搜档网
当前位置:搜档网 › 四轴飞行器作品说明书

四轴飞行器作品说明书

四轴飞行器作品说明书
四轴飞行器作品说明书

.

四轴飞行器作品说明书

摘要

四轴飞行器在各个领域应用广泛。相比其他类型的飞行器,四轴飞行器硬件结构简单紧凑,而软件复杂。本文介绍四轴飞行器的一个实现方案,软件算法,包括加速度计校正、姿态计算和姿态控制三部分。校正加速度计采用最小二乘法。计算姿态采用姿态插值法、需要对比这三种方法然后选出一种来应用。控制姿态采用欧拉角控制或四元数控制。

关键词:四轴飞行器;姿态;控制

目录

1.引言 (1)

2.飞行器的构成 (1)

2.1.硬件构成 (1)

2.1.1.机械构成 (1)

2.1.2.电气构成 (3)

2.2.软件构成 (3)

2.2.1.上位机 (3)

2.2.2.下位机........... . (4)

3.飞行原理........... ................................ (4)

3.1. 坐标系统 (4)

3.2.姿态的表示 (5)

3.3.动力学原理 (5)

4.姿态测量........... ................................ (6)

4.1.传感器校正 (6)

4.1.1.加速度计和电子罗盘 (6)

5.姿态控制 (6)

5.1.欧拉角控制 (6)

5.2.四元数控制 (7)

6.姿态计算 (7)

7.总结 (8)

参考文献 (9)

1.引言

四轴飞行器最开始是由军方研发的一种新式飞行器。随着MEMS传感器、单片机、电机和电池技术的发展和普及,四轴飞行器成为航模界的新锐力量。到今天,四轴飞行器已经应用到各个领域,如军事打击、公安追捕、灾害搜救、农林业调查、输电线巡查、广告宣传航拍、航模玩具等。

目前应用广泛的飞行器有:固定翼飞行器和单轴的直升机。与固定翼飞行器相比,四轴飞行器机动性好,动作灵活,可以垂直起飞降落和悬停,缺点是续航时间短得多、飞行速度不快;而与单轴直升机比,四轴飞行器的机械简单,无需尾桨抵消反力矩,成本低。

本文就小型电动四轴飞行器,介绍四轴飞行器的一种实现方案,讲解四轴飞行器的原理和用到的算法,并对几种姿态算法进行比较。

2.飞行器的构成

四轴飞行器的实现可以分为硬件和软件两部分。比起其他类型的飞行器,四轴飞行器的硬件比较简单,而把系统的复杂性转移到软件上,所以本文的主要容是软件的实现。

2.1.硬件构成

飞行器由机架、电机、螺旋桨和控制电路构成。

2.1.1.机械构成

机架呈十字状,是固定其他部件的平台,本项目采用的是碳纤维材料的机架。电机采用无刷直流电机,固定在机架的四个端点上,而螺旋桨固定在电机转子上,迎风面垂直向下。螺旋桨按旋转方向分正桨和反桨,从迎风面看逆时针转的为正桨,四个桨的中心连成的形,正桨反桨交错安装。

C A D设计机架如图:

整体如图2-1:

2.1.2. 电气构成

电气部分包括:控制电路板、电子调速器、电池,和一些外接的通讯、传感器模块。控制电路板是电气部分的核心,上面包含MCU、陀螺仪、加速度计、电子罗盘、气压计等芯片,负责计算姿态、处理通信命令和输出控制信号到电子调速器。电子调速器简称电调,用于控制无刷直流电机。

电气连接如图2-2所示。

2.2.软件构成

2.2.1.上位机

上位机是针对飞行器的需要,在Qt SDK上写的一个桌面程序,可以通过串口与飞行器相连,具备传感器校正、显示姿态、测试电机、查看电量、设置参数等功能,主界面如图(2-3)。

2.2.2.下位机

下位机为飞行器上MCU里的程序,主要有三个任务:计算姿态、接受命令和输出控制。下位机直接控制电机功率,飞行器的安全性、稳定性、可操纵性都取决于它。下位机的三个任务实时性都要求很高,所以计算姿态的频率设为200Hz,输出控制的频率为100Hz,而接收到命令后,立即处理。因为电子调速器接受的信号为PWM信号,高电平时间在1ms~2ms 之间,所以控制信号输出频率也不能太高。

3.飞行原理

3.1.坐标系统

飞行器涉及两个空间直角坐标系统:地理坐标系和机体坐标系。地理坐标系是固连在地面的坐标系,机体坐标系是固连在飞行器上的坐标系。四轴飞行器运动围小,可以不考虑地面曲率,且假设地面为惯性系。地理坐标系采用“东北天坐标系”,X轴指向东,为方便罗盘的使用,Y轴指向地磁北,Z轴指向天顶。机体坐标系原点在飞行器中心,xy平

面为电机所在平面,电机分布在{|x|=|y|,z=0}的直线上,第一象限的电机带正桨,z轴指向飞行器上方。如图3-1所示。

3.2.姿态的表示

飞行器的姿态,是指飞行器的指向,一般用三个姿态角表示,包括偏航角(yaw)、俯仰角(pitch)和滚转角(roll)。更深一层,姿态其实是一个旋转变换,表示机体坐标系与地理坐标系的旋转关系,这里定义姿态为机体坐标系向地理坐标系的转换。旋转变换有多种表示方式,包括变换矩阵、姿态角、转轴转角、四元数等。

3.3.动力学原理

螺旋桨旋转时,把空气对螺旋桨的压力在轴向和侧向两个方向分解,得到两种力学效应:推力和转矩。当四轴飞行器悬停时,合外力为0,螺旋桨的推力用于抵消重力,转矩则由成对的正桨反桨抵消。当飞行

器运动时,因为推力只能沿轴向,所以只能通过倾斜姿态来提供水平的动力,控制运动由控制姿态来间接实现。

假设四轴为刚体,根据质点系动量矩定理,角速度和角加速度由外力矩决定,通过控制四个螺旋桨,可以产生需要的力矩。首先对螺旋桨编号:第一象限的为0号,然后逆时针依次递增,如图(3-1)。同步增加0号和1号、减小2号和3号桨的功率,可以在不改变推力的情况下,提供x轴的力矩;同步增加1号和2号、减小0号和3号桨的功率,可以在不改变推力的情况下,提供y轴的力矩;同步增加1号和3号、减小0号和2号桨的功率,可以在不改变推力的情况下,提供z轴的力矩。以上“增加”和“减小”只是表明变化的方向,可以增加负数和减小负数,提供的力矩就沿对应轴的负方向了。

4.姿态测量

获取当前姿态是控制飞行器平稳飞行的基础,姿态的测量要求低噪声、高输出频率,当采用陀螺仪等需要积分的传感器时,还需要考虑积分发散等问题。近年来MEMS传感器越来越成熟、应用广泛,成为低成本姿态测量的首选器件,因此该项目使用的传感器全部都是MEMS传感器。在使用传感器的值进行姿态计算之前,有必要校正传感器

4.1.传感器校正

由于实验条件限制,传感器的校正只有两项,分别对应两种类型的传感器:陀螺仪——静止时0输出的传感器、加速度计与罗盘——测量某向量场强度的传感器。

4.1.1.加速度计和电子罗盘

加速度计和罗盘都是测量所在点的某个向量场的值的传感器,静态时加速度计测的是等效重力加速度场,电子罗盘测的是地磁场。下面仅介绍加速度计的校正,罗盘的校正同理。加速度计测量的对象是比力,也就是等效重力加速度和运动加速度的和,当静止时,运动加

速度为0,加速度计的测量值为等效重力加速度,可以利用这一点校正加速度计。加速度计的校正的思路为:对测量值平移和缩放,把测量值拟合到重力加速度。因此校正的任务为:寻找最佳的平移和缩放参数,使总体测量数据的更靠近重力加速度。

5.姿态控制

姿态计算出来后,就可以输出控制了。根据被控姿态的表示方式,分为欧拉角控制和四元数控制。控制的思路为:设定一个目标姿态,调整螺旋桨,使测量出的姿态变为目标姿态。为了避免复杂的精确动力学建模,选用PID控制器。

5.1.欧拉角控制

由于欧拉角对应3个轴的旋转,当前姿态和目标姿态的差值可以作为控制输入量,角度的误差直接可以对应力矩的输出。如果当前姿态和目标姿态相差不大,可以忽略旋转顺序的影响。

5.2.四元数控制

用欧拉角来控制姿态,每次控制都要算3次三角函数,运算量很大。为了避免三角函数,可以直接用姿态四元数来控制。思路跟欧拉角控制一样,先求姿态差,再把姿态差输入到PID控制器,来输出油门变化量。

6.姿态计算

为了比较几种姿态计算算法的效果,先在下位机采集数据,然后在电脑上离线处理,这样可以用相同的数据进行计算和比较。数据分两组,分别对应静态和动态的情况,测量时电机都是开的,因此把电机振动也考虑进来了。先比较静态的情况。因为几种姿态融合方法的思路都是:陀螺为主、加速度计和罗盘用于纠正陀螺误差,因此动态性能取决于陀螺,静态性能取决于加速度计和罗盘,所以静态的情况最能反映姿态融合算法的优劣。图6-3为三种方法算出的滚转角,取了其中连续的1000

个样点,即连续5秒时间的数据。为了公平比较,先把参数调整到临界值,即刚好能纠正陀螺漂移的值。由图可以看出,姿态插值法和互补滤波法效果差不多,梯度下降法噪声振幅比前两者都大。

然后比较动态的情况。如图6-4,“无陀螺姿态”是指仅用加速度计和罗盘计算的姿态,相当于姿态插值法第二部分得到的姿态,可以看到3种算法光滑程度差别不大,因为动态时,性能由陀螺决定,而且相对于几十度的运动角度,零点几度的噪声几乎忽略不计。但是不同算法不同参数运算的结果相差比较大,由于没有专业的测量仪器,哪种算法的结果更接近实际值有待以后的研究。比较运算量,姿态插值法远大于梯度下降法,梯度下降法又稍大于互补滤波法。比较结果效果,姿态插值法跟互补滤波法差不多,都比梯度下降法好一点。最终方案是选择互补滤波法。

7.总结:

本四轴飞行器小巧精致、安装简便、便于携带,采用了结构及承载效率较高的环形框架与中央塔座相结合的设计,并且机架全部采用轻质高强度碳纤维材料制作而成,使得全机的重量得以控制和优化。采用3300mAh大容量飞行智能电池,长达25分钟的飞行时间。飞控采用高精度姿态算法,在室或无风环境下,可以在不控制油门杆的情况下轻松悬停或良好地定高机动飞行,嵌GPS导航系统和雷达锁定系统,可以准确的锁定高度和位置,稳定悬停、可实现失控返航、一键返航等特点。搭载增稳云台、高亮度LED灯带和高清相机,实现图像实时传输,可轻松实现夜间航行和记录空中视角美丽瞬间。

本四轴飞行器具有广阔的发展前景。在民用方面可用于灾后搜救、城市交通巡逻与目标跟踪等诸多方面。工业上可以用在安全巡检,大型化工现场、高压输电线、水坝、大桥和地震后山区等人工

不容易到达空间进行安全任务检查与搜救工作,能够对执行区域进行航拍和成图等。

参考文献:

[1] 彭军桥.非共轴式碟形飞行器研究[D].上海大学2001级硕士研究生学位毕业论文:

[2] 姬江涛,扈菲菲,贺智涛,杜新武,剑君.四旋翼无人机在农田信息获取中的应用[J].农机化研究.2013.第2期:

[3] 晨,杜勇.四旋翼无人机在输电线路巡视中的应用[J].电力.2012.第36卷第6期

[4] 鹏,程飞,曹宇强,来,王琪.一种新型四轴搜救飞行器设计[J].科技广场.2010年09期

[5]岳基隆,庆杰,朱华勇翼无人机研究进展及关键技术浅析[J].电光与控制.2010-10.第17卷第10期

四轴飞行器运动分析

四轴飞行器运动分析 一、飞行原理 四轴飞行器的结构形如图所示,其中同一对角线上的电机转向应该相同,不同对角线上的电机转向应该相反。这样,当飞行器平衡飞行时,陀螺效应和空气动力扭矩效应均被抵消。 与传统的直升机相比,四旋翼飞行器有下列优势:各个旋翼对机身所施加的反扭矩与旋翼的旋转方向相反,因此当电机1和电机3逆时针旋转的同时,电机2和电机4顺时针旋转,可以平衡旋翼对机身的反扭矩。四旋翼飞行器在空间共有6个自由度(分别沿3个坐标轴作平移和旋转动作),这6个自由度的控制都可以通过调节不同电机的转速来实现。其基本运动状态可分为: (1)垂直运动; (2)俯仰运动; (3)滚转运动; (4)偏航运动; (5)前后运动; (6)侧向运动;

下面将逐个说明飞行器的各种飞行姿态: 垂直运动——在图中,因有两对电机转向相反,可以平衡其对机身的反扭矩,当同时增加四个电机的输出功率,旋翼转速增加使得总的拉力增大,当总拉力足以克服整机的重量时,四旋翼飞行器便离地垂直上升;反之,同时减小四个电机的输出功率,四旋翼飞行器则垂直下降,直至平衡落地,实现了沿z轴的垂直运动。当外界扰动量为零时,在旋翼产生的升力等于飞行器的自重时,飞行器便保持悬停状态。保证四个旋翼转速同步增加或减小是垂直运动的关键。 俯仰运动——在图(b)中,电机1的转速上升,电机3的转速下降,电机2、电机4的转速保持不变。为了不因为旋翼转速的改变引起四旋翼飞行器整体扭矩及总拉力改变,旋翼1与旋翼3转速该变量的大小应相等。由于旋翼1的升力上升,旋翼3的升力下降,产生的不平衡力矩使机身绕y轴旋转(方向如图所示),同理,当电机1的转速下降,电机3的转速上升,机身便绕y轴向另一个方向旋转,实现飞行器的俯仰运动。

四轴飞行器飞行原理

四轴飞行器飞行原理 四旋翼飞行器结构 形式如图所示,电机1和电机3逆时针旋转的同时,电机2和电机4顺时针旋转,因此当飞行器平衡飞行时,陀螺效应和空气动力扭矩效应均被抵消。 与传统的直升机相比,四旋翼飞行器有下列优势:各个旋翼对机身所施加的反扭矩与旋翼的旋转方向相反,因此当电机1和电机3逆时针旋转的同时,电机2和电机4顺时针旋转,可以平衡旋翼对机身的反扭矩。四旋翼飞行器在空间共有6个自由度(分别沿3个坐标轴作平移和旋转动作),这6个自由度的控制都可以通过调节不同电机的转速来实现。 其基本运动状态分别是: (1)垂直运动; (2)俯仰运动; (3)滚转运动; (4)偏航运动; (5)前后运动; (6)侧向运动; 在控制飞行器飞行时,有如下技术难点: 首先,在飞行过程中它不仅受到各种物理效应的作用,还很容易受到气流等外部环境的干扰,很难获得其准确的性能参数。

其次,微型四旋翼无人飞行器是一个具有六个自由度,而只有四个控制输入的欠驱动系统。它具有多变量、非线性、强耦合和干扰敏感的特性,使得飞行控制系统的设计变得非常困难。 再次,利用陀螺进行物体姿态检测需要进行累计误差的消除,怎样建立误差模型和通过组合导航修正累积误差是一个工程难题。这三个问题解决成功与否,是实现微型四旋翼无人飞行器自主飞行控制的关键,具有非常重要的研究价值。 下面将逐个说明飞行器的各种飞行姿态: 垂直运动——在图中,因有两对电机转向相反,可以平衡其对机身的反扭矩,当同时增加四个电机的输出功率,旋翼转速增加使得总的拉力增大,当总拉力足以克服整机的重量时,四旋翼飞行器便离地垂直上升;反之,同时减小四个电机的输出功率,四旋翼飞行器则垂直下降,直至平衡落地,实现了沿z轴的垂直运动。当外界扰动量为零时,在旋翼产生的升力等于飞行器的自重时,飞行器便保持悬停状态。保证四个旋翼转速同步增加或减小是垂直运动的关键。 俯仰运动——在图(b)中,电机1的转速上升,电机3的转速下降,电机2、电机4的转速保持不变。为了不因为旋翼转速的改变引起四旋翼飞行器整体扭矩及总拉力改变,旋翼1与旋翼3转速该变量的大小应相等。由于旋翼1的升力上升,旋翼3的升力下降,产生的不平衡力矩使机身绕y轴旋转(方向如图所示),同理,当电机1的转速下降,电机3的转速上升,机身便绕y轴向另一个方向旋

四轴飞行器:让PCB板飞!

我们在制作一个非常袖珍的四轴飞行器,就用PCB作为承力结构。第一个版本被命名为疯狂直升机。 它的主要特点有: ?STM32 Cortex-M3 CPU ?3轴加速度计 ?1轴/2轴陀螺仪 ?Nordic 2.4GHz 射频通信芯片 ?电动机,螺旋桨和银辉(Silverlit)X翼模型飞机的电池 这架直升机可以从电脑上通过USB无线适配器遥控。我们制作了三架样品(每个成员各一架),并完成了大多数的固件程序。 为了达到稳定飞行的目的,还需要解决一些控制上的问题,以及完成电脑上的控制程序模块。更多的信息和实际飞行视频会在稍后公布:) 这架直升机是通过PC机上运行的Python程序控制的,我们实际上用一个游戏机的蓝牙手柄来操纵它。 疯狂直升机四轴飞行器详述 像承诺过的那样,我们要在这里公布疯狂直升机(也是我们第一架四轴飞行器)的更多信息。该系统的主要架构如下:

疯狂直升机的高层次系统图。 直升机本身是围绕CPU组织起来的。CPU的任务是读取物理传感器(陀螺仪和加速度计)的测量结果,给出控制信号控制电机,让直升机保持稳定。通过一个控制反馈回路,CPU每秒能够对电机发送250次调节转速的指令。无线通信的带宽需求很低,仅仅需要发送操作命令和接受遥测数据。CPU上运行的程序可以通过无线通信更新。 控制和遥测程序在电脑上运行,控制程序从手柄读取输入,然后向直升机发送命令。我们也有调节直升机上控制参数的程序模块,并且会记录下传感器的测量结果,方便调整控制回路。 所有这些开发工作在Windows或linux系统上完成。事实上有三个人同时在这个项目上工作,两个人在Linux上工作,剩下一个人主要使用Windows。利用自由/开源软件(FLOSS,Free/Libre and Open Source Software)许可对提高工作效率非常有帮助。我们主要使用GCC 编译器编译直升机程序,GNU(GNU's Not Unix,一个包含了递归的缩写!GNU Linux工程是为与可复制﹑修改﹑和重新分配的源代码一起的类Unix操作系统的发展而建立的。)建立我们的工程,Mercurial(一个轻量级的分布式版本控制系统)管理我们的源代码,与直升机之间的通讯采用python/pyusb(一个python上的USB通讯软件库)。所有这些软件都能在linux和windows系统间来回无缝切换,使这个项目的管理变得容易许多。 电动机之间的距离(X轴和Y轴方向)大约有8cm,整个飞行器的重量只有20g。 电路板顶面的细节

md4系列四旋翼无人机系统快速操作手册

md4系列四旋翼无人机系统 快速操作手册 佛山市安尔康姆航拍科技有限公司 2011年6月

一、起飞前的准备 1、飞行器动力电池:用电池电量显示仪对电池进行测试,对于md4-200显示 参数须高于16.5V,对于md4-1000,显示参数须高于25V。 2、遥控器:每次飞行时一定要把遥控器电池充满电,保证不会因为电量的原因 导致遥控器无法控制飞行器;遥控器的频率必须飞行器接收机的频率一致,否则,飞行器无法手动起飞; 3、地面站电脑:携带足够的设备电池,保证地面站电脑的电池能满足该次作业 的要求,不要出现在飞行过程中地面站电脑电量不足而关机的情况; 4、地面站供电:地面站承担着解码飞行器下传数据的重要任务,一旦断电,则 无法显示任何数据,这样会对安全飞行带来隐患; 5、任务载荷:如果是携带相机或摄像机,需保证该设备的电量及存储卡的容量。 6、飞行环境:md4-200要求风速小于6米/秒,md4-1000要求风速小于12 米/秒,周围环境空旷(起飞点离障碍物的距离应保持在20米以上),对GPS 信号和磁力计不存在干扰(详情下文有说明)。

二、飞行相关 1、将飞行器放置在平坦的地面,保证机体平稳,起飞地点尽量避免有沙石、纸 屑等杂物; 2、打开遥控器电源,为飞行器插入充满电的电池,自检通过后,飞行器会每隔 两秒发出一声“滴”的响声,表示正处于搜索GPS信号状态; 3、打开地面站软件mdCockpit,弹出下行数据回放页面,重点观察GPS信号 跟设备状态。 GPS信号的确认: 观察地面站软件的下行链路解码器界面,保证GPS的定位 精度不高于4米,如右图红框部分所示。 设备状态的确认: 该步骤主要检查磁力计、GPS及SD卡的工作状态,正常模式如下图: 4、遥控器摇杆动作的分配: 图15:摇杆动作的分配

四旋翼飞行器的结构形式和工作原理

四旋翼飞行器的结构形式和工作原理 1.结构形式 直升机在巧妙使用总距控制和周期变距控制之前,四旋翼结构被认为是一种最简单和最直观的稳定控制形式。但由于这种形式必须同时协调控制四个旋翼的状态参数,这对驾驶员认为操纵来说是一件非常困难的事,所以该方案始终没有真正在大型直升机设计中被采用。这里四旋翼飞行器重新考虑采用这种结构形式,主要是因为总距控制和周期变距控制虽然设计精巧,控制灵活,但其复杂的机械结构却使它无法再小型四旋翼飞行器设计中应用。另外,四旋翼飞行器的旋翼效率相对很低,从单个旋翼上增加拉力的空间是非常有限的,所以采用多旋翼结构形式无疑是一种提高四旋翼飞行器负载能力的最有效手段之一。至于四旋翼结构存在控制量较多的问题,则有望通过设计自动飞行控制系统来解决。四旋翼飞行器采用四个旋翼作为飞行的直接动力源,旋翼对称分布在机体的前后、左右四个方向,四个旋翼处于同一高度平面,且四个旋翼的结构和半径都相同,旋翼1和旋翼3逆时针旋转,旋翼2和旋翼4顺时针旋转,四个电机对称的安装在飞行器的支架端,支架中间空间安放飞行控制计算机和外部设备。四旋翼飞行器的结构形式如图1.1所示。

图1.1四旋翼飞行器的结构形式 2.工作原理 典型的传统直升机配备有一个主转子和一个尾桨。他们是通过控制舵机来改变螺旋桨的桨距角,从而控制直升机的姿态和位置。四旋翼飞行器与此不同,是通过调节四个电机转速来改变旋翼转速,实现升力的变化,从而控制飞行器的姿态和位置。由于飞行器是通过改变旋翼转速实现升力变化,这样会导致其动力部稳定,所以需要一种能够长期保稳定的控制方法。四旋翼飞行器是一种六自由度的垂直升降机,因此非常适合静态和准静态条件下飞行。但是四旋翼飞行器只有四个输入力,同时却有六个状态输出,所以它又是一种欠驱动系统。

四轴飞行控制原理

四轴(1)-飞行原理 总算能抽出时间写下四轴文章,算算接触四轴也两年多了,从当初的模仿到现在的自主创作经历了不少收获了也不少。朋友们也经常问我四轴怎么入门,今天就简单写下四轴入门的基本知识。尽量避开专业术语和数学公式。 1、首先先了解下四轴的飞行原理。 四轴的一般结构都是十字架型,当然也有其他奇葩结构,比如工字型。两种的力学模型稍微有些不一样,建议先从常规结构入手(其实是其他结构我不懂)。 常规十字型结构其他结构 常规结构的力学模型如图。 力学模型 对四轴进行受力分析,其受重力、螺旋桨的升力,螺旋桨旋转给机体的反扭矩力。反扭矩影响主要是使机体自旋,可以想象一下直升机没有尾桨的情况。螺旋桨旋转时产生的力很复杂,

这里将其简化成只受一个升力和反扭矩力。其它力暂时先不管,对于目前建模精度还不需要分析其他力,顶多在需要时将其他力设为干扰就可以了。如需对螺旋桨受力进行详细研究可以看些空气动力学的书,推荐两本, 空气螺旋桨理论及其应用(刘沛清,北航出版社) 空气动力学基础上下册(徐华舫,国防科技大学) 网易公开课:这个比麻省理工的那个飞行器构造更对口一些。 荷兰代尔夫特理工大学公开课:空气动力学概论 以上这些我是没看下去,太难太多了,如想刨根问底可以看看。 解释下反扭矩的产生: 电机带动螺旋桨旋转,比如使螺旋桨顺时针旋转,那么电机就要给螺旋桨一个顺时针方向的扭矩(数学上扭矩的方向不是这样定义的,可以根据右手定则来确定方向)。根据作用力与反作用力关系,螺旋桨必然会给电机一个反扭矩。 在转速恒定,真空,无能量损耗时,螺旋桨不需要外力也能保持恒定转速,这样也就不存在扭矩了,当然没有空气也飞不起来了。反扭矩的大小主要与介质密度有关,同样转速在水中的反扭矩肯定比空气中大。 因为存在反扭矩,所以四轴设计成正反桨模式,两个正桨顺时针旋转,两个反桨逆时针旋转,对角桨类型一样,产生的反扭矩刚好相互抵消。并且还能保持升力向上。六轴、八轴…类似。 我们控制四轴就是通过控制4个升力和4个反扭矩来控制四轴姿态。 如力学模型图,如需向X轴正方向前进,只需增加桨3的转速,减少桨1的转速,1、3桨的反扭矩方向是一样的,一个加一个减总体上来说反扭矩没变。此时飞机已经有向X轴方向的分力,即可前行。 如需向X轴偏Y轴45°飞行,那么增加桨2、3的转速,减少桨1、4的转速,即可实现。 如果将X正作为正前方,那么就是”十”模式,如果将X轴偏Y45°作为正前方向,那就是”×”模式。理论上这两种都可以飞行,”十”模式稍微比”×”模式好计算,但是”十”模式不如”×”模式灵敏。 四轴如需向任意方向飞行只需改变电机的转速,至于电机转速改变的量是多少,增量之比是多少就需要算法了。对于遥控航模,不需要知道具体到度级别的方向精度,飞行时手动实时调节方向即可。 四轴除了能前后左右上下飞行,还能自旋,自旋靠的就是反扭矩,如需顺时针旋转,只需增加桨1、3转速,减少2、4转速,注意不能只增加桨1、3而不减少2、4,这样会造成总体升力增加,飞机会向上飞的。 理想情况下,四轴结构完全对称,电机转速一样,飞机就可以直上直下飞行。但事实和理想还是有差距的,不存在完全对称的结构,也没有完全一样的电机螺旋桨。所以需要飞控模块进行实时转速调节,这样才能飞起来,不像直升机,螺旋桨加速就能飞。 2、分析完飞行原理,接下来分析四轴飞行器系统的主要部件。

四轴飞行器说明书

4-AXIS AEROCRAFT INSTRUCTION MANUAL 四轴飞行器说明书 ATTENTION:(注意事项) 1、This 4-axis aircraft is suitable for indoor/outdoor flying.but make sure the outdoor wind is not over grade 4. 这款四轴飞行器适用于室内/室外飞行。但要确保室外风力不超过4级。 2、2.4 technology adopted for anti-interference,even more than one quadcopter is flying in the same area they will not interferewith each other. 采用2.4GHZ抗干扰技术, 即使一个以上的飞行器在同一地区飞行,它们也不会彼此干扰。 Beside ,players can let the the aircraft fly up/down/forward/backward,left/right sideward and tuen left/right. 此外,玩家可以让飞机飞上/下/前进/后退,左转/右转和左翻/右翻。 3、Please read this man ual carefull before using,in the mean time ,please well keep the manul for future reference. 请在使用前仔细阅读本手册,同时,请妥善保管说明书备查。 ALL PARETS INCLUDED( 组成结构简介) MAIN MENU:(菜单) Lcd screen液晶屏幕Power light 电源指示灯 Servos舵机Flip key 翻转 Left hand throttle shows左手调节显示Forward and back left and right前,后,左,右Signal display信号指示Direction joystick方向操纵杆 Accelerator and steering 油门和转向Forward/back trimming 前进/后退微调 Left-turn/riggt-turn trimming 左/右转微调Left/right sideways timming左/右侧微调Power switch 电源开关 TRANSMITTER BATTERY INSTALLATION:( 安装发射器电池) Aircraft battery change:( 更换飞机电池) THE RELATED NOTES ABOUT LITHIUM BATTERY’S USAGE: 关于锂电池使用的相关说明 HOW TO CONTROL:(操作说明) 1、Aircraft power switch to the “ON”position.the vehicle-mounted with the flat ground.Motherboard light is blink,don’t turn the fuselage again. 飞行器电源开关拔到“ON”位置。将飞行器平放在地面上,主板上的灯开始闪烁,不要再转动机身。

四旋翼飞行器论文(原理图 程序)..

四旋翼自主飞行器(B题) 摘要 系统以R5F100LE作为四旋翼自主飞行器控制的核心,由电源模块、电机调速控制模块、传感器检测模块、飞行器控制模块等构成。飞行控制模块包括角度传感器、陀螺仪,传感器检测模块包括红外障碍传感器、超声波测距模块、TLS1401-LF模块,瑞萨MCU综合飞行器模块和传感器检测模块的信息,通过控制4个直流无刷电机转速来实现飞行器的欠驱动系统飞行。在动力学模型的基础上,将小型四旋翼飞行器实时控制算法分为两个PID控制回路,即位置控制回路和姿态控制回路。测试结果表明系统可通过各个模块的配合实现对电机的精确控制,具有平均速度快、定位误差小、运行较为稳定等特点。

目录 1 系统方案论证与控制方案的选择............................................................................................. - 2 - 1.1 地面黑线检测传感器............................................................................................................. - 2 - 1.2 电机的选择与论证................................................................................................................. - 2 - 1.3 电机驱动方案的选择与论证................................................................................................. - 3 - 2 四旋翼自主飞行器控制算法设计............................................................................................. - 3 - 2.1 四旋翼飞行器动力学模型..................................................................................................... - 3 - 2.2 PID控制算法结构分析.......................................................................................................... - 3 - 3 硬件电路设计与实现................................................................................................................. - 5 - 3.1飞行控制电路设计.................................................................................................................. - 5 - 3.2 电源模块................................................................................................................................. - 6 - 3.3 电机驱动模块......................................................................................................................... - 6 - 3.4 传感器检测模块..................................................................................................................... - 7 - 4 系统的程序设计......................................................................................................................... - 8 - 5 测试与结果分析......................................................................................................................... - 9 - 5.1 测试设备................................................................................................................................. - 9 - 5.2 测试结果................................................................................................................................. - 9 - 6 总结........................................................................................................................................... - 10 - 附录A 部分程序清单.................................................................................................................. - 11 -

四轴飞行器知识简介

四轴飞行器知识 什么是四轴飞行器? 四轴飞行器也叫四旋翼飞行器。通俗点说就是拥有四个独立动力旋翼 的飞行器,有四个旋翼来悬停、维持姿态及平飞。四轴飞行器是多轴 飞行器其中的一种,常见的多轴飞行器有两轴,三轴,四轴,六轴, 八轴或者更多轴。 四轴飞行器飞行原理 重心的距离相等, 当对角两个轴产生的升力相同时能够保证力矩的 平衡, 四轴不会向任何一个四轴飞行器有四个电机呈十字形排列, 驱动四片桨旋转产生推力; 四个电机轴距几何中方向倾转; 而四个 电机一对正转,一对反转的方式使得绕竖直轴方向旋转的反扭矩平衡, 保证了四轴航向的稳定. 此飞行控制板规定四轴电机的排布方式相 对应。1,4号电机顺时针方向旋转, 2,3号电机逆时针方向旋转. 四个电机的转速做相应的变化即可实现四轴横向、纵向、竖直方向 和偏航方向上的运动: 当四轴需要向前方运动时, 2,3号电机 保持转速不变, 1号电机转速下降, 4号电机转速上升, 此时4号电 机产生的升力大于1号电机的升力, 四轴就会沿几何中心向前倾转, 桨叶升力沿纵向的分力驱动四轴向前运动. 当四轴要转向左转 向时, 1,4号电机转速上升, 2,3号电机转速下降, 使向左的反扭距 大于向右的反扭矩, 四轴在反扭距的作用下向左旋转.四个桨产生的 推力, 超过或者低于四轴本身重力的时候能够实现竖直方向上升与 下降的运动, 当桨的升力与四轴本身的重力相等的时候即实现悬停。

其他方式的运动原理与以上过程类似. 四轴飞行原理虽然简单, 但实现起来还需很多工作要做. 四轴飞行器需要的零件 无刷电机(4个)、电子调速器(简称电调,4个,)、螺旋桨(4个,需要2个正浆,2个反浆)、飞行控制板(常见有瑞伯达、KK等品牌)、电池(11.1v航模动力电池)、遥控器(最低四通道遥控器)、机架(非必选)、充电器(尽量选择平衡充电器) 怎样知道是否能正常起飞? 一切准备完毕,怎么知道可以试飞了呢,我个人建议为了避免匆忙上马,秒炸。先拿手上试飞比较好,但要注意离身体距离。 拿手上通电,加油门,如果一切正常,四轴是不会大幅度的晃动的,而是比较平稳。还可以故意左右晃动一下,会感觉到四轴保持平衡的反力量,只要达到这个效果,就基本达到了试飞的条件。RBD飞控我复位了好几次,只要没有意外,是基本都能成功的。 试飞场地建议选宽阔的地方,建议是草坪,这样的不容甩坏。 马达选择有刷马达,原因很简单,要需要复杂的电调,直接用MOS 管就可以驱动了。而且响应速度又快,价格也便宜。也可以选择减速组配高转速马达。只是成本高了点。而且实际的测试结果是马达里面火化直冒也无法将四轴自身拉离地面。原因就是马达转速和减速组搭配不合理,转速过快但拉力不够。经历过失败后,决定不在冒险,于是选择了大众配置:瑞伯达 2212,1000KV外转子无刷马达,瑞伯达30A电调(好赢兼容的程序),在解决了如何安装的问题后,终于可

轴飞行器作品说明书

四轴飞行器 作品说明书 摘要 四轴飞行器在各个领域应用广泛。相比其他类型的飞行器,四轴飞行器硬件结构简单紧凑,而软件复杂。本文介绍四轴飞行器的一个实现方案,软件算法,包括加速度计校正、姿态计算和姿态控制三部分。校正加速度计采用最小二乘法。计算姿态采用姿态插值法、需要对比这三种方法然后选出一种来应用。控制姿态采用欧拉角控制或四元数控制。 关键词:四轴飞行器;姿态;控制

目录 1.引言 (1) 2.飞行器的构成? (1) .硬件构成..............................................1? 机械构成 (1) 电气构成 (3) .软件构成 (3) 上位机 (3) 下位机........... . (4) 3.飞行原理........... ................................ (4) . 坐标系统 (4) .姿态的表示 (5) .动力学原理 (5) 4.姿态测量........... ................................ (6) .传感器校正 (6) 加速度计和电子罗盘 (6) 5.姿态控制 (6) .欧拉角控制 (6) .四元数控制 (7) 6.姿态计算 (7) 7.总结 (8) 参考文献 (9)

四轴飞行器最开始是由军方研发的一种新式飞行器。随着MEMS?传感器、单片机、电机和电池技术的发展和普及,四轴飞行器成为航模界的新锐力量。到今天,四轴飞行器已经应用到各个领域,如军事打击、公安追捕、灾害搜救、农林业调查、输电线巡查、广告宣传航拍、航模玩具等。 目前应用广泛的飞行器有:固定翼飞行器和单轴的直升机。与固定翼飞行器相比,四轴飞行器机动性好,动作灵活,可以垂直起飞降落和悬停,缺点是续航时间短得多、飞行速度不快;而与单轴直升机比,四轴飞行器的机械简单,无需尾桨抵消反力矩,成本低?。 本文就小型电动四轴飞行器,介绍四轴飞行器的一种实现方案,讲解四轴飞行器的原理和用到的算法,并对几种姿态算法进行比较。 2.飞行器的构成 四轴飞行器的实现可以分为硬件和软件两部分。比起其他类型的飞行器,四轴飞行器的硬件比较简单,而把系统的复杂性转移到软件上,所以本文的主要内容是软件的实现。? .硬件构成? 飞行器由机架、电机、螺旋桨和控制电路构成。 机械构成? 机架呈十字状,是固定其他部件的平台,本项目采用的是碳纤维材料的机架。电机采用无刷直流电机,固定在机架的四个端点上,而螺旋桨固定在电机转子上,迎风面垂直向下。螺旋桨按旋转方向分正桨和反桨,从迎风面看逆时针转的为正桨,四个桨的中心连成的正方形,正桨反桨交错安装。 CA D设计机架如图: 整体如图2-1: 电气构成 电气部分包括:控制电路板、电子调速器、电池,和一些外接的通讯、传感器模块。控制电路板是电气部分的核心,上面包含MCU、陀螺仪、加速度计、电子罗盘、气压计等芯片,负责计算姿态、处理通信命令和输出控制信号到电子调速器。电子调速器简称电调,用于控制无刷直流电机。 电气连接如图2-2所示。 .软件构成

四旋翼飞行器基本原理

四旋翼飞行器无刷直流电机调速系统的设计 孟磊,蒋宏,罗俊,钟疏桐 武汉理工大学自动化学院、武汉理工大学信息工程学院 摘要,关键字:略 近年来,无人机的研究和应用广泛受到各个方面的重视。四旋翼飞行器作为无人机的一种,能够垂直起落、空中悬停、可适用于各种飞行速度与飞行剖面,具有灵活度高、安全性好的特点,适用于警务监控、新闻摄影、火场指挥、交通管理、地质灾害调查、管线巡航等领域实现空中时时移动监控。 四旋翼飞行器的动力来源是无刷直流电机,因此针对该型无刷直流电机的调速系统对飞行器的性能起着决定性的作用。为了提高四旋翼飞行器的性能,本文设计制作了飞行试验平台,完成了直流无刷电机无感调速系统的硬件、软件设计。通过实验证明该系统的设计是可行的。 四旋翼飞行器平台结构 四旋翼平台呈十字形交叉,有四个独立电机驱动螺旋桨组成。当飞行器工作时,平台中心对角的螺旋桨转向相同,相邻的螺旋桨转向相反同时增加减少四个螺旋桨的速度,飞行器就垂直上下运动;相反的改变中心对角的螺旋桨速度,可以产生滚动、俯仰等运动。结构图如下: 四旋翼飞行器的控制系统分为两个部分:飞行控制系统和无刷直流电机调速系统。飞行控制系统通过IMU惯性测量单位(由陀螺传感器和加速度传感器组成)检测飞行姿态,通过无线通讯模块与地面遥控器通信。4个无刷直流电机调速系统通过I2C总线与飞行控制器通信,通过改变4个无刷直流电机的转速来改变飞行姿态,系统采用12V电池供电。控制系统结构图如下:

无刷直流电机调速系统 无刷直流电动机既具有运行效率高、调速性能好,同时又具有交流电动机结构简单、运行可靠、维护方便的优点,是电机主要发展方向之一,现已成功运用与军事、航空、计算机数控机床、机器人、电动自行车等多个领域。在该四旋翼飞行器上使用了新西达2217外转子式无刷直流电机,其结构为12绕组7对磁极,典型KV值为1400. 通常无刷直流电机的控制方式分为有位置传感器控制方式和无位置传感器控制方式。有位置传感器控制方式通过再定子上安装电磁式、光电式或者磁敏式位置传感器来检测转子的位置,为驱动电路提供转向信息。无位置传感器的控制方式有很多,包括磁链计算法‘反电动势法、状态观测器法、电感法等。在各种无位置传感器控制方法中,反电动势法是目前技术最为成熟的、应用最为广泛的一种位置检测方法。本系统采用的饭店董事过零检测法是反电动势法中的一种,通过检测各相绕组反电动势的过零点来判断转子的位置。根据无刷直流电机的特性,电机的最佳转向时刻是想反电动势过零点延迟30电角度的时刻,而该延迟的电角度对应的时间可以有两次过零点时间间隔计算得到。 无刷直流电机调速系统硬件设计 该无刷直流电机调速系统有三相全桥驱动电路、反电势过零电路、电流电压检测电路组成电机驱动器。使用一片ATmega8单片机作为控制器,该单片机内部集成了8kB的flash,最多具有23个可编程的I/O口,输出时为推挽结构输出,驱动能力较强。片上集成了AD 转换器、模拟比较器、通用定时器、可编程计数器等资源。 三相全桥驱动电路利用功率型MOS管作为开关器件,选用P型MOS管FD6637与N型MOS管FD6635搭配使用,设计容量为允许通过的最大电流为30A。FD6637的开关利用三极管9013进行驱动、FD6635的开关直接用单片机的I/O口进行驱动。电路如图3所示。通过R17、R19、R25来减少下管FDD6635的栅极充电电流峰值,防止震荡并保护MOS管;R16、R23、R24作为下拉电阻,保证下关的正常导通与关断;R2、R5、R8作为上管栅极上拉电阻,阻值选择470Ω,既保证了MOS管的开关速率不降低,同时也防止三极管Ic电流过大。A+、B+、C+提供驱动桥的上桥臂的栅极导通信号,分别通过ATmega8的三个硬件PWM通道驱动,通过改变PWM信号的占空比来实现电机调速;A-、B-、C-提供下桥臂栅极驱动信号,由单片机的I/O口控制,只有导通和关闭两种状态。

安卓版四轴飞行器操作手册B

烈火狂龙Mini四轴飞行器操作手册-安卓版 先感谢您选择烈火微型四轴,在准备试飞之前请仔细看完下面的相关重要信息,桨和护罩按图示来安装,注意:桨不能装错或装反,否则无法正常起飞。 本飞行器为X模式,此模式飞行更为灵活。更便于携带微型FPV或微型摄像机等设备,满足不同的需求。 如何正确安装桨叶,首先认识一下正反桨,如下图,顺时针转风向向下的为正桨;逆时针转,风向向下的为反桨。 逆时针转顺时针转 图一正反桨识别 选配护罩的网友,可以先安装护罩到电机上,过后不要急着把桨装上去,桨要对号入座,板子上面标有转向图,还有桨的安装要便于识别航向,我常把白色的如下图安装,飞行时只要记得白色的为机尾就好飞了。飞行器控制板上的电池插件对着自已就行,“烈火狂龙”字符那边为机头。飞行器安装好后如下图,

飞行器运动方向 图二飞行器正面 图三飞行器侧面

开机次序: 1、先固定Mini四轴飞行器背面的电池,插上电池接口,此时指示灯 全亮,飞控上面两个红色和绿色指示灯闪烁,在闪烁完成之前,将飞行器置于水平地面上,初始化结束后,飞控上面红色指示灯常亮,绿色指示灯为通讯状态指示,有无线连接时亮。蓝色指示灯为蓝牙状态指示,闪烁时表明没有与手机连接,常亮时表明已与手机连接,直接在安卓界面就可以控制飞行器进入起飞状态。 2、安装并打开APP 手机要求:android2.2以上操作系统、需要取得root权限、手机带重力感应、带蓝牙。 打开APP后,主界面如下图: 3、点击连接按钮,开启蓝牙并扫描设备

4、找到设备,FIRE DRAGON ,点击设备进行蓝牙配对,配对密码为: 1234

四旋翼飞机

功能介绍:利用小型四旋翼飞机对灾害现场进行勘测,其中四旋翼上添加摄像头对现场进行勘测,从而了解现场状况。 设计思路:小型四旋翼飞机座位各类传感器搭载平台,根据现场实际情况通过控制四旋翼飞机飞行姿态,从而达到对复杂环境的监测。 四旋翼飞行器结构和原理: 1:结构形式 旋翼对称分布在机体的前后,左右四个方向,四个旋翼处于同一高度平面,四个旋翼的结构和半径相同,四个电机对称的安装在飞行器的支架端,支架中间安放飞行控制计算机和外部设备。 四旋翼飞行器一般是由四个可以独立控制转速的外转子直流无刷电机驱动的螺旋桨提供全部动力的飞行运动装置,四个固定迎角的螺旋桨分别安装在两个十字相交的刚性碳素杆的两端。对于绝大多数四旋翼飞行器来讲,飞行器的结构是关于两根碳素杆的交点对称的,并且两个相邻的螺旋桨旋转方向相反;正是由于这种独特结构,使四旋翼飞行器抵消了飞机的陀螺效应。 结构如下 2.工作原理 通过调节四个电机转速来改变旋翼转速,实现升力的变化,进而控制飞行器的姿态和位置。四旋翼是一种欠驱动系统,是一种六自由度的垂直升降机,四个输入力,六个状态输出。 垂直飞行控制:控制飞机的爬升,下降和悬停。图中蓝色弧线箭头方向表示螺旋桨旋转的方向,以下同。当四旋翼处于水平位置时,在垂直方向上,惯性坐标系同机体坐标系重合。同时增加或减小四个旋翼的螺旋桨转速,四个旋翼产生的升力使得机体上升或下降,

从而实现爬升和下降。悬停时,保持四个旋翼的螺旋桨转速相等,并且保证产生的合推力与重力相平衡,使四旋翼在某一高度处于相对静止状态,各姿态角为零。垂直飞行控制的关键是要稳定四个旋翼的螺旋桨转速使其变化一致 横滚控制:如图所示,通过增加左边旋翼螺旋桨转速,使拉力增大,相应减小右边旋翼螺旋桨转速,使拉力减小,同时保持其它两个旋翼螺旋桨转速不变。这样由于存在拉力差,机身会产生侧向倾斜,从而使旋翼拉力产生水平分量,使机体向右运动,当2,4转速相等时,可控制四旋翼飞行器作侧向平飞运动。 俯仰控制:在保持左右两个旋翼螺旋桨转速不变的情况下,减少前面旋翼螺旋桨的转速,并相应增加前面旋翼螺旋桨的转速,使得前后两个旋翼存在拉力差,从而引起机身的前后倾斜,使旋翼拉力产生与横滚控制中水平方向正交的水平分量,使机体向前运动。类似的,当1,3转速相同时可控制四旋翼飞行器作纵向平飞运动。 偏航控制:四旋翼飞行器为了克服反扭矩影响,四个旋翼螺旋桨中的两个逆时针旋转,两个顺时针旋转,对角线上两个螺旋桨上的转动方向相同。反扭矩大小与旋翼螺旋桨转速有关,四个旋翼螺旋桨转速不完全相同时,不平衡的反扭矩会引起机体的转动。因此可以设计四旋翼飞行器的偏航控制,即同时提升一对同方向旋转的旋翼螺旋桨转速并且降低另一对相反方向旋转的旋翼螺旋桨转速,并保证转速增加的旋翼螺旋桨转动方向与四旋翼飞行器机身的转动方向相反。 建立系统动力学模型:

四轴飞行器名词解释

四轴飞行器名词解释 网上找的,自己稍微整理的一下: 1、遥控器篇 什么是通道? 通道就是可以遥控器控制的动作路数,比如遥控器只能控制四轴上下飞,那么就是1个通道。但四轴在控制过程中需要控制的动作路数有:上下、左右、前后、旋转 所以最低得4通道遥控器。如果想以后玩航拍这些就需要更多通道的遥控器了。 什么是日本手、美国手? 遥控器上油门的位置在右边是日本手、在左边是美国手,所谓遥控器油门,在四轴飞行器当中控制供电电流大小,电流大,电动机转得快,飞得高、力量大。反之同理。判断遥控器的油门很简单,遥控器2个摇杆当中,上下板动后不自动回到中间的那个就是油门摇杆。 2、飞行控制板篇 飞控的用途? 四轴飞行器相对于常规航模来说,最最复杂的就是电子部分了。之所以能飞行得很稳定,全靠电子控制部分对四轴飞行状态进行快速调整。在常规固定翼飞机上,陀螺仪并非常用器件,在相对操控难度大点的直机上,如果不做自动稳定系统,也只是锁尾才用到陀螺仪。四轴飞行器与其不同的地方是必须配备陀螺仪,这是最基本要求,不然无法飞行,更谈不上飞稳了。不但要有,还得是3轴向(X、Y、Z)都得有,这是四轴飞行器的机械结构、动力组成特性决定的。在此基础上再辅以3轴加速度传感器,这6个自由度,就组成了飞行姿态稳定的基本部分,也是关键核心部分---惯性导航模块,简称IMU。飞行中的姿态感测全靠这个IMU了,可见它是整架模型的核心部件。 什么是x模式和+模式?说白了就是飞行器正对着你本人的时候是呈现X形状还是+形状,之前有介绍过四轴原理的,前进的时候后面加速前面减速两侧不变那个是针对+模式的,而如果是X模式的话,前进就需要后面两个同时加速,前面两个同时减速了。据说X模式的稳定性比+模式的稳定性要高点。 注意:考虑到飞控板上的陀螺仪安装的是固定的,所以,模式不同的话飞控板的安装方向也是不同的。 3、电调篇 为什么需要电调? 电调的作用就是将飞控板的控制信号,转变为电流的大小,以控制电机的转速。 四轴飞行器四个桨转动时的离心力是分散的。不象直机的桨,只有一个能产生集中的离心力形成陀螺性质的惯性离心力,保持机身不容易很快的侧翻掉。所以通常用到的舵机控制信号更新频率很低。四轴为了能够快速反应,以应对姿态变化引起的飘移,需要高反应速度的电调,常规PPM电调的更新速度只有50Hz左右,满足不了这种控制所需要的速度,且PPM电调MCU内置PID稳速控制,能对常规航模提供顺滑的转速变化特性,用在四轴上就

四轴飞行器结题报告

学校名称: 队长姓名: 队员姓名: 指导教师姓名:2013年9月6日

摘要 本次比赛我们需要很好地控制飞行器,让它自主完成比赛应该完成的任务。 本文的工作主要针对微型四旋翼无人飞行器控制系统的设计与实现问题展开。首先制作微型四旋翼无人飞行器实验平台,其次设计姿态检测算法,然后建立数学模型并设计姿态控制器和位置控制器,最后通过实验对本文设计的姿态控制器进行验证。设计机型设计全部由小组成员设计并制作,部分元件从网上购得,运用RL78/G13作为主控芯片,自行设计算法对飞行器进行,升降,俯仰,横滚,偏航等姿态控制。并可以自行起飞实现无人控制的自主四轴飞行器。 关键字:四旋翼无人飞行器、姿态控制、位置控制

目录 第1章设计任务.................................................................................... 错误!未定义书签。 1.1 研究背景与目的........................................................................ 错误!未定义书签。 1.2 .................................................................................................... 错误!未定义书签。 1.3...................................................................................................... 错误!未定义书签。第2章方案论证.................................................................................... 错误!未定义书签。 2.1...................................................................................................... 错误!未定义书签。 .................................................................................................... 错误!未定义书签。 .................................................................................................... 错误!未定义书签。 2.2 ........................................................................................................... 错误!未定义书签。第3章理论分析与计算........................................................................ 错误!未定义书签。 ........................................................................................................... 错误!未定义书签。第4章测试结果与误差分析................................................................ 错误!未定义书签。 4.1...................................................................................................... 错误!未定义书签。 4.2...................................................................................................... 错误!未定义书签。 4.3...................................................................................................... 错误!未定义书签。 4.4 .................................................................................................... 错误!未定义书签。 ........................................................................................................... 错误!未定义书签。第5章结论心得体会............................................................................ 错误!未定义书签。 5.1 .................................................................................................................. 错误!未定义书签。.................................................................................................................. 错误!未定义书签。 2设计任务: 基本要求 (1)四旋翼自主飞行器(下简称飞行器摆放在图1所示的A区,一键式

相关主题