搜档网
当前位置:搜档网 › 碳负离子

碳负离子

碳负离子
碳负离子

碳正离子与碳负离子的对比

李文峰 学号2013301040145 化基五班

摘要:碳负离子和碳负离子都是有机化学中重要的活性中间体,但两者的形成和反应机理都不尽相同。本文大体依据《有机化学》,结合相关文献。对二者进行两相对比增益于化学的学习。

关键词:碳正离子 碳负离子 重排 一、碳正离子

碳正离子的产生

碳正离子可以认为是通过C-C 单键中一对电子的异裂形成的,式中X 代表卤素。

碳正离子中带正电荷的碳原子是sp 2 杂化,三个杂化轨道呈平面排列与其他原子或基团成键,键角约为120o ,有一个垂直于此平面的空p 轨道,这个空的P 轨道与化学性质密切相关。

B

碳正离子很不稳定,需要电子来完成八隅体构型,因此任何给电子的因素都能使正电荷分散而稳定,任何吸电子的因素均能使正电荷集中而更不稳定。故而R 的共轭效应,诱导效应和立体效应,以及烷基的超共轭效应都能对碳正离子起稳定作用。 碳正离子的稳定性

烷基有给电子的诱导效应故带正电荷上的碳烷基越多,给电子的诱导效应越大,使正电荷越分散而稳定。还有超共轭效应,也使得碳正离子更稳定。P-π共轭也能使正电荷分散而稳定,一般是碳正离子与不饱和的烯或是芳基相连时,共轭体系越多,正碳离子越稳定。

(CH 3)3C +>(CH 3)2C +H>CH 3C +H 2>C +H 3 (CH 2=CH)3C +>(CH 2=CH)2C +H>CH 2=CHC +H 2

由于碳正离子中带正电荷的碳原子是sp 2 杂化,桥头碳原子由于桥的刚性结构,不形成具有平面三角形的SP 2轨道的碳正离子,即使能形成也很不稳定。 碳正离子的反应

1、与与亲核试剂结合

R ++Nu —一 R —Nu

2、消除邻位碳上的一个质子而形成烯烃

R

X

R 3C

+

X

R''

o

C +

3

C +2

H

C +H 2

>

>

3、和烯烃加成形成更大的碳正离子

4、使芳香环烷基化

5、重排成为更稳定的碳正离子

在有碳正离子的反应中例如S N 1中,其反应机理如下

R 3

3C ++X _

R 3C ++N u 3CNu

由于碳正离子的平面结构,带正电的碳原子上有一个空的P 轨道,如果该碳原子上连接着三个不同的基团,由于亲核试剂从平面两边进攻的机会相等,因而可以得到“构型保持”和“构型翻转”两种化合物如下

S N 1反应中还包含了碳正离子的另一个重要的反应—重排反应如上面以给的图中,由一

级碳正离子转变为三级碳正离子就是一个重排反应。显然重排的推动力就是由一个较稳定的分子(或离子)去代替一个较不稳定的分子(或离子)。

E1的反应中,消除邻位碳上的一个质子时,产物要遵循Zaitsev 规则,主要生成稳定的烯烃。在E1的反应中,还常伴随着重排反应的发生。如当连有醇羟基的碳原子和三级碳原子活二级碳原子相连接时,在酸催化的脱水反应中,常常会发生重排反应,称Wanger (瓦格奈儿)-Meerwrin (麦尔外因)重排,其过程如下

C

H

C

+

C C

R ++

C C

C C +

R

+

R +

R

+H +

C

CH 2+

CH 3

H 3C

CH 3

3HC

+

CH3

H2C

CH3

C

R R 1

2

Nu

3

12+C

Nu R

重排的推动力就是由一个较稳定的三级碳正离子代替了一个较不稳定的二级碳正离子。为了避免这种双键位移产生,用蒸馏或分馏方法把生成的烯烃随时从反应液中蒸走。也可以采取其他方法如先将醇制成羧酸酯,再高温热解的烯及酸,而双键不发生位移。

二、碳负离子

碳负离子的产生

碳负离子是有机分子中碳氢键失去质子形成的共轭碱,一般是α-位上有一些吸电子的基团如羰基、酯基、硝基、氰基等活性甲基、亚甲基化合物,由于这些取代基的存在,使该原子上的氢(α-氢)具有一定的酸性。在酸或碱的催化下α-位上的氢解离下来形成碳负离子。有机金属化合物也是,如Grignard 试剂和有机锂试剂也可以看作是碳负离子的来源。叶立德,如磷叶立德和硫叶立德等,都含有具有碳负离子结构的共振杂化体。

碳负离子的稳定性

碳负离子带有一个单位负电荷,通常是四面体构型,其中孤对电子占一个 sp3 杂化轨道。通过比较相应酸的酸性大小,可以大致判断碳负离子的稳定性大小。一般地,具有能稳定负电荷的基团的碳负离子具有较高的稳定性。这些基团可以是苯基、电负性较强的杂原子(如O,N ,基团如-NO2、-C (=O )-、-CO2R 、-SO2-、-CN 和-CONR2等)或末端炔烃(也可看作电负性的缘故)。

碳负离子的结构与碳正离子或碳自由基不同,因为带负电荷的碳原子最外层有3对成键电子和1对未成键电子,这样的4对电子需要采取相互远离的方式排列,因此碳负离子采用sp3杂化轨道成键,未成键电子对与3个共价键形成一个四面体结构。碳正离子、碳自由基和碳负离子的结构对比如下图所示。

碳正离子、碳自由基和碳负离子的结构与稳定性直接受到与之相连接的基团的影响。它们稳定性的一般规律如下:

(1)苄基型或烯丙型一般较稳定;

(2)碳正离子或碳自由基是:3°>2°>1°;

(3)碳负离子则是1°>2°>3°。

OH -H O

少量

重排

-H +

+

主要

少量

空P 轨道

单电子占据

碳负离子的稳定性除了上述的具有拉电子的基团的诱导效应,更多的碳负离子是以烯醇盐的共振式的形式存在。尤其是在强碱存在的条件下,烯醇式是很稳定的。

在溶液中,含有α-氢原子的醛、酮分子是以酮式和烯醇式平衡而存在的。在一般条件下,对于大多数醛、酮来说,由于酮式的能量比烯醇式低,因而在平衡体系中烯醇式极少(丙酮和环己酮在25℃水中约106分之一)。而对于β-二羰基类化合物,烯醇式中碳碳双键与其它不饱和基团共轭而稳定,烯醇式含量增加。

碳负离子的反应 羟醛缩合反应

两分子含有α-氢原子的醛在酸或碱的催化下(通常使用稀碱),相互结合形成β-羟基醛的反应称为羟醛缩合反应(aldol condensation ),也称为醇醛缩合反应。例如:乙醛在稀

碱作用下缩合生成3-羟基丁醛。反应的历程如下:

H

H

C C H

O

H 2O HC

C H

R O

HC

C H

R

O

+

HC

C H

R

O

RCH 2CH

O

H C R

C H

O

RCH2CH O H C R

C H

O

+

H 2O

RCH2CH

H C R

C H

O

OH

+OH

一分子醛在碱作用下转变成碳负离子和烯醇负离子,碳负离子与另一分子醛的羰基进行亲核加成生成氧负离子,后者接受一个质子生成β-羟基醛。β-羟基醛在加热时即失去一分

子水,生成α,β-不饱和醛。

这其中还有交叉羟醛缩合,两种不同的含有α-氢原子的醛或酮之间进行缩合反应,

可生成四种不同的缩合产物,由于分离困难,所以实用意义不大。但若使用一个含有α-氢原子的醛或酮和一个不含有α-氢原子的醛或酮,进行交叉羟醛缩合反应,则具有合成价值。例如:

醛和酮的定向缩合

LDA (二异丙基胺锂)用于具有活泼氢的醛与酮的羟醛缩合。如果希望得到酮出α氢,醛出羰基的羟醛缩合产物。先用LDA 将酮 全部转化为烯醇负离子,然后将醛加到烯醇负离子的溶液中,此时能有效地发生羟醛缩合反应,得到醇盐,然后用水处理,得到β-羟基酮。

如果希望得到醛出α氢,酮出羰基的羟醛缩合的产物,可先将醛与胺反应形成亚胺,保护羰基,然后用LDA 夺取亚胺的α氢,形成碳负离子,然后加入酮进行反应。

酯缩合反应

克莱森(酯)缩合反应是含有α-活泼氢的酯类在醇钠、三苯甲基钠等碱性试剂的作用下,发生缩合反应形成β-酮酸酯类化合物,称为克莱森(脂)缩合反应,反应可在不同的酯之间进行,称为交叉酯缩合。

也可将本反应用于二元羧酸酯的分子内环化反应,这时反应又称为迪克曼反应

(Dieckmann reaction)。

CH 32CH 3O

+(i-C 3H 7)2N -Li

THF

+(i-C 3H 7)2NH

3CH 322CH 3

OLi

O

H 2O

CH 322CH 3

OH

O

H 2C

CCH 2CH 3

OLi

H 2C

CCH 2CH 3OLi

RCH 2C OC 2H 5

O

+H

CHCOC 2H 5

R O 25RCH 2C

2H 5

O O R

碳负离子的烃基化和酰基化反应

酯,醛,酮和β-二酮的α氢可以被烷基和烃基取代。既是碳负离子的烃基化和酰基化反应。

R,R ’为CHO,COR,COOR,COOH,CN,NO 2等吸电子基团,两者可以相同也可以不相同。NO 2

的吸电子的能力较强,有一个就可以产生活泼氢。

碳负离子重排

碳负离子的重排远不如碳正离子那样常见,原因是碳正离子的[1,2]迁移是轨道对称允许的,而碳负离子的[1,2]迁移受到轨道对称守恒规则的限制。这一点,简单说可用如下方法理解:

C 1C R

3Π3

4system

即碳正离子迁移的过渡态是一个比较稳定的芳香体系,而碳负离子迁移的过渡态则是

COOC 2H 5CH 2

H 2C CH 2

2

C O

OC 2H 5Na 甲苯+少量乙醇

COOC 2H 5

O -H +

COOC 2H 5

OH

COOC 2H 5

COOC 2H 5

CH 2CH 2COOC 2H 5

NaH

COOC 2H 5

COOC 2H 5

O

R

H 2C

R'

R

H -C

R'

R 1X

R

C H

R 1

R'

R 1C

O

C H R R'

R 1C

O

C H R R'R 1C

O

C H

R R'

一个不稳定的反芳香体系。但碳负离子的重排还是存在的,本文不做深入探讨。

总结:碳正离子和碳负离子在结构和反应机理的不同,决定了两者反应上的差异。充分认识到两者的异同,有助于有机化学的学习。

参考文献

1.《有机化学》(第三版)刑其毅高等教育出版社

2.碳正离子、碳负离子、自由基参与的化学反应王竹青29号应化09-2

3.有机化学中的碳负离子的知识归纳与总结周宇翔(武汉大学化学与分子科学学院,武汉,430072)

碳负离子的反应

第14章 碳负离子的反应 ——β-二羰基化合物 §14.1 α-H 的酸性和互变异构 14.1.1 α-H 的酸性 1、?-H 的酸性 在有机化学中,与官能团直接相连的碳原子均称为?-C ;?-C 上的氢原子均称为?-H 。 ?-H 以质子形式解离下来的能力,即为?-H 的活性或?-H 的酸性。因此烃也可叫做氢碳酸。 表14-1-1 常见化合物?-H 的p K a 值 羧酸衍生物中的?-H 的活性一般比醛酮为弱,但酰氯中由于氯原子与羰基的共轭程度差且吸电子效应强,反而使其?-H 的酸性增强。 酸性大小: 酰氯>醛、酮>酯>酰胺 Cl :吸电子诱导>给电子共轭 O :给电子共轭>吸电子诱导 2、影响?-H 的酸性的因素 1)?-C 所连接的官能团及其官能团的吸电子能力。总的吸电子能力越强,?-H 的酸性就越大; 2)取决于氢解离后生成的碳负离子(carbanion)结构的稳定性。负离子上电子的离域范围越大越稳定; 3)分子的几何形状、介质的介电常数、溶剂等都有关系。 3、β-二羰基化合物α-H 的活性分析 乙酰乙酸乙酯是一个典型的1,3-二羰基化合物,由于受两个羰基的吸电子作用,亚甲基上的H 特别活泼,和碱作用形成稳定的负离子。负离子特别稳定是因为负离子可以同时和两个羰基发生共轭作用,具有比较广泛的离域范围。 烯醇负离子 其他1,3-二羰基化合物情况相似,其他的吸电子基团如硝基、氰基等与羰基作用相同在含有氢的碳原子上连有两个吸电子基团的化合物都含有一个活泼的亚甲基,它们统称为含活泼亚甲基(氢 )的化合物。 β-二酮 β-羰基酸酯 丙二酸酯 氰乙酸酯 硝基乙酸酯 活泼氢化合物的双重反应性能: 碳负离子 烯醇负离子 氧负离子 一般情况下,这些物质在反应时可以看作是碳负离子对其它官能团的亲核加成反应。 14.1.2 酮式和烯醇式的互变异构 可以看作是活泼H 可以在α-C 和羰基O 之间来回移动。 1、酸碱对互变平衡的影响 痕量的酸、碱甚至是玻璃仪器都能促使平衡的快速建立。 (1)酸催化过程 在酸催异构化过程中,酸首先与羰基氧原子作用形成??盐,其共轭碱——水再夺取?-H 形成烯醇。 (2)碱催化过程 碳可以直接和α-H 结合,同时形成一个碳负离子。通过电子对的转移,碳上的负电荷转移到氧上,形成烯醇负离子。 2、化合物的结构对互变平衡的影响 通常,单羰基化合物中的烯醇式异构体含量很少。 两个羰基被一个碳原 子隔开的化合物;当同 一碳原子上连有两个吸电子基团时,这样的 化合物其酸性则明显 增强。

碳负离子的重排

一.碳负离子迁移特点 重排也叫迁移。在迁移中显然[1,2]迁移是最容易的。碳负离子的重排远不如碳正离子那样常见,原因是碳正离子的[1,2]迁移是轨道对称允许的,而碳负离子的[1,2]迁移受到轨道对称守恒规则的限制。这一点,简单说可用如下方法理解: C 1C R Π3Π34 system 即碳正离子迁移的过渡态是一个比较稳定的芳香体系,而碳负离子迁移的过渡态则是一个不稳定的反芳香体系。一般说来,过渡态具有芳香性的反应加热下就能进行,比如[4+2]环加成和[3,3]-σ迁移都比较容易进行,但[2+2]环加成加热下就不能进行。当然严格地从轨道对称守恒原理看,应按下图理解: — 碳负离子的[1,2]、[1,6] 迁移等都是对称性禁阻的,这是指同面迁移禁阻, 异面迁移则是对称性允许的。[1,2]迁移时采用异面迁移几乎不可能,但[1,6]迁移由于空间够大,采用异面迁移是可能的。下面两个化合物中,1在35℃就发生[1,6]迁移,但2加热到150℃也没有重排发生,只能在光照下发生[1,6]迁移,因为2无法发生异面迁移。而3发生的是[1,8] 迁移,对称性允许,故低温也能进行。

二.重排机理 1.加成-消除机理 饱和的烃基负离子基本不发生[1,2]迁移,但是不饱和的烃基负离子可以发生[1,2]迁移,如下面的高烯丙基负离子重排。由于轨道对称性的限制,这种迁移不可能是协同反应,实验表明这种迁移遵循加成-消除机理。例如:(符号的表示) ; 芳基也能在碳负离子中发生[1,2]迁移,不过比乙烯基困难一些。在格氏试剂中不能迁移,在锂试剂中可以缓慢重排,在钾和铯试剂中可以迅速发生[1,2]迁移,但一般要求在迁移源要留下至少一个芳基来稳定得到的负离子。 &

高等有机化学 第02节:碳负离子的重排

碳负离子的重排 一.碳负离子迁移特点 重排也叫迁移。在迁移中显然[1,2]迁移是最容易的。碳负离子的重排远不如碳正离子那样常见,原因是碳正离子的[1,2]迁移是轨道对称允许的,而碳负离子的[1,2]迁移受到轨道对称守恒规则的限制。这一点,简单说可用如下方法理解: C 1 C R C 1C R Π32Π3 4system system 即碳正离子迁移的过渡态是一个比较稳定的芳香体系,而碳负离子迁移的过渡态则是一个不稳定的反芳香体系。一般说来,过渡态具有芳香性的反应加热下就能进行,比如[4+2]环加成和[3,3]-σ迁移都比较容易进行,但[2+2]环加成加热下就不能进行。当然严格地从轨道对称守恒原理看,应按下图理解: 碳负离子的[1,2]、[1,6] 迁移等都是对称性禁阻的,这是指同面迁移禁阻,异面迁移则是对称性允许的。[1,2]迁移时采用异面迁移几乎不可能,但[1,6]迁移由于空间够大,采用异面迁移是可能的。下面两个化合物中,1在35℃就发生[1,6]迁移,但2加热到150℃也没有重排发生,只能在光照下发生[1,6]迁移,因为2无法发生异面迁移。而3发生的是[1,8]迁移,对称性允许,故低温也能进行。

二.重排机理 1.加成-消除机理 饱和的烃基负离子基本不发生[1,2]迁移,但是不饱和的烃基负离子可以发生[1,2]迁移,如下面的高烯丙基负离子重排。由于轨道对称性的限制,这种迁移不可能是协同反应,实验表明这种迁移遵循加成-消除机理。例如:(符号的表示)

芳基也能在碳负离子中发生[1,2]迁移,不过比乙烯基困难一些。在格氏试剂中不能迁移,在锂试剂中可以缓慢重排,在钾和铯试剂中可以迅速发生[1,2]迁移,但一般要求在迁移源要留下至少一个芳基来稳定得到的负离子。 多个芳基基团竞争重排时,能使中间体负离子更加离域的芳基优先迁移,例如下例中对二苯基的迁移绝对优先于间二苯基。 当然,如果重排的中间体是自由基而不是碳负离子,那么对二苯基的重排照

第14章 碳负离子的反应

第14章碳负离子的反应 ——β-二羰基化合物§14.1 α-H的酸性和互变异构 14.1.1 α-H的酸性 1、α-H的酸性 在有机化学中,与官能团直接相连的碳原子均称为α-C;α-C上的氢原子均称为α-H。 α-H以质子形式解离下来的能力,即为α-H的活性或α-H的酸性。因此烃也可叫做氢碳酸。 表14-1-1 常见化合物α-H的p K a值 羧酸衍生物中的α-H的活性一般比醛酮为弱,但酰氯中由于氯原子与羰基的共轭程度差且吸电子效应强,反而使其α-H的酸性增强。 酸性大小:酰氯>醛、酮>酯>酰胺 Cl:吸电子诱导>给电子共轭 O:给电子共轭>吸电子诱导 2、影响α-H的酸性的因素 1)α-C所连接的官能团及其官能团的吸电子能力。总的吸电子能力越强,α-H的酸性就越大; 2)取决于氢解离后生成的碳负离子(carbanion)结构的稳定性。负离子上电子的离域范围越大越稳定; ? 3)分子的几何形状、介质的介电常数、溶剂等都有关系。 3、β-二羰基化合物α-H的活性分析 乙酰乙酸乙酯是一个典型的1,3-二羰基化合物,由于受两个羰基的吸电子作用,亚甲基上的H 特别活泼,和碱作用形成稳定的负离子。负离子特别稳定是因为负离子可以同时和两个羰基发生共轭作用,具有比较广泛的离域范围。 烯醇负离子 其他1,3-二羰基化合物情况相似,其他的吸电子基团如硝基、氰基等与羰基作用相同在含有

(氢 )的化合物。 β-二酮 β-羰基酸酯 丙二酸酯 氰乙酸酯 硝基乙酸酯 活泼氢化合物的双重反应性能: 碳负离子 烯醇负离子 氧负离子 一般情况下,这些物质在反应时可以看作是碳负离子对其它官能团的亲核加成反应。 14.1.2 酮式和烯醇式的互变异构 可以看作是活泼H 可以在α-C 和羰基O 之间来回移动。 1、酸碱对互变平衡的影响 痕量的酸、碱甚至是玻璃仪器都能促使平衡的快速建立。 (1)酸催化过程 在酸催异构化过程中,酸首先与羰基氧原子作用形成 盐,其共轭碱——水再夺取α-H 形成烯醇。 (2)碱催化过程 碳可以直接和α-H 结合,同时形成一个碳负离子。通过电子对的转移,碳上的负电荷转移到氧上,形成烯醇负离子。 2、化合物的结构对互变平衡的影响 通常,单羰基化合物中的烯醇式异构体含量很少。 β-二羰基结构的化合物,在平衡状态下其烯醇式的含量较高。通常以平衡混合物的形式存在。 两个羰基被一个碳原子隔开的化合物;当同一碳原子上连有两个吸电子基团时,这样的化合物其酸性则明显增强。 酮式中碳氧π键比烯醇式 中碳碳π键更稳定!

邢其毅《基础有机化学》笔记和课后习题(含考研真题)详解(碳负离子 缩合反应)

第15章碳负离子缩合反应 15.1 复习笔记 一、氢碳酸的概念和α氢的酸性 氢碳酸的酸性强弱可用碳上的氢以正离子解离下来的能力表示,用pK a值来表示,值越小,酸性越强。 烷烃的酸性很弱。烯丙位和苯甲位碳上的氢的酸性比烷烃强。末端炔烃的酸性更强一些,环戊二烯亚甲基上的氢相对更活泼一些。 1.α氢的酸性 与官能团直接相连的碳称为α碳,α碳上的氢称为α氢。α氢以正离子解离下来的能力即为α氢的活性(酸性)。 通过测定α氢的pK a值或其与重氢的交换速率可以确定α氢的酸性强弱。 (1)α氢的酸性强弱取决于与α碳相连的官能团及其它基团的吸电子能力。总的吸电子能力越强,α氢的酸性就越强。 一些常见基团的吸电子能力强弱次序排列如下: (2)α氢的酸性还取决于氢解离后的碳负离子(carbanion)结构的稳定性。碳负离子的离域范围越大越稳定。 (3)分子的几何形状会影响α氢的酸性。

(4)与α氢的解离和介质的介电常数及溶剂化有关。 2.羰基化合物α氢的活性分析 羰基的吸电子能力很强,因此羰基化合物的α氢都很活泼。 例如在NaOD—D20中,2-甲基环己酮的α氢均可被氘取代。 (1)羰基使α碳原子上的氢具有活泼性,是因为: ①羰基的吸电子诱导效应; ②羰基α碳上的碳氢键与羰基有超共轭作用。 (2)羰基旁所连的基团的不同导致了它们的α氢的活性也有差异。可以从这些化合物本身的结构以及它们形成烯醇式后的结构来认识: 含羰基化合物的α氢的酸性从大到小顺序:酰氯>醛>酮>酯>酰胺 ①在酰氯中,氯的存在增强了羰基对α碳的吸电子能力,从而也增强了α氢的活性。同时氯的吸电子效应也使形成的烯醇负离子因负电荷分散而趋于稳定。 ②在酯和酰胺中,烷氧基氧的孤电子对和氨基氮的孤电子对均可与羰基共轭而使体系变得稳定。 ③酰胺氮上的孤电子对碱性较强,使共轭体系更加稳定,要解离α氢,形成烯醇负离子需要的能量更多,故酸性比酯还弱。 ④当醛基中的氢被烷基代替后,由于烷基的空阻比氢大,从某种程度上讲阻碍了碱和氢

碳负离子的反应

碳负离子的反应 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

第14章 碳负离子的反应 ——β-二羰基化合物 § α-H 的酸性和互变异构 α-H 的酸性 1、-H 的酸性 在有机化学中,与官能团直接相连的碳原子均称为-C ;-C 上的氢原子均称为-H 。 -H 以质子形式解离下来的能力,即为-H 的活性或-H 的酸性。因此烃也可叫做氢碳酸。 表14-1-1 常见化合物-H 的p K a 值 羧酸衍生物中的-H 的活性一般比醛酮为弱,但酰氯中由于氯原子与羰基的共轭程度差且吸电子效应强,反而使其-H 的酸性增强。 酸性大小: 酰氯>醛、酮>酯>酰胺 Cl :吸电子诱导>给电子共轭 O :给电子共轭>吸电子诱导 2、影响-H 的酸性的因素 1)-C 所连接的官能团及其官能团的吸电子能力。总的吸电子能力越强,-H 的酸性就越大; 2)取决于氢解离后生成的碳负离子(carbanion)结构的稳定性。负离子上电子的离域范围越大越稳定; 3)分子的几何形状、介质的介电常数、溶剂等都有关系。 3、β-二羰基化合物α-H 的活性分析 乙酰乙酸乙酯是一个典型的1,3-二羰基化合物,由于受两个羰基的吸电子作用,亚甲基上的H 特别活泼,和碱作用形成稳定的负离子。负离子特别稳定是因为负离子可以同时和两个羰基发生共轭作用,具有比较广泛的离域范围。 烯醇负离子 其他1,3-二羰基化合物情况相似,其他的吸电子基团如硝基、氰基等与羰基作用相同在含有氢的碳原子上连有两个吸电子基团的化合物都含有一个活泼的亚甲基,它们统称为含活泼亚甲基(氢 )的化合物。 β-二酮 β-羰基酸酯 丙二酸酯 氰乙酸酯 硝基乙酸酯 活泼氢化合物的双重反应性能: 碳负离子 烯醇负离子 氧负离子 一般情况下,这些物质在反应时可以看作是碳负离子对其它官能团的亲核加成反应。 酮式和烯醇式的互变异构 可以看作是活泼H 可以在α-C 和羰基O 之间来回移动。 1、酸碱对互变平衡的影响 痕量的酸、碱甚至是玻璃仪器都能促使平衡的快速建立。 (1)酸催化过程 在酸催异构化过程中,酸首先与羰基氧原子作用形成盐,其共轭碱——水再夺取-H 形成烯醇。 (2)碱催化过程 碳可以直接和α-H 结合,同时形成一个碳负离子。通过电子对的转移,碳上的负电荷转移到氧上,形成烯醇负离子。 2、化合物的结构对互变平衡的影响 两个羰基被一个碳原子隔开的化合 物;当同一碳原子

碳负离子的重排

一.碳负离子迁移特点 重排也叫迁移。在迁移中显然[1,2]迁移是最容易的。碳负离子的重排远不如碳正离子那样常见,原因是碳正离子的[1,2]迁移是轨道对称允许的,而碳负离子的[1,2]迁移受到轨道对称守恒规则的限制。这一点,简单说可用如下方法理解: C 1 C 2 R C 1C 2 R Π32Π3 4system system 即碳正离子迁移的过渡态是一个比较稳定的芳香体系,而碳负离子迁移的过渡态则是一个不稳定的反芳香体系。一般说来,过渡态具有芳香性的反应加热下就能进行,比如[4+2]环加成和[3,3]-σ迁移都比较容易进行,但[2+2]环加成加热下就不能进行。当然严格地从轨道对称守恒原理看,应按下图理解: 碳负离子的[1,2]、[1,6] 迁移等都是对称性禁阻的,这是指同面迁移禁阻,异面迁移则是对称性允许的。[1,2]迁移时采用异面迁移几乎不可能,但[1,6]迁移由于空间够大,采用异面迁移是可能的。下面两个化合物中,1在35℃就发生[1,6]迁移,但2加热到150℃也没有重排发生,只能在光照下发生[1,6]迁移,因为2无法发生异面迁移。而3发生的是[1,8] 迁移,对称性允许,故低温也能进行。 二.重排机理

1.加成-消除机理 饱和的烃基负离子基本不发生[1,2]迁移,但是不饱和的烃基负离子可以发生[1,2]迁移,如下面的高烯丙基负离子重排。由于轨道对称性的限制,这种迁移不可能是协同反应,实验表明这种迁移遵循加成-消除机理。例如:(符号的表示) 芳基也能在碳负离子中发生[1,2]迁移,不过比乙烯基困难一些。在格氏试剂中不能迁移,在锂试剂中可以缓慢重排,在钾和铯试剂中可以迅速发生[1,2]迁移,但一般要求在迁移源要留下至少一个芳基来稳定得到的负离子。 多个芳基基团竞争重排时,能使中间体负离子更加离域的芳基优先迁移,例如下例中对二苯基的迁移绝对优先于间二苯基。

4.碳正离子与碳负离子

有机化学基本理论 主讲人:史达清 4. 碳正离子与碳负离子 碳正离子、碳负离子是有机化学中非常重要的两类活性中间体,我们有必要掌握这两类活性中间体的结构、生成方法及影响稳定性的因素。 (1)碳正离子 碳正离子是指碳原子带有正电荷的三价化合物,对碳正离子的研究是最早且最深入的,被称为物理有机化学的基础,许多有机反应历程的研究概念和方法都起始于碳正离子的研究工作。 (a)碳正离子的结构 碳正离子的中心碳原子是sp2 杂化的平面型结构,正电荷在p 轨道中: 例外:下面的几个实例是例外,这是由于它们都不能形成空的p 轨道形式,如乙烯正离子,乙炔正离子是线型结构,有一个空的sp 杂化轨道,苯基正离子C6H5+则有一个空的sp2杂化轨道,但它们都很难生成,因为空轨道与π 体系相互垂直,正电荷得不到分散。(b)碳正离子的生成方法 离解是形成碳正离子的一个主要方法,离解时,与碳原子相连的基团带着一对对子离去。 苯磺酸根离子和卤离子是常用的较好的离去基团。卤代物中的卤离子还可以在Ag+ 或Lewis 酸存在下脱去而生成碳正离子。例如: 醇一般是在酸作用下,将不容易离去的羟基转变成易离去的水离去,可以形成碳正离子:

伯胺一般先用亚硝酸重氮化得到重氮盐,再脱氮得到碳正离子: 如果生成的碳正离子具有芳香性,那么这些碳正离子就比较容易生成。例如: 另一类产生碳正离子的方法是质子或其它带正电荷的原子团或Lewis 酸对不饱和体系的加成。例如: (c)碳正离子的稳定性 凡是能够使碳正离子的正电荷得到分散的,则碳正离子比较稳定;相反,如果使碳正离子的正电荷集中,则碳正离子更不稳定。其影响因素主要有: (i) 诱导效应 给电子的诱导效应(+I)使碳正离子稳定;而吸引电子的诱导效应(-I),使碳正离子不稳定。例如: (ii) 共轭效应 给电子的共轭效应(+C)使碳正离子稳定;而吸电子的共轭效应(-C)使碳正离子不稳定。例如: (iii) 空间效应 由于碳正离子是平面型结构,如果正电荷在桥头碳原子上,由于桥的刚性结构,难以形成平面型,所以该碳正离子的稳定性比较差,例如:1-氯双环[2.2.1]庚烷的乙醇解速度比叔丁基氯慢1013倍。

碳负离子在有机合成中的应用

碳负离子在有机合成中的应用 翟迈豪化基7班 2013301040201 摘要:在某些有机化学反应中,经常遇到C-H键的断裂的情形,裂解出来的质子为反应体系中的碱或Lewis碱所接受,所留下来的+3价的碳原子像胺类化合物一样带有一对孤对电子,这就是碳负离子。本文综述了碳负离子的各类反应,反应机理及其在有机合成中的应用,并对一些反应做出了必要的分析。 关键词:碳负离子反应有机合成应用 一、碳负离子的形成 1.碳氢酸脱质子作用 2.亲核试剂对活性烯烃的加成作用 3.活性烯烃亲核反应逆反应 逆的Michael加成、逆羟醛缩合、逆的Claisen酯缩合,都是由碱引起了原来缩合反应的逆反应而重新生成反应物和碳负离子 4.还原金属化作用 烷基和芳基锂化物及格氏试剂都象碳负离子那样起作用,在醚溶液中它们成离子对形式而存在

5.溶解金属还原(自由基反应) 金属溶解时就发生电子加成作用,首先形成负离子基,然后形成双负离子。 二、碳负离子的反应 1.亲核加成反应(包括加成-消除反应) (1)羟醛缩合反应 在碱的催化作用下,一分子带有α-氧的酸或酮失去质子形成碳负离子,与另一分子酸或酮发生亲核加成反应生成β-经基醛或酮,然后在高温 或者强酸/碱条件下脱水而生成α,β-不饱和酸酮。 (2)普尔金(Perkin)反应 由不含有α-H的芳香醛(如苯甲醛)在强碱弱酸盐(如碳酸钾、醋酸钾等)的催化下,与含有α-H的酸酐(如乙酸酐、丙酸酐等)所发生 的缩合反应,并生成α,β-不饱和羧酸盐,后者经酸性水解即可得到α,β-

不饱和羧酸。 (3)脑文格(Knoevenagel)反应 在Perkin反应的基础上进行了改进,把产生碳负离子的酸酐换成带有吸电子基的活泼亚甲基化合物,碱由羧酸盐改为有机碱(如吡啶、六氢吡啶、一级胺、二级胺等),溶剂一般为苯和甲苯,反应得到α,β-不饱和化合物。弱碱的使用避免了醛、酮等化合物自身羟醛缩合副反应发生,因此优化条件后底物的范围得到极大的拓展,芳香醛,酮,脂肪醛均能够发生反应。 (4)克莱森(Claisen)酯缩合反应 克莱森(酯)缩合反应是含有α-活泼氢的酯类在醇钠、三苯甲基钠等碱性试剂的作用下,发生缩合反应形成β-酮酸酯类化合物,称为克莱森(脂)缩合反应,反应可在不同的酯之间进行,称为交叉酯缩合;也可将本反应用于二元羧酸酯的分子内环化反应,这时反应又称为迪克曼反应(Dieckmann reaction)。 如果酯的α-碳上只有一个氢原子,由于酸性太弱,用乙醇钠难于形成负离子,需要用较强的碱才能把酯变为负离子。如异丁酸乙酯在三苯甲基钠作用下,可以进行缩合,而在乙醇钠作用下则不能发生反应。

碳负离子

碳正离子与碳负离子的对比 李文峰 学号2013301040145 化基五班 摘要:碳负离子和碳负离子都是有机化学中重要的活性中间体,但两者的形成和反应机理都不尽相同。本文大体依据《有机化学》,结合相关文献。对二者进行两相对比增益于化学的学习。 关键词:碳正离子 碳负离子 重排 一、碳正离子 碳正离子的产生 碳正离子可以认为是通过C-C 单键中一对电子的异裂形成的,式中X 代表卤素。 碳正离子中带正电荷的碳原子是sp 2 杂化,三个杂化轨道呈平面排列与其他原子或基团成键,键角约为120o ,有一个垂直于此平面的空p 轨道,这个空的P 轨道与化学性质密切相关。 B 碳正离子很不稳定,需要电子来完成八隅体构型,因此任何给电子的因素都能使正电荷分散而稳定,任何吸电子的因素均能使正电荷集中而更不稳定。故而R 的共轭效应,诱导效应和立体效应,以及烷基的超共轭效应都能对碳正离子起稳定作用。 碳正离子的稳定性 烷基有给电子的诱导效应故带正电荷上的碳烷基越多,给电子的诱导效应越大,使正电荷越分散而稳定。还有超共轭效应,也使得碳正离子更稳定。P-π共轭也能使正电荷分散而稳定,一般是碳正离子与不饱和的烯或是芳基相连时,共轭体系越多,正碳离子越稳定。 (CH 3)3C +>(CH 3)2C +H>CH 3C +H 2>C +H 3 (CH 2=CH)3C +>(CH 2=CH)2C +H>CH 2=CHC +H 2 由于碳正离子中带正电荷的碳原子是sp 2 杂化,桥头碳原子由于桥的刚性结构,不形成具有平面三角形的SP 2轨道的碳正离子,即使能形成也很不稳定。 碳正离子的反应 1、与与亲核试剂结合 R ++Nu —一 R —Nu 2、消除邻位碳上的一个质子而形成烯烃 R X R 3C + X R'' o C + 3 C +2 H C +H 2 > >

碳正离子、碳负离子、自由基参与的化学反应 王竹青 29号 应化09-2

碳正离子、碳负离子、自由基参与的化学反应 应用化学09-2班 王竹青 29号 一 碳正离子参加的反应 含有一个外层只有 6 个电子的碳原子作为中心碳原子 的正离子。常见的碳正离子如下: (一)碳正离子的形成 一般有三种方法产生碳正离子。 1 .由反应物直接生成 :R X R X 与碳原子直接相连的原子或原子团带着一对成键电子裂解,产生碳正离子。极性溶剂、Lewis 酸常有促进效果。 1.1 X=H 。烃很少自动失去氢负离子,只有在强亲电试剂如Lewis 酸或其它稳定正离子的因素存在下才能发生 这 一 反应。 C H CH 3 CH 3 H 3C 3 C CH 3 CH 3 H 3C + HAlCl 3 1.2 X=F 、Cl 、Br 或I 。这是SN1异裂反应。Lewis 酸可 加速这 种电离作用。 C Cl CH 3 CH 3 H 3C AlCl 3 C CH 3 CH 3 H 3C + HAlCl 4 CH 3CH 3CH 2(CH 3)3C

1.3 X=OTs 酯类衍生物。OTs 是一个很好的离去基团, 这类酯很易 解离。 1.4 X=OCOZ ,其中Z= Cl 、Br 或I ,其推动力是由于形成二氧化碳。 氯亚磺酸酯,X=OSOCl 也属于这一类。其推动力是由于排除SO2。 C OSOCl R R R 3 C R R R + Cl + SO 2 1.5 X=H2O 或ROH 。断裂是由醚ROR 中氧原子的质子化引起的。 1.6 X= N 2。亚硝酸和伯胺的反应生成的重氮离子很容易分解成碳正离子,推动力是由于生成了氮气。 1.7 X=CO 。当相应的正离子稳定的时候,某些羧酸先质子化,然后脱去羰基。 C CH 3 CH 3 H 3C AlCl 3 C CH 3 CH 3 H 3C + OTs - +C OCOCl R R R C R R R + Cl -CO 2 +O R' R H O R' R R + R'OH + N 2 H + N 2+

碳负离子

浅谈碳负离子 摘要:碳负离子的稳定性对其形成和反应性有着最直接的影响,因此定性或定量地研究碳负离子的稳定性无论在理论上还是实际上都是有意义的。本文从几个方面定性地讨论了结构与碳负离子稳定性的关系。 关键词: 结构; 碳负离子; 稳定性;杂化方式 碳负离子是一种重要的有机活性中间体, 在有机化学理论以及有机合成中占有非常重要的地位。随着有机试剂的不断发展和商品化, 更丰富了这一领域的内容, 促进了碳负离子化学的研究和实际应用。碳负离子作为亲核质体与亲电试剂作用形成碳碳键, 即增长碳链, 这在有机合成化学领域中具有相当大的应用价值。碳负离子的稳定性对其形成和反应性有着最直接的影响。而碳负离子的稳定性与其自身的结构有着密切的关系, 因此从结构的角度出发, 定性或定量地研究碳负离子的稳定性无论在理论上还是实际上都是有意义的。 1、碳原子杂化方式 在有机化合物中, 碳原子常采取SP、SP2和SP3三种杂化形式。我们知道与P轨道相比较S轨道更靠近原子核, 所以S轨道中的电子离核较近,受原子核束缚的较紧, 因此当杂化轨道S成份增加时, 其吸电子的能力增强, 电负性增大, 接纳负离子中的电子的能力增加, 从而导致负离子的稳定性增大。 负离子: CH≡C-CH2=CH-CH3- CH2- 碳原子杂化方式: SP SP2SP3 负离子稳定性: CH≡C- > CH2=CH- > CH3CH2- 碱性: CH≡C- < CH2=CH-

碳正离子

碳正离子 碳正离子是一种带正电的极不稳定的碳氢化合物。分析这种物质对发现能廉价制造几十种当代必需的化工产品是至关重要的。欧拉教授发现了利用超强酸使碳正离子保持稳定的方法,能够配制高浓度的碳正离子和仔细研究它。他的发现已用于提高炼油的效率、生产无铅汽油和研制新药物。碳正离子与自由基一样,是一个活泼的中间体。碳正离子有一个正电荷,最外层有6个电子。带正电荷的碳原子以SP2杂化轨道与3个原子(或原子团)结合,形成3个σ键,与碳原子处于同一个平面。碳原子剩余的P轨道与这个平面垂直。碳正离子是平面结构。1963年有报道,直接观察到简单的碳正离子,证明了它的平面结构,为它的存在及其结构提供了实验依据。根据带正电荷的碳原子的位置,可分为一级碳正离子,二级碳正离子和三级碳正离子。碳正离子的结构与稳定性直接受到与之相连接的基团的影响。它们稳定性的一般规律如下:(1)苄基型或烯丙型一般较稳定;(2)其它碳正离子是:3°>2°>1°;碳正离子越稳定,能量越低,形成越容易,加成速度也越快,可见碳正离子的稳定性决定烯烃加成的取向。碳正离子根据结构特点不同可分为:经典碳正离子和非经典碳正离子 碳负离子 (Carbanion)指的是含有一个连有三个基团,并且带有一对孤对电子的碳的活性中间体。碳负离子带有一个单位负电荷,通常是四面体构型,其中孤对电子占一个sp3 杂化轨道。通过比较相应酸的酸性大小,可以大致判断碳负离子的稳定性大小。一般地,具有能稳定负电荷的基团的碳负离子具有较高的稳定性。这些基团可以是苯基、电负性较强的杂原子(如O,N,基团如-NO2、-C(=O)-、-CO2R、-SO2-、-CN和-CONR2等)或末端炔烃(也可看作电负性的缘故),例如,三苯甲烷、三氰基甲烷、硝基甲烷和1,3-二羰基化合物具有较强的酸性。除此之外,不同于缩酮,缩硫酮的α氢也具有较强的酸性。这可以用硫的3d轨道与C-S键σ*轨道的超共轭效应来解释。硫代硝基苯基甲烷的去质子化表明,硫的可极化性起主要作用。有机金属化合物,如Grignard试剂和有机锂试剂也可看作是碳负离子源。叶立德,如磷叶立德和硫叶立德等,都含有具有碳负离子结构的共振杂化体。碳负离子可进行SN2反应。 实验事实表明碳正离子和碳自由基具有平面结构,而碳负离子则呈角锥状,因此杂化轨道理论指出在碳正离子和碳自由基中,碳原子都采用sp2杂化方式,并使用3个sp2杂化轨道形成3个σ键,形成一个平面的分子。不同的是,在碳正离子中,2p轨道上没有电子,而在碳自由基中,2p轨道上有一个单电子。

相关主题