搜档网
当前位置:搜档网 › 基于FLUENT的混合器内部流场数值模拟.pdf

基于FLUENT的混合器内部流场数值模拟.pdf

基于FLUENT的混合器内部流场数值模拟.pdf
基于FLUENT的混合器内部流场数值模拟.pdf

静态混合器的设置

静态混合器的设置HG/T 20570.20—95

1 应用范围和类型 1.0.1应用范围 静态混合器应用于液-液、液-气、液-固、气-气的混合、乳化、中和、吸收、萃取反应和强化传热等工艺过程,可以在很宽的流体粘度范围(约106mPa·s)以内,在不同的流型(层流、过渡流、湍流、完全湍流)状态下应用,既可间歇操作,也可连续操作,且容易直接放大。以下分类简述。 1.0.1.1 液-液混合:从层流至湍流或粘度比大到1:106mPa·s的流体都能达到良好混合,分散液滴最小直径可达到1~2μm,且大小分布均匀。 1.0.1.2 液-气混合:液-气两相组份可以造成相界面的连续更新和充分接触,从而可以代替鼓泡塔或部分筛板塔。 1.0.1.3 液-固混合:少量固体颗粒或粉未(固体占液体体积的5%左右)与液体在湍流条件下,强制固体颗粒或粉未充分分散,达到液体的萃取或脱色作用。 1.0.1.4 气-气混合:冷、热气体掺混,不同组份气体的混合。 1.0.1.5 强化传热:静态混合器的给热系数与空管相比,对于给热系数很小的热气体冷却或冷气体加热,气体的给热系数提高8倍;对于粘性流体加热提高5倍;对于大量不凝性气体存在下的冷凝提高到8.5倍;对于高分子熔融体可以减少管截面上熔融体的温度和粘度梯度。 1.0.2静态混合器类型和结构 1.0. 2.1 本规定以SV型、SX型、SL型、SH型和SK型(注①)五种类型的静态混合器系列产品为例编制。 1.0. 2.2 由于混合单元内件结构各有不同,应用场合和效果亦各有差异,选用时应根据不同应用场合和技术要求进行选择。 1.0. 2.3 五种类型静态混合器产品用途和性能比较见表1.0.2-1和表1.0.2-2,结构示意图见图1.0.2。静态混合器由外壳、混合单元内件和连接法兰三部分组成。

静态混合器

全世界经济发展的同时,我们周围的环境在不断恶化。在我国尤其如此,近二十年经济的迅猛发展给环境带来严重影响。我国境内的河流受污染情况十分严重,大多数河流的水质都出现了不同程度的下降。地球上的淡水资源是有限的,在我国的北方大部分地区水资源是缺乏的,因此我国实施了南水北调工程。日益严重的水污染与水资源短缺,使得有效的水处理技术变得越来越重要,人们从不同的方向改进着水技术。其中,混凝技术是一种常见的水处理技术,得到广泛的认可和推广。水的混凝机理十分复杂,一直得到广大学者的关注。一般认为:混凝过程中包含凝聚和絮凝两个步骤,其中凝聚是在瞬间内完成的,它是指化学药剂与水接触形成小颗粒的过程,在水处理过程中表现为使用各种混合设备将药剂与水均匀地混合,其均匀的程度关系着混凝效果优劣;絮凝是指凝聚过程中形成较小颗粒后,它们之间相互碰撞形成较大颗粒并沉降的过程。 影响混合效果的因素主要有三方面:一、废水水质,包括废水中浊度、PH值、水温及共存杂质等;二、混凝剂,包括混凝剂种类、投加量和投加顺序等;三、水利条件,主要指混合的方式。混合方式有:管式混合、水力混合、机械搅拌混合以及水泵混合等。其中管式混合主要形式有管式静态混合器、孔板式、文氏管道混合器、扩散混合器等;机械搅拌混合是在池内安装搅拌装置,以电动机驱动搅拌器将水与药剂混合;水泵混合是将药剂投放在水泵吸水管或吸水喇叭口处,利用水泵叶片的高速旋转来达到快速混合。 在水处理过程中,管式静态混合器具有高效混合、节约用药、设备小等特点,它是由一组组混合元件组成,而混合元件组数的确定应根据水质、混合效果而定。 在不需外动力情况下,水流通过混合元件时可以产生较大范围对流、返流和漩涡等运动,这些均能促使药剂均匀的分布(图1-1所示)。在选择管式静态混合器时,其管内流速应控制在经济流速范围内,当水流量较大所选管径大于500毫米时速度范围可以适当地放宽。混凝剂的入口方式以较大的速度,射流进入混合器管道内为佳。实际应用中管式静态混合器的水头损失一般在0.4-0.6米范围内,条件允许时可将管径放大50-100毫米,可以减少水头损失。本文的主要研究对象即为管式静态混合器。 2静态混合器 静态混合器(static mixer)是一种没有运动部件的高效混合设备,它在管道内加入静止元件,其主要包括三类:一类对流体起切割作用、二是使流体发生旋转、三是使流道形状与截面积变化(图1-2至1-6),然后依靠流体自身的动力(压力降),在流经元件的时候实现对流体的混合,被誊为是一种“虽然非常简单,却能发挥巧妙的作用”的工业元件。它可以在很大的流体粘度范围内,不同的流动状态下应用,既可间歇的又可连续的操作。其能使不同的流体达到均匀混合,根本原因在于混合元件使流体产生分流、拉伸、旋转、合流等运动,过程中增强了湍动,这些均极大地促进了对流扩散和紊动扩散,从而造成完善的径向混合效果。静态混合器有许多优点,与动态混合器相比,其结构简单、能耗低、安装维修简便、混合性

Kenics型静态混合器在高雷诺数下的压力降研究_陈立波

第26卷第12期2009年12月 机 电 工 程 M echan ical&E l ectrical Eng i nee ri ng M agazi ne V o.l 26N o .12D ec .2009 收稿日期:2009-06-22 基金项目:浙江省自然科学基金资助项目(Y5080271) 作者简介:陈立波(1985-),男,浙江台州人,主要从事混合器、流体机械等数值计算方面的研究.E-m ai:l hzcl b100@yahoo .co https://www.sodocs.net/doc/fc12660510.html, 通信联系人:潘华辰,男,教授.E-m ai:l huac h en-pan @yahoo .co m K enics 型静态混合器在高雷诺数下的压力降研究 * 陈立波,聂 欣,潘华辰 (杭州电子科技大学机械工程学院,浙江杭州310018) 摘 要:为了获得Ken ics 型静态混合器在高雷诺数下的压力降规律,在雷诺数R e =4100~4000000范 围内,采用计算流体力学(CFD)方法,通过对5种不同长径比的Ken ics 静态混合器的内部流动进行数值模拟来获取数据。量纲分析表明了Ken ics 静态混合器的压力降特性可以通过3个无量纲参数:摩擦因数C f 、混合器单元长径比AR 、雷诺数R e 来描述。根据数值模拟结果作出了这3个参数的关系曲线,提出了一个新的无量纲压力降关系式。研究结果表明,在雷诺数大于200000时,C f 值趋于恒定,与R e 值无关,同时通过和文献中的实验、计算数据进行比较,证实了压力降曲线和关系式的准确性。关键词:Kenics 型静态混合器;计算流体力学;压力降关系式;无量纲参数中图分类号:TQ 051.7 文献标识码:A 文章编号:1001-4551(2009)12-0108-04 P ressure drop researches for Kenics static m ixer at high R eynol d s num ber C HEN L -i bo ,N I E X in ,P AN H ua -chen (College of M echanical Eng ineering,H angzhou D i anz i Un i vers it y,H angzhou 310018,China) Abstrac t :In order to obta i n t urbu l ent flo w pressure drop rule i n SK static m ixer ,computati onal fl u i d dyna m ics(CFD )me t hod w as app lied t o nu m erica ll y si m u late flo w i n fi ve K en ics static m i xers w ith d iffe rent aspect ra ti o o f a m i x i ng e l em ent(AR )over a w i de range of 4100t o 4000000to get pressure drop datas .D i m ens i ona l analysis revea led tha t t he pressure drop character i stic of the K enics static m i x er can be descr i bed by three d i m ensi onless param eters ,such as t he fr i c tion facto r ,R eyno l ds nu mber ,and aspect rati o o f a m i x i ng e l e m ent .A ccord i ng to the nu m erical si m ulati on datas ,a graph ical su mm ary w as m ade to descri be the re -lati on of the t hree di m ensi onless para m ete rs ,a ne w di m ensi onless pressure drop co rre l a ti on was deve l oped .The resu lts i nd i cate tha t the value o f C f beco m es constant and has no co rre l a ti on w ith the va l ue of Re when t he R eno lds nu m be r i s l a rger t han 200000.T he re liab ility o f the propo sed pressure drop rule and correlati on i s va lida ted by the co m parison w it h various expe ri m en -tal and co m puta ti ona l da ta reported i n t he litera t ure . K ey word s :K enics static m i x er ;co m putationa l fl u i d dyna m i cs(CFD );pressure drop correlati on ;d i m ension l ess param eters 0 引 言 K enics 型静态混合器是一种高效的管式混合设备,内部混合元件为扭曲的螺旋叶片,按左、右旋交错 90 排列。这种特殊的混合元件能实现对单相及两相流体的良好混合,且加工制造相对简单,被广泛应用于食品、化工以及水处理等多个领域 [1] 。 早期研究表明Ken ics 静态混合器压力降( P )为 摩擦因数C f 、雷诺数R e 、混合器总长径比(L P /D )和 u 2 /2的关系式,其中摩擦因数为雷诺数的函数。如W il k i n son 和C liff(R e <50) [2] 、Grace (R e <1000) [3] 、M orr 和M issi o n(Re <100)[4]、Sir(R e <2300)[5] 等各 自总结出了在一定雷诺数范围内的压力降经验公式。H yun -seob song 等 [6] 对该混合器的压力降问题进行了 量纲分析,发现作为无量纲参数的摩擦因数和雷诺数、单元长径比(AR )有关,并通过数值模拟研究总结了这三者之间的关系式,在Re <2000区域和其他文献的 数据吻合良好。V i m a lKum ar 等[7] 通过实验和CFD 模拟详细研究了长径比AR =1.5时,K en i c s 静态混合器在1000

sk型静态混合器

7.静态混合器

静态混合器上尽量不安装流量、温度、压力等指示仪表和检测点,特殊要求时在订货时出图说明。 对于需要在混合器外壳设置换热夹套管时,要在订货时说明。 对于SH系列产品,由于其加工精度高,维修困难,要求使用的介质清洁或能用溶剂倒置清洗,要不就是介质在高温对于SV系列产品,若因流体不清洁而堵塞,可拆卸设备、用水(蒸汽)或溶剂倒置清洗,也可拆掉单元,取对于SK系列的活络单元产品,可将整个单元抽出清洗,但拉出时切忌敲击,以免单元变形。 A、SV型静态混合器 1.产品特性 单元是由一定规格的波纹板组装而成的圆柱体,它的技术性能:最高的分散程度为1-2μm,液-液相的不均匀度为Δ 2.产品型号 规格DN dh Q规格DN dh SV-2.3/2020 2.30.5-1.2SV-5-20/2002005-20 SV-2.3/2525 2.30.9-1.8SV-5-20/2502505-20 SV-3.5/3232 3.5 1.4-2.9SV-5-30/3003007-30 SV-3.5/4040 3.5 2.2-4.5SV-7-30/3503507-30 SV-3.5/5050 3.5 3.5-7SV-7-30/4004007-30 SV-3.5/6565 3.55-12SV-7-30/4504507-30 SV-5/808059-18SV-7-30/5005007-30 SV-5/100100514-28SV-7-30/6006007-30 SV-5-7/1251255-724-34SV-7-30/100010007-30 SV-5-7/1501505-730-60SV-15-30/1200120015-30 SV型外形图

水质工程学课程设计说明书

水质工程学(一)课程设计说明书 1设计任务 此课程设计的目的在于加深理解所学专业理论,培养运用所学知识综合分析和解决实际工程设计问题的初步能力,在设计、运算、绘图、查阅资料和设计手册以及使用设计规X等基本技能上得到初步训练和提高。 1.1设计要求 根据所给资料,设计一座城市自来水厂,确定水厂的规模、位置,对水厂工艺方案进行可行性研究,计算主要处理构筑物的工艺尺寸,确定水厂平面布置和高程布置,最后绘出水厂平面布置图、高程布置图(达到初步设计的深度),并简要写出一份设计计算说明书。 1.2基本资料 1.2.1城市用水量资料 1.2.2原水水质及水文地质资料

(1) 原水水质情况:水源为河流地面水 ⑵水文地质及气象资料 ①河流水位特征 最高水位-1m,,最低水位-5m,常年水位-3m ②气象资料 历年平均气温16.00C,年最高平均气温390C,年最低平均气温-30C,年平均降水量1954.1mm,年最高降水量2634.5mm,年最低降水量1178.7mm。常年主导风向为东南风,频率为78%,历年最大冰冻深度:20cm。 ③地质资料 第一层:回填、松土层,承载力8kg/cm2, 深1~1.5m 第一层:粘土层,承载力10kg/cm2, 深3~4m 第一层:粉土层,承载力8kg/cm2, 深3~4m 地下水位平均在粘土层下0.5m 2水厂选址

厂址选择应在整个给水系统设计方案中全面规划,综合考虑,通过技术经济比较确定。在选择厂址时,一般应考虑以下几个方面: ⑴厂址应选择在工程地质条件较好的地方。一般选在地下水位低、承载力较大、湿陷性等级不高、岩石较少的地层,以降低工程造价和便于施工。 ⑵水厂应尽可能选择在不受洪水威胁的地方。否则应考虑防洪措施。 ⑶水厂应尽量设置在交通方便、靠近电源的地方,以利于施工管理和降低输电线路的造价。并考虑沉淀池排泥及滤池冲洗水排除方便。 ⑷当取水地点距离用水区较近时,水厂一般设置在取水构筑物附近,通常与取水构筑物建在一起;当取水地点距离用水区较远时,厂址选择有两种方案,一是将水厂设置在取水构筑物附近;另一是将水厂设置在离用水区较近的地方。 根据综合因素考虑,将水厂设置在取水构筑物附近,水厂和构筑物可集中管理,节省水厂自用水的输水费用并便于沉淀池排泥和滤池冲洗水排除。 3水厂规模及水量确定 Q生活=240×52000×10-3=12480m3/d Q工业=12480×1.78=22214.4m3/d Q三产=12960×0.82=10233.6m3/d Q工厂=0.5+0.8+0.6+1.1=30000m3/d

基于FLUENT软件的混合器内部流场数值模拟

基于FLUENT的混合器内部流场数值模拟 摘要:本文通过使用FLUENT软件的标准k-ε湍流模型对冷热水混合器进行三维 数值模拟,分析其内部流场变化情况。通过对液体分布器内部流场的分析模拟,能真实反映混合器内部的复杂流动,准确反映混合器内部温度、速度流场,对混合器的设计有很好的指导作用,为混合器的设计提供理论依据。 关键词: CFD;FLUENT;冷热水混合器;三维数值模拟 1.引言: 1.1 混合器应用背景 工程热水恒温混合器,是为适应中央热水工程向大型化、自动化个人性化发展的技术要求而研发的,是为太阳能热水工程和各种生活热水器供水系统专门配套的一种全自动洗浴水恒温控制设备。广泛适用于宾馆、饭店、学校、医院、厂矿、机关及洗浴中心、游泳池等大中小型生活热水系统。由于混合器的广泛使用,混合器内的各个流场也受到内流研究者的广泛关注。 1.2 FLUENT软件背景 FLUENT是美国FLUENT公司开发的集流场、燃烧和热、质量传输以及化学反应于一体的商业CFD软件,也是目前国内外使用最多、最流行的商业软件之一。FLUENT软件的最大特点是具有专门的几何模型制作软件Gambit模块,并可以与CAD连接使用,同时备用很多附加方程添加接口,使用了目前较先进的离散技术和计算精度控制技术,如多层网络法、快速收敛准则以及光滑残差法等,数学模型的离散化合软件计算方法处理较为得当。实际应用中发现,该软件在模拟单相流动或进出口同向或方向流动时,可以得到较好的模拟结果,且具有一定的计算精度。FLUENT软件包主要具有常用的6种湍流数学模型、辐射数学模型、化学物质反应和传递流动模型、污染物质形成模型、相变模型、多相模型、流团移动模型、多孔介质、多孔泵模型等。 FLUENT软件的核心部分是纳维—斯托克斯(Navier-Stokes)方程的求解模块。用压力校正法作为低速不可压流动的计算方法,包括SIMPLE、SIMPLEC、PISO 三种算法,采用有限体积法离散方程,其计算精度和稳定性都要优于传统编程中使用的有限差分法。而对于可压流动采用耦合法,即将连续性方程、动量方程以及能量联立求解。FLUENT软件主要由前处理、求解器以及后处理3大模块组成。采用自行研发的GAMBIT前处理软件来建立几何形状及生成网格,然后由FLUENT 进行求解。 2.控制方程和数值模拟 2.1 控制方程与标准k-ε湍流模型 本文主要分析冷水和热水分别在混合器的两侧沿水平切线方向流入,在容器混合后经过下部渐缩管道流入等径的出流管,然后流入大气。

管式静态混合器流量怎么计算

管式静态混合器流量怎么计算 根据静态混合器连续操作的特点, 定义描述其混合效果的混合度表达式, 并利用不相溶的两相流体混合后的 体积等于它们各自体积之和的原理, 建立动态求取各组分体积分数和流量分数的计算方法和实验装置. 结果表明:利用该方法测定静态混合器的混合效果避免了多点取样,提高了测量的准确性并减少了实验时间,可以用于混合产品质量的在线检测,并为静态混合器的结构设计和工艺设计提供参考依据. 2 管式混合器 混合设备的基本要求是,药剂与水的混合必须均匀,混合设备种类较多,常用的有水泵混合,管式混合,机械混合。水泵混合效果较好,不需要另外建设混合设施,节省动力,大中小型水厂均可以使用,但是采用三氯化铁作为混凝剂时,若投药量较大,药剂对水泵叶轮有轻微的腐蚀作用。当水泵距离反应池较远时,不宜采用水泵混合。机械混合是在池子内安装搅拌设备,以电动机驱动搅拌器使水与药剂混合,机械搅拌的优点是混合效果好,且不受水量变化的影响,适用于各种规模的水厂,缺点是增加机械设备并且相应增加维修费用,目前广泛采用的是管式混合器。 方式优缺点适用条件 管式混合优点: 1.设备简单 2.不占地缺点: 1.当流量减小时可能在中反应混凝 2.一般管道混合效果较差, 但采用静态管式混合器效果好,但水头损失大. 适用于流量变化不大的水厂 混合池混合优点:1.混合效果好 2.某些池型能调节水头高低,适应流量变化缺点:1.占地面积大 2.某些进水方式要带入大量气体适用于大中型水厂 水泵混合优点:1.设备简单 2.混合充分,混合效果好 3.不消耗动能缺点:吸水管较多时投药设备要增加,安装管理复杂适用于一级泵房距离处理构筑物120 米以内的各种规模的水厂 浆板式机械混合优点:1.混合效果好 2.水头损失小缺点:1.需要动能设备 2.管理维护比较复杂适用于各种规模的水厂 杭州西区水厂设计采用静态管式混合器,静态管式混合器混合效果好,主要由混合组件构成,将它放入絮凝 池进水管道中即可,混合组件可以用钢板剪切成椭圆形,在轴线处上下弯折成26.5 度的夹角,各个组件相互垂 直交叉,在端点处焊接既为一节组件。 设计使用要求如下: 混合组件数目为1-4 节,流速小时采用上限 水头损失等于 Q-流量 d-进水管管径m n-混合单元数 一般静态管式混合器的水头损失为0.5 米 混凝剂采用聚合硫酸铁(PFS),混凝工艺采用管式混合器,采用2节混合单元,流速为(在之间取值),进水管两根,投药设备混凝剂为PAC,混凝工艺采用管式静态混合器,混合元件数可为1-4节,取 2 节。 水头损失 一般水头损失要小于0.5m d=880mm,取0.9m 加药点设在混合器进口处,并增加药液扩散器,使混凝剂在管道内很好扩散。 药剂投配设备的设计 药剂采用PAC,混凝剂最大投加量阿a=20mg/l 溶液池 溶解池药剂用泵投加

基于Fluent的三通管数值模拟及分析

第40卷第2期 当 代 化 工 Vol.40,No. 2 2011年2月 Contemporary Chemical Industry February,2011 收稿日期: 2010-08-17 作者简介: 魏显达(1983-),男,硕士,黑龙江北安人,2007年毕业于大庆石油学院电子信息工程,研究方向:塔顶流出系统的腐蚀与防 基于 Fluent 的三通管数值模拟及分析 魏显达,王为民, 徐建普 (辽宁石油化工大学石油天然气工程学院, 辽宁 抚顺 113001) 摘 要:Fluent 软件作为流体力学中通用性较强的一种商业CFD 软件应用范围很广。通过利用Fluent 计算流体动力学(CFD)的软件,对石油工业系统中常见的三通管内部流体进行了模拟分析,得到了三通管内在流体流动时的速度、压力和温度场分布图,为石油管道中的流体输送提供了理论依据。 关 键 词:Fluent;三通管;模拟分析;分布图 中图分类号: TQ 018 文献标识码: A 文章编号: 1671-0460(2011)02-0165-03 Numerical Simulation and Analysis of Fluid in Three-way Connection Pipe Based on Fluent Software WEI Xian-da ,WANG Wei-min ,XU Jian-pu (Institute of Petroleum and gas engineering , Liaoning Shihua University, Liaoning Fushun 113001,China ) Abstract : As a commercial CFD software with good universality, the Fluent software has been used extensively. In this paper, Simulation analysis on fluid in the three-way connection pipe of the oil industry was carried out by the software of fluid mechanics computation .Then distribution graphs of velocity , pressure and temperature of fluid in the three-way pipe were gained ,which can offer theoretical basis on fluid transportation in the petroleum pipeline. Key words : Fluent three-way ;Connection pipe ;Simulation analysis ;Distribution graphs Fluent 是目前国际上比较流行的商用CFD 软件包,在美国的市场占有率为60%,广泛应用于流体、热传热和各种化学反应等有关工业。软件包括前处理器(利用Gambit 进行物理建模、网格划分和划定边界层条件)、求解器(根据专业条件不同,采用不同的求解器,并规定物性、外部工作环境和进行数值迭代)和后处理器(把一些数据可视化,满足用户的特定要求)。 三通管在石油工业中应用广泛,采用传统的设计开发方法,存在经济成本高,研发周期长等缺陷,耗费大量的人力、物力 [1-2] 。应用CFD 软件,能够在 相对较短的设计周期内,较低的成本运行下,准确模拟流动具体过程,如速度场、压力场和温度场等的时变特性等。CFD 技术已经成为不可缺少的设计手段。 本文利用Fluent 的超强数值计算和分析能力对三通管道内原油流动时的速度、压强和温度场进行了数值模拟和分析,为石油管道中的流体输送提供了可靠的理论依据。 1 数学模型的建立和分析 输油管道管中,原油在三通管内的流动属于湍流,简化方程管道内的流体流动满足质量守恒、动量守恒、能量守恒、状态方程等。 连续性方程(连续性方程式质量守恒定律在流体力学中的表现形式)在直角坐标系下表示为((1)方程) [3-5] : 0)()()(=??+??+??+??z y x t z y x νννρρρρ (1) 式中:V x ,V y ,V z 是速度矢量ν在x 、y 和z 轴方向的分量,t 是时间,ρ是密度。 最常用的湍流求解模型是标准k -ε湍流模型。它需要求解湍动能k ((2)方程)和耗散率ε((3)方程),具体如下所示: Y G G x x M b k i t i k t k ?+++??+??=ρεσμρ μ)[(d d (2) K K k t C G C G C x x b K i t i εμρεσμερεεε2 231)(])[(d d ?++??+??= (3)

应用FLUENT进行射流流场的数值模拟

应用FLUENT进行射流流场的数值模拟 谢峻石何枫 清华大学工程力学系 一.引言 射流是流体运动的一种重要类型,射流的研究涉及到许多领域,如热力学、航空航天学、气象学、环境学、燃烧学、航空声学等。在机械制造与加工的过程中,就经常利用压缩空气喷枪喷射出高速射流进行除尘、除水、冷却、雾化、剥离、引射等。在工业生产中,改善气枪喷嘴的设计,提高气枪的工作效率对于节约能源具有重大的意义。 FLUENT是目前国际上比较流行的商用CFD软件包,它具有丰富的物理模型、先进的数值方法以及强大的前后处理功能,在航空航天、汽车设计、石油天然气、涡轮机设计等方面都有着广泛的应用。本文的工作就是将FLUENT应用于喷嘴射流流场的数值模拟,使我们更加深刻地理解问题产生的机理、为实验研究提供指导,节省实验所需的人力、物力和时间,并对实验结果的整理和规律的得出起到很好的指导作用.。 二.控制方程与湍流模式 非定常可压缩的射流满足如下的N-S方程: (1) 上式中,是控制体,是控制体边界面,W是求解变量,F是无粘通量,G是粘性通量,H是源项。

采用二阶精度的有限体积法对控制方程进行空间离散,时间离散采用Gauss-Seidel隐式迭代。 FLUENT软件包中提供了S-A(Spalart-Allmaras),K-(包括标准K-、RNG K-和Realizable K-),Reynolds Stress等多种湍流模式,本文在大量数值实验的基础上,亚音速射流选择RNG K-湍流模式,超音速射流选择S-A湍流模式。 三.算例分析 (一)二维轴对称亚声速自由射流 计算了一个出口直径为3mm的轴对称收缩喷嘴的亚声速射流流场,压比为1.45。外流场的计算域为20D×5D(见图1)。 图1 计算域及网格示意图 图2显示的是速度分布,图3、图4分别显示了轴线上的速度分布以及截面上的速度分布计算值与实验值的比较。从图中可以看出,亚声速自由射流轴线上的速度核心区的长度约为5~6D,计算值与实验值吻合的比较一致,证明RNG k-湍流模式适合于轴对称亚音速自由射流的数值模拟。

Fluent数值模拟步骤

Fluent数值模拟的主要步骤 使用Gambit划分网格的工作: 首先建立几何模型,再进行网格划分,最后定义边界条件。 Gambit中采用的单位是mm,Fluent默认的长度是m。 Fluent数值模拟的主要步骤: (1)根据具体问题选择2D或3D求解器进行数值模拟; (2)导入网格(File-Read-Case),然后选择由Gambit导出的msh文件。 (3)检查网格(Grid-Check),如果网格最小体积为负值,就要重新进行网格划分。(4)选择计算模型(Define-Models-Solver)。(6) (5)确定流体的物理性质(Define-Materials)。 (6)定义操作环境(Define-Operating Conditions)。 (7)指定边界条件(Define-Boundary Conditions )。 (8)求解方法的设置及其控制(Solve-Control-Solution)。 (9)流场初始化(Solve-Initialize)。 (10)打开残插图(Solve-Monitors-Residual)可动态显示残差,然后保存当前的Case和Data文件(File-Writer-Case&Data)。 (11)迭代求解(Solve-Iterate)。 (12)检查结果。 (13)保存结果(File-Writer-Case&Data),后处理等。 在运行Fluent软件包时,会经常遇到以下形式的文件: .jou文件:日志文档,可以编辑运行。 .dbs文件:Gambit工作文件,若想修改网格,可以打开这个文件进行再编辑。 .msh文件:Gambit输出的网格文件。 .cas文件:是.msh文件经过Fluent处理后得到的文件。 .dat文件:Fluent计算数据结果的数据文件。 三维定常速度场的计算实例操作步骤 对于三维管道的速度场的数值模拟,首先利用Gambit画出计算区域,并且对边界条件进行相应的指定,然后导出Mesh文件。接着,将Mesh文件导入到Fluent求解器中,再经过一些设置就得到形影的Case文件,再利用Fluent求解器进行求解。最后,可以将Fluent 求解的结果导入到Tecplot中,并对感兴趣的结果进行进一步的处理。

fluent模拟基本步骤及注意事项

二维模拟: 一、模拟类型: 1、 大区域空间速度场模拟 计算区域大小设置:迎风面是建筑长度的3倍,背风面是建筑长度的12倍,两侧面是建筑宽度的3倍,高度是建筑高度的4倍。 根据相似理论:l C -几何比例尺 速度比例尺:2 10l C C =υ 风量比例尺:2520l l Q C C C C =?=υ 热量比例尺: 250l T Q C C C Cq =?=? 2、 建筑户型温度场、速度场模拟 二、基本操作步骤及注意事项: A gambit 建模 1、 建模: 方法一:直接在GAMBIT 建模; 方法二:CAD 导入gambit ; 1) 在CAD 中用PL 线将户型的基本构造画出来,创建为面域; 2) 输入命令acisoutver ,把‘70’修改为‘30’。 3) “文件”——“输出”——sat 文件 4) 在gambit 中导入Acis 文件 注意:在用PL 线构画户型时,在进口和出口边界(窗户、内户门),要各边界端点连续画线。 2、 划分网格: Interval Size :50 3、 设置边界条件 内部开口边界(门)设置为internal ,房间相邻墙壁设置为Wall 4、 保存文件,并输出mesh 文件 B 导入fluent 计算: 1、 导入mesh 文件 2、 检查网格 3、 设置单位 gambit 里可以缩小建筑比例建模,在fluent 中设置单位恢复原模型。 4、 选择计算模型 5、 设置材料类型 6、 设置边界条件 7、 设置模拟控制条件 8、 边界初始化

9、设置监视窗口 10、设置迭代次数进行计算 11、结果显示 12、保存文件 三、需解决问题: 1、湍流强度等计算; 2、层流湍流界定问题; 3、壁面湿度设置问题; 四、待提高部分: 1、户型流场模拟时,墙壁考虑采用双钱; 2、南京理工校区原始模型(不简化)模拟; 3、三维模型模拟; 五、

静态混合器要如何选型

静态混合器要如何选型? 【字体:大中小】点击数: 一、静态混合器选型: 静态混合器选型一般取决于所用混合介质的物性(如粘度、颗粒大小、含固量、反应速度和工作温度压力等)。S V型比较常用,因混合性能好,广泛应用于汽-液、液-液、液-固等状态的混合,如调和油、轻质油混合、香料乳化、化学反应等。但SV型系统有压降,所需动力相对较大。而SK型静态混合器,因系统阻力降小、混合性能较好等特点,较多地应用于重质油与水、颗粒大小及含固量多等物系的混合。- 由于各工艺过程的不同,要求也会有所不同。因此在选型上,则根据不同的要求,灵活选用。例如:对于介质粘度较高的物系,一般采用SK型;而对混合性能有一定的要求,则可在选择SV型时并适当放大一些尺寸(管径)。- 当然,您也可通过计算软件来进行计算选型。 二、快速选型如下: SH型静态混合器---混合效果好,常用于粘度较高且清洁的介质。 SL型静态混合器---混合效果较好,常用于粘度较高或伴有高聚物介质的混合物系。 SX型静态混合器---混合效果较好,常用于中等粘度或生产高聚物流体的混合和反应过程。 SK型静态混合器---混合效果较好,常用于粘度较高通常粘度≥500厘泊且伴有杂质颗粒的小流量混合物系。 SV型静态混合器---混合效果好,常用于混合,乳化等要求较高的并且粘度≤100厘泊的各种物系。但因水力直径较小,相应阻力降ΔP 也就较大,要提高处理量,除增大公称直径外,所需动力也大。动力粘度换算:1泊(P)=0.1帕·秒(Pa·s)1厘泊(cP)=0.001帕·秒(Pa·s)三、分配器:分配器的作用是将两股或两股以上的流体汇合成一股,然后进入静态混合器进行混合。分配器的型式通常分为两种,即三通管式和射流器式。其中三通管式的分配器适用的流体流量和压力相差不多;而射流器式的分配器适用流量比或压力比很大的混合介质。 分配器可以自己制作(如三通管式的要求不高),也可以委托定制。

实体入水FLUENT模拟过程_包括划分网格方法

实体入水模拟过程 3.2.1利用GAMBIT建立计算模型 1)启动GAMBIT,打开对话框如图3.2.1选择工作目录为D:\GAMBIT working。 图 3.2.1 2)首先建立等边三角形,单击Geometry Vertex Create Real Vertex,在Create Real Vertex面板的x、y、z坐标输入(0,0,0),单击Apply按钮生成第一个点,按同样的方法建立点(0.4,0,0)。然后单击Geometry Edge Create Straight Edge,在Create Straight Edge面板中选择点1与点2,连接这两点省成线段。如图3.2.2 图3.2.2 3)单击Edge面板中的Move/Copy Edges按钮,打开如图3.2.3的面板,选择线段1,单击copy按钮,并选择Operation为Rotate,在Angle栏输入60,其他保持默认,单击Apply 按钮。即旋转复制生成第二条线段。

图3.2.3 4)剩下的一条线段只需连接右侧两点即可,如图3.2.4所示。 图3.2.4 5)创建三角形面。单击Geometry Face Create Face from Wireframe,在Create Face from Wireframe面板中利用鼠标左键框选等边三角形的三条边,然后单击Apply按钮创建面。 6)由于三角形面域的位置不对,所以还要对其位置进行调整。首先需将其旋转210度。单击Face面板中的Move/Copy Faces按钮,在Move/Copy Faces面板中,选择面1(face.1),单击Move并选择Operation为Rotate,在Angle栏输入210,其他保持默认,单击Apply 按钮。其次,需要将三角形平移,在Move/Copy Edges面板中选择面1(face.1),单击Move 并选择Operation为Translate,在x与y栏分别输入3和8.4,单击Apply按钮完成平移操作,此时的视图窗口如图3.2.5所示。

静态混合器计算

静态混合器计算 1.1 选类型 选型依据:HG/T 20570.20-95 静态混合器设计 已知:在工作温度为35℃,系统压力为1.8MPa 下,静态混合器各股物流的物料 质量流率 kg/h 密度 kg/m3 体积流率 m3/h 粘度 mPa·s 直馏柴油 27777.8 810.4 34.28 2.03 液氨 116.0 587.4 0.20 10.5 乙二醇 3472.2 1102.0 3.15 0.0136 Σ 31366.0 37.63 根据表1.1,三股物料粘度均小于100mP·s ,选择SV 型静态混合器较合适。 1.2 流速 总体积流量: h /m 63.374 .5870 .116110210472.34.8101078.27333321=+?+?= ++=V V V V 根据表1.2,选择静态混合器管径为:mm 150=D 流体流速: m/s 589.0360015.04 468 .373600422=??=?=ππD V u 对于低、中粘度流体的混合、萃取、中和、传热、中速反应,适宜于过渡流或湍流条件下工作,流体流速控制在m/s 8.0~3.0,m/s 589.0=u 符合情况。 1.3 具体型号 选长径比为10=D L ,则 mm 150015010=?=L ,且设计压力为P=2.0MPa ,查表1.2,水力直径h d 取6mm ,所以该静态混合器型号规格为: SV-6/150-4.0-1500。 1.4 反应时间 [] ? -=Af X 0 A A A0)(X R dX c t

由于环烷酸与液氨的反应为1.5级反应,所以: ( )5 .1A f 5 .1A 01X kc r -= []() ?? -=-=Af Af 05.1Af 5.1A0A A00 A A A01)(X X X kc dX c X R dX c t 积分得: ()5 .0A0 5.0 Af 5.011kc X t ?--= - 式中:k —为反应速率常数,-0.5-11.5kmol s m 89.49??=k ; Af X —环烷酸转化率,由设计要求可得%3.99Af =X ; A0c —环烷酸浓度。 30A0m /kmol 012.063 .37260 /06.118/==== V M m V n c A 所以: ()s 4012 .089.495.01 993.015.0=??--= -t 单个静态混合器的反应体积: 3 22m 0265.05.115.044=??=?=π πL D V r 则空时: s 53.23600 63.370265 .0=÷== Q V r τ 选用两个静态混合器串联,则空时:τ=2×2.53=5.06s 由于是该反应是在液相中进行,可视为等容均相反应过程,故反应物料在静态混合器中的平均停留时间T=5.06s 由此可见,选择两个SV-6/150-4.0-1500静态混合器串联即可满足工艺要求。 1.5 压力降计算 查表1.2,空隙率0.1=ε,则: 8.14100 .11003.2589 .04.810006.03c h =????= = -με ρεu d R e 查表1.3,当150≥εe R 时,摩擦系数:0.1≈f 静态混合器压力降:

给水水厂设计说明书

一.设计资料 1.1.1 供水要求 1)给水厂水量为30000m3/d。 2)水厂自用水量系数为5~8%,时变化系数1.5~1.4。 3)水厂出水水压为45~50m。 4)出厂水质达到国家饮用水水质标准。 5)水厂自用水取5%。 6)时变化系数取1.5。 1.1.2 原水水质 某河流原水水质分析结果(见表1) 表1 某河流的原水水质分析结果

1.3 饮用水水质标准 生活饮用水水质标准(见表2) 表2 生活饮用水水质非常规检验项目及限值(62项)

1.2 设计任务 1)根据水质、水量、地区条件、施工条件和一些水厂运转情况选定处理方案和确定处理工艺流程。 2)拟定各种构筑物的设计流量及工艺参数。 3)选择各构筑物的形式和数目,初步进行水厂的平面布置和高程布置。在此基础上确定构筑物的形式、有关尺寸安装位置等。 4)进行各构筑物的设计和计算,定出各构筑物和主要构件的尺寸,设计时要考虑到构筑物及其构造、施工上的可能性。 5)根据各构筑物的确切尺寸,确定各构筑物在平面布置上的确切位置,并最后完成平面布置。确定各构筑物间连接管道、检查井的位置。 6)水厂厂区主体构筑物(生产工艺)和附属构筑物的布置,厂区道路、绿化等总体布置。 二.设计说明 2.1 选择方案 2.1.1 絮凝工艺: 方案:采用机械絮凝池和往复式隔板絮凝池组合使用 机械絮凝池 优点:絮凝效果好,节省药剂;水头损失小;可适应水质水量的变化。 缺点:需机械设备和经常维修。 往复式隔板絮凝池 优点:絮凝效果好;构造简单;施工方便。

缺点:容积较大;水头损失较大;转弯处絮粒容易破碎;出水流量不易分配均 匀;出口处易积泥,适用于流量每日大于3万立方米且水量变化较小的水厂。 两种形式絮凝池组合使用有如下优点:当水质水量发生变化时,可以调节机械 搅拌速度以弥补隔板往复式絮凝池的不足;当机械搅拌装置需要维修时,隔板 往复式絮凝池仍可继续运行。此外,若设计流量较小,采用往复式隔板絮凝池 往往前端廊道宽度不足0.5m,不利于施工,则前端采用机械絮凝池可弥补此不 足。 2.1.2 沉淀工艺: 方案:采用平流沉淀池 优点:造价较低;操作管理方便;施工简单;对源水浊度适应性较强;处理效果稳定;采用机械排泥设施时,排泥效果好。 缺点:需要维护机械排泥设备;占地面积较大;水力排泥时排泥困难;一般使用于中小型水厂。 2.1.3 过滤工艺: 方案:V型滤池 优点:可以采用均质滤料,截污能力大,反冲洗干净,过滤周期长,处理水质稳定,节省反冲洗水量。 缺点:对施工的精度和操作管理水平要求甚严,否则会产生如下问题:反冲洗不均匀,有较严重的短流现象发生;跑砂;滤板接缝不平、滤头套管处 密封不严,滤头堵塞甚至发生开裂;阀门启闭不畅等现象时有发生。2.2 水厂设计说明 2.2.1 设计规模 Q=30000 3m d,水厂自用水系数按5%计,设计任务书已给出最高日用水量为: d

相关主题