的加速度即为该行星表面的重力加速度,由图象得

g=(2分)m/s2=4 m/s2(2分) (3)由图象知加速上升阶段探测器的加速

度:a==m/s2(2分)根据牛顿运动定律,F-mg=ma (2分)所以推力F=m(g+a)=1.67×104 N

25、(1)开始一段时间,物块相对小车滑动,两者间相互作用的滑动摩擦力的大小为F f = μmg = 4N 物块在Ff

的作用下加速,加速度为a m= = 2m/s2(1分),从静止开始运动.小车在推力F和f的作用下加速,加速度为

a M= = 0.5m/s2,(2分)初速度为υ0= 1.5m/s设经过时间t1两者达到共同速度,则有:

(2分)

代人数据可得:(2分)(2)在t1时间内物块向前运动的位移为(1分)

以后两者相对静止,相互作用的摩擦力变为静摩擦力将两者作为一个整体,在F的作用下运动的加速度为a,则F =(M+m)a 得a = 0.8m/s2 (2分)在剩下的时间t2 = t-t1 = 0.5s时间内,物块运动的位移为s2 =υt2+at2,

得s2 = 1.1m.(1分)所以物块在1.5s时间内通过的位移大小为:(2分)

26、【解析】(1)对平板车施加恒力F后,平板车向右做匀减速直线运动,车向左的加速度大小为

a=m/s2小球到达左端A时,车向右的位移s==2m 此时车向右的速度v1== 3m/s

小球到达左端A所用时间设为t1,则=0.5s 小球离开车后做自由落体运动,设下落时间为t2,

则h=解得s

所以,小球从放到平板车上开始至落到地面所用的时间t=t1+t2=0.7s (2)小球落地瞬间,平板车的速

度v2=v1-at2解得v2=2.2 m/s、

27、【解析】(1)设人的质量为m,加速度为a1,木板的质量为M,加速度为a2,人对木板的摩擦力为f。则对人有:f= m a1= 200N ,方向向右(2)对木板受力可知:f-μ(M + m) g = M a 2,则: a2=

代入数据解得:a 2 = 2 m/s2 方向向左(3)设人从左端跑到右端时间为t。由运动学公式得 L = a1 t 2 +

a 2t 2则t = 代入数据解得t = 2 s

【点评】运用牛顿第二定律能解决两类问题,已知受力情况求解运动情况;已知运动情况求受力情况。它们通过加速度与合外力建立起联系。其中,通过运动图像能得出物体的加速度或合外力,为解决这类问题提供切入口。

28、(1)设燃料燃烧结束时火箭的速度为v,根据运动学公式

①②(或与联立求解)

(2)火箭能够继续上升的高度③火箭离地的最大高度

④(3)火箭在飞行中质量不断减小,所以在点火起飞的最初其推力最大。

⑤⑥⑦

评分标准:本题13分. (1)问4分,①、②式各2分;(2)问4分,③、④式各2分;(3)问5分,⑤、⑥式各2分,⑦式1分

29、(1)370;(2)4/7

30、答案:见解析解析:(1)当木板水平放置时,物块的加速度为a0

此时滑动摩擦力f = μN = μmg=0.2×1×10 = 2(N)=6(m/s2)

(2)当摩擦力沿斜面向下且加速度为零时木板倾角为θ1,当摩擦力沿斜面向上且加速度为零时木板倾角为θ2,这时物块处于静止状态。

(3) N1=mg cosθ1F1=μN1=μmg cosθ1F=mg sinθ1+μmg cosθ1

联立方程8 = 10sinθ1+ 2cosθ1解得θ1≈40.4°

(4)力F作用时的加速度(m/s2)

撤去力F后的加速度大小(m/s2)

设物块不冲出木板顶端,力F最长作用时间为t

则撤去力F时的速度v=a1t 位移撤去力F后运动的距离

由题意有即解得:t≈3.1s

31、解:(1)(5分)匀加速过程a1==6m/s2(1分)撤去力后匀减速a2== —10m/s2(1分)

由牛顿第二定律得:-(mg sin37°+μmg cos37°)= ma2(2分)解得:μ= 0.5 (1分)(2)(3分)匀加速过程,由牛顿第二定律得:F- mg sin37°-μmg cos37° = ma1(2分)

解得:F=16N (1分) (3) (5分)设加速时间为t1,减速时间为t2

最大速度:v m = a1 t1(1分)在2.2s时的速度为2.0m/s :有2.0 = v m—a2 (2.2 —t1) (1分)又:—v m = a2 t2 (1分 S AC=(1分)联立解出:S AC = 10.8m (1分)

32、【答案】(1);(6分)(2)(8分)

【解析】(1)以小物块为研究对象,由牛顿第二定律,得(2分)

解得(1分)以小车为研究对象,由牛顿第二定律,得(2分)

解得(1分)(2)由运动学公式:(2分)解得:(1分)

则(:2分)(2分)(1分)

33、根据图象可知0 ~1s内,人向下作匀加速运动,人对滑竿的作用力为380N,方向竖直向下,所以滑竿对人的作用力F1的大小为380N,方向竖直向上。以人为研究对象,

根据牛顿第二定律有: mg-F1=ma1(2分)

代入数据,得a1=2.4m/s2(2分) ks5u

1s末人的速度为最大速度: V m=a1t1(2分)

代入数据,得v m=2.4m/s (2分)

(2)根据图象可知1 S末到5S末,人作匀减速运动,5S末速度为零,

加速运动的位移(2分)

减速运动的位移(2分)

滑竿的总长度L=S1+S2=1.2+4.8=6.0m (1分)

34、解:(1)先求粉笔与皮带间的动摩擦因数μ。皮带初始以v0=5m/s匀速行驶,粉笔对地以a=μg的加速度匀加速,划痕l=5m为相对位移。则

l=v0t-(3分) t=(3分)

解得:a=2.5m/s2,(1分)μ=0.25 (1分)

第二阶段,因皮带受阻,做a0=5m/s2的匀减速。a0>a,粉笔能在传送带上继续滑动,且皮带比粉笔先停下,粉笔还能在皮带上作相对滑动。粉笔相对皮带滑行距离为

l′=s粉笔-s皮带==2.5m。(2分)

(2)因为皮带对粉笔的最大静摩擦力为μmg,所以粉笔对地的最大加速度为μg,为防止粉笔在皮带上相对对滑动,皮带加速度a0应限制在μg范围内,即a≤2.5m/s2。(4分)

35、解:(1)A在斜面上运动时的加速度为(3分)

设A在斜面上运动时的速度为,时间为,则(2分)

(2)设A到达斜面底部的时间为t1,速度为v1,A在水平面上运动时间为t2 ,则A追不上B的条件为位移和速度满

足:v1 t2 < a(t1+ t2)2(3分)(3分)

解得:A追不上B的条件为(3分)

36、游戏要想获得成功,瓶滑到C点速度恰好为0,推力作用时间最长。

设最长作用时间为t1,有推力作用时瓶的加速度为a1,t1时刻瓶的速度为v,推力

停止后加速度为a2。由牛顿第二定律得:(2分)(2分)

加速运动过程中的位移:(2分)减速运动过程中的位移:(2分)

位移关系满足: (2分)(1分)

解得t1=1 s (2分)

37、解:对B、C系统,受外力,加速度。

对A,。则t有,。

38、 (1)根据速度图象性质可以得出,该曲线的切线斜率逐渐减小,表明这一阶段返回舱开始做加速度逐渐减小的减速运动,最后是匀速运动。(3分)

(2)在初始速度v=160 m/s时,过A点切线的斜率即为此时的加速度大小:

a==m/s2=20 m/s2(5分)(3)设返回舱所受空气浮力为f,在t=0时,根据牛顿第二定律则有:kv2+f-Mg=Ma由图线知返回舱最终速度为v m=4 m/s时,返回舱受力平衡,即有:kv m2+f-Mg=0

由上述两式解得:k==0.313kg/m (8分)

用牛顿定律解决问题教案

第六节用牛顿定律解决问题(一) 教学目标: (一)知识与技能 1.巩固对物体进行受力分析的方法。 2.掌握用牛顿第二定律解决问题的基本思路和基本方法。 3.通过例题分析、讨论,培养学生掌握用牛顿第二定律解题的方法。 4.通过解题训练、培养学生审题能力及分析问题、解决问题的能力。 (二)过程与方法 1.培养学生分析问题和总结归纳的能力。 2.培养学生运用所学知识解决实际问题的能力。 (三)情感、态度和价值观 培养学生形成积极思维,解题规范的良好习惯。 教学重点:正确地对物体进行受力分析,掌握用牛顿第二定律解决的两类力学问题及解决这两类问题的基本思想和方法。 教学难点:对物理情景及物理过程的分析。 教学方法:实例分析法、归纳法、讲练结合法。 教学用具:投影仪、投影片、教学课件。 教学过程: (一)导入新课 教师:到目前为止我们学习了牛顿的几条运动定律? 学生:三条。 教师:三条定律中,哪条定律是动力学中的核心内容呢?

学生: 牛顿第二定律。 教师: 为什么它是核心呢? 学生: 因为它把物体的受力和物体的运动情况有机地结合起来了。 教师: 本节我们就一起应用牛顿的运动定律来解决一些生活中的实际问题,以加深我们对定律的理解。 (二) 新课教学 1、动力学的两类基本问题 教师:牛顿第二定律定量地确定了运动和力的关系,使我们能够把物体的运动情况和受力情况联系起来,那么,如果已知物体的受力情况,如何确定物体的运动速度、位移等运动情况?如果已知物体的运动情况;能否判断物体的受 力情况? 学生讨论与探究,教师引导: 通过讨论教师总结:一类是根据物体受力情况确定物体的运动情况;一类是根据运动情况确定受力情况,解这两类问题的关键是抓住联系力和运动的桥梁——加速度。因为由受力可求出物体的加速度,再利用物体的初始条件(初位置和初速度),根据运动学公式就可以求出物体的位移和速度,也就确定了物体的运动情况.这在实际问题中有重要应用,如指挥“神舟五号”飞船的科学家,根据飞船的受力情况可以确定飞船在任意时刻的位置和速度。 相反,如果已知物体的运动情况,由运动学公式求出加速度,再根据牛顿第二定律就可以确定物体所受的合外力,由此推断物体的受力情况。在实际问题中,常常需要从物体的运动情况来确定未知力。例如,知道了列车的运动情况,可以确定机车对列车的牵引力;根据天文观测知道了月球的运动情况,就可以知

1牛顿第一定律

§4. 1 牛顿第一定律 班级姓名________学号 1.知道伽利略的理想实验及其主要推理过程和推论. 2.理解牛顿第一定律的内容及意义. 3.知道什么是惯性,会正确地解释有关惯性的现象. 、关于运动和力的关系亚里士多德的观点:。 2、伽利略的观点:。 笛卡尔的补充和完善:。 3、牛顿的总结:一切物体总保持状态或状态,除非 迫使它改变这种状态,这就是牛顿第一定律。 注:对牛顿第一定律的理解:力是改变物体的原因,维持物体运动的原因是。牛顿第一定律实验定律(填“不是或是”) 4、物体的性质,叫做惯性。惯性是物体的,与物体的运动状态、物体是否受力均无关;是惯性大小的量度,越大,惯性就越大;越小,惯性就越小。 对惯性的理解: ①惯性是物体的固有属性,惯性不是一种力。 ②任何物体在任何情况下 ③惯性的大小只由物体本身的特征决定 ④惯性是不能被克服的,可以利用惯性做事或防止惯性的不良影响。 教学过程 一、人类对运动和力的关系的探索历程(阅读课本第68—70页) 【问题1】亚里土多德关于运动和力的观点是怎样的?他的观点正确吗?在对运动和力的研究中,是什么影响了他对现象本质的研究? 【问题2】伽利略“若没有摩擦阻力,球将永远滚下去”的思想是如何产生的?

【问题3】伽利略的理想实验是如何设计的?他在研究中进行了那些科学推理?对运动和力的关系,伽利略是什么观点? 【问题4】哪位科学家完善了伽利略的观点,如何完善? 二、牛顿第一定律 1、定律内容: 2、惯性 【问题5】如何理解牛顿第一定律?惯性大小由什么因素决定? 典型例题 【例1】火车在长直水平轨道上匀速行驶,门窗紧闭的车厢内有一人向上跳起,发现仍落回到车上原处,这是因为( ) A.人跳起后,车厢内空气给他以向前的力,带着他随同火车一起向前运动。 B.人跳起的瞬间,车厢的地板给他一个向前的力,推动他随同火车一起向前运动。 C.人跳起后,车在继续向前运动,所以人落下后必是偏后一些,只是由于时间很短, 偏后距离太小,不明显而已。 D.人跳起后直到落地,在水平方向上人和车始终有相同的速度。 【例2】月球表面上的重力加速度地球表面上的1/6,同一个飞行器在月球表面上时与在地球表面上时相比较( ) A.惯性减小为1/6,重力不变。 B.惯性和重力都减小为1/6。 C.惯性不变,重力减小为l/6。 D.惯性和重力都不变。 【例3】在车箱的顶板上用细线挂着一个小球,在下列情况下可对车厢的运动情况得出怎样的判断:Array (1)细线竖直悬挂:____________________。 (2)细线向图中左方偏斜:_______________。 (3)细线向图中右方偏斜:________________。 【当堂检测】 1、伽利略的理想实验证明了() A.要物体运动必须有力作用,没有力作用物体将静止

人教版高中物理必修一:《牛顿第二定律》练习题

一、选择题 1.关于物体运动状态的改变,下列说法中正确的是 A.物体运动的速率不变,其运动状态就不变 B.物体运动的加速度不变,其运动状态就不变 C.物体运动状态的改变包括两种情况:一是由静止到运动,二是由运动到静止 D.物体的运动速度不变,我们就说它的运动状态不变 2.关于运动和力,正确的说法是 A.物体速度为零时,合外力一定为零 B.物体作曲线运动,合外力一定是变力 C.物体作直线运动,合外力一定是恒力 D.物体作匀速运动,合外力一定为零 3.在光滑水平面上的木块受到一个方向不变,大小从某一数值逐渐变小的外力作用时,木块将作 A.匀减速运动 B.匀加速运动 C.速度逐渐减小的变加速运动 D.速度逐渐增大的变加速运动 4.在牛顿第二定律公式F=km·a中,比例常数k的数值: A.在任何情况下都等于1 B.k值是由质量、加速度和力的大小决定的 C.k值是由质量、加速度和力的单位决定的 D.在国际单位制中,k的数值一定等于1 5.如图1所示,一小球自空中自由落下,与正下方的直立轻质弹簧接触,直至速度为零的过程中,关于小球运动状态的下列几种描述中,正确的是 A.接触后,小球作减速运动,加速度的绝对值越来越大,速度越来越小,最后等于零

B.接触后,小球先做加速运动,后做减速运动,其速度先增加后减小直到为零 C.接触后,速度为零的地方就是弹簧被压缩最大之处,加速度为零的地方也是弹簧被压缩最大之处 D.接触后,小球速度最大的地方就是加速度等于零的地方 6.在水平地面上放有一三角形滑块,滑块斜面上有另一小滑块正沿斜面加速下滑,若三角形滑块始终保持静止,如图2所示.则地面对三角形滑块 A.有摩擦力作用,方向向右 B.有摩擦力作用,方向向左 C.没有摩擦力作用 D.条件不足,无法判断 7.设雨滴从很高处竖直下落,所受空气阻力f和其速度v成正比.则雨滴的运动情况是A.先加速后减速,最后静止 B.先加速后匀速 C.先加速后减速直至匀速 D.加速度逐渐减小到零 8.放在光滑水平面上的物体,在水平拉力F的作用下以加速度a运动,现将拉力F改为2F(仍然水平方向),物体运动的加速度大小变为a′.则 A.a′=a B.a<a′<2a C.a′=2a D.a′>2a 9.一物体在几个力的共同作用下处于静止状态.现使其中向东的一个力F的值逐渐减小到零,又马上使其恢复到原值(方向不变),则 A.物体始终向西运动 B.物体先向西运动后向东运动 C.物体的加速度先增大后减小 D.物体的速度先增大后减小 二、填空题 10.如图3所示,质量相同的A、B两球用细线悬挂于天花板上且静止不动.两球间是一

高一物理必修1 牛顿第一定律

第13讲牛顿第一、第三定律 知识点一:牛顿第一定律 ★牛顿第一定律(惯性定律)内容:一切物体总是保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。 对牛顿第一定律的理解: (1)牛顿第一定律不是由实验直接总结出来的规律,它是牛顿以伽利略的理想实验为基础,在总结前人的研究成果、加之丰富的想象而推理得出的一条理想条件下的规律。 (2)牛顿第一定律成立的条件是物体不受外力作用,是理想条件下物体所遵从的规律,在实际情况中,物体所受合外力为零与物体不受任何外力作用是等效的。 (3)牛顿第一定律的意义在于 ①它揭示了一切物体都具有的一种基本属性--惯性。 ②它揭示了运动和力的关系:力是改变物体运动状态的原因,而不是产生运动的原因,也不是维持物体运动的 原因,即力是产生加速度的原因。 ★惯性:物体保持原来匀速直线运动状态或静止状态的性质。 对惯性的理解: (1)惯性是物体本身固有的属性,跟物体的运动状态、受力无关,跟物体所处的地理位置无关。 (2)质量是物体惯性大小的量度,质量大则惯性大,其运动状态难以改变。 (3)外力作用于物体上能使物体的运动状态改变,但不能认为克服了物体的惯性。 ★牛顿第一定律 例:理想实验有时更能深刻地反映自然规律,伽利略设想了一个理想实验,其中有的是经验事实,有的是推断: a 减小第二个斜面的倾角,小球在这斜面上仍然要达到原来的高度,但这时它要滚得远些 b 两个对接的斜面,让静止的小球沿一个斜面滚下,小球将滚上另一个斜面 c 如果没有摩擦,小球将上升到原来释放的高度 d 继续减小第二个斜面的倾角,最后使它水平,小球要沿着水平面作持续的匀速运动 请将上述理想实验的设想步骤按照正确的顺序排列。(只填序号即可) (1)在上述的设想步骤中,有的属于可靠的事实,有的则是理想化的推断。下列关于事实和推断的分类正确的是() A a是事实,bcd是推论 B b是事实, acd是推论 C c是事实,abd是推论 D d是事实,abc是推论 (2)理想实验是科学研究中的一种重要方法,它把可靠事实和合理的推理相结合,可以深刻地揭示自然规律。 以下实验中属于理想实验的是() A 平行四边形法则的科学探究 B 伽利略设想的对接光滑斜面实验 C 用打点计时器测物体的加速度 D 利用刻度尺的落体运动,测定人的反应时间的小实验 1.17世纪,意大利物理学家伽利略根据实验指出:在水平面上运动的物体之所以会停下来,是因为受到摩擦阻力 的缘故。这里的实验是指“伽利略斜面实验”,关于该实验,你认为下列陈述正确的是() A 该实验是一理想实验,是在思维中进行的,无真实的实验基础,故其结果是荒谬可笑的 B 该实验是以可靠的事实为基础,经过抽象思维,抓住主要因素,忽略次要因素,从而更深刻地反映自然规律 C 该实验否定了亚里士多德“力是维持物体运动的原因”的错误概念 D 该实验为牛顿第一定律的提出提供了有力的实验依据 2.关于力和运动的关系,下列说法正确的是() A 力是产生运动的原因 B 力是维持运动的原因 C 是改变物体运动状态的原因 D 力是物体保持速度的原因

牛顿第一定律

牛顿第一定律 【学习目标】 1、知道牛顿第一定律的内容; 2、理解惯性是物质的一种属性,会解释常见的惯性现象。 【要点梳理】 要点一、牛顿第一定律 一切物体在没有受到力的作用时,总保持静止、或匀速直线运动状态,这就是牛顿第一定律。 对定律的理解: 1、“一切”说明该定律对于所有物体都适用,不是特殊现象。 2、“没有受到力的作用”是定律成立的条件。“没有受到力的作用”有两层含义:一是该物体确定没有受到任何力的作用,这是一种理想化的情况(实际上,不受任何力的作用的物体是不存在的);二是该物体所受合力为零,它的作用效果可以等效为不受任何力的作用时的作用效果。 3、“或”指两种状态必居其一,不能同时存在,也就是说物体在不受力的作用时,原来静止的物体仍保持静止状态,原来运动的物体仍保持匀速直线运动状态。 (4)牛顿第一定律的内涵:物体在不受力的情况下依旧可以保持原有的运动状态,说明力不是维持物体运动的原因,而是使物体运动状态发生改变的原因。或者说:物体的运动不需要力来维持,要改变物体的运动状态,必须对物体施加力的作用。 5、牛顿第一定律不能用实验直接验证,而是在实验的基础上通过分析、概括、推理总结出来的。 6、牛顿第一定律是关于力与运动关系的规律,它反映了物体在不受力(或受合力为零)时的运动规律,在不受任何力时,物体要保持原有的运动状态不变。 要点二、惯性 一切物体都有保持原来运动状态不变的性质,我们把这种性质叫做惯性。 对惯性的理解。 1、一切物体都有惯性,一切物体是指无论是气体、液体、还是固体;无论是静止还是运动;无论受力还是不受力都具有惯性。惯性是物体本身的一种属性。 2、惯性指物体保持静止状态或匀速直线运动状态不变的性质。即静止的物体总要保持静止状态,运动的物体总要保持匀速直线运动状态。 3、惯性是物体的属性,不是力。因此在提到惯性时,只能说“物体具有惯性”,或“由于惯性”,而不能说“受到惯性作用”或“惯性力”等。惯性只有大小,惯性的大小仅取决于物体的质量,质量大,惯性也大。 【典型例题】 类型一、牛顿第一定律 1、(2015?峄城区校级二模)竖直向下加速下落的雨滴,假设雨滴下落到某高度时所受的力全部消失,则雨滴将() A.向下做匀速直线运动B.向下做加速直线运动 C.向下做减速直线运动D.静止不动 【答案】A 【解析】由牛顿第一定律可知,雨滴下落到某高度时所受的力全部消失,雨滴将保持原来的速度与方向

《牛顿第一定律》教学设计【高中物理必修1(人教版)】

《牛顿第一定律》教学设计教材分析 牛顿第一定律是牛顿力学的基石,它纠正了自亚里士多德以来长达近两千年的的错误观点,改变了人类的自然观和世界观,对物理学的发展有重大影响。教材中介绍的伽利略的理想实验也是一种重要的思想方法,教材主要思想是引导学生体会科学家对运动学研究的发展历程。教师在教学中注要注意以下两点:一、让学生参与得出牛顿第一定律的思维过程;其二、让学生感受科学的思想方法。 教学目标 知识与技能: (1)了解科学家探索力和运动关系的过程。 (2)理解牛顿第一定律的内容及意义。 (3)理解惯性,知道质量是描述物体惯性的物理量。 (4)理解惯性和力的关系。 过程与方法: (1)在用伽利略斜面实验研究力和运动关系的过程中,渗透理想实验这种科学研究方法。(2)培养学生严谨的逻辑推理能力;通过学生对历史演变过程的“亲身”参与,培养他们深度分析和思考的能力;通过对生活实例的分析,培养学生理论联系实际的能力。 情感、态度与价值观: (1)让学生感受科学探究过程的艰辛,感受科学之美和科学的精神。 (2)在学习牛顿第一定律建立的过程中,学习伽利略与牛顿等科学家的创造性思维的品质和敢于质疑、坚持真理的献身精神。 教学重难点 重点:牛顿第一定律及得出的历史过程 难点:对惯性及力与惯性关系的理解

课前准备 小车,自制教具:气垫光盘、空气惯性演示仪等,导学案、微课、图片、视频、课件及拓展作业 教学过程 一、新课引入 教师活动:展示图片、播放视频,引导学生回答问题:由四位科学家的图片→都曾研究“力与物体运动状态”的关系→提出问题:什么是力?什么是物体的运动状态。 学生活动:思考与讨论,回答问题。 1、四位科学家:认识与了解古希腊的哲学家、教育家、科学家亚里士多德、意大利的科学家伽利略、英国的科学家牛顿、法国的科学家笛卡尔在运动学上所做出的贡献。 2、力:物体对物体的相互作用; 运动状态:即物体的运动情况,用速度来描述。 二、牛顿运动定律得出的历史过程 教师活动:1、演示小车实验,引导学生观察并回答:小车相对于地面的运动状态是什么?如何改变小车的运动状态?小车在运动过程中运动状态是否改变?为什么改变? 进而使学生初步认识到“力是改变物体运动状态的原因”。 2、通过实验“小车拉木块”给出亚里士多德的观点,比较:哪种观点正确? 3、演示自制教具“气垫光盘”,并让学生分组实验,使学生对比前后两种情况,引导学生思考并回答:前后两种情况的不同?得出什么结论?如果再合理的外推:假如…,又会是什么结论?通过实验,学生更加坚定亚里士多德的观点错误,引导学生思考:为什么同学们很快认识到的错误观点在历史上竟然维持了近两千年? 4、第一个勇于提出质疑并探索的人是伽利略,激发学生去寻找伽利略研究方法:阅读教材。在此基础上,与学生一起探索伽利略的研究思路:提出质疑→事实情景→合理外推→大胆猜想→理想实验。 5、在有了伽利略正确结论的基础上,引发学生思考:在此过程中,你学习到了哪些精神或方法?

用牛顿定律解决问题(一)

第6节 用牛顿定律解决问题(一) 理解领悟 牛顿第二定律揭示了运动和力的关系,结合运动学公式,我们可以从物体的受力情况确定物体的运动情况,也可以从物体的运动情况确定物体的受力情况。本课便涉及这两类应用牛顿运动定律解决的一般问题。 1. 力和运动关系的两类基本问题 关于运动和力的关系,有两类基本问题,那就是: ① 已知物体的受力情况,确定物体的运动情况; ② 已知物体的运动情况,确定物体的受力情况。 2. 从受力确定运动情况 已知物体受力情况确定运动情况,指的是在受力情况已知的条件下,要求判断出物体的运动状态或求出物体的速度和位移。处理这类问题的基本思路是:先分析物体的运动情况求出合力,根据牛顿第二定律求出加速度,再利用运动学的有关公式求出要求的速度和位移。 3. 从运动情况确定受力 已知物体运动情况确定受力情况,指的是在运动情况(如物体的运动性质、速度、加速度或位移)已知的条件下,要求得出物体所受的力。处理这类问题的基本思路是:首先分析清楚物体的受力情况,根据运动学公式求出物体的加速度,然后在分析物体受力情况的基础上,利用牛顿第二定律列方程求力。 4. 加速度a 是联系运动和力的纽带 在牛顿第二定律公式(F=ma )和运动学公式(匀变速直线运动公式v=v 0+at , x=v 0t+21at 2, v 2-v 02=2ax 等)中,均包含有一个共同的物理量——加速度a 。 由物体的受力情况,利用牛顿第二定律可以求出加速度,再由运动学公式便可确定物体的运动状态及其变化;反过来,由物体的运动状态及其变化,利用运动学公式可以求出加速度,再由牛顿第二定律便可确定物体的受力情况。 可见,无论是哪种情况,加速度始终是联系运动和力的桥梁。求加速度是解决有关运动和力问题的基本思路,正确的受力分析和运动过程分析则是解决问题的关键。 5. 解决力和运动关系问题的一般步骤 牛顿第二定律F=ma ,实际上是揭示了力、加速度和质量三个不同物理量之间的关系。方程左边是物体受到的合力,首先要确定研究对象,对物体进行受力分析,求合力的方法可以利用平行四边形定则或正交分解法。方程的右边是物体的质量与加速度的乘积,要确定物体的加速度就必须对物体的运动状态进行分析。 由此可见,应用牛顿第二定律结合运动学公式解决力和运动关系的一般步骤是: ① 确定研究对象; ② 分析研究对象的受力情况,必要时画受力示意图; ③ 分析研究对象的运动情况,必要时画运动过程简图; ④ 利用牛顿第二定律或运动学公式求加速度; ⑤ 利用运动学公式或牛顿第二定律进一步求解要求的物理量。 6. 教材中两道例题的说明 第1道例题已知物体受力情况确定运动情况,求解时首先对研究的物体进行受力分析,根据牛顿第二定律由合力求出加速度,然后根据物体的运动规律确定了物体的运动情况(末

说课稿-人教版-物理-高中-必修一-《牛顿第二定律》

《牛顿第二定律》说课稿 尊敬的各位评委老师,大家上午好!我是应聘高中物理的1号考生,今天我抽到的说课题目是《牛顿第二定律》。下面我将从说教材、说学情、说教法、说学法、说教学程序、说板书设计六个方面来开始我的说课。 一、说教材 (一)、教材的地位和作用 ] 《牛顿第二定律》选自人教版高中物理必修1第四章第三节的内容。本节的主要内容是在上节实验的基础上,通过分析说明,提出了牛顿第二定律的具体表述,得到牛顿第二定律的数学表达式。牛顿第二定律它是在实验基础上建立起来的重要规律,也是动力学的核心内容,是牛顿第一定律的延续,也是整个运动力学理论的核心规律,因此本节内容是本章的重点和中心内容,它在力学中占有很重要的地位,反映了力、加速度、质量三个物理量之间的定量关系,是一条适用于惯性系中的各种机械运动的基本定律,是经典牛顿力学的一大支柱。 (二)、教学目标 (过渡语)根据以上对教学内容和结构的分析,又考虑到高一年级学生的知识水平,我制定了以下三维教学目标: 知识与技能目标:能够准确的描述牛顿第二定律的内容;知道力的国际单位制单位“牛顿”的物理意义;能从同时性、矢量性等各个方面深入理解牛顿第二定律;能理解牛顿第二定律为什么是连接运动学和动力学的桥梁。 过程与方法目标:通过上节课的实验,归纳得到物体的加速度与力、质量的关系,进而总结得到牛顿第二定律,培养概括能力和分析推理能力;能从生活中的常见现象中抽象出模型利用牛顿第二定律加以解释。 情感态度与价值观目标:初步体会牛顿第二定律在认识过程中的有效性和价值;通过讨论交流,营造良好的学习氛围,增强班级凝聚力,对物理学科更加热爱。 (三)、教学重点、难点: (过渡语)基于对教材的分析和设定的三维教学目标,确定了教学重难点:

用牛顿定律解决问题

第六节 用牛顿定律解决问题(一) 教学要求: 1、进一步学习分析物体的受力情况,并能结合物体的运动情况进行受力分析。 2、掌握应用牛顿运动定律解决动力学问题的基本思路方法。 3、学会如何从牛顿运动定律入手求解有关物体运动状态参量。 4、学会根据物体运动状态参量的变化求解有关物体的受力情况。 主要内容: 力是使物体产生加速度的原因,受力作用的物体存在加速度.我们可以结合运动学知识, 解决有关物体运动状态变化的问题.另一方面,当物体的运动状态变化时,一定有加速度, 我们可以由加速度来确定物体的受力. 一、动力学的两类基本问题 1.已知物体的受力情况,要求确定物体的 2.已知物体的运动情况,要求推断物体的 二、用牛顿第二定律解题的一般方法和步骤 1.确定研究对象 2.进行受力分析和运动状态分析,画出受力的示意图 3.建立坐标系,根据定理列方程 4.统一单位,代入数据求解 检查所得结果是否符合实际,舍去不合理的解. 课本例题讲解 随堂练习 1.一轻质弹簧上端固定,下端挂一重物,平衡时弹簧伸长了4cm .再将重物向下拉1cm , 然后放手.则在刚放手的瞬间,重物的加速度是(取g=10m/s 2)( ) A .2.5m/s 2 B.7.5 m/s 2 C.10 m/s 2 D.12.5 m/s 2 2.如图所示,车沿水平地面做直线运动,车厢内悬挂在车顶上小球与悬点 的连线与竖直方向的夹角为θ,放在车厢底板上的物体A 跟车厢相对静止.A 的质量为m ,则A 受到的摩擦力的大小和方向是: A .mgsinθ,向右 B. mgtanθ,向右 C. mgcosθ, 向左 C. mgtanθ, 向左 3.质量为2kg 的质点,在两个力F 1=2N ,F 2=8N 的作用下,获得的加速度大小可能是:( ) A .1m/s 2 B.3m/s 2 C.6m/s 2 D.4m/s 2 4.一质量为m 的物体,在水平恒力F 作用下沿粗糙水平面由静止开始运动,经时间t 后速 度为v .为使物体的速度增为2v ,可以采用的办法是( ) A .将物体的质量减为原来的1/2,其他条件不变 B .将水平力增为2F ,其他条件不变. C .将时间增为2t ,其他条件不变. D .将物体质量、水平恒力和时间都增为原来的两倍. 5.质量为m 的木块,以初速v 0能在水平面上滑行的距离为s .如在木块上再粘一个质量为 m 的木块,仍以初速v 0在同一水平面上滑行.它们能滑行的距离为 ( ) A . 2s B .2s . C .4 s D .s A

1牛顿第一定律

第四章牛顿运动定律 §4.1牛顿第一定律(学案) 蓬私高一物理组 2011/11/19 班级姓名学号____________ 一、考点自学 一、历史的回顾: 1.亚里士多德的观点: 在研究物体运动原因的过程中,亚里士多德的结论是:___________________________,物体才能运动;_________________,物体就要静止。即力是_________物体运动的原因。 2.(伽利略)理想实验的魅力: (1)伽利略注意到,当一个球沿斜面向下滚动时,它的速度______,而向上滚动时,它的速度______。他由此猜想,当球沿水平面滚动时,它的速度应该是________,而实际上球在水平面上滚动时会越来越慢,伽利略认为是由于_____________的作用,他推断,若____________________,球将永远滚下去。 (2)伽利略通过研究理想斜面实验,得出的结论是:力不是________________的原因,而恰恰是______________________的原因。 3. 笛卡儿 补充和完善了伽利略的观点,明确提出:如果运动中的物体没有,它将继续以同一速度沿同一直线运动,既不也不。 二、牛顿第一定律 1.内容:牛顿第一定律的内容:一切物体总保持___________________或___________,除 非__________________迫使它____________________。 2.理解: ⑴明确了惯性的概念。 ⑴揭示了物体在不受力时的状态:匀速直线运动或静止状态 ⑵揭示了力的作用:力是改变物体运动状态的原因,不是维持物体运动状态的原因. 注意:牛顿第一定律所描述的物体不受外力的状态,只是一种理想化状态,所以不能用实验来验证。 3.惯性:一切物体都有保持匀速直线运动状态或静止状态的性质,这种性质叫惯性。 理解:①惯性反映的是改变物体运动状态的难易程度。 ②一切物体都具有惯性,惯性是物体的固有属性,不论物体处于什么状态,都具有惯 性。 ③质量是惯性大小的唯一量度,惯性只与物体的质量有关,与运动与否、速度大小、 受力情况都无关。

人教版必修一《牛顿第二定律》教案

第四章人教版必修一《牛顿第二定律》教案顿运动 定律 §4.3 牛顿第二定律(学案) 蓬私高一物理组 2011/11/20 班级姓名学号____________ 一、考点自学 1.物体加速度的大小跟它受到的成正比、跟它的成反比,加速度的方向跟 的方向相同。 2.表达式:F= ,F为物体所受的。 3.国际单位制中,力的单位是,符号。 4.力的定义:是质量为1Kg的物体产生的加速度的力,称为1N,即 1N=1 。 5.比例系数K的含义 关系式F=Kma中的比例系数K的数值由F、m、a三量的单位共同决定,三个量都取国际单位,即三量分别取、、作单位时,系数K= 。6.用牛顿第二定律解题的一般方法和步骤 (1)根据题意正确选取研究对象。 (2)对研究对象进行分析和分析,画出受力图。 (3)建立坐标系,即选取正方向,根据牛顿第二定律列方程。 (4)统一已知量单位,求解方程。 (5)检查所得结果是否符合实际,舍去不合理的解,必要时对结果进行讨论。 二、典例分析 题型一、对力、加速度、速度关系的理解 例1 如图所示,一轻质弹簧一端固定在墙上的O点,自由伸长到B点.今用一小物体m把弹簧压缩到A点(m与弹簧不连接),然后释放,小物体能经B点运动到C点而静止.小物体m与水平面间的动摩擦因数μ恒定,则下列说法中正确的是( ) A.物体从A到B速度越来越大 B.物体从A到B速度先增加后减小 C.物体从A到B加速度越来越小 D.物体从A到B加速度先减小后增加

题型二、对牛顿第二定律理解和应用 例2、如图所示,质量为4kg 的物体静止在水平面上,物体与水平面间的动摩擦因数为0.5。物体受到大小为20N 与水平方向成37°角斜向上的拉力F 作用时,沿水平面做匀加 速运动,求物体加速度的大小。(g=10 m/s 2,sin37°=0.6 ,cos37°=0.8 ) 题型三、牛顿第二定律的瞬时性 例3、 如图(甲)、(乙)所示,图中细线均不可伸长,两小球均处于平衡状态且质量相同.如果突然把两水平细线剪断,剪断瞬间小球A 的加速度的大小为________,方向为________;小球B 的加速度的大小为________,方向为________;( ?=37θ, g=10 m/s 2,sin37°=0.6 , cos37° =0.8 ) 变式练习:质量均为m 的A 、B 两个小球之间系一个质量不计的弹簧,放在光滑的台面上.A 紧靠墙壁,如图436所示,今用恒力F 将B 球向左挤压弹簧,达到平衡时,突然将力撤去,此瞬间( ) A .A 球的加速度为F/(2m) B .A 球的加速度为零 C .B 球的加速度为F/(2m) D .B 球的加速度为F/m 三、堂堂清练习 1.在牛顿第二定律F =kma 中有关比例系数k 的下列说法中正确的是( ) A .在任何情况下都等于1 B .k 的数值是由质量、加速度和力的大小决定的 C .k 的数值是由质量、加速度和力的单位决定的 D .在任何单位制中,k 都等于1 2.下列对牛顿第二定律的表达式F =ma 及其变形公式的理解,正确的是( ) A .由F =ma 可知,物体所受的合力与物体的质量成正比,与物体的加速度成反比 B .由m =F a 可知,物体的质量与其所受的合力成正比,与其运动的加速度成反比 C .由a =F m 可知,物体的加速度与其所受的合力成正比,与其质量成反比 D .由m =F a 可知,物体的质量可以通过测量它的加速度和它所受到的合力而求出 3.(2010年高一期末)天空有一漂浮的处于静止状态的物体,当太空人甲单独给予力F 1= 10 N 作用该物体时,航天加速仪显示该物体的加速度大小为5 m/s 2 ;若太空人乙单独给予

用牛顿定律解决问题(一)--每课一练

4.6 用牛顿运动定律解决问题(一) 作业 1.粗糙水平面上的物体在水平拉力F 作用下做匀加速直线运动,现使F 不断减小,则在滑动过程中( ) A .物体的加速度不断减小,速度不断增大 B .物体的加速度不断增大,速度不断减小 C .物体的加速度先变大再变小,速度先变小再变大 D .物体的加速度先变小再变大,速度先变大再变小 答案 D 解析 合外力决定加速度的大小,滑动过程中物体所受合外力是拉力和地面摩擦力的合力.因为F 逐渐减小,所以合外力先减小后反向增大,而速度是增大还是减小与加速度的大小无关,而是要看加速度与速度的方向是否相同.前一阶段加速度与速度方向同向,所以速度增大,后一阶段加速度与速度方向相反,所以速度减小,因此D 正确. 2.A 、B 两物体以相同的初速度滑上同一粗糙水平面,若两物体的质量为m A >m B ,两物体与粗糙水平面间的动摩擦因数相同,则两物体能滑行的最大距离x A 与x B 相比为( ) A .x A =x B B .x A >x B C .x A

用牛顿定律解决问题教案

用牛顿定律解决问题(二) ★新课标要求 (一)知识与技能 1、理解共点力作用下物体平衡状态的概念,能推导出共点力作用下物体的平衡条件。 2、会用共点力平衡条件解决有关力的平衡问题。 3、通过实验认识超重和失重现象,理解产生超重、失重现象的条件和实质。 4、进一步熟练掌握应用牛顿运动定律解决问题的方法和步骤。 (二)过程与方法 1、培养学生的分析推理能力和实验观察能力。 2、培养学生处理三力平衡问题时一题多解的能力。 3、引导帮助学生归纳总结发生超重、失重现象的条件及实质。 (三)情感、态度与价值观 1、渗透“学以致用”的思想,有将物理知识应用于生产和生活实践的意识,勇于探究与日常生活有关的物理问题。 2、培养学生联系实际,实事求是的科学态度和科学精神。 ★教学重点 1、共点力作用下物体的平衡条件及应用。 2、发生超重、失重现象的条件及本质。 ★教学难点 1、共点力平衡条件的应用。 2、超重、失重现象的实质。正确分析受力并恰当地运用正交分解法。 ★教学方法 1、创设情景——导入目标一一分析推理——归纳总结一一根据理论提出猜想——实验验证。 2、通过实例分析、强化训练,使学生能够更加熟练地运用牛顿运动定律解决问题。★教学用具:

多媒体、体重计、装满水的塑料瓶等。 ★教学过程 (一)引入新课 开门见山,阐明课题:这节课我们继续用牛顿运动定律解决问题。 (二)进行新课 教师活动:指导学生完成实验: 1、甲站在体重计上静止,乙说出体重计的示数。 提出问题: 2、甲突然下蹲时,体重计的示数是否变化怎样变化(乙说出示数的变化情 况:变小) 3、甲突然站起时,体重计的示数是否变化怎样变化(乙说出示数的变化情 况:变大) 学生活动:甲乙两位同学到讲台上,甲站在体重计上,乙观察体重计的示数并报给全班同学。 点评:由实验引入课题,激发学生的学习热情和求知欲。 教师活动:1、引导学生分析,物体保持静止或做匀速直线运动,其共同点是什么(速度保持不变,就是状态不变) 2、给出平衡状态的概念。 学生活动:学生思考、交流、作答。 可能出现的答案:1、仅受重力和支持力,都是属于二力平衡。2、速度保持 不变态的概念并让学生理解 点评:给出平衡状态的概念并让学生理解。 教师活动:提问学生:那么共点力作用下物体的平衡条件是什么 和学生一起对答案进行评析。 学生活动:学生根据上面的实例和平衡状态的概念积极思考并回答: 因为物体处于平衡状态时速度保持不变,所以加速度为零,根据牛顿第二定 律得:物体所受合力为零。

高中物理(人教版)必修一-4.3牛顿第二定律

4.3牛顿第二定律 【学习者分析】 牛顿第二定律是通过实验归纳总结出的规律,它反映了加速度跟合外力、质量的定量关系。牛顿第二定律的数学表达式简单完美,记住并不难。但要全面、深入理解该定律中各物理量的意义和相互联系,牢固掌握定律的物理意义和广泛的应用前景,对学生来说是较困难的。这一难点在本课中可以通过定律的辨析和有针对性的练习加以深化和突破,另外,还有待在后续课程的学习和应用过程中去体会和理解。学生很难明确对于牛顿第二定律应深入理解、全面掌握,即理解各物理量和公式的内涵和外延,避免重公式、轻文字的现象。数学语言可以简明地表达物理规律,使其形式完善、便于记忆,但它不能替代文字表述,更不能涵盖与它关联的运动和力的复杂多变的情况。学生常常会将活的规律变为死的公式。【教材分析】 高中物理新课程标准中要求学生对牛顿第二定律有一定的理解和掌握。要达到该标准不仅要使学生了解牛顿第二定律的内容,更重要的是让学生认识到牛顿第二定律在现实生活中应用的重要性,以及如何利用该定律来解决实际问题,更不能忽略要在教学过程中时刻注意对学生学习能力的培养。 本课以必修1教材为依据。通过对牛顿第二定律定律的探求过程,渗透物理学研究方法,是整个物理教学的重要内容和任务。这是人类认识世界的常用方法。牛顿第二定律通过加速度将物体的运动和受力紧密联系,使前三章构成一个整体,这是解决力学问题的重要工具。定义力的单位“牛顿”f=kma使得k=l,得到牛顿第二定律的简单形式f=ma。使用简捷的数学语言表达物理规律是物理学的特征之一,但应知道它所对应的文字内容和意义。所以本节课不只是让学生掌握牛顿第二定律,更应知道定律是如何得出的。 【教学目标】 1.知识与技能: (1)掌握牛顿第二定律的文字内容和数学公式; (2)理解公式中各物理量的意义及相互关系。 (3)知道在国际单位制中力的单位“牛顿”是怎样定义的。 (4)会用牛顿第二定律的公式进行有关的计算 2.过程与方法: (1)以实验为基础,归纳得到物体的加速度跟它的质量及所受外力的关系,进而总结出牛顿第二定律。 (2)培养学生的概括能力和分析推理能力。 3.情感态度与价值观: (1)渗透物理学研究方法的教育。

用牛顿定律解决问题 二

4.6用牛顿定律解决问题(二) 学习目标: 1. 知道连结体问题。 2. 理解整体法和隔离法在动力学中的应用。 3. 初步掌握连结体问题的求解思路和解题方法。 学习重点: 连结体问题。 学习难点: 连结体问题的解题思路。 主要内容: 一、连结体问题 在研究力和运动的关系时,经常会涉及到相互联系的物体之间的相互作用,这类问题称为“连结体问题”。连结体一般是指由两个或两个以上有一定联系的物体构成的系统。 二、解连的基本方法:整体法与隔离法 当物体间相对静止,具有共同的对地加速度时,就可以把它们作为一个整体,通过对整体所受的合外力列出整体的牛顿第二定律方程。当需要计算物体之间(或一个物体各部分之间)的相互作用力时,就必须把各个物体(或一个物体的各个部分)隔离出来,根据各个物体(或一个物体的各个部分)的受力情况,画出隔离体的受力图,列出牛顿第二定律方程。 F A B F A B F V B A

许多具体问题中,常需要交叉运用整体法和隔离法,有分有合,从而可迅速求解。 【例一】如图所示,置于光滑水平面上的木块A 和B ,其质量为m A 和m B 。当水平力 F 作用于A 左端上时,两物体一起作加速运动,其A 、B 间相互作用力大小为 N 1;当水平力F 作用于B 右端上时,两物体一起做加速度运动,其A 、B 间 相互作用力大小为N 2。则以下判断中正确的是( ) A .两次物体运动的加速度大小相等 B .N 1+N 2

高中物理必修一牛顿第二定律

教学设计:高中课程标准.物理(人教版)必修1 主 备 人:XXXX 学科长审查签名:XXXX §4.3牛顿第二定律 一、内容及其解析 1、内容:牛顿第二定律的内容及怎样使用牛顿第二定律解题。 2、解析:要会使用牛顿第二定律解题,首先要对牛顿第二定律:F=ma ,有一个比较深刻的理解。 二、目标及其解析 1、理解加速度与力和质量的关系。 思考题1:加速度a 与力有什么关系,加速度a 与质量m 又有什么关系? 2、理解牛顿第二定律的内容,知道定律的确切含义。 思考题2:公式F=ma 中的F 与m 的方向有什么关系? 三、教学问题诊断分析 学生能记住牛顿第二定律及公式F=ma ,但不会使用公式F=ma 分析、解决问题。原因是多方面的,一方面是学生对力的合成和分解掌握不到位,另一方面是学生对匀变速直线运动理解掌握不到位,再有就是学生对公式F=ma 理解不透彻。 四、教学支持条件分析 为了使学生能透彻的理解和记住公式F=ma ,本节准备以解例题的形式来加深对牛顿第二定律定的理解和掌握。 五、教学过程设计 一、教学基本流程 复习加速度a 与力F 和质量m 的关系→引出牛顿第二定律→使用牛顿第二定律解决例题→→做练习、小结 二、教学情景 1、导入: 问题1:加速度与力有什么关系? 问题2:加速度与质量有什么关系? 2、牛顿第二运动定律: 物体的加速度跟作用力成正比,跟物体的质量成反比,且加速度的方向跟引起这个加速度的力的方向相同。 (2)公式表示:a ∝m F 或者F ∝ma 即:F=kma 师生互动:a :如果每个物理量都采用国际单位,k =1; b :力的单位(牛顿)的定义:使质量为1千克的物体产生1m/s 2的加速度的力叫做1 牛顿。 问题3:上面我们研究的是物体受到一个力作用的情况,当物体受到几个力作用时,上述关系可推广为什么? 设计意图:物体的加速度跟所受的合力成正比,跟物体的质量成反比,加速度的放心跟合力的方向相同。即F 合=ma 。 师生互动:介绍F 合和a 的瞬时对应关系 a :只有物体受到力的作用,物体才具有加速度。 b :力恒定不变,加速度也恒定不变。 c :力随着时间改变,加速度也随着时间改变。 d :力停止作用,加速度也随即消失。 3、牛顿第二定律的应用 例题1:(课本例题) (1)学生阅读例题内容 (2)分析: 要求物体的加速度?→?质量m 已知?→?必须先求F 1

牛顿第一定律

牛顿第一定律 一、知识要点 一)牛顿第一定律(又叫惯性定律) 1、内容:一切物体在没有受到力的作用的时候,总保持静止状态或匀速直线运动状态 2、牛顿第一定律的理解 1)牛顿第一定律是通过分析、概括、推理得出的,不可能用实验直接来验证。 2)对任何物体都适用,不论固体、液体、气体。 3)力是改变物体运动状态的原因,力不是维持物体运动状态的原因. 4)运动的物体不受力时做匀速直线运动(保持它的运动状态) 5)静止的物体不受力时保持静止状态(保持它的静止状态) 二)惯性 1、定义:物体保持原来运动状态不变的特性叫惯性。 即:运动的物体保持它的运动状态,静止的物体保持它的静止状态 2、惯性的理解 1)一切物体任何时候都具有惯性.(静止的物体具有惯性,运动的物体也具有惯性).牛顿第一定律表明,一切物体都具有保持静止状态或匀速直线状态的性质,因此牛顿第一定律也叫惯性定律。 2)惯性是物体本身的属性,惯性的大小与物理的质量的大小有关.质量越大,惯性越大。 质量越大的物体其运动状态越难改变。惯性的大小与物体的形状、运动状态、位置及受力情况毫无关系。 3)惯性是物体本身固有的一种属性。一切物体任何时候、任何状态下都有惯性。惯性不是力,不能说惯性力的作用,惯性的大小只与物体的质量有关,与物体的速度、物体是否受力等因素无关。 3、防止惯性的现象带来的危害:汽车安装安全气襄,汽车安装安全带。 利用惯性的现象:跳远助跑可提高成绩,拍打衣服可除尘 4、解释现象: 例:汽车突然刹车时,乘客为何向汽车行驶的方向倾倒? 答:汽车刹车前,乘客与汽车一起处于运动状态,当刹车时,乘客的脚由于受摩擦力作用,随汽车突然停止,而乘客的上身由于惯性要保持原来的运动状态,继续向汽车行驶的方向运动,所以汽车突然刹车时,乘客为何向汽车行驶的方向倾倒。 二、基础知识检测 1.在“探究阻力对物体运动的影响”的实验中,让小车每次从斜面顶端处由静止滑下,改变水平面的粗糙程度,测量小车在水平面上 滑行的距离,结果记录在下表中. 接触面毛巾棉布木板 小车受到的阻力大小大较大小 小车运动的距离s/cm 18.30 26.83 1)第三次实验中,小车在水平木板上滑行时的停止位置如图所示,读出小车在木板上

相关主题