搜档网
当前位置:搜档网 › 力学第二章习题答案

力学第二章习题答案

力学第二章习题答案
力学第二章习题答案

第二章质点运动学(习题)

2.1.1 质点的运动学方程为

求质点轨迹并用图表示。

解:① . 轨迹方程为y=5

② 消去时间参量t 得:

2.1.2 质点运动学方程为,(1 ). 求质点的轨迹;(2 ). 求自t=-1 至t=1 质点的位移。

解;① 消去t 得轨迹:xy=1,z=2

② , ,

2.1.3 质点运动学方程为,(1 ). 求质点的轨迹;(2 ). 求自t=0 至t=1 质点的位移。

解:① . 消去t 得轨迹方程

2.2.1 雷达站于某瞬时测得飞机位置为

,后测得

均在铅直平面内。求飞机瞬时速率的近似值和飞行方向(α角)。

解:

代入数值得:

利用正弦定理可解出

2.2.2 一小圆柱体沿抛物线轨道运动,抛物线轨道为

(长度mm )。第一次观察到圆柱体在

x=249mm 处,经过时间2ms 后圆柱体移到x=234mm 处。求圆柱体瞬时速度的近似值。

解:

2.2.3 一人在北京音乐厅内听音乐,离演奏者17m 。另一人在广州听同一演奏的转播,广州离北京2320km ,收听者离收音机2m ,问谁先听到声音声速为

340m/s, 电磁波传播的速度为。

解:

在广州的人先听到声音。

2.2.4 如果不允许你去航空公司问讯处,问你乘波音

747 飞机自北京不着陆飞行到巴黎,你能否估计大约用多少时间如果能,试估计一下(自己找所需数据)。

解:

2.2.5 火车进入弯道时减速,最初列车向正北以90km/h 速率行驶,3min 后以70km/h 速率向北偏西方向行驶。求列车的平均加速度。

解,

2.2.6 (1 )R 为正常数。求t=0, π /2 时的速度和加速度。(2 )

求t=0,1 时的速度和加速度(写出正交分解式)。

解:( 1 )

当t=0 时,

当t= π /2 时,

( 2 )

当t=0 时,

当t=1 时,

2.3.1 图中a 、b 和c 表示质点沿直线运动三种不同情况下的x-t 图,试说明三种运动的特点(即速度,计时起点时质点的坐标,位于坐标原点的时刻)。

解: a 直线的斜率为速度

b 直线的斜率为速度

c 直线的斜率为速度

2.3.2 质点直线运动的运动学方程为x=acost, a 为正常数。求质点速度和加速度并讨论运动特点(有无周期性,运动范围,速度变化情况等)。

解:

质点受力,是线性恢复力,质点做简谐振动,振幅为 a ,运动范围在,速度具有周期性。

2.3.3 跳伞运动员的速度为

v 铅直向下,β、q 为正常量。求其加速度。讨论当时间足够长时(即t →∞),速度和加速度的变化趋势。

解:

2.3.4 直线运动的高速列车在电子计算机控制下减速进站。列车原行驶速度为,其速度变化规律如图所示。求列车行驶至x=1.5km 时加速度的大小。

解:

当x= 时,

2.3.5 在水平桌面上放置A 、B 两物体,用一不可伸长的绳索按图示的装置把它们连接起来。

C 点与桌面固定。已知物体A 的加速度,求物体B 的加速度。

解:

以 C 为坐标原点,建立一维坐标系o-x 。设绳的总长度为, B 的坐标为, A 的坐标为,则得

两端对t 求导

2.3.6 质点沿直线的运动学方程为。

( 1 )将坐标原点沿ox 轴正方向移动2m ,运动学方程如何初速度有无变化

( 2 )将计时起点前移1s ,运动学方程如何初始坐标和初始速度都发生怎样的变化加速度变不变

解:( 1 )

,代入上式得:

初速度不变。

( 2 )

代入上式得:

初坐标由0 变为-7m.

, 初速度由10m/s 变为4m/s.

加速度不变,都是.

以下四题用积分

2.4.1 质点由坐标原点出发时开始计时,沿x 轴运动,其加速度,求在下列两种情况下质点的运动学方程、出发后6s 时质点的位置、在此期间所走过的位移及路程:

( 1 )初速度;

( 2 )初速度的大小为9cm/s, 方向与加速度方向相反。解:(1),

当t=6s时,

, ,质点运动的路程:

(2) ,

,

当t=6s时,

, ,

质点运动的路程如图,

,,

质点运动的路程:

2.4.2质点直线运动瞬时速度的变化规律为

求至时间内的位移。

解: ,

2.4.3一质点作直线运动,其瞬时加速度的变化规律为在t=0 时,

其中均为正常数,求此质点的运动学方程。

解: ,

2.4.4飞机着陆时为尽快停止采用降落伞制动。刚着陆时,t=0时速度为且坐标为x=0. 假设其加速度为,b= 常量,求此质点的运动学方程。

解: ,

解以下四题中匀变速直线运动时应明确写出所选的坐标系、计时起点和初始条件。

2.4.5 在195m 长的坡道上,一人骑自行车以18km/h 的速度和-20cm/s 2 的加速度上坡,另一自行车同时以 5.4km/h 的初速度和0.2m/s 2 的加速度下坡。问( 1 )经过多长时间两人相遇;( 2 )两人相遇时,各走过多少路程。

解:

建立坐标系o-x, 原点为质点 1 的初始位置。

对上坡的质点1:t=0,v 10 =5m/s, x 10 =0, a 1 =s 2 ,

对下坡的质点2:t=0,v 20 =s,x 20 =195m,

a 2 =-0.2m/s 2 ,

相遇时,x 1 =x 2 , 所需时间设为t ,则

质点 1 的速度表达式为:

,所以质点 1 的路程为两段路程之和,如图所式。前25s 的路程:后5s 的路程:

质点 2 的路程:+=135(m)

2.4.6 站台上送行的人,在火车开动时站在第一节车厢的最前面。火车开动后经过△ t=24s ,第一节车厢的末尾从此人的面前通过。问第七节车厢驶过他面前需要多长时间火车作匀加速运动。

解:

设火车第六节末尾经过此人的时间为t 6 ,

火车第七节末尾经过此人的时间为t 7 ,

2.4.7 在同一铅直线上相隔h 的两点以同样的速率v 0 上抛二石子,但在高处的石子早t 0 秒被抛出。求此二石子何时何处相遇。

解:

解出t 得:,

将t 代入,得

2.4.8 电梯以1.0m/s 的匀速率下降,小孩在电梯中跳离地板0.50m 高,问当小孩再次落到地板上时,电梯下降了多长距离

解:

建立基本坐标系o-x, 原点固结在地面上,建立运动坐标系原点固结在电梯的地板。

小孩相对运动参照系(电梯)跳起到落回地板所需时间设为t ,则解出td 得,

这段时间电梯下降的距离为,

2.5.1 质点在o-xy 平面内运动,其加速度为

位置和速度的初始条件为t=0 时

,求质点的运动学方程并画出轨迹(本题用积分)。解:由得

初始条件:

t=0 时,v 0x =0,v 0y =1,x 0 =1,y 0 =0

,

,

,

,

轨道方程:

2.5.2 在同竖直值面内的同一水平线上A 、B 两点分别以30 0 、60 0 为发射角同时抛出两小球欲使两小球相遇时都在自己的轨道的最高点,求 A 、B 两点的距离。已知小球在 A 点的发射速率

解:

2.5.3 迫击炮弹的发射角为60 0 , 发射速率150m/s. 炮弹击中倾角30 0 的山坡上的目标,发射点正在山脚。求弹着点到发射点的距离OA.

解:

由几何关系:

将(2) 、(3) 式代入(1) 式

2.5.4 轰炸机沿与铅直方向成俯冲时,在763m 高度投放炸弹,炸弹离开飞机时击中目标。不计空气阻力。( 1 )轰炸机的速率是多少( 2 )炸弹在飞行中经过的水平距离是多少( 3 )炸弹击中目标前一瞬间的速度沿水平和铅直方向的分量是多少

解:以投放炸弹处为坐标原点

( 1 )

2020华南理工结构力学(二)-随堂练习答案

2020华工结构力学(二)随堂练习第二章平面体系的机动分析

A. 几何不变,无多余约束 B. 几何不变,有一个多余约束 C. 瞬变体系 D. 几何不变,有2个多余约束 答题: A. B. C. D. (已提交)参考答案:B 问题解析: 5.(单选题) 图示体系为。 A. 几何常变体系 B. 无多余约束的几何不变体系 C. 瞬变体系 D. 有多余联系的几何不变体系 答题: A. B. C. D. (已提交)参考答案:C 问题解析:

A. 几何常变体系 B. 无多余约束的几何不变体系 C. 瞬变体系 D. 有多余联系的几何不变体系 答题: A. B. C. D. (已提交) 参考答案:C 问题解析: 8.(判断题) 下图的体系为几何不变体系。() 答题:对. 错. (已提交) 参考答案:× 问题解析:

10.(单选题) 下图所示正六边形体系为。 A. 几何常变体系 B. 无多余约束的几何不变体系 C. 瞬变体系 D. 有多余联系的几何不变体系 答题: A. B. C. D. (已提交) 参考答案:C 问题解析:

第三章静定梁与静定刚架 问题解析: 4.(判断题) 如图所示力作用在梁上,最右边支座反力不为0。()答题:对. 错. (已提交)

6.(单选题) 图示两结构及其受载状态,它们的内力符合:() A. 弯矩相同,剪力不同 B. 弯矩相同,轴力不同 C. 弯矩不同,剪力相同 D. 弯矩不同,轴力不同 答题: A. B. C. D. (已提交) 参考答案:B 问题解析: 7.(单选题) 图示结构MDC(设下侧受拉为正)为:() A. -Pa B. Pa C. -Pa/2 D. -Pa/2 答题: A. B. C. D. (已提交) 参考答案:C

理论力学习题

班级姓名学号 第一章静力学公理与受力分析(1) 一.是非题 1、加减平衡力系公理不但适用于刚体,还适用于变形体。() 2、作用于刚体上三个力的作用线汇交于一点,该刚体必处于平衡状态。() 3、刚体是真实物体的一种抽象化的力学模型,在自然界中并不存在。() 4、凡是受两个力作用的刚体都是二力构件。() 5、力是滑移矢量,力沿其作用线滑移不会改变对物体的作用效果。()二.选择题 1、在下述公理、法则、原理中,只适于刚体的有() ①二力平衡公理②力的平行四边形法则 ③加减平衡力系公理④力的可传性原理⑤作用与反作用公理 三.画出下列图中指定物体受力图。未画重力的物体不计自重,所有接触处均为光滑接触。整体受力图可在原图上画。 )a(球A )b(杆AB d(杆AB、CD、整体 )c(杆AB、CD、整体)

f(杆AC、CD、整体 )e(杆AC、CB、整体) 四.画出下列图中指定物体受力图。未画重力的物体不计自重,所有接触处均为光滑接触。多杆件的整体受力图可在原图上画。 )a(球A、球B、整体)b(杆BC、杆AC、整体

班级 姓名 学号 第一章 静力学公理与受力分析(2) 一.画出下列图中指定物体受力图。未画重力的物体不计自重,所有接触处均为光滑 接触。整体受力图可在原图上画。 W A D B C E Original Figure A D B C E W W F Ax F Ay F B FBD of the entire frame )a (杆AB 、BC 、整体 )b (杆AB 、BC 、轮E 、整体 )c (杆AB 、CD 、整体 )d (杆BC 带铰、杆AC 、整体

理论力学习题

第一章静力学公理与受力分析(1) 一.就是非题 1、加减平衡力系公理不但适用于刚体,还适用于变形体。( ) 2、作用于刚体上三个力的作用线汇交于一点,该刚体必处于平衡状态。( ) 3、刚体就是真实物体的一种抽象化的力学模型,在自然界中并不存在。( ) 4、凡就是受两个力作用的刚体都就是二力构件。( ) 5、力就是滑移矢量,力沿其作用线滑移不会改变对物体的作用效果。 ( ) 二.选择题 1、在下述公理、法则、原理中,只适于刚体的有( ) ①二力平衡公理②力的平行四边形法则 ③加减平衡力系公理④力的可传性原理⑤作用与反作用公理 三.画出下列图中指定物体受力图。未画重力的物体不计自重,所有接触处均为光滑接触。整体受力图可在原图上画。 )a(球A )b(杆AB d(杆AB、CD、整体 )c(杆AB、CD、整体) )e(杆AC、CB、整体)f(杆AC、CD、整体

四.画出下列图中指定物体受力图。未画重力的物体不计自重,所有接触处均为光滑接触。多杆件的整体受力图可在原图上画。 )a(球A、球B、整体)b(杆BC、杆AC、整体

第一章静力学公理与受力分析(2) 一.画出下列图中指定物体受力图。未画重力的物体不计自重,所有接触处均为光滑接 触。整体受力图可在原图上画。 W A D B C E Original Figure A D B C E W W F Ax F Ay F B FBD of the entire frame )a(杆AB、BC、整体)b(杆AB 、BC、轮E、整体 )c(杆AB、CD、整体) d(杆BC带铰、杆AC、整体 )e(杆CE、AH、整体)f(杆AD、杆DB、整体

理论力学第二章

第2章 力系的等效与简化 2-1试求图示中力F 对O 点的矩。 解:(a )l F F M F M F M M y O y O x O O ?==+=αsin )()()()(F (b )l F M O ?=αsin )(F (c ))(sin cos )()()(312l l Fl F F M F M M y O x O O +--=+=ααF (d )2 22 1sin )()()()(l l F F M F M F M M y O y O x O O +==+=αF 2-2 图示正方体的边长a =0.5m ,其上作用的力F =100N ,求力F 对O 点的矩及对x 轴的力矩。 解:)(2 )()(j i k i F r F M +-? +=?=F a A O m kN )(36.35) (2 ?+--=+--= k j i k j i Fa m kN 36.35)(?-=F x M 2-3 曲拐手柄如图所示,已知作用于手柄上的力F =100N ,AB =100mm ,BC =400mm ,CD =200mm , α = 30°。试求力F 对x 、y 、z 轴之矩。 解: )cos cos sin (sin )4.03.0()(2k j i k j F r F M αααα--?-=?=F D A k j i αααα22sin 30sin 40)sin 4.03.0(cos 100--+-= 力F 对x 、y 、z 轴之矩为: m N 3.43)2.03.0(350)sin 4.03.0(cos 100)(?-=+-=+-=ααF x M m N 10sin 40)(2?-=-=αF y M m N 5.7sin 30)(2?-=-=αF z M 2—4 正三棱柱的底面为等腰三角形,已知OA=OB =a ,在平面ABED 内沿对角线AE 有一个力F , 图中θ =30°,试求此力对各坐标轴之矩。 习题2-1图 A r A 习题2-2图 (a ) 习题2-3图

最新结构力学2课后概念题答案(龙驭球)

1.1 结构动力计算与静力计算的主要区别是什么? 答:主要区别表现在:(1) 在动力分析中要计入惯性力,静力分析中无惯性力;(2) 在动力分析中,结构的内力、位移等是时间的函数,静力分析中则是不随时间变化的量;(3) 动力分析方法常与荷载类型有关,而静力分析方法一般与荷载类型无关。 1.2 什么是动力自由度,确定体系动力自由度的目的是什么? 答:确定体系在振动过程中任一时刻体系全部质量位置或变形形态所需要的独立参数的个数,称为体系的动力自由度(质点处的基本位移未知量)。 确定动力自由度的目的是:(1) 根据自由度的数目确定所需建立的方程个数(运动方程 数=自由度数),自由度不同所用的分析方法也不同;(2) 因为结构的动力响应(动力内力和 动位移)与结构的动力特性有密切关系,而动力特性又与质量的可能位置有关。 1.3 结构动力自由度与体系几何分析中的自由度有何区别? 答:二者的区别是:几何组成分析中的自由度是确定刚体系位置所需独立参数的数目,分析的目的是要确定体系能否发生刚体运动。结构动力分析自由度是确定结构上各质量位置所需的独立参数数目,分析的目的是要确定结构振动形状。 1.4 结构的动力特性一般指什么? 答:结构的动力特性是指:频率(周期)、振型和阻尼。动力特性是结构固有的,这是因为它们是由体系的基本参数(质量、刚度)所确定的、表征结构动力响应特性的量。动力特性不同,在振动中的响应特点亦不同。 1.5 什么是阻尼、阻尼力,产生阻尼的原因一般有哪些?什么是等效粘滞阻尼? 答:振动过程的能量耗散称为阻尼。 产生阻尼的原因主要有:材料的内摩擦、构件间接触面的摩擦、介质的阻力等等。当然,也包括结构中安装的各种阻尼器、耗能器。阻尼力是根据所假设的阻尼理论作用于质量上用于代替能量耗散的一种假想力。粘滞阻尼理论假定阻尼力与质量的速度成比例。 粘滞阻尼理论的优点是便于求解,但其缺点是与往往实际不符,为扬长避短,按能量等 效原则将实际的阻尼耗能换算成粘滞阻尼理论的相关参数,这种阻尼假设称为等效粘滞阻尼。 1.6 采用集中质量法、广义位移法(坐标法)和有限元法都可使无限自由度体系简化为有限自由度体系,它们采用的手法有何不同? 答:集中质量法:将结构的分布质量按一定规则集中到结构的某个或某些位置上,认为其他地方没有质量。质量集中后,结构杆件仍具有可变形性质,称为“无重杆”。 广义坐标法:在数学中常采用级数展开法求解微分方程,在结构动力分析中,也可采用 相同的方法求解,这就是广义坐标法的理论依据。所假设的形状曲线数目代表在这个理想化形式中所考虑的自由度个数。考虑了质点间均匀分布质量的影响(形状函数),一般来说,对于一个给定自由度数目的动力分析,用理想化的形状函数法比用集中质量法更为精确。有限元法:有限元法可以看成是广义坐标法的一种特殊的应用。一般的广义坐标中,广 义坐标是形函数的幅值,有时没有明确的物理意义,并且在广义坐标中,形状函数是针对整个结构定义的。而有限元法则采用具有明确物理意义的参数作为广义坐标,且形函数是定义在分片区域的。在有限元分析中,形函数被称为插值函数。 综上所述,有限元法综合了集中质量法和广义坐标法的特点:(l) 与广义坐标法相似, 有限元法采用了形函数的概念。但不同于广义坐标法在整体结构上插值(即定义形函数),而是采用了分片的插值,因此形函数的表达式(形状)可以相对简单。(2) 与集中质量法相比,有限元法中的广义坐标也采用了真实的物理量,具有直接、直观的优点,这与集中质量

胡汉才编著《理论力学》课后习题答案第2章力系的简化

第二章力系的简化 2-1.通过A(3,0,0),B(0,4,5)两点(长度单位为米),且由A指向B的力F,在z轴上投影为,对z轴的矩的大小为。 答:F/2;62F/5。 2-2.已知力F的大小,角度φ和θ,以及长方体的边长a,b,c,则力F在轴z和y上的投影:Fz= ;Fy= ;F对轴x的矩 M x(F)= 。 答:Fz=F·sinφ;Fy=-F·cosφ·cosφ;Mx(F)=F(b·sinφ+c·cosφ·cosθ) 图2-40 图2-41 2-3.力F通过A(3,4、0),B(0,4,4)两点(长度单位为米),若F=100N,则该力在x轴上的投影为,对x轴的矩为。 答:-60N; 2-4.正三棱柱的底面为等腰三角形,已知OA=OB=a,在平面ABED内有沿对角线AE的一个力F,图中α=30°,则此力对各坐标轴之矩为: M x(F)= ;M Y(F)= ;M z(F)= 。 答:M x(F)=0,M y(F)=-Fa/2;M z(F)=6Fa/4 2-5.已知力F的大小为60(N),则力F对x轴的矩为;对z轴的矩为。 答:M x(F)=160 N·cm;M z(F)=100 N·cm

图2-42 图2-43 2-6.试求图示中力F 对O 点的矩。 解:a: M O (F)=F l sin α b: M O (F)=F l sin α c: M O (F)=F(l 1+l 3)sin α+ F l 2cos α d: ()22 21l l F F M o +=αsin 2-7.图示力F=1000N ,求对于z 轴的力矩M z 。 题2-7图 题2-8图 2-8.在图示平面力系中,已知:F 1=10N ,F 2=40N ,F 3=40N ,M=30N ·m 。试求其合力,并画在图上(图中长度单位为米)。 解:将力系向O 点简化 R X =F 2-F 1=30N R V =-F 3=-40N ∴R=50N 主矩:Mo=(F 1+F 2+F 3)·3+M=300N ·m 合力的作用线至O 点的矩离 d=Mo/R=6m 合力的方向:cos (R ,)=,cos (R ,)=-

《结构力学》作业2答案

1.求图示体系的计算自由度,并分析其几何构造。 Q - 7Z7 7TT 答W=-4,有多余约束的不变体系 2.求图示多跨静定梁的弯矩和剪力图。 H G U.V I 2kX/m \ FM ITMTl 1 & 1 . IM UH c 3.试作下图所示结构的弯矩图。

泌(qj 4.利用静定结构的一般性质求图示桁架结构的力。 答?在F P作用下,只有右柱受了压力,而其它杆件的力均为零。5?用静力法求作图示多跨连续梁F A Fl、M E、F QE的影响线。 R

(向下) 7.试利用力法求解图示超静定结构,作出弯矩图,并求 C 点水平位移。 严 T ---------- ------------ c C > -51^ 2KN/m T T T -J A n 4 m 答. R A 影响线 F D 影响线 D “ ac/L L M E 影响线 F QE 影响线 6. 图示三铰刚架 A 支座往下位移了 b , B 支座往右位移了 a ,求C 点的竖向位移 A CV 和 C I f 点的相对转角?

答 .取BC杆的轴力为基本未知量X i, 基本方程: 11 X1 1P 0, 求得:11 128 64 3EI,1P El 则X i=-3/2 (2)尸端肴也表达弍 9.试利用弯矩分配法求图示超静定结构,作出弯矩图。EI=常数。 最终弯矩: M A E=10KN- m (左侧受 拉) M D C=6KN- m (左侧受 C点水平位 移: CH ) 用位移法求解图示结 构。

答.卩BA=4/7,卩BC=3/7 -m AE=n BA=30KN-m m c=-20KN?m 最终弯 矩: M AB=-32.86KN?m M B A=-M BC=24.29KN? m M C B=- M oD=40KN-m 10. 写出连续梁单元和桁架单元在局部坐标下的单元刚度矩阵。 答. 连续梁单元: ■ EA EA' 丁EA 丁 EA EA ~ I 1 -1 -1 1 I I 桁架单元: 或

理论力学课后习题第二章思考题答案

理论力学课后习题第二章思考题解答 2.1.答:因均匀物体质量密度处处相等,规则形体的几何中心即为质心,故先找出各规则形体的质心把它们看作质点组,然后求质点组的质心即为整个物体的质心。对被割去的部分,先假定它存在,后以其负质量代入质心公式即可。 2.2.答:物体具有三个对称面已足以确定该物体的规则性,该三平面的交点即为该物体的几何对称中心,又该物体是均匀的,故此点即为质心的位置。 2.3.答:对几个质点组成的质点组,理论上可以求每一质点的运动情况,但由于每一质点受到周围其它各质点的相互作用力都是相互关联的,往往其作用力难以 n3 预先知道;再者,每一质点可列出三个二阶运动微分方程,各个质点组有个相互关联的三个二阶微分方程组,难以解算。但对于二质点组成的质点组,每一质点的运动还是可以解算的。 若质点组不受外力作用,由于每一质点都受到组内其它各质点的作用力,每一质点的合内力不一定等于零,故不能保持静止或匀速直线运动状态。这表明,内力不改变质点组整体的运动,但可改变组内质点间的运动。 2.4.答:把碰撞的二球看作质点组,由于碰撞内力远大于外力,故可以认为外力为零,碰撞前后系统的动量守恒。如果只考虑任一球,碰撞过程中受到另一球的碰撞冲力的作用,动量发生改变。 2.5.答:不矛盾。因人和船组成的系统在人行走前后受到的合外力为零(忽略水对船的阻力),且开船时系统质心的初速度也为零,故人行走前后系统质心相对地面的位置不变。当人向船尾移动时,系统的质量分布改变,质心位置后移,为抵消这种改变,船将向前移动,这是符合质心运动定理的。 2.6.答:碰撞过程中不计外力,碰撞内力不改变系统的总动量,但碰撞内力很大,

结构力学第2章习题及参考答案

第2章 习 题 2-1 试判断图示桁架中的零杆。 2-1(a ) 解 静定结构受局部平衡力作用,平衡力作用区域以外的构件均不受力。所有零杆如图(a-1)所示。 2-1 (b) 解 从A 点开始,可以依次判断AB 杆、BC 杆、CD

杆均为无结点荷载作用的结点单杆,都是零杆。同理,从H点开始,也可以依次判断HI杆、IF杆、FD杆为零杆。最后,DE杆也变成了无结点荷载作用的结点D的单杆,也是零杆。所有零杆如图(b-1)所示。

2-1(c) 解该结构在竖向荷载下,水平反力为零。因此,本题属对称结构承受对称荷载的情况。AC、FG、EB和ML 均为无结点荷载作用的结点单杆,都是零杆。 在NCP三角形中,O结点为“K”结点,所以 F N OG=-F N OH(a) 同理,G、H结点也为“K”结点,故

F N OG=-F N GH(b) F N HG=-F N OH(c) 由式(a)、(b)和(c)得 F N OG=F N GH=F N OH=0 同理,可判断在TRE三角形中 F N SK=F N KL=F N SL=0 D结点也是“K”结点,且处于对称荷载作用下的对称轴上,故ID、JD杆都是零杆。所有零杆如图(c-1)所示。 2-2试用结点法求图示桁架中的各杆轴力。 2-2(a) (a)

解(1)判断零杆 ①二杆结点的情况。N、V结点为无结点荷载作用的二杆结点,故NA、NO杆件和VI、VU杆件都是零杆;接着,O、U结点又变成无结点荷载作用的二杆结点,故OP、OJ、UT、UM杆件也是零杆。②结点单杆的情况。BJ、DK、QK、RE、HM、SL、LF杆件均为无结点荷载作用的结点单杆,都是零杆;接着,JC、CK、GM、LG杆件又变成了无结点荷载作用的结点单杆,也都是零杆。所有零杆如图

结构力学2课后思考题答案

概念题 1.1 结构动力计算与静力计算的主要区别是什么? 答:主要区别表现在:(1) 在动力分析中要计入惯性力,静力分析中无惯性力;(2) 在动力分析中,结构的内力、位移等是时间的函数,静力分析中则是不随时间变化的量;(3) 动力分析方法常与荷载类型有关,而静力分析方法一般与荷载类型无关。 1.2 什么是动力自由度,确定体系动力自由度的目的是什么? 答:确定体系在振动过程中任一时刻体系全部质量位置或变形形态所需要的独立参数的个数,称为体系的动力自由度(质点处的基本位移未知量)。 确定动力自由度的目的是:(1) 根据自由度的数目确定所需建立的方程个数(运动方程 数=自由度数),自由度不同所用的分析方法也不同;(2) 因为结构的动力响应(动力内力和动位移)与结构的动力特性有密切关系,而动力特性又与质量的可能位置有关。 1.3 结构动力自由度与体系几何分析中的自由度有何区别? 答:二者的区别是:几何组成分析中的自由度是确定刚体系位置所需独立参数的数目,分析的目的是要确定体系能否发生刚体运动。结构动力分析自由度是确定结构上各质量位置所需的独立参数数目,分析的目的是要确定结构振动形状。 1.4 结构的动力特性一般指什么? 答:结构的动力特性是指:频率(周期)、振型和阻尼。动力特性是结构固有的,这是因为它们是由体系的基本参数(质量、刚度)所确定的、表征结构动力响应特性的量。动力特性不同,在振动中的响应特点亦不同。 1.5 什么是阻尼、阻尼力,产生阻尼的原因一般有哪些?什么是等效粘滞阻尼? 答:振动过程的能量耗散称为阻尼。 产生阻尼的原因主要有:材料的内摩擦、构件间接触面的摩擦、介质的阻力等等。当然,也包括结构中安装的各种阻尼器、耗能器。阻尼力是根据所假设的阻尼理论作用于质量上用于代替能量耗散的一种假想力。粘滞阻尼理论假定阻尼力与质量的速度成比例。 粘滞阻尼理论的优点是便于求解,但其缺点是与往往实际不符,为扬长避短,按能量等 效原则将实际的阻尼耗能换算成粘滞阻尼理论的相关参数,这种阻尼假设称为等效粘滞阻尼。 1.6 采用集中质量法、广义位移法(坐标法)和有限元法都可使无限自由度体系简化为有限自由度体系,它们采用的手法有何不同? 答:集中质量法:将结构的分布质量按一定规则集中到结构的某个或某些位置上,认为其他地方没有质量。质量集中后,结构杆件仍具有可变形性质,称为“无重杆”。 广义坐标法:在数学中常采用级数展开法求解微分方程,在结构动力分析中,也可采用 相同的方法求解,这就是广义坐标法的理论依据。所假设的形状曲线数目代表在这个理想化形式中所考虑的自由度个数。考虑了质点间均匀分布质量的影响(形状函数),一般来说,对于一个给定自由度数目的动力分析,用理想化的形状函数法比用集中质量法更为精确。有限元法:有限元法可以看成是广义坐标法的一种特殊的应用。一般的广义坐标中,广 义坐标是形函数的幅值,有时没有明确的物理意义,并且在广义坐标中,形状函数是针对整个结构定义的。而有限元法则采用具有明确物理意义的参数作为广义坐标,且形函数是定义在分片区域的。在有限元分析中,形函数被称为插值函数。 综上所述,有限元法综合了集中质量法和广义坐标法的特点:(l) 与广义坐标法相似, 有限元法采用了形函数的概念。但不同于广义坐标法在整体结构上插值(即定义形函数),而是采用了分片的插值,因此形函数的表达式(形状)可以相对简单。(2) 与集中质量法相比,有限元法中的广义坐标也采用了真实的物理量,具有直接、直观的优点,这与集中质量法相同。

理论力学答案第二章

《理论力学》第二章作业 习题2-5 解:(1)以D点为研究对象,其上所受力如上图(a)所示:即除了有一铅直向下的拉力F外,沿DB有一拉力7和沿DE有一拉力T E。列平衡方程 F Y 0 T E sin F 0 解之得 T Fctg 800/0.1 8000( N) (2)以B点为研究对象,其上所受力如上图(b)所示:除了有一沿DB拉力T夕卜,沿BA有一铅直向下的拉力T A,沿BC有一拉力T C,且拉力T与D点所受的拉力T大小相等方向相反,即T TT。列平衡方程 F X 0 T T C sin 0 F Y 0 T C COS T A 0 解之得 T A Tctg 8000/0.1 80000( N) 答:绳AB作用于桩上的力约为80000N 习题2-6 解:(1)取构件BC为研究对象,其受力情况如下图(a)所示:由于其主动力仅有一个力偶M,那末B、C处所受的约束力F B、F C必定形成一个阻力偶与之 F X 0 T T E COS 0 3) ,T A

平衡。列平衡方程 r M B (F) 0 M F C l 0 与BC 构件所受的约束力F C 互为作用力与反作用力关系,在D 处有一约束力F D 的 方向向上,在A 处有一约束力F A ,其方向可根据三力汇交定理确定,即与水平 方向成45度角。列平衡方程 F X 0 F A sin 45o F C 所以 F A 迈F C >/2F C V 2 -M - 答:支座A 的约束力为.2-,其方向如上图(b ) 所示 习题2-7 解: (1)取曲柄0A 为研究对象,其受力情况如下图(a )所示:由于其主动力 仅有一个力偶M ,那末O A 处所受的约束力F O 、F BA 必定形成一个阻力偶与之 平衡。列平衡方程 ⑵ 取构件ACD ^研究对象,其受力情况如上图(b )所示:C 处有一约束力F C F

理论力学课后习题第二章解答

理论力学课后习题第二章解答 2.1 解 均匀扇形薄片,取对称轴为轴,由对称性可知质心一定在轴上。 有质心公式 设均匀扇形薄片密度为,任意取一小面元, 又因为 所以 对于半圆片的质心,即代入,有 2.2 解 建立如图2.2.1图所示的球坐标系 x x 题2.1.1图 ? ?=dm xdm x c ρdS dr rd dS dm θρρ==θcos r x =θθθρθρsin 32a dr rd dr rd x dm xdm x c ===?? ????2 π θ= πππ θθa a a x c 342 2sin 32sin 32=?==

把球帽看成垂直于轴的所切层面的叠加(图中阴影部分所示)。设均匀球体的密度为。 则 由对称性可知,此球帽的质心一定在轴上。 代入质心计算公式,即 2.3 解 建立如题2. 3.1图所示的直角坐标,原来与共同作一个斜抛运动。 当达到最高点人把物体水皮抛出后,人的速度改变,设为,此人即以 的速度作平抛运动。由此可知,两次运动过程中,在达到最高点时两次运动的水平距离是一致的(因为两次运动水平方向上均以作匀速直线运动,运动的时间也相同)。所以我们只要比较人把物抛出后水平距离的变化即可。第一次运动:从最高点运动到落地,水平距离 题2.2.1图 z ρ)(222z a dz y dv dm -===ρπρπρz )2()(432 b a b a dm zdm z c ++-==? ?人 W y 题2.3.1图 x v x v αcos v 0=水平v 1s

① ② ③ 第二次运动:在最高点人抛出物体,水平方向上不受外力,水平方向上动量守恒,有 可知道 水平距离 跳的距离增加了 = 2.4解 建立如图2.4.1图所示的水平坐标。 以,为系统研究,水平方向上系统不受外力,动量守恒,有 ① 对分析;因为 ② 在劈上下滑,以为参照物,则受到一个惯性力(方向与加速度方向相反)。如图2.4.2图所示。所以相对下滑。由牛顿第二定律有 t a v s ?=cos 01gt v =αsin 0ααcos sin 20 1g v s =)(cos )(0u v w Wv v w W x x -+=+αu w W w a v v x ++ =cos 0αααsin )(cos sin 0202uv g W w w g v t v s x ++==12s s s -=?αsin )(0uv g w W w + 题2.4.1图 θ题2.4.2图 1m 2m 02211=+x m x m 1m 相对绝a a a +=1m 2m 2m 1m 21x m F -=惯2m 1m 2m

《理论力学》第二章作业答案

x y P T F 220 36 O 15 2-?图[习题2-3]动学家估计,食肉动物上颚的作用力P 可达800N ,如图2-15示。试问此时肌肉作用于下巴的力T 、F 是多少? 解: 解: 0=∑x F 036cos 22cos 00=-F T 22cos 36cos F T = 0=∑y F 036sin 22sin 00=-+P F T 80036sin 22sin 22 cos 36cos 000 =+F F )(651.87436 sin 22tan 36cos 800 00N F =+= )(179.76322 cos 36cos 651.87422cos 36cos 0 00N F T ===

18 2-?图 B [习题2-6] 三铰拱受铅垂力P F 作用,如图2-18所示。如拱的重量不计,求A 、B 处支座反力。 解:0=∑x F 0cos 45cos 0=-θB A R R B A R l l l R 22)23()2(22 2 += B A R R 1012 1= B A R R 5 1= 0=∑y F 0sin 45sin 0=-+P B A F R R θ P B A F R l l l R =++ 22)23()2(232 1 P B A F R R =+ 10 32 1

的受力图 轮A P B B F R R =+ ? 10 35 121 P B F R =10 4 P P B F F R 791.04 10 ≈= 31623.010 1)2 3()2(2cos 22≈= += l l l θ 0565.71≈θ P P P A F P F R 354.04 2 41051≈=? = 方向如图所示。 [习题2-10] 如图2-22所示,一履带式起重机,起吊重量kN F P 100=,在图示位置平衡。如不计吊臂AB 自重及滑轮半径和摩擦,求吊臂AB 及揽绳AC 所受的力。 解:轮A 的受力图如图所示。 0=∑x F 030cos 20cos 45cos 000=--P AC AB F T R

理论力学题库第二章

理论力学题库一一第二章 填空题 对于一个有n 个质点构成的质点系,质量分别为 m 1, m>, m 3,...m i ,...m n ,位置矢量分别 卄彳 4 T 为r ∣,r 2, r 3,...r i ,...r n ,则质心 C 的位矢为 _________ 。 质点系动量守恒的条件是 _______________________________________ 。 质点系机械能守恒的条件是 __________________________________ 。 质点系动量矩守恒的条件是 _____________________________________________ 。 质点组 ______ 对 ________ 的微商等于作用在质点组上外力的矢量和,此即质点组的 定理。 质心运动定理的表达式是 ____________________________________ 。 平面汇交力系平衡的充分必要条件是合力为零。 各质点对质心角动量对时间的微商等于 外力对质心的力矩 之和。 质点组的角动量等于 质心角动量 与各质点对质心角动量之和。 n n n 质点组动能的微分的数学表达式为: dT =d C'? m i v 2)i" F i Wdr i X Ffdr i 2 iA i = I i =I 表述为质点组动能的微分等于 内力和夕卜力所作的元功之和。 质点组动能等于质心动能与各质点对 质心动能之和。 1 n T= mr c 2亠二m i r i 2 ,表述为质点组动能等于 质心 2 y 动能与各质点对 质心动能之和。 2-6.质点组质心动能的微分等于 内、夕卜 力在 质心系 系中的元功之和。 包含运动电荷的系统,作用力与反作用力 不一定 在同一条直线上。 太阳、行星绕质心作圆锥曲线的运动可看成质量为 折合质量 的行星受太阳(不动) 的引力的运动。 两粒子完全弹性碰撞,当 质量相等 时,一个粒子就有可能把所有能量转移给另一个 粒子。 设木块的质量为m,被悬挂在细绳的下端,构成一种测定子弹速率的冲击摆装置。如 果有一质量为 m 的子弹以速率 V 1沿水平方向射入木块,子弹与木块将一起摆至高度为 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 柯尼希定理的数学表达式为: 18. h 处,则此子弹射入木块前的速率为: 位力定理(亦称维里定理)可表述为: m ■旦(2gh)1/2 m 1 系统平均动能等于均位力积的负值 。(或

理论力学题库第二章

理论力学题库——第二章 一、填空题 1.对于一个有"个质点构成的质点系,质量分别为加],加2,加3,…叫,…加",位置矢量分别 为,“,£,?",???—,则质心c的位矢为_______________ 。 2.质点系动量守恒的条件是______________________________ 。 3.质点系机械能守恒的条件是__________________________ , 4.质点系动量矩守恒的条件是___________________________________ o 5.质点组_______ 对______ 的微商等于作用在质点组上外力的矢量和,此即质点组的 定理。 & 质心运动定理的表达式是______________________________ 0 7.平面汇交力系平衡的充分必要条件是合力为零。 8.各质点对质心角动量对时间的微商等于外力对质心的力矩之和。 9.质点组的角动量等于质心角动量与各质点对质心角动量之和。 10.质点组动能的澈分的数学表达式为:£耳"?心+£戸件叭 2 t.i /-I /-I 表述为质点组动能的微分等于_力和力所作的元功之和。 11.质点组动能等于质心动能与各质点对质心动能之和。 12.柯尼希定理的数学表达式为:丁=丄〃呢2+£性十2 ,表述为质点组动能等于质心 2 /.I 动能与各质点对质心动能之和。 13.2-6?质点组质心动能的微分等于、外力在质心系系中的元功之和。 14.包含运动电荷的系统,作用力与反作用力不--定在同一条直线上。 15.太阳、行星绕质心作圆锥曲线的运动可看成质量为折合质量的行星受太阳(不动)的引力的运 动。 16.两粒子完全弹性碰撞,当质量相等时,一个粒子就有可能把所有能量转移给另一个粒子。 17.设木块的质呈为nh ,被悬挂在细绳的下端,构成一种测定子弹速率的冲击摆装置。如果有一质 量为叫的子弹以速率v,沿水平方向射入木块,子弹与木块将一起摆至高度为 久=佟上竺(2g〃严 h处,则此子弹射入木块前的速率为:E___________ 。 18.位力定理(亦称维里定理)可表述为:系统平均动能等于均位力积的负值。(或 沧士护T ) 二、选择题

第2章混凝土结构材料的物理力学性能习题答案.

第2章混凝土结构材料的物理力学性能 2.1选择题 1.混凝土若处于三向应力作用下,当( D )。 A. 横向受拉,纵向受压,可提高抗压强度; B. 横向受压,纵向受拉,可提高抗压强度; C. 三向受压会降低抗压强度; D. 三向受压能提高抗压强度; 2.混凝土的弹性模量是指( A )。 A. 原点弹性模量; B. 切线模量; C. 割线模量; D. 变形模量; 3.混凝土强度等级由150mm 立方体抗压试验,按( B )确定。 A. 平均值μfcu ; B. C. D. μfcu -1. 645σ ;μfcu -2σ ;μfcu -σ; 4.规范规定的受拉钢筋锚固长度l a 为( C )。 A .随混凝土强度等级的提高而增大;

B .随钢筋等级提高而降低; C .随混凝土等级提高而减少,随钢筋等级提高而增大; D .随混凝土及钢筋等级提高而减小; 5.属于有明显屈服点的钢筋有( A )。 A .冷拉钢筋; B .钢丝; C .热处理钢筋; D .钢绞线; 6.钢材的含碳量越低,则( B )。 A .屈服台阶越短,伸长率也越短,塑性越差; B .屈服台阶越长,伸长率越大,塑性越好; C .强度越高,塑性越好; D .强度越低,塑性越差; 7.钢筋的屈服强度是指( D )。 A. 比例极限; B. 弹性极限; C. 屈服上限; D. 屈服下限; 8.能同时提高钢筋的抗拉和抗压强度的冷加工方法是( B )。

A. 冷拉; B. 冷拔; 9.规范确定f cu , k 所用试块的边长是( A )。 A .150 mm; B .200 mm; C .100mm ; D .250 mm; 10.混凝土强度等级是由( A )确定的。 A .f cu , k ; B .f ck ; C .f cm ; D .f tk ; 11.边长为100mm 的非标准立方体试块的强度换算成标准试块的强度,则需乘以换算系数( C )。 A .1.05 ; B .1.0 ; C .0.95 ; D .0.90 ; 12.E c =

理论力学第二章思考题及习题答案

第二章思考题 2.1一均匀物体假如由几个有规则的物体并合(或剜去)而成,你觉得怎样去求它的质心? 2.2一均匀物体如果有三个对称面,并且此三对称面交于一点,则此质点即均匀物体的质心,何故? 2.3在质点动力学中,能否计算每一质点的运动情况?假如质点组不受外力作用,每一质点是否都将静止不动或作匀速直线运动? 2.4两球相碰撞时,如果把此两球当作质点组看待,作用的外力为何?其动量的变化如何?如仅考虑任意一球,则又如何? 2.5水面上浮着一只小船。船上一人如何向船尾走去,则船将向前移动。这是不是与质心运动定理相矛盾?试解释之。 2.6为什么在碰撞过程中,动量守恒而能量不一定守恒?所损失的能量到什么地方去了?又在什么情况下,能量才也守恒? 2.7选用质心坐标系,在动量定理中是否需要计入惯性力? 2.8轮船以速度V 行驶。一人在船上将一质量为m 的铁球以速度v 向船首抛去。有人认为:这时人作的功为 ()mvV mv mV v V m +=-+222 2 12121 你觉得这种看法对吗?如不正确,错在什么地方? 2.9秋千何以能越荡越高?这时能量的增长是从哪里来的? 2.10在火箭的燃料全部燃烧完后,§2.7(2)节中的诸公式是否还能应用?为什么? 2.11多级火箭和单级火箭比起来,有哪些优越的地方? 第二章思考题解答 2.1.答:因均匀物体质量密度处处相等,规则形体的几何中心即为质心,故先找出各规则形体的质心把它们看作质点组,然后求质点组的质心即为整个物体的质心。对被割去的部分,先假定它存在,后以其负质量代入质心公式即可。 2.2.答:物体具有三个对称面已足以确定该物体的规则性,该三平面的交点即为该物体的几何对称中心,又该物体是均匀的,故此点即为质心的位置。 2.3.答:对几个质点组成的质点组,理论上可以求每一质点的运动情况,但由于每一质点受到周围其它各质点的相互作用力都是相互关联的,往往其作用力难以预先知道;再者,每一质点可列出三个二阶运动微分方程,各个质点组有n 3个相互关联的三个二阶微分方程组,

结构力学2试卷及答案D

_ ________ 专业 _________ 年级结构力学(二)试题 一、填空题:(15分,共3题) 1、图1示结构的原始刚度矩阵 是 2、图2示等截面梁,截面的极限弯矩为2Mu ,则结构的极限 荷载 Pu 为 ________________________________________________________________________ 。(4 分) (2)第n 主振型,具有个 ____________ 不动点,两不同振型之间具有 _____________ 性。(6分) 二、简答题:(15分,每题5分,共3题) 1、什么是塑性铰,其与普通铰的区别是什么? 3、悬臂结构和简支结构的各振型所具有的共同特性: (1)第一主振型 ___________ 不动点, 考试类型:开卷 试卷类型:D 卷 考试时量:120分钟

2、第一类失稳的特征、第二类失稳的特征分别是什么?

3、剪力分配法中,若荷载不是作用在柱顶,而是作用在竖柱上应如何处理? 二、计算(40分,每题20分,共2题) 1、用力矩分配法计算图3示结构,做出弯矩图。(20分) 30KN/m 60KN A El El 2EI 8m 4m 4m 8m

2、一简支梁(128b),惯性矩l=7480cm4,截面系数W=534cm3, E=2.1 x 104kN/cm2 在跨度中点有电动机重量Q=35kN,转速n=500r/min。由于具有偏心,转动时产 生离心力P=10kN,P的竖向分量为Psin B t。忽略梁的质量,试求强迫振动的动力系数和最大挠度和最大正应力。(梁长l=4m)(简支梁跨中最大挠度 为Pl3)(20 分)

理论力学课后答案第二章.docx

解ftff?H?:晦矍*曲<∕jY?il ??Λ!P??∕i的钓痕力耳欝珊iL*G 0??l IlH b陌示.KZVk ??Oy4血平胡那论鬥 式⑴* Cr赚立?解紂 佔2 EF D?Π P = 5 ωo N .棗与撑祎自虫不计7 求BC'内力 的反力D 解该系统曼力如图(訂, 三力匸交于艰D.n?t?ι的力三 角膠如图冷人祥得 FX二5 OOm J‰ 二疔OoOW '?-?β-?ΛR?--?≠^≠?-?Vn? 2-2 在铰链A、B处有力Fi, F2作用,如图所示。该机Fi 与F2的关系。 2-3铰链4杆机构CABD的CD边固定, 构在图示位置平衡,不计杆自重。求力 30 T > ◎ 60o 检 (b) B [T j

已 ?] M?fr? P A ?? ?处于?,杆電 不比 求i )若片= F Ft =巴 角e -? 2)若 P Λ - 300 B = (ΛF? = ? 八5两轮受力分别 如图示■对A fc? SX = 0? F 刚 CEJB60, F F ?≤ I XKg = 0 ΣY 二 O J Fs X ?in60τ - F 屈 s?ι? - P A = I! 对 B 轮育 ΣX ^ 0, Fi l oos? - FX & 8= C ΣY = O l Frl A Sinff T F W SinJ?Γ -Pn = U (1) 四牛封程嬴立求AL 爾 Θ-2CT (2) 把拧-0?F A - 3t)0 N 入方社,联立解筹 P fl =IOON 2-5如图2-10所示,刚架上作用力F 。试分别计算力 F 解 M A (F) = -Fbcosθ M 3 IF) = -Fb cos0 + FosinB = F(OSiιι0-bcos0) 2-6已知梁AB 上作用1力偶,力偶矩为M ,梁长为 I ,梁重不计。求在图a , b , C 三种情 况下支座A 和 B 的约束力。 2-4 解⑴柠点掐坐KAS 力如囲Ib 所示"IQ 平fti j l l ?ffl 品F ∑Λ =0, F (Jf co?15° + F 1cosS0e =0. = *9 2co ? 节点瓦 腿标歴覺力如03 所小* Lil f *j≡?H ∑Λ =0, -F AS cos 30&-ACOS60o ≡0 Λ=-√3F 45=-?- = 1.5<3F 1 F 、: F l - 0.644 对点A 和B 的力矩。

理论力学第二章答案

第二章习题解答 2.1 解 均匀扇形薄片,取对称轴为x 轴,由对称性可知质心一定在x 轴上。 题2.1.1图 有质心公式 ??= dm xdm x c 设均匀扇形薄片密度为ρ,任意取一小面元dS , dr rd dS dm θρρ== 又因为 θcos r x = 所以 θθθρθρsin 32a dr rd dr rd x dm xdm x c ===?????? 对于半圆片的质心,即2 πθ=代入,有 πππ θθa a a x c 342 2sin 32sin 32=? == 2.2 解 建立如图2.2.1图所示的球坐标 系 题2.2.1图 把球帽看成垂直于z 轴的所切层面的叠加(图中阴影部分所示)。设均匀球体的密度为ρ。 则 )(222z a dz y dv dm -===ρπρπρ 由对称性可知,此球帽的质心一定在z 轴上。 代入质心计算公式,即 ) 2()(432 b a b a dm zdm z c ++- ==?? 2.3 解 建立如题2. 3.1图所示的直角坐 标,原来人W 与共同作一个斜抛运动。

y O 题2.3.1图 当达到最高点人把物体水皮抛出后,人的速度改变,设为x v ,此人即以 x v 的速度作平抛运动。由此可知,两次运动过程中,在达到最高点时两次运动的水平距离是一致的(因为两次运动水平方向上均以 αcos v 0=水平v 作匀速直线运动,运动的时间也相同)。所以我们只要比较人把物抛出后水平距离的变化即可。第一次运动:从最高点运动到落地,水平距离1s t a v s ?=cos 01 ① gt v =αsin 0 ② ααcos sin 20 1g v s = ③ 第二次运动:在最高点人抛出物体,水平方向上不受外力,水平方向上动量守恒,有 )(cos )(0u v w W v v w W x x -+=+α 可知道 u w W w a v v x ++ =cos 0 水平距离 αααsin )(cos sin 02 02uv g W w w g v t v s x ++== 跳的距离增加了 12s s s -=?= αsin )(0uv g w W w + 2.42.4 解 建立如图2.4.1图所示的水平坐标。 2.4.1图 θ题2.4.2图 以1m ,2m 为系统研究,水平方向上系统不受外力,动量守恒,有 02211=+x m x m ① 对1m 分析;因为 相对绝a a a += ② 1m 在劈2m 上下滑, 以2m 为参照物,则1m 受到一个惯性力21x m F -=惯(方向与2m 加速

相关主题