搜档网
当前位置:搜档网 › 如何控制混凝土的出机口温度

如何控制混凝土的出机口温度

如何控制混凝土的出机口温度
如何控制混凝土的出机口温度

混凝土温度施工质量控制

由于施工工期跨越冬季、夏季,季节跨度大,温度跨度大,混凝土的拌合出机温度及入模温度有较大差异,为保证施工质量满足施工技术要求,必须做好混凝土的出机温度及入模温度控制。春季、秋季由于自然温度平均为15-25℃,混凝土的出机温度及入模湿度都能满足技术要求。韶关地区冬季最低气温为2-5℃,夏季最高温度36-39℃,当出机温度及入模温度不能满足技术要求时,必要时必须采用技术处理措施进行控制,如采用地下深层水(水温22℃)、制冰机对水降温、砂、石料覆盖保温、水泥仓遮避阳光等技术措施。

一、夏季混凝土温度控制:

1、混凝土施工时段避开上午9:00-下午4:00气温最高时段进行施工,施工气温控制在30℃内为宜,混凝土拌合采用地下深层水(水温22℃)、(必要时采用制冰机对水降温)、砂、石料覆盖保温、水泥仓遮避阳光等技术措施。

2、热工计算:

几种物质的比热cKj/kg.℃

按C50混凝土进行控制,砂石用量1860kg/m3,胶材用量484 kg/m3,用水量150 kg/m3,混凝土出机温度控制在28℃内。胶材比热可近似取水泥比热0.96 Kj/kg.℃。新拌混凝土比热约为:[1860×0.92+484×0.96+150×4.2]÷(1860+484+150)=1.125036087≈1.125 Kj/kg.℃

(1)当夏季气温最高时:取砂石温度32℃,胶材温度38℃时,如新拌混凝土温度控制在28℃内,计算所需最高水温。

[2500×1.125×28-1860×0.92×32+484×0.96×38]/ (150×4.2)=10.056≈10℃。

(2)当气温最高为30℃时:取砂石温度30℃,胶材温度32℃时,如新拌混凝土温度控制在28℃内,计算所需最高水温。

[2500×1.125×28-1860×0.92×30+484×0.96×32]/ (150×4.2)=19.914286≈20℃。

(3)当气温最高为28℃时:取砂石温度28℃,胶材温度30℃时,如新拌混凝土温度控制在28℃内,计算所需最高水温。

[2500×1.125×28-1860×0.92×28-484×0.96×30]/ (150×4.2)=26.82095≈26.8℃。

根据计算数据,夏季施工混凝土拌合时,当气温大于28℃,应根据实际情况,采用对水降温措施保证混凝土出机及入模温度。

二、冬季混凝土温度控制:

1、混凝土施工时宜选取上午8:00-下午5:00气温最高时段进行施工,施工气温控制在5℃

以上为宜,混凝土拌合采用地下深层水(水温8℃)、(必要时采用加热措施对水升温)、砂、石料覆盖保温等技术措施。

2、热工计算:

按C15混凝土进行控制,砂石用量1900kg/m3,胶材用量350 kg/m3,用水量165 kg/m3,混凝土出机温度控制在8℃以上。胶材比热可近似取水泥比热0.96 Kj/kg.℃。新拌混凝土比热约为:[1900×0.92+350×0.96+165×4.2]÷(1900+350+165)=1.14989648≈1.150 Kj/kg.℃

(1)当冬季气温最低时:取砂石温度2℃,胶材温度5℃时,如新拌混凝土温度控制在8℃以上,计算所需最低水温。

[2400×1.150×8-1900×0.92×2-350×0.96×5]/ (165×4.2)=25.231746≈25℃。

(2)当水温为50℃时:取砂石温度2℃,胶材温度5℃时,计算新拌混凝土出机温度。

[165×4.2×50+1900×0.92×30+484×0.96×32]/ (2400×1.150)=14.42971014≈14.4℃。

(3)当气温最低为5℃时:取砂石温度5℃,胶材温度8℃时,如新拌混凝土温度控制在8℃以上,计算所需最低水温。

[2400×1.150×8-1900×0.92×5-350×0.96×8]/ (165×4.2)=15.37085137≈15.4℃。

根据计算数据,冬季施工混凝土拌合时,当气温低于5℃,应根据实际情况,采用对水升温措施(25-50℃为宜)保证混凝土出机及入模温度。

其他季节,当气温介于最低气温5℃~最高气温28℃之间时,混凝土的出机机及入模温度均可得到保证。

某电厂土建工程建筑面积1.2万平方米,大体积混凝土结构。其中烟囱混凝土体积为3600立方米左右,汽机基础混凝土体积为1800立方米左右,其余设备基础混凝土量也相当大,设计强度等级均为C30.项目部在大体积混凝土施工中,严格抓好温度及干缩裂缝的防治,主要采取了以下措施:

一、把好材料选定关本工程采用低水化热325号矿渣硅酸盐水泥,在泵送允许的情况下,选择粒径5.0-31.5毫米碎石;砂子为含泥量不小于3%的中砂。为了满足和易性,减缓水泥早期水化热和推迟并降低温度峰值的要求,采用高效缓凝型减水剂,要求混凝土初凝时间为12小时。为抵消温度应力计算中的收缩当量温差,防止混凝土收缩和温度裂缝,在混凝土中掺加微膨胀剂,通过微膨胀剂的膨胀作用,使混凝土受到钢筋的约束,产生预压应力,从而抵消混凝土降温过程中产生的拉应力,控制混凝土结构裂缝的产生。掺加的微膨胀剂或复合型膨胀材料,一般膨胀率在0.03%-0.05%之间,此时掺加活性粉煤灰替代部分

水泥,以减少水泥用量,从而减少混凝土水化热总量和最高温度峰值,提高混凝土和易性和保水性,达到降低混凝土内、外温差的目的。

二、混凝土材料最佳配合比设计对混凝土材料进行试配,达到最佳配合比。(1)在征得设计单位和满足施工荷载要求的前提下,混凝土配合比设计时尽量利用混凝土60天或90天的后期强度,以满足减少水泥用量和水化热的产生;(2)混凝土配合比一般要求水泥用量不宜过小,含掺合料≥320kg/m3,水灰比≤0.5,砂率控制在35%-45%,坍落度为100-140毫米。严禁现场随意加水增大坍落度。

三、混凝土的浇筑采用斜面分层浇筑,浇筑坡度为1∶8,每层浇筑厚度为400毫米,每个浇筑点配备3台插入式振捣器。振捣上层混凝土时,要插入下层混凝土内50毫米左右。浇筑时,混凝土表面泌水要及时排除,在侧模底部垫层上设排水孔,引水至排水沟、集水井后抽掉。为了防止混凝土表面因砂浆过多出现干缩裂缝,浇筑完的混凝土表面应加一层洁净石子,并增加压面的数量。采用二次振捣,增加混凝土表面密实度,减少可能出现的裂缝。为降低混凝土的温度,混凝土的入模温度应控制在15℃左右。

四、混凝土的养护混凝土浇筑完毕,按标高找平,用木杠刮平;初凝前,用铁磙子碾压两遍,再用木抹子搓平;表面干硬后,计算确定养护厚度,紧贴混凝土铺一层塑料布,以防止混凝土表面水分散失;经计算,尚须覆盖保温材料时,应按要求覆盖,并控制混凝土内、外温差在25℃范围内;最后覆盖一层塑料布,将混凝土隔风,控制混凝土的降温梯度在1.5℃左右。

五、混凝土模板的拆除当混凝土冷却到其内部温度与室外最低温差小于25℃后方可拆除模板和保温层。如拆模后,当混凝土与外界温差大于25℃时,混凝土表面应临时覆盖保温材料,使其缓慢冷却。

六、施工阶段裂缝的控制1.控制温度作用产生裂缝。混凝土中的水泥在硬化过程中要释放出大量的水化热,明显地提高了混凝土的内部温度,水泥水化热的聚积可引起混凝土的温度裂缝。混凝土越厚,内部热量越不易散失,使温度应力逐渐加大,产生的温度裂缝也逐渐变大,随着时间延长,裂缝甚至贯通。大体积混凝土前3天的养护温度要低些,控制好不同阶段的保温养护温度。

2.控制干缩裂缝。混凝土浇注后及早养护。当混凝土初凝时,在混凝土表面浇水养护,水量随混凝土强度增长逐渐加大;混凝土终凝时,表面宜蓄水养护,养护时间约需3天,浇水养护仍需14天。另外,要适时搓毛抹压。抹压应在混凝土初凝后、终凝前进行,第一遍时普遍抹压消除裂纹,第二遍则应重点寻找裂纹,用木抹子在裂纹外拍打,使混凝土愈合裂纹,从而不产生裂缝。掌握抹压的时间十分重要。

.大体积混凝土原材料质量控制。(1)降低混凝土用水量,严格控制水灰比,或加减水剂保持水灰比不变,满足其流动性、保水性,便于操作,从而避免分层收缩裂缝的产生;(2)骨料的质量控制,细骨料尽量用干净的中粗砂。干净的中粗砂含泥量小,收缩变形小,从而裂缝也小。粗骨料采用5~40毫米颗粒级配的石子,含泥量控制在1.5%以下,可降低水化热,收缩变形也小。

4.掺合料及外加剂的使用。掺粉煤灰可以提高混凝土的和易性,大大改善混凝土工作性能和可靠性,同时可节约水泥,降低水化热。加适量的木钙减水剂,也可减少拌和用水及节约水泥,从而降低水化热;加膨胀剂则可防止混凝土的初始裂缝。

5.裂缝的补救措施。大体积混凝土裂缝应及时采取补救措施,防止裂缝逐渐扩大贯通。对混凝土的自然断开面进行小心轻凿,凿去松动的混凝土,露出粗骨料的50%,用气囊吹净表面,然后用清水冲洗,在上面重新浇筑混凝土。

6.混凝土质量控制措施。由于大体积混凝土工程量大,水泥用量多,因此特别要加强水泥进场检验工作。(1)粗骨料碎石、卵石均可,应采取连续级配。大体积混凝土多采用泵送混凝土(泵管直径为150毫米)。碎石最大粒径为40毫米,卵石最大粒径为50毫米。增大了粗骨粒粒径,可减少水泥用量,水泥的水化热减少,且混凝土的收缩和泌水随之减少; (2)细骨料宜选用中砂或粗砂,其强度模数以2.70-3.10为宜; (3)混凝土中掺人粉煤灰量应为水泥用量的15%-20%.可取代10%-15%的水泥;(4)为满足混凝土的和易性和减缓水泥早期水化热量,宜在混凝土中掺入适量缓凝型减水剂。混凝土初凝时间控制在8小时,终凝时间在12小时为宜。此外,可加入微膨胀剂,使混凝土产生适度膨胀(目前常用的微膨胀剂是UEA),从而提高混凝土的抗渗性能和抗裂缝性能。

7.控制混凝土的出机温度和浇注时温度。(1)控制出机温度。对混凝土出机温度影响大的是石子和水的温度,砂的温度次之,水泥的温度影响最小。气温较高时,为防止阳光直接照射,砂石堆应设遮阳棚,并喷冷水降温。拌合用水可加冰,使水温度控制在5℃,混凝土出机温度应控制在18-20℃为宜;(2)控制浇注温度。应调整施工时间,尽量选择低温及夜间施工;考虑到冷量损失在浇注过程中影响较大,因此要加快运输,缩短浇注时间。

混凝土温控及防裂措施

8.11 混凝土温控防裂措施 8.11.1 基本条件及要求 8.11.1.1 混凝土允许最高温度 根据招标文件要求,坝后厂房混凝土允许设计最高温度见表8.11-1。 表8.11-1坝后厂房工程混凝土设计允许最高温度单位:℃ 注:L为浇筑块长边尺寸。 8.11.1.2 控制浇筑层最大高度和间歇时间 基础和老混凝土约束部位浇筑层高控制为 1.5m~2.0m,基础约束区以外最大浇筑高度控制在2.0m~3.0m以内,上、下层浇筑间歇时间为5d~7d,对混凝土浇筑层较厚、温控要求较严部位可适当延长2d~3d。在高温季节,可采用表面流水冷却的方法进行散热。应严格按施工图纸所示或经监理人批准的分层分块图进行浇筑。 8.11.2 混凝土出机口温度控制 (1)混凝土拌制过程中,降低混凝土的水化热温升 1) 尽量选用水化热低的水泥。 2) 在保证混凝土质量满足设计、施工要求的前提下,改善混凝土骨料级配,掺加优质的掺和料和外加剂以适当减少单位水泥用量。 (2)根据招标文件要求,在高温季节或较高温季节浇筑混凝土时,应采用预冷混凝土浇筑,在计算混凝土浇筑温度时应充分考虑混凝土运输过程中的温度回升。各月、分部位混凝土浇筑温度及出机口温度控制指标见表8.11-2。

8.11.3.1 混凝土运输温控 (1)采用搅拌车运输时,在运输混凝土前对机械运输设备喷雾或冲洗预冷,采取隔热遮阳措施。 (2)通过汽车运输的混凝土,根据拌和楼和建筑塔机、布料杆、混凝土泵等的生产能力,以及仓面浇筑的情况,合理安排汽车数量及拌和强度,一般每车运输混凝土不少于3.0m3,运输车辆安装遮阳棚,运输途中拉上遮阳棚,拌和楼前安装喷雾装置,对回程的车辆喷雾降温。 (3)运输道路优选最短路径,以使混凝土在最短时间内到达浇筑地点。 (4)在条件允许的施工现场搭设遮阳棚,启动冷却水降温系统,所有待料搅拌车进行待料洒水降温。 8.11.3.2 浇筑过程温控 (1)高温季节浇筑时,在下料的间歇期,用聚乙烯卷材覆盖仓面,防止温度倒灌。 (2)夏季浇筑仓内配备喷雾设施,喷雾设备有轴流风机、摆动式喷雾机雾化管等,根据仓面特点来配置喷雾设备,考虑摆动式喷雾机降温效果较好,一般情况下,选择用摆动式喷雾机,局部不宜用喷雾机的部位用雾化管。 (3)混凝土浇筑前,配置足够的施工设备,加快入仓强度和浇筑强度,缩短运输时间和混凝土浇筑时间,减少太阳对运输混凝土的辐射。 (4)为缩短坯层覆盖时间,加大入仓强度,可减少坯层厚度,每坯层厚调整为35~40cm。 8.11.4 混凝土冷却通水 8.11.4.1 冷却水管的布置及埋设 (1)埋设部位:有初期通水、中期通水和后期冷却要求的部位均需埋设冷却水管。冷却水管采用1英寸(直径2.54cm)黑铁管,也可采用塑料、高密聚乙烯类管材。 (2)冷却水管及供水管的规格、类型、间距长度、通水量等应满足初期、中期通水降温的要求。 (3)冷却水管的布置要求:冷却水管一般按1.5m×1.5m布置,当层厚大于2.0m时,应在浇筑层中间埋设一层冷却水管。冷却水管单根水管长度不得超过250m。中间埋设的冷却水管一般采用高密聚乙烯类管材,随仓位浇筑到高程埋设。 (4)冷却水管宜预先加工成弯段和直段两部分,在仓内拼装成蛇形管圈。

混凝土温控措施(1)知识交流

混凝土温度控制 1概述 温控措施要求 (2) 常温混凝土为低温季节不采用预冷措施拌制的自然温度混凝土,也称自然入仓温度混凝土;预冷混凝土为高温季节或较高温季节采用预冷措施拌制的低温混凝土。 (3)应根据混凝土施工配合比、气温资料、施工方法等及设计允许最高温度推算出浇筑块所需的浇筑温度及出机口温度,并建立相应的关系,报监理人审批后执行。4月及10月浇筑贴坡混凝土时,混凝土出机口温度需达到7~10℃,混凝土浇筑温度控制在12~14℃。 (4) 为减少预冷混凝土温度回升,应严格控制混凝土运输时间和仓面浇筑坯覆盖前的暴露时间,混凝土运输机具应加保温设施,并减少转运次数,使预冷混凝土自出机口至仓面浇筑坯被覆盖前的温度满足浇筑温度要求。 15.14.5.3 合理的层厚及间歇期 (1)混凝土浇筑分层按设计要求进行,贴坡混凝土浇筑层厚一般采用 1.5~2m,加高混凝土浇筑层厚采用2~3m。若需变动,应经监理人书面批准。 (2) 大体积混凝土层间间歇应满足表15-7的要求,墩、墙浇筑层厚3~4m ,层间间歇时间4~9天。 表15-7 大体积混凝土浇筑层间间歇时间单位:天 注:低温季节浇筑取下限值。 (3)应在混凝土浇筑前按施工进度要求和有关层厚及间歇期要求,规划好各部位混凝土浇筑具体层厚及间歇期。 (4) 对施工计划中预计为长间歇停浇面,应在仓面布设防裂钢筋。

15.14.5.4 合理的施工程序和进度 主体建筑物施工程序和进度安排,应满足以下几点要求: (1) 混凝土在设计规定的间歇期内连续均匀上升,不得出现薄层长间歇。 (2) 贴坡混凝土安排在10月至次年4月施工。 (3) 贴坡混凝土相邻坝段之间高差不宜大于4~6m。 15.14.5.5 混凝土表面保护 (1) 大体积混凝土温控防裂满足以上温控要求外,还应满足表面保护要求。 (2) 应根据设计表面保护标准确定不同部位、不同条件的表面保温要求。尤其应重视基础约束区,贴坡部位及其它重要结构部位的表面保护。应重视防止气温骤降及寒潮的冲击。所有混凝土工程在最终验收之前,还必须加以维护及保护,以防损坏。浇筑块的棱角和突出部分应加强保护。 各部位主要保温要求如下: 1) 保温材料:保温材料应选择保温效果好且便于施工的材料,保温后表面等效放热系数:一般部位混凝土β≤2.0~3.0w/m2·℃;对永久暴露面、棱角部位、溢流面、闸墩等重要部位β≤1.5~2.0w/m2·℃。 2) 对于除过流部位之外的新浇混凝土上、下游永久暴露面,浇完拆模后立即设施工期的永久保温层。施工期的永久保温指保温至本标工程完工前。β值取15.14.5.5(2) 1)中下限值。 3) 每年入秋(9月底),应将竖井、廊道及其他所有孔洞进出口进行封堵。 4) 当日平均气温在2~3天内连续下降超过(含等于)6℃时,28天龄期内混凝土表面(顶、侧面)必须进行表面保温保护。β值取15.14.5.5(2) 1)中上限值。

混凝土入模温度控制

石家庄至武汉客运专线新建铁路工程 (河南段2标段) 混凝土入模温度控制措施 编制: 审核: 审批: 中铁二十局集团石武客专河南段项目部一分部 2008年11月

混凝土入模温度控制措施 黄河公铁两用桥北引桥是我分部施工的一个重点工程。施工中对于混凝土的耐久性指标要求比较高,每一个施工环节都应严格控制,以确保混凝土能够真正达到耐久性要求。结合我单位施工实际情况,本着既要保证混凝土施工质量,又要保证工期顺利进行的原则,针对混凝土入模温度这一要求,特制定以下措施: 一、夏期施工中对砼入模温度的控制 当昼夜平均气温(当地时间6时、14时及21时室外气温的平均值)高于30℃时,即已进入夏期施工,混凝土入模温度不宜高于30℃ 1、采用砼搅拌运输车运输砼。运输车储运罐装混凝土前用水冲洗降温,并在砼搅拌运输车罐顶设置棉纱降温刷,及时浇水使降温刷保持湿润,在罐车行走转动过程中,使罐车周边湿润,蒸发水汽降低温度,并尽量缩短运输时间。运输混凝土过程中宜慢速搅拌混凝土,不得在运输过程加水搅拌。 2、夏期浇筑砼前,要做好充分准备,备足施工机械,创造好连续浇筑的条件。砼从搅拌机到入模的时间及浇筑时间要尽量缩短。 3、施工时间段的选择 环境温度势必会增加用于拌制混凝土的各种材料的温度。根据夏季天气的特征,通过试验室测得睛天时不同时间段的平均温度: 8:00温度为27.5℃,14:00温度为33.7℃,17:00温度为28.7℃,19:00温度为27.3℃,进入夜间后温度会逐渐降低。所以,施工开盘时间选定在19:00以后,避开高温时段。 4、原材料的温度控制

(1)、水泥和粉煤灰的温度控制 优先采用进场时间较长的水泥和粉煤灰进行拌制混凝土,尽可能降低水泥及粉煤灰在生产过程中存留的余热。通过测温得出新进材料与放置24小时以上的材料相比温度平均差15℃,2天后温度基本稳定。通过对温度相对稳定的水泥进行测试得出平均温度为 38.6℃。粉煤灰温度为33.6℃。所以采用温度较稳定的胶凝材料是控制混凝土温度最为关键的一点。 (2)、集料的温度控制 从混凝土配合比中可以看出,一方混凝土中粗细骨料用量将近占总量80%,所以控制好粗细骨料的温度是控制混凝土入模温度的基础。通过对粗细骨料的温度测试得出:8:00为27.3℃,14:00为33.2℃,17:00为28.9℃,19:00为27.3℃,根据以上不同时段对集料温度测试结果,综合考虑,降低骨料温度可以采用以下措施: A、采用通风良好的遮阳大棚料场,避免太阳直射达到降温目的。 B、避开白天高温时段,在晚19:00以后环境温度逐渐下降之后和早上7:00以前环境温度还未上升之前这一时间段内进行施工。 C、应急时可采用对骨料洒水降温的方法进行降温。(注意含水率的测试,以保证混凝土配合比的质量) (3)、水温控制 水温控制是降低混凝土入模温度的最佳方法。通过对刚抽出的地下水进行测温,测得温度为18℃(必要时可采用冰块降温),采用刚抽出的地下水用于砼拌制混凝土可以满足降温要求。 (4)、外加剂温度控制 外加剂掺量较少,并且,外加剂罐放置在拌和楼下通风阴凉处,所以

简述大体积混凝土温度控制措施

大体积混凝土温度控制措施 摘要:在大体积混凝土工程中, 为了防止温度裂缝的产生或把裂缝控制在某个界限内, 必须进行温度控制。一般要选用合适的原料和外加剂,控制混凝土的温升,延缓混凝土的降温速率;选择合理的施工工艺,采取相应的降温与养护措施,及时进行安全监测,避免出现裂缝,以保证混凝土结构的施工质量。在此对大体积混凝土温度控制措施进行了探讨。 关键词:大体积混凝土,温度裂缝,温度控制,水化热 随着我国各项基础设施建设的加快和城市建设的发展, 大体积混凝土已经愈来愈广泛地应用于大型设备基础、桥梁工程、水利工程等方面。这种大体积混凝土具有体积大、混凝土数量多、工程条件复杂和施工技术要求高等特点, 在设计和施工中除了必须满足强度、刚度、整体性和耐久性的要求外, 还必须控制温度变形裂缝的开展, 保证结构的整体性和建筑物的安全。因此控制温度应力和温度变形裂缝的扩展, 是大体积混凝土设计和施工中的一个重要课题。 大体积混凝土的温度裂缝的产生原因 大体积混凝凝土施工阶段产生的温度裂缝,时期内部矛盾发展的结果,一方面是混凝土内外温差产生应力和应变,另一方面是结构的外约束和混凝土各质点间的内约束阻止这种应变,一旦温度应力超过混凝土所能承受的抗拉强度,就会产生裂缝。 1、水泥水化热 在混凝土结构浇筑初期,水泥水化热引起温升,且结构表面自然散热。因此,在浇筑后的3 d ~5 d,混凝土内部达到最高温度。混凝土结构自身的导热性能差,且大体积混凝土由于体积巨大,本身不易散热,水泥水化现象会使得大量的热聚集在混凝土内部,使得混凝土内部迅速升温。而混凝土外露表面容易散发热量,这就使得混凝土结构温度内高外低,且温差很大,形成温度应力。当产生的温度应力( 一般是拉应力) 超过混凝土当时的抗拉强度时,就会形成表面裂缝 2、外界气温变化 大体积混凝土结构在施工期间,外界气温的变化对防止大体积混凝土裂缝的产生起着很大的影响。混凝土内部的温度是由浇筑温度、水泥水化热的绝热温度和结构的散热温度等各种温度叠加之和组成。浇筑温度与外界气温有着直接关系,外界气温愈高,混凝土的浇筑温度也就会愈高;如果外界温度降低则又会增加大体积混凝土的内外温差梯度。如果外界温度的下降过快,会造成很大的温度应力,极其容易引发混凝土的开裂。另外外界的湿度对混凝土的裂缝也有很大的影响,外界的湿度降低会加速混凝土的干缩,也会导致混凝土裂缝的产生。大体积混凝土的温度控制措施 针对大体积混凝土温度裂缝成因, 可从以下几方面制定温控防裂措施。 一、温度控制标准 混凝土温度控制的原则是:(1)尽量降低混凝土的温升、延缓最高温度出现时间;(2)降低降温速率;(3)降低混凝土中心和表面之间、新老混凝土之间的温差以及控制混凝土表面和气温之间的差值。温度控制的方法和制度需根据气温(季节)、混凝土内部温度、结构尺寸、约束情况、混凝土配合比等具体条件确定。 二、混凝土的配置及原料的选择 1、使用水化热低的水泥 由于矿物成分及掺合料数量不同, 水泥的水化热差异较大。铝酸三钙和硅酸三钙含量高的, 水化热较高, 掺合料多的水泥水化热较低。因此选用低水化热或中水化热的水泥品种配制混凝土。不宜使用早强型水泥。采取到货前先临时贮存散热的方法, 确保混凝土搅拌时水泥温

混凝土的温控计算及温控措施(计算公式)

4.混凝土的温控计算及温控措施 4.1 C30大体积混凝土配合比设计及试配。 为降低C30大体积混凝土的最高温度,最主要的措施是降低混凝土的水化热。因此,必须做好混凝土配合比设计及试配工作。 4.1.1原材料选用 水泥:C30大体积混凝土应选用水化热较低的水泥,并尽可能减少水泥用量。本工程选用了普通硅酸盐水泥,即PO42.5海螺牌水泥。 细骨料:根据试验采用Ⅱ区中砂。 粗骨料:在可泵送情况下,选用粒径5-32.5连续级配石子,以减少水泥用量和混凝土收缩变形。 含泥量:在大体积混凝土中,粗细骨料的含泥量是要害问题,若骨料中含泥量偏多,不仅增加了混凝土的收缩变形,又严重降低了混凝土的抗拉强度,对抗裂的危害性很大。因此骨料必须现场取样实测,石子的含泥量控制在1%以内,砂的含泥量控制在2%以内。 掺合料:采用添加粉煤灰技术。项目部根据试验选定才用二级粉煤灰,在混凝土中掺用的粉煤灰不仅能够节约水泥,降低水化热,增加混凝土和易性,而且能够大幅度提高混凝土后期强度,大大降低了混凝土前3天的水化热。 外加剂:采用外加膨胀剂(AEA)技术。在混凝土中添加占胶凝材料8%的AEA。试验表明,在混凝土添加了AEA之后,混凝土内部产生的膨胀应力可以抵消一部分混凝土的收缩应力,从而提高了提高混凝土抗裂强度和抗渗性能。 4.1.2试配及施工配合比确定 根据试验室配合比设计试配,确定每立方米混凝土配合比为PO42.5级水泥 305kg,砂(中砂)752kg、连续级配碎石(粒径5—31.5mm)1063kg,掺合料65kg,外加剂25kg,水190kg,坍落度120士20mm。 4.2混凝土温度验算 假若承台周边没有任何散热和热损失条件(现场为砖地模且在砼施工时周边分层回填夯实),水化热全部转化成温升后的温度值,在混凝土表面覆盖一层麻袋作为保温层,则混凝土水化热绝热温升值为(混凝土在3-3.5d的水化热为峰值,则取3d砼温度): 计算参数:混凝土为C30 P8、普硅水泥为P.O42.5

混凝土入模温度计算

混凝土入模温度计算 依据国家行业标准JGJ104-97标准中的有关规定,混凝土的热工计算如下进行: 一、混凝土配合比及其它有关数据 底板C40P16配比: 材料名 称 项目水泥水砂石 掺 合料 膨 胀剂 泵 送剂 品种及规格P.O42.5 中 砂 碎 石 粉 煤灰 UE A EP 液 产地 秦皇岛 浅野 密 云 三 河 三 河 天 津 本 站 用量(kg/m3)330180750 103 130 4014.0 其它有关数据如下:水温20℃、水泥温度65℃、砂子温度25℃、石子温度25℃、砂子含水率6.0%、石子含水率0%、搅拌机棚内温度28℃、环境温度30℃、采用混凝土罐车(搅拌车)运输、从混凝土出站到工地所需时间约为1.0h。 二、混凝土拌合温度的计算 ) (9.0 2.4 ) ( ) ( ) ( 2.4 ) ( 92 .0 2 1 g sa ce w g g sa sa g g g sa sa sa g g sa sa w w g g sa sa ce ce m m m m m m c T m T m c m m m T T m T m T m T + + + + - + + - - + + + = ω ω ω ω ω ω 式中 T0——混凝土拌合物温度(℃);m w——水用量(kg);m ce——水泥用量(kg); m sa——砂子用量(kg); m g——石子用量(kg); T w——水的温度(℃); T ce——水泥的温度(℃); T sa——砂子的温度(℃); T g——石子的温度(℃); ωsa——砂子的含水率(%);ωg——石子的含水率(%); c1——水的比热容(kJ/kg·K); c2——冰的溶解热(kJ/kg)。 当骨料温度大于0℃时,c1=4.2,c2=0;

大体积混凝土温控记录(表格类别)

大体积混凝土养护测温记录 工程名称延津·上宅公园世纪四期工程施工单位新蒲建设集团有限公司测温部位混凝土基础(筏板)测温方式温度计养护方法保湿法 测温时间大气 温度 (C。) 入模 温度 (C。) 孔 号 各测温孔 温度(C。) 温度 T中-T上 (C。) 温度 T中-T下 (C。) 温度 T下-T上 (C。) 内外最大 温差记录 (C。) 裂缝 宽度 (mm ) 月日时 10 8 18 18 21.8 1 上31.2 20.7 12.1 8.6 内外温差 均不大于 25。C 无中51.9 下39.8 10 8 20 17 23.3 1 上35.5 14 7.6 6.4 中49.5 下41.9 10 8 22 16.5 20.8 1 上35.6 16.1 9.2 6.9 中51.7 下42.5 10 9 00 16 1 上36.8 16.3 7.9 8.4 中53.1 下45.2 10 9 02 16 1 上38.1 18.1 10.4 7.7 中56.2 下45.8 10 9 04 16.5 1 上40.8 17.7 9.2 8.5 中58.5 下49.3 10 9 06 16 1 上37.2 19.7 8.2 11.5 中56.9 下48.7 10 9 08 17 1 上35.6 14.3 8.7 5.6 中49.9 下41.2 10 9 10 19 1 上40.3 17.5 8.3 9.2 中57.8 下49.5 施工单位检查意见测温员 混凝土测温点布置正确,测温控制严格,经测温计算各项数据符合设计及规范要求。 专业工长(施工员):项目专业质检员: 年月日

监理(建设)单位意见 符合要求 专业监理工程师: 年月日大体积混凝土养护测温记录 工程名称延津·上宅公园世纪四期工程施工单位新蒲建设集团有限公司测温部位混凝土基础(筏板)测温方式温度计养护方法保湿法 测温时间大气 温度 (C。) 入模 温度 (C。) 孔 号 各测温孔 温度(C。) 温度 T中-T上 (C。) 温度 T中-T下 (C。) 温度 T气-T上 (C。) 内外最大 温差记录 (C。) 裂缝 宽度 (mm ) 月日时 10 9 12 20 1 上38.8 19.6 12.5 7.1 内外温差 均不大于 25。C 无中58.4 下45.9 10 9 14 21 1 上37.3 19.8 13.4 7.4 中57.1 下43.7 10 9 16 20 1 上42.1 18 9.3 8.7 中60.1 下50.8 10 9 18 18 1 上38.7 20.4 13.2 7.2 中59.1 下45.9 10 9 20 17 1 上34.8 21.7 13.7 8 中56.5 下42.8 10 9 22 16 1 上35.5 20.6 7 13.6 中56.1 下49.1 10 10 00 16 1 上37.1 21.9 11.9 10 中59.0 下47.1 10 10 02 16 1 上37.1 22.6 13.2 9.4 中59.7 下46.5 10 10 04 17 1 上36.4 22.1 11.7 10.4 中58.5 下46.8 测温员

(整理)d冬季施工要求混凝土入模温度不得低于5

冬季施工要求混凝土入模温度不得低于5℃? 入模温度低于5度,水泥的水化热将停止反应,混凝土的强度将不会增加。 混凝土拌和物浇灌后之所以能逐渐凝结硬化,直至获得最终强度,是由于水泥水化作用的结果。而水泥水化作用的速度除与混凝土本身组成材料和配合比有关外,还与外界温度密切相关。当温度升高时水化作用加快,强度增长加快,而当温度降低到0 ℃度时,存在于混凝土中的水有一部分开始结冰,逐渐由液相(水) 变为固相(冰) ,这时参与水泥水化作用的水减少了,水化作用减慢,强度增长相应变慢。温度继续降低,当存在于混凝土中的水完全变成冰,也就是完全由液相变成固相时,水泥水化作用基本停止,此时混凝土的强度不会再增长。由于水变成冰后体积约增大9 % ,同时产生约2. 5MPa 的膨胀应力,这个应力往往大于混凝土的内部形成的初始强度值,使混凝土受到不同程度的破坏(即早期受冻破坏) 。此外,当水变成冰后,还会在骨料和钢筋表面上产生颗粒较大的冰凌,减弱水泥浆与骨料和钢筋的粘结力。当冰凌融化后,还会在混凝土内部形成各种空隙,而降低混凝土的耐久性。 国内外许多学者对冬季施工的混凝土进行了大量的试验,结果表明:在受冻混凝土中水泥发生水化作用停止之前,使混凝土达到一个最小临界强度(我国规定为不低于设计强度的30 %且不低于3. 5MPa) ,可以使混凝土不遭受冻害,最终强度不受到损失。所以延长混凝土中水的液体形态,使之有充裕的时间与水泥发生水化反应,达到混凝土的最小临界强度及减少混凝土中自由水的含量是防止混凝土冻害的关键。在实际的工程中,针对具体情况,通常采用蓄热法和掺加防冻剂两种方法来保证水的液态。防冻剂的作用在于降低拌和物冰点,细化冰晶,使混凝土在负温下保持一定数量的液相水,使水泥缓慢水化,改善了混凝土的微观结构,从而使凝土达到一个最小临界强防冻剂是外加剂的一种,由减水组分、引气组分、防冻组分,有时还掺有早强组分等组成。 2. 1 减水组分 减水组分的主要功能是减水。减水剂对冬季混凝土的作用有三:一是,减少水就意味着提高强度,就是提高混凝土的抗冻能力;二是,在盐分一定的情况下减少用水量,提高混凝土中自由水中盐的浓

混凝土温控的措施1

1绪论 实习任务:根据所学内容和相关专业知识,简述大体积混凝土温度应力 的概念以及应力作用下产生的裂缝。详述大体积混凝土温度控制的任务和作用, 以及在不同施工阶段解释说明温控的具体措施。 实习的作用:全面检验和巩固课程学习效果,可以利用所学理论解决实 际水利工程问题的能力,增强我们的专业素质,提高自我的学习能力,和实践 能力。 2温度应力 2.1温度应力的概念:由于温度变化,结构或构件产生伸或缩,而当伸缩受到限制时,结构或构件内部便产生应力,称为温度应力。 2.2产生的原因:在凝固、冷却的过程中因为产品结构、环境等因素造成各个位置散热条件不会完全相同,热胀冷缩而形成的互相之间因为收缩而产生的作用力。 3温度裂缝 3.1裂缝的类型:(1)表面裂缝(2)贯穿裂缝和深沉裂缝 3.2裂缝的部位 (1)表面裂缝:多发生在浇筑块侧壁,方向不定,数量较多。 (2)贯穿裂缝和深沉裂缝:这种裂缝自基础面向上开展,严重时可能贯穿整个坝段。此种裂缝切割的深度达3~5m,宽度达1~3mm,且多垂直基面向上延伸,既能平行纵缝贯穿,也能沿流向贯穿。 3.3温度裂缝的原因 大体积混凝凝土施工阶段产生的温度裂缝,时期内部矛盾发展的结果, 一方面是 混凝土内外温差产生应力和应变,另一方面是结构的外约束和混凝土各质点间的内约束阻止这种应变,一旦温度应力超过混凝土所能承受的抗拉强度,就会产生裂缝。 (1)表面裂缝:混凝土浇筑后,其内部由于水化热温升,体积膨胀,如遇寒潮,表层降温收缩。内胀外缩,在混凝土内部产生压应力,表层产生拉应力。在混凝土内处于内外温度平均值的点应力为零,高于平均值的点承受压应力,低于平均值的点承受拉应

混凝土温控施工方案

辽宁省绥中猴山水库工程 混凝土温控专项方案 编制: 审核: 批准: 中国水利水电第六工程局有限公司 辽宁省猴山水库工程项目部

二〇一六年五月 混凝土温控专项方案 一、概述 1、工程简介 猴山水库工程位于绥中县狗河中游范家乡赵家甸村上游约1km处,距离绥中县城约35km,距离前卫火车站约25km。坝址以上河道长47.9km,控制流域面积377km2,占狗河全流域面积的70%。水库任务是以城市供水为主,兼顾灌溉的大型综合利用水利枢纽工程。 水库最大库容为1.6×108m3,工程等别为II等,工程规模为大(2)型,永久性主要建筑物拦河坝、副坝建筑物级别定为2级;临时性建筑物为4级。主要建筑物的设计洪水重现期采用100年(P=1%),校核洪水重现期采用1000年(P=0.1%),消能防冲建筑物设计洪水重现期采用50年(P=2%)。 拦河大坝为混凝土重力坝,最大坝高51.60m,由左、右岸挡水坝段、门库坝段、引水坝段及溢流坝段等组成。主坝坝顶全长349.0m,其中左岸挡水坝段长116.0m,右岸挡水坝段长110.0m,溢流坝段长69.0m,引水坝段长16.0m,门库坝段长38.0m。挡水坝段坝顶宽度为8m,坝顶高程138.20m,最低建基面高程86.60m。 2、水文气象 本工程位于绥中县狗河流域,地处中纬度,属于温带季风气候区,其特点是冬季以西北季风为主,严寒干燥;夏季以东南季风为主,炎热多雨,四季冷暖干湿分明。 多年平均气温在9.5℃,极端最高气温达39.8℃,极端最低气温为-26.3℃。结冰时间一般为11月上旬,融冻时间为3月中旬。最冷月为一月,多年平均温度为-7.7℃。多年平均相对湿度为62%,多年平均最大相对湿度出现在7月,为84%;多年平均最小出现在12月,为50%。 3、编制目的 混凝土自然散热缓慢,浇筑后水泥水化热集中,混凝土内部温度迅速上升,且幅度较大。为了防止混凝土内外温差过大,在温度应力的作用下而发生裂缝,混凝土的浇筑温度及内部最高温度必须加以控制。

混凝土温度控制措施

混凝土温度控制措施 一、混凝土工程执行的温控标准 (1)混凝土温度控制应遵循《水工混凝土施工规范》(DL/T5144-2001)中的有关规定; (2)具体温控措施见设计方的《大坝混凝土施工技术要求》; (3)趾板、面板强约束区混凝土在低温季节浇筑; (4)趾板混凝土最高温度不超过33~35?C,面板混凝土最高温度不超过31~33?C,基础约束区稳定温度16.5?C。 二、混凝土温控措施 (1)合理安排混凝土施工时段 趾板、面板及基础强约束区的混凝土在低温季节浇筑。 (2)优化配合比设计 严格选择优质原材料,按设计推荐的配合比进行配合比试验,确定最佳配合比。掺用高效优质复合型外加剂、I级优质粉煤灰,提高混凝土的增强、抗裂性能。 (3)严格按设计要求和施工规范分缝分块分层 趾板沿长度方向设施工缝,施工缝间距不超过25~30m;在趾板转折点、地质缺陷处或基岩岩性发生变化处设置伸缩缝;面板混凝土分缝分块严格按施工图纸要求进行。 (4)加强养护与通水散热。 在混凝土表面覆盖绒毛毡保温被或双层草袋进行保温,防止气温骤升时表面水份过分挥发或气温骤降等产生表面干缩裂缝。夏季浇筑混凝土时,在仓面内采取喷雾、隔热、防晒等措施,运输设备设置遮阳棚等。混凝土表面连续喷(洒)

水养护。对一般浇筑层连续养护至上一层施工;对面板和趾板混凝土,保湿养护至大坝蓄水。 (5)加强施工组织管理,确保现场施工顺利进行 在混凝土浇筑前,作好各项准备工作,机械设备、材料供应、施工人员等均安排充足,做到“人停机不停”。在滑模上部设置防雨棚,若温度较高,可起到遮阳防晒的作用;若遇气温较低,可起到保温作用,必要时在棚内设置碘钨灯升温。若浇筑混凝土期间温度较高,则尽量利用夜间施工,避开中午高温时段。

混凝土温控措施

1.8混凝土温控防裂措施 1.8.1混凝土温控要求 浇筑大体积混凝土应在一天中气温较低时进行。混凝土的浇筑温度(振捣后 50~100mm 深处的温度)不宜高于28℃。在炎热季节浇筑大体积混凝土时,宜将 混凝土原材料进行遮盖,避免日光爆晒。根据原料温度推算拌合后混凝土的温度 可按下式进行: max 0()t T T T ξ=+ (1) 式中: ξ —不同浇筑块厚度、不同龄期时的降温系数,可由表查得 0T —混凝土的浇筑入模温度 max T —混凝土内部最高温度 ()t T —在t 龄期时混凝土的绝热温升 ()(1)mt c t m Q T e C ρ -=- (2) 式中: c m —每立方米混凝土水泥用量 Q —每千克水泥水化热量 C —混凝土的比热,一般取0.96J/Kg ·K ρ —混凝土的质量密度,取2400Kg/m 3 e ―常数,为2.718 m ―与水泥品种,浇筑时与温度有关的经验系数,取0.3 t ―混凝土浇筑后至计算时的天数 1.8.2混凝土温控措施 为防止大体积混凝土温差过大产生温度裂缝,从而保证混凝土的质量,在混 凝土施工中,我们主要采取了以下措施: 1、采用低水化热水泥 施工中选用了水化热较低的矿渣硅酸盐水泥,同时,为减少混凝土配合比中

的水泥用量,在确保混凝土强度及坍落度的条件下,适当掺入了粉煤灰及外加剂,以降低混凝土的水化热温升,控制最终水化热。 2、控制混凝土入模温度 混凝土的入模温度指混凝土运输至浇筑时的温度,降低混凝土的入模温度措施是用冷水对粗骨料进行冲洗,选择在夜间浇筑混凝土,混凝土入模温度控制在了24℃以内。 3、控制混凝土分层浇筑厚度 尽量减少浇筑层厚度,以便加快混凝土散热速度。施工采用汽车泵泵送入模时候,混凝土浇筑时严格控制分层厚度为每30cm一层,自一侧向另一侧顺序浇筑,保证在下层混凝土初凝前浇筑完成上层混凝土。分层厚度利用钢筋或其它标尺做参照物,派专人进行负责,一个下料点到位后,移至下一个下料点,依次进行,混凝土布料完成且平整后开始振捣。 4、加强混凝土的振捣质量 浇筑过程中配备6条插入式振动棒,分区负责保证振捣质量,尤其是在钢筋密集处,必须保证其密实性和均匀性,防止出现过振、漏振现象。 混凝土浇筑到设计标高后,要除去表面浮浆,安排专人找平。为防止混凝土表面出现收缩裂缝,用木抹进行二次收浆找平。 5、及时保温养护 (1)在遇气温骤降的天气或寒冷季节浇筑大体积混凝土后,应注意覆盖保温,加强养护。 (2)保温养护采用在混凝土表面蓄水养护的方法,养护安排专人进行,个别蓄水养护不到的部位给予覆盖并经常洒水,保持混凝土表面湿润不失水。6、做好混凝土温度监测 对于重要结构在混凝土内部埋设电阻式温度计测量混凝土温度,全面掌握混凝土内部温度,出现较大温差时及时采取降温措施。每100m2仓面面积应不少于1个测点,每一浇筑层应不少于3个测点。测点应均匀分布在浇筑层面上时、浇筑块内部的温度观测,除按设计规定进行外,应根据混凝土温度控制的需要,补充埋设仪器进行观测。 1.8.3混凝土裂缝、漏浆处理

混凝土温度控制标准

混凝土温度控制标准 1.1 分缝分块 底孔坝段共分5个坝段,坝段宽均为17.0m,顺流向最大长度为103.77m。 厂房坝段共分4个坝段,坝段宽均为28.0m,顺流向最大长度为103.33m,采用碾压混凝土不分纵缝施工。 左岸非溢流坝段共分16个坝段,1#~15#坝段宽均为19.2m,顺流向最大长度为59.44m,门库坝段宽为20.0m,顺流向最大长度为73.84m,采用碾压混凝土不分纵缝施工。 具体分缝分块尺寸以详见附图(WJ-CDT-TZK/C-001-Ⅱ -18-03~05)。 1.2 坝体设计允许最高温度 (1)常态混凝土设计允许最高温度 根据坝体的允许基础温差、坝体稳定温度及最高温度控制标准等,坝体设计允许最高温度见表18-8。表孔坝段及右非坝段常态混凝土基础垫层设计允许最高温度参照相应部位碾压混凝土基础强约束区执行。 表18-8 坝体设计允许最高温度单位:℃

注:基础强约束区为建基面~0.2L,基础弱约束区为0.2~0.4L,其中L为浇筑块长边尺寸。 (2)碾压混凝土设计允许最高温度 根据坝体的允许基础温差、坝体稳定温度及最高温度控制标准等,坝体设计允许最高温度见表18-9。 表18-9 坝体设计允许最高温度 单位:℃

1.3 新老混凝土上下层温差标准 )常态混凝土1(. 当下层混凝土龄期超过28天成为老混凝土时,其上层混凝土应控制上、下层温差,对连续上升坝体且高度大于0.5L(浇筑块长边尺寸)时,允许老混凝土面上下各L/4范围内上层最高平均温度与新混凝土开始浇筑下层实际平均温度之差为17℃;浇筑块侧面长期暴露时,或上层混凝土高度小于0.5L或非连续上升时应加严上下层温差控制。 (2)碾压混凝土 当下层混凝土龄期超过28天成为老混凝土时,其上层混凝土应控制上、下层温差,对连续上升坝体且高度大于0.5L(浇筑块长边尺寸)时,允许老混凝土面上下各L/4范围内上层最高平均温度与新混凝土开始浇筑下层实际平均温度之差为16~18℃;浇筑块侧面长期暴露时,或上层混凝土高度小于0.5L或非连续上升时应加严上下层温差控制。 1.4 填塘、陡坡混凝土的温控要求 建基面岩体高差大于2m或其它监理人指定的部位,均应按

混凝土入模温度计算

混凝土入模温度计算 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

混凝土入模温度计算 依据国家行业标准JGJ104-97标准中的有关规定,混凝土的热工计算如下进行: 一、混凝土配合比及其它有关数据 底板C40P16配比: 其它有关数据如下:水温20℃、水泥温度65℃、砂子温度25℃、石子温度25℃、砂子含水率%、石子含水率0%、搅拌机棚内温度28℃、环境温度30℃、采用混凝土罐车(搅拌车)运输、从混凝土出站到工地所需时间约为。 二、混凝土拌合温度的计算 式中T0——混凝土拌合物温度(℃);m w——水用量(kg);m ce——水泥用量(kg); m ——砂子用量(kg);m g——石子用量(kg);T w——水的温度(℃); sa T ——水泥的温度(℃);T sa——砂子的温度(℃);T g——石子的温度ce (℃); ωsa——砂子的含水率(%);ωg——石子的含水率(%); c ——水的比热容(kJ/kg·K);c2——冰的溶解热(kJ/kg)。 1 当骨料温度大于0℃时,c1=,c2=0; 当骨料温度小于或等于0℃时,c1=,c2=335。 由上式计算得:T0=℃

三、混凝土拌合物出机温度的计算 式中T1——混凝土拌合物温度(℃);T i——搅拌机棚内温度(℃); 由上式计算得:T1=℃ 四、混凝土拌合物经运输到浇筑时温度的计算 式中T2——混凝土拌合物运输到浇筑时温度(℃); t1——混凝土拌合物自运输到浇筑时的时间(h); n——混凝土拌合物运转次数(罐车-砼泵-入模,故n=2); T ——混凝土拌合物运输时环境温度(℃); a α——温度损失系数(h-1),当用混凝土搅拌车输送时,α=。 由上式计算得:T2=℃ 由以上计算可知,我站为您提供的混凝土在上述条件下到达工地顺利入模时,可以满足施工的一般要求。 ******搅拌站技术部 日期****

混凝土温度控制措施

第14章混凝土温度控制 14.1厂区混凝土工程概述 电源电站厂房为引水式水电站,厂房形式为地面式,厂房区建筑物包括主厂房、副厂房、安装场及尾水渠等建筑物。电站为三台机组,总装机容量99MW。厂区电站建筑物结构尺寸: 主厂房结构几何尺寸为50.3m×33.60 m×32.10m (长、宽、高),厂房内自身提升设备为一台125t、25t,跨度16m的桥式起重机;厂房安装间及发电机组高程269.7m,机窝开挖高程252.5m,水轮机中心高程:260.00m,同时厂房上游与三根压力支管道连接,厂房基础处理为固结灌浆。 本工程为Ⅲ等工程,永久建筑物按3级设计,临时建筑物按5级设计。 14.2 设计主要工程量表表14-1

14.3水文气象条件 根据现场踏勘及招标文件,伊洛瓦底江流域位于亚洲西南季风区,气候受西南季风支配,分属亚热带和热带雨林气候带,全年分为3季:3~5月为暑季、6~10月为雨季、11~2月为凉季。由于资料缺乏,故根据邻近泸水站资料统计,多年平均雷暴日数为52.1d;根据莫强波14年资料统计,日降雨量大于5mm的降雨日数见表14-2。 表14-2 电源电站气象成果 14.4厂区混凝土温度控制设计 本工程引水隧洞由于为洞内混凝土作业,混凝土分仓段10m至12m,量小,原则上不做温控措施,只对厂区大体积混凝土做温控设计。 14.4.1温控标准 (1)分缝分块 电站厂房顺流向长度18.7m,不分缝通仓浇筑,具体分缝分块尺寸以施工详图为准。 (2)混凝土设计允许最高温度 混凝土设计允许最高温度见表14-3。 (3)上下层温差标准 在龄期28d以上的老混凝土上连续浇筑新混凝土,在新浇筑混凝土连续上升条件

混凝土温度计算公式

混凝土温度计算公式 1.最大绝热温升(二式取其一) (1)Th=(mc+k·F)Q/c·ρ (2)Th=mc·Q/c·ρ(1-e-mt) 式中 Th——混凝土最大绝热温升(℃); mc——混凝土中水泥(包括膨胀剂)用量(kg/m3);F——混凝土活性掺合料用量(kg/m3); K——掺合料折减系数。粉煤灰取0.25~0.30;Q——水泥28d水化热(kJ/kg)查表; c——混凝土比热、取0.97[kJ/(kg·K)];ρ——混凝土密度、取2400(kg/m3); e——为常数,取2.718; t——混凝土的龄期(d); m——系数、随浇筑温度改变。 T1(t)=Tj+Th·ξ(t) 式中 T1(t)——t龄期混凝土中心计算温度(℃);Tj——混凝土浇筑温度(℃); ξ(t)——t龄期降温系数 3.混凝土表层(表面下50~100mm处)温度 1)保温材料厚度(或蓄水养护深度) δ=0.5h·λx(T2-Tq)Kb/λ(Tmax-T2) 式中δ——保温材料厚度(m); λx——所选保温材料导热系数[W/(m·K)]

T2——混凝土表面温度(℃); Tq——施工期大气平均温度(℃); λ——混凝土导热系数,取2.33W/(m·K); Tmax——计算得混凝土最高温度(℃); 计算时可取T2-Tq=15~20℃ Tmax=T2=20~25℃ Kb——传热系数修正值,取1.3~2.0 T2——混凝土表面温度(℃); Tq——施工期大气平均温度(℃); λ——混凝土导热系数,取2.33W/(m?K); Tmax——计算得混凝土最高温度(℃); 计算时可取T2-Tq=15~20℃ Tmax=T2=20~25℃ Kb——传热系数修正值,取1.3~2.0 传热系数修正值 保温层种类K1K2 1纯粹由容易透风的材料组成(如:草袋、稻草板、锯末、砂子)2.63.0 2由易透风材料组成,但在混凝土面层上再铺一层不透风材料2.02.3 3在易透风保温材料上铺一层不易透风材料1.61.9 4在易透风保温材料上下各铺一层不易透风材料1.31.5 5纯粹由不易透风材料组成(如:油布、帆布、棉麻毡、胶合板)1.31.5 注:1.K1值为一般刮风情况(风速<4m/s,结构位置>25m); 2.K2值为刮大风情况。

浅谈混凝土施工的温度控制措施

浅谈混凝土施工的温度控制措施 摘要:水利建筑施工是一个复杂的过程,在保证工期按时完成的前提下,还要确保工程质量,这就不可避免的要在夏季高温季节、冬季低温季节进行混凝土施工。为了保证高温、低温季节混凝土的施工质量,施工过程中需采取必要的温度控制措施,本文列举了一些经常采取的温控措施,以供参考。 关键词:建筑施工;混凝土;高温;低温;温度控制 Abstract: water conservancy construction is a complex process, in order to ensure the project completed on time, but also to ensure the quality of the project, it is inevitable to concrete construction in high temperature season, summer winter low season. In order to ensure the construction quality of high temperature, low temperature of concrete, the temperature control measures necessary to be taken in the process of construction, this paper lists some frequently take the temperature control measures, for reference. Keywords: building construction; concrete; temperature; temperature; temperature control 前言 对于水利建筑施工来说,进度和质量是相辅相成的,在保证工期按时完工的前提下,还要确保工程质量。,有时在工期紧张的施工环境下必须进行特殊季节的混凝土施工,那就不得不采取必要的温度控制措施,下文列举了一些经常采取的温控措施,以供参考。 1、夏季高温季节温度控制措施 1.1热工计算 由混凝土允许最高浇筑温度计算出混凝土的入仓温度,再由混凝土的入仓温度推算混凝土出机口温度T01。根据实测砂、石、水、水泥的温度以及砂、石的含水率和混凝土材料的配合比用量,计算出出机口温度T02。比较T01和T02两者的数值,如果T01大于T02,说明还要进一步改进温控措施。如果T01小于T02,说明采取的温控措施是合适的。 1)混凝土入仓温度计算 (公式一) 式中 TP:混凝土浇筑允许的最高温度,取设计规定值,26℃;

大体积混凝土裂缝原因及温控措施

大体积混凝土裂缝原因及温控措施 1 沉缩裂缝 混凝土沉缩裂缝在大体积混凝土施工中也是非常多的。主要原因是振捣不密实,沉实不足,或者骨料下沉,表层浮浆过多,且表面覆盖不及时,受风吹日晒,表面水份散失快,产生干 缩,混凝土早期强度又低,不能抵抗这种变形而导致开裂。在施工中采用缓凝型泵送剂,延缓混凝土的凝结硬化速度,充分利用外加剂(特别是缓凝剂)的特性,适时增加抹加次数,消除表面裂缝(特别是沉缩裂缝和初期温度裂缝),特别是初凝前的抹压。 2 温度裂缝 (1)原因:一是由于温差较大引起的,混凝土结构在硬化期间水泥放出大量水化热,内部温度不断上升,使混凝土表面和内部温差较大,混凝土内部膨胀高于外部,此时混凝土表面将受到很大的拉应力,而混凝土的早期抗拉强度很低,因而出现裂缝。这种温差一般仅在表面处较大,离开表面就很快减弱,因此裂缝只在接近表面的范围内发生,表面层以下结构仍保持完整。二是由结构温差较大,受到外界的约束引起的,当大体积混凝土浇筑在约束地基上时,又没有采取特殊措施降低,放松或取消约束,或根本无法消除约束,易发生深进,直至贯穿的温度裂缝。 (2)过程:一般(人为)分为三个时期:一是初期裂缝---就是在混凝土浇筑的升温期,由于水化热使混凝土浇筑后2- 3 天温度急剧上升,内热外冷引起" 约束力",超过混凝土抗拉强度引起裂缝。二是中期裂缝---就是水化热降温期,当水化热温升到达峰值后逐渐下降,水化热散尽时结构物的温度接近环境温度,此间结构物温度引起" 外约束力",超过混凝土抗拉强度引起裂缝。三是后期裂缝,当混凝土接近周围环境条件之后保持相对稳定,而当环境条件下剧变时,由于混凝土为不良导体,形成温度梯度,当温度梯度较大时,混凝土产生裂缝。 3 控温措施和改善约束 3.1 温控措施 (1)降低混凝土内部的水化热,采用中低热的矿渣水泥,控制水泥的使用温度,添加一定量的优质粉煤灰,以降低混凝土的水化热,同时选用高效外加剂。 (2)优化配合比,降低水化热。进行配合比试验时,尽量降低水泥用量,选择性能优良的外加剂,在确保混凝土质量的前提下,初始混凝土坍落度控制在16~18cm. (3)减少地基约束力。岩石基础与新浇混凝土之间,存在着弹性模量、温度的差别,新浇筑混凝土随着强度逐渐上升,其温度也发生变化,必有一个徐变过程,而原岩石地基对其便产生一个约束力,当达到一定程度,便会导致裂缝产生。 (4)控制混凝土的浇筑间歇期和分层厚度。 (5)控制混凝土浇筑人仓温度。 3.2 改善约束条件的措施是 (1)合理地分缝分块; (2)避免基础过大起伏; (3)合理的安排施工工序,避免过大的高差和侧面长期暴露。 此外,改善混凝土的性能,提高抗裂能力,加强养护,防止表面干缩,特别是保证混凝土的质量对防止裂缝是十分重要,应特别注意避免产生贯穿裂缝,出现后要恢复其结构的整体性是十分困难的,因此施工中应以预防贯穿性裂缝的发生为主。在混凝土的施工中,为了提高模板的周转率,往往要求新浇筑的混凝土尽早拆模。当混凝土温度高于气温时应适当考虑拆模时间,以免引起混凝土表面的早期裂缝。新浇筑早期拆模,在表面引起很大的拉应力,出现" 温度冲击"现象。在混凝土浇筑初期,由于水化热的散发,表面引起相当大的

相关主题