搜档网
当前位置:搜档网 › 自动编队飞行控制

自动编队飞行控制

自动编队飞行控制
自动编队飞行控制

自动编队飞行控制

M. Pachter, J. J. D' Azzo, and J. L. Dargan

Air Force Institute of Technology, Wright-Patterson AFB, Ohio 45433 一、引言

本文将讨论编队飞行控制问题,研究自动控制双机飞行,从而使其在改变航向和变速操纵过程中保持初始队形。现在看一个典型的长机/僚机“菱形”编队。(如图1)

图1-固定翼飞机旋转参考坐标系

从操作角度,并根据目前人工操纵飞机编队飞行的实际情况来看,在自动编队飞行控制中定义领航/跟随的概念是有利的。这里设想从机,即僚机,装配有‘编队保持’的自动驾驶仪,从而能用‘编队保持’自动驾驶仪来控制僚机(W)。

模拟该机为一阶动态系统,假定相对于W的长机(L)的位置可由W得出,并研发了自动编队维护的僚机控制系统。以上提及的自动编队控制系统(FFCS)被称作编队保持自动驾驶仪,由此W能够在面对L的机动飞行中保持自己相对于长机(基站保持)的位置。此外,L可以在编队参数中,例如,L-W横向纵向分离(

x,r y)上命令增量(r x?,r y?).这样促使编队保持自动驾驶仪控制W执r

行动作,从而影响被控增量。因此,从字面上看,L领导或者驱动了整个编队。

考虑由反馈得到的测量结果,W的编队位置x,y的扰动能够由W上配备的编队保持自动驾驶仪得出显得至关重要。航向误差和速度误差的附加信息,即长机-僚机航向和速度差距测量结果的可用性显著提高了编队保持自动驾驶仪的性能。

早期美国空军编队飞行控制系统的可行性研究进行与1965年,它论断FFCS 能够缓解飞行员在编队飞行中的繁重压力,对编队飞行性能有极大提高。近日,Rohs已经着手FFCS的初步研究,他考虑了相似与不同飞机的菱形和雷尔编队。该工作基于Dargan等人的理论研究。在本文中,采用附着W瞬时位置的旋转参考坐标系。编队控制问题的模型是非线性动态系统,在第二三部分研究。该动态模型在初始稳定状态下线性化。一种耦合原则正在FFCS重开始使用,它能极大方便线性比例积分控制器的生成。FFCS的关键性耦合将在第四部分讨论,随之在第五部分分析x和y通道控制系统。基于分解的控制设计概念非常符合Porter和Bradshaw的模式(分解)观点的。最后,应用线性设备模型设计一个线性比例积分僚机控制器,即编队保持自动驾驶仪。第五部分的图2将阐述编队保持控制概念。编队保持自动驾驶仪的性能由长机控制的机动飞行仿真(如长机航向速度变化)来估计。此外,可以指示编队参数的变化及编队变化。第六部分给出了这些仿真结果,第七部分总结注释。

二、编队飞行控制建模

A.主要假设

在分析编队飞行控制问题时,默认假定编队中的每一架飞机自动驾驶仪是标准闭环系统。因此,飞机飞行是靠控制自动驾驶仪参考信号保持其各自的马赫数和路线。

B.飞行动力学

假定以下为两个分离的自动驾驶仪:(1)航向保持自动驾驶仪,在不影响飞

ψ;(2)马赫数保持自机空速时,它允许在航向ψ上存在微小的航向偏动指令c

?。动驾驶仪,再不影响飞机高度时,它允许在速度V上存在微小的速度偏移量c V

这些分离假定隐含前提为第一架自动驾驶仪油门,操纵杆,副翼和方向舵控制协调,第二架自动驾驶仪操纵杆和油门控制协调。其次,航向动力学方程及随之而

来由L ,W 控制的速度响应是一阶的。最后,上述模型包含现实增强率非线性饱和。

(线性化)动力方程如下:

1

1

c

W

W

W W W

ψ

ψ

ψψψττ=-

+

(1)

11

c

W

W

W W W V

V

V V V ττ=-+

(2)

1

1

c

L

L

L L

L ψ

ψ

ψ

ψ

ψ

ττ=-+

(3)

11c L

V L

L L L V V V V ττ

=-+ (4) 方程(3)和(4)建立了长机L 的自动驾驶仪系统模型,方程(1)和(2)建立了僚机W 的自动驾驶仪系统模型.设想的编队飞行控制(如队形保持)自动驾驶仪要求有一个与编队紧密环绕的附加外环,该外环驱动以上提及的僚机W 的标准内环自动驾驶仪,后者由c

W

ψ和

c

W V 控制。最后,队形保持闭环系统由外

援输入(

c

L ψ

,

c

L V ?)控制。

C.运动学

考虑平面情况,采用旋转参考坐标系,以W 的瞬时位置为原点,W 的瞬时速度矢量

W

V 为x 轴,y 轴指向W 的右舷翼。因此,L 相对W 的位置为(x,y )。

这些可由图一阐明。不是一般性,选择编队的初始静态速度向量为惯性参考系的

X 轴,队形位于正北,使得航向扰动ψψ?=。编队静态速度是n V

由图1所示,可得L-W 队形相对运动方程:

cos W W L e dx y V V dt

ψψ=-+ (5)

sin W L e dy x V dt

ψ

ψ=-+ (6) 航向角偏差为:

e L W

ψψψ=- (7)

将W 的旋转率表达式[方程(1)]带入运动方程(5)和(6)中,得:

cos c W

W

W W L e W dx y

y

V V dt ψψ

ψψψττ=-

-++

(8)

sin c W

W

W L e W dy x

x

V dt

ψ

ψ

ψψψττ=

+-

(9)

由此,方程(1—4)及(7-9)给出了FFCS 的动力学方程。注意,外援长机控制影响设备的所有状态,并由增强的动力系统(1—4)及(7-9)所描述。

三、线性化

将x,y 运动方程(8)和(9)线性化并方程(7),线性时不变FFCS 由方程(10),(11)以及(1—4)构成。

c

W

W

r

r

W W L W

y y x

V V ψ

ψ

ψψττ=--++

(10)

()c

W

W

r

r

n W n L W x x y

V V ψψψψψττ=-+-

(11)

这里,x,y 是扰动变量,例如r x x x -→,r y y y -→。相似的,

L n L L V V V V -=?→,W n W W V V V V -=?→。状态矢量为(,,,,,)W W L L x y V V ψψ。同样,在FFCS 中,控制矢量是(,)c

c

W W V ψ,意识到这一点很重要。此外,L 控制量

(,)c

c L L V ψ

是FFCS (10),(11)以及(1—4)的附加外援输入,并考虑干扰信号

对系统刺激,队形保持自动驾驶仪的任务是让飞机正常飞行,例如,排除这种干扰。

四、解耦

FFCS 的六维状态矢量被重新分解区分如下:

,,W L

x V V 和

,,W L

y ψψ

。因此,

一下两个动力系统,均为三维并被称为x 通道和y 通道,各自被包含在以下式子中:

c

W

W

r

r

W L W W

y y x

V V ψ

ψ

ψψττ=+-+

(12)

11

c

W

W

W W W V

V

V V V ττ=-+

(13)

11c

L

L

L L L V

V

V V V ττ=-+ (14)

()c

W

W

r

r

n W n L W x x y

V V ψψψψψττ=-+-

(15)

1

1

c

W

W

W W W

ψ

ψ

ψψψττ=-

+

(16)

1

1

c

L

L

L L

L ψ

ψ

ψ

ψ

ψ

ττ=-+

(17)

得系统矩阵:

011

01

0000

01

00

0000

1

00000

10000

W

W

L

W

W

L r

V

V

r

n n V y A x V V ψ

ψ

ψ

ττττττ??-??

????-

??

??????

-

??=?

???

-??????-

??????-???

?

01

0000

1000

W W

W

W r V

r y B x ψψψτττ

τ??

??

??

?

?

??

??

??

??

=

??-???????

??????

?

,扰动输入矩阵为000010000010L

L V ψττ????????????Γ=

??????????????

因此,

11

12220A A A A ??=?

???

12B B B ??

=???? 1200Γ??Γ=

??Γ??

因此分块状态向量为12(,)X X 。分块矩阵为33?矩阵,如下:

110111

0100

W L V V A ττ?

???-??

??

??

=-??????

-

???

?

120000000

0W

r

y A ψτ??

-

??????=????????

22

01

00100

W

W

L r

n n V x V V A ψ

ψ

τττ??-??

??????

=-

??????-

???

?

另:

1

1

00

W

W

r

V

y

B

ψ

τ

τ

??

??

??

??

=??

??

??

??

??

2

1

00

W

W

r

x

B

ψ

ψ

τ

τ

??

-??

??

??

=??

??

??

??

??

1

1

L

V

τ

??

??

??

??

Γ=

??

??

??

??

2

1

L

ψ

τ

??

??

??

??

Γ=

??

??

??

??

由系统矩阵,,

A BΓ的分块矩阵可以明显得出以下解耦原则:状态

2(,,)

W L

X yψψ

=的三维的y通道和三维x通道是解耦的。换言之,y和x通道控制器可以分别独立设计。

五、控制设计

图-2 线性控制合成模型

单输入量222222220

0111

011,,00,0,

c W W L c P I

W L

r

t x x V V W x x x x C X A X b x b e k x k e V K e K e dt

ψψψψψτττ-??

==++Γ?

???

????=-Γ=????????????

=+=+?

控制y 通道,

其扰动信号为c

L ψ

。在y 通道中,航向角偏差为由反馈得来的测量输出量之差:

e L W

ψψψ=-,侧向间距偏差y ,即输出矩阵为

20

1

11

0C -??=?

???

。 y 通道动力学方程为 222222c W L

X A X b ψψ=++Γ 其中输入向量为:

21,,0W W r x b ψψττ??=-??

????

扰动输入向量为

2

10,0,

L

ψτ??

Γ=?????

?

其次,y 通道的信号误差由间距偏差信号和航向角偏差合成,形式如下:

y y e k y k ψψ

=+

y 通道PI 控制律:0

c P I

t

W y y y y K e K e dt

ψ=+?

同理,在x 通道中,误差信号为:x x V V e k x k e =+ 采用线性PI 控制率:0

c P I

t

W x x x x V K e K e dt =+?

控制器增益由极点配置确定。图-2阐述了编队控制概念。

六、性能估计

图-3 长机-僚机菱形编队的时间响应图

图2所示的FFCS系统由MATRIX-System Build软件进行仿真。现在飞机在长机-僚机菱形编队下飞行,位置是x = 500 ft,y = 200 ft。命令编队航向角变为45度,在这种情况下,长机变作僚机。图3的时间响应曲线表明,当僚机追踪长机航向响应时,编队间距和僚机速度产生了瞬变。在飞行中两机间最近距离是安全的474ft。然而,随着瞬变的消失,初始编队速度和厨师编队间距维持在一个稳定的状态下。因此,在航向角变化完成后编队队形仍能保持并且在过渡过程中避免了了长机-僚机碰撞的危险

七、小结

本文分析了编队飞行控制自动驾驶仪的控制设计问题,并将其分解为两个解耦的线性单输入双输出力学跟踪控制问题,各自分别对应于y和x通道。这反之又导致了编队保持自动驾驶仪PI控制的有效设计,该设计结合利用了分离误差和机动误差。编队保持自动驾驶仪是常规的航向保持和马赫数保持自动驾驶仪的延伸扩展。然而,编队控制问题涉及两架飞机及其精确相对位置。

本文研究的编队控制是的下列情况得以实现:长机-僚机协同飞行,机械僚机的设计以及例如在机动飞行中空中加油的自动控制,基于此点,本文研究的编队飞行控制问题是十分重要的。同样,就它所提出的新的非凡的控制理论问题来说,这个问题也是十分有趣的。

参考文献

[1] Wellinger, D., "Army Formation Flight Study: Final Report," Contract No.

DA-36-039-ACM-03367(E), Radio Corporation of America, Burlington, MA, Feb. 1965.

[2]Rohs, P. R., "A Fully Coupled, Automated Formation Control System for Dissimilar Aircraft in Maneuvering, Formation Flight," M.S. Thesis,

AFIT/GE/ENG/91M-03, Air Force Inst. of Technology, Wright-Patterson

AFB, OH, March 1991.

[3]Dargan, J. L., "Proportional Plus Integral Control of Aircraft for Automated Maneuvering Formation Flight," M.S. Thesis, AFIT/GE/ENG/ 9ID- 14, Air Force Inst. of Technology, Wright-Patterson AFB, OH, Dec. 1991.

[4]Dargan, J. J., Pachter, M., and D'Azzo, J. J., "Automatic Formation Flight Control," Proceedings of the AIAA Guidance, Navigation and Control Conference (Hilton Head, SC), AIAA, Washington, DC, 1992, pp. 836-857 (AIAA Paper No.

92-4473).

[5]Porter, B., and Bradshaw, A., "Design of Linear Multivariable Continuous- Time Tracking Systems," International Journal of System Science, Vol.5, 1974, pp.

1155-1164.

[6]Porter, B., and Bradshaw, A., "Singular Pertubation Methods in the Design of Tracking Systems Incorporating Inner-Loop Compensators and High- Gain

Error-Actuated Controllers," International Journal of System Science, Vol. 12, 1981, pp. 1193-1205.

[7]Buzogany, L. E., Pachter, M., and D'Azzo, J. J., "Automated Control of Aircraft in Formation Flight," Proceedings of the AIAA Guidance, Navigation and Control Conference (Monterey, CA), AIAA, Washington, DC, 1993, pp. 1349-1370 (AIAA Paper No. 93-3852).

飞行控制系统简介

自动飞行控制系统 飞行控制系统(简称飞控系统)的作用是保证飞机的稳定性和操纵性,提高飞机飞行性能和完成任务的能力,增强飞行的安全性和减轻驾驶员的工作负担。 深圳市瑞伯达科技有限公司,致力于成为全球无人机飞行器领导品牌,是智能化无人机飞行器及控制系统的研制开发的专业厂商,生产并提供各行业无人机应用的解决方案。产品线涵盖各种尺寸多旋翼飞行器、专业航拍飞行器、无人机飞行控制系统、无人机地面站控制系统、高清远距离数字图像传输系统、专业级无线遥控器、高精飞行器控制模块及各类飞行器配件 飞行器的自动飞行一、问题的提出早在重于空气的飞行器问世时,就有了实现自动控制飞行的设想。1891年海诺姆.马克西姆设计和建造的飞行器上安装了用于改善飞行器纵向稳定性的飞行系统。该系统中用陀螺提供反馈信号,用伺服作动器偏转升降舵。这个设想在基本概念和手段上与现代飞行自动控制系统有惊人的相似,但由于飞机在试飞中失事而未能成为现实。 60年代飞机设计的新思想产生了,即在设计飞机的开始就考虑自动控制系统的作用。基于这种设计思想的飞机称为随控布局飞行器(Control Configured Vehicle 简称CCV)。这种飞机有更多的控制面,这些控制面协同偏转可完成一般飞机难以实现的飞行任务,达到较高的飞行性能。 飞控系统分类飞控系统分为人工飞行控制系统和自动飞行控制系统两大类。由驾驶员通过对驾驶杆和脚蹬的操纵实现控制任务的系统,称为人工飞行控制系统。最简单的人工飞行控制系统就是机械操纵系统。不依赖于驾驶员操纵驾驶杆和脚蹬指令而自动完成控制任务的飞控系统,称为自动飞行控制系统。自动驾驶仪是最基本的自动飞行控制系统。飞控系统构成飞控系统由控制与显示装置、传感器、飞控计算机、作动器、自测试装置、信息传输链及接口装置组成。控制及显示装置是驾驶员输入飞行控制指令和获取飞控系统状态信息的设备,包括驾驶杆、脚蹬、油门杆、控制面板、专用指示灯盘和电子显示器(多功能显示器、平视显示器等)。传感器为飞控系统提供飞机运动参数(航向角、姿态角、角速度、位置、速度、加速度等)、大气数据以及相关机载分系统(如起落架、机轮、液压源、电源、燃油系统等)状态的信息,用于控制、导引和模态转换。飞控计算机是飞控系统的“大脑”,用来完成控制逻辑判断、控制和导引计算、系统管理并输出控制指令和系统状态显示信息。作动器是飞控系统的执行机构,用来按飞控计算机指令驱动飞机的各种舵面、油门杆、喷管、机轮等,以产生控制飞机运动的力和力矩。自测试装置用于飞行前、飞行中、飞行后和地面维护时对系统进行自动监测,以确定系统工作是否正常并判断出现故障的位置。信息传输链用于系统各部件之间传输信息。常用的传输链有电缆、光缆和数据总线。接口装置用于飞控系统和其他机载系统之间的连接,不同的连接情况可以有多种不同的接口形式。 自动飞行控制系统由自动驾驶仪、自动油门杆系统、自动导航系统、自动进场系统和自动着陆系统、自动地形跟随/回避系统构成。 RIBOLD瑞伯达科技有限公司,致力于成为全球飞行影像系统独家先驱,其产品线涵盖无人机飞行控制系统及地面站控制系统、影视航拍飞行平台、商用云台系统、高清远距离数字图像传输系统、无线遥控和成像终端及模型飞行器产品,多旋翼飞行器和高精控制模块。 RBD瑞伯达坚持创新, 以技术和产品为核心,通过完美的产品带来前所未有的飞行体验。我们的目标是做世界一流的无人机企业,为我们的客户提供一流的产品和服务!

航天编队飞行和空间虚拟探测技术

航天编队飞行和空间虚拟探测技术 香山科学会议第206次学术讨论会综述 以“建立高效、低成本、低风险分布式天基探测系统——航天编队飞行和空间虚拟探测技术”为主题的206次香山科学会议学术讨论会于2003年8月26~28日在北京举行。会议聘请宋健院士、中国科学院上海技术物理所龚惠兴院士和中国科学院空间科学与应用研究中心姜景山院士担任执行主席。会议的中心议题为航天编队飞行技术、空间虚拟探测技术、分布式合成孔径雷达、现代一体化设计小卫星等。 宋健院士首先做了“重视研究低成本小卫星和虚拟探测技术”的报告,指出21世纪航天技术的发展对于外空间的科学探测、认识宇宙,扩展生存空间、挑战传统物理学和天体物理学具有非常重要的意义。强调航天的作用不仅仅是认识我们地球,而是认识宇宙的不可缺少的手段。他提出了三点需要重视的问题:第一重视基础研究,要搞编队飞行或者是虚拟探测技术研究,都要重视基础研究;第二加强长远项目的研究,“编队飞行”是一个长远课题的研究,从近期入手,逐步到达更高的目的;第三航天技术应用研究,要向社会开放,特别是要向全国的研究机构和高等院校开放,动员社会力量逐步提高我们的航天技术,这样使航天技术的根基更深,深入民间。 一、航天编队飞行及空间虚拟探测技术研究现状及重要性 姜景山院士作了题为“航天编队飞行及空间虚拟探测技术——21世纪航天应用技术前沿”的总评述报告。他指出,编队飞行的目的在于以多颗小卫星编队飞行来实现大卫星才能具备的强大功能并且可以实现功能重组,它要求编队中的每一颗卫星的传感器所获得的信号要进行相干处理。从技术上说,实现编队飞行必须以具有高度自主能力的小卫星和特殊轨道设计为技术前提。编队飞行与虚拟探测紧密相连,相互促进、共同发展。 编队飞行及空间虚拟探测技术是本世纪航天技术及应用领域的前沿性、战略性课题。在21世纪人类的航天活动中,编队飞行及虚拟探测技术必将发挥出越来越重要的作用。对于国家安全来说,它是我们必须争取的21世纪航天领域的战略制高点。它的发展也将对空间科学、空间技术及应用产生深远的影响、对于空间对地观测以及对宇宙观测方面具有重大意义,同时可以极大地提高对地观测以及对宇宙观测的能力,还将极大地促进计算机、自动控制、精密定轨、星间信息交换、空间轨道设计和编队构形设计等航天技术的发展。我国作为一个重要航天国家,应不失时机地抓住机会,纵深布局,加快研究及试验,将有可能在这一领域与国际水平同步,为我国空间技术、国家建设及国家安全提供先进有效的战略科技途径。 迄今为止,这一技术在国际上的发展也不过十几年,而且普遍处在研究和试验阶段,美国的规划目标是到2020年在相关领域使这一技术具备实用性。我国对这一技术的研究始于上世纪末,也已有7~8年的时间。如果现在开始有计划地加强这一领域的研究,我国在这一领域与国际上的发展可以同步进行。到2020年时,在航天应用中将有可能广泛采用编队飞行技术,在提高我国航天竞争能力,提升国威方面将发挥重要作用。 二、航天编队飞行技术

ATA 22 自动飞行系统

ATA22 AFS自动飞行系统 自动飞行系统是现代化数字系统,它能在飞机的整个飞行过程中,从起飞到自动进近着陆和滑跑,为飞机提供制导。它是目前最先进的自动飞行系统。 一、AFS简介: 1、基本工作原理: 图22——1 自动飞行系统(AFS)用飞机传感器提供的所需信息进行飞机位置计算。另外,在它的存储器中有几个飞行计划,这些飞行计划由航空公司预制。每个飞行计划包括一个从离港到到达目的地的完整的飞行过程,包括垂直信息和中途的航路点。 知道了飞机位置和设置的飞行计划(由飞行员选择的),该系统能计算出指令信号送到飞行控制系统和发动机控制系统,以使飞机按飞行计划飞行。 2.基本组成: 图22——2

自动飞行系统(AFS)可分为四个主要部分: ——飞行管理(FM) ——飞行制导(FG) ——飞行增稳(FA) ——故障隔离和探测系统(FIDS) 前两部分功能由飞行管理与制导计算机系统(FMGCS)实现。 后两个功能由飞行增稳计算机系统(FACS)实现。 3.飞行管理与制导计算机系统(FMGCS) 图22——3 飞行管理(FM)部分主要提供飞行计划的计算。飞行计划包括纵向和横向制导功能。 飞行制导(FG)部分主要有以下三个功能: ——自动驾驶(AP) ——飞行指引(FD) ——自动油门(A/THR) FMGCs飞行管理与制导功能是由两个多功能控制显示组件(MCDU)和一个飞行控制组件(FCU)控制。 一般由MCDU提供机组与FMGCs之间的长期信息接口(如:飞行计划的选择和修改);而FCU提供短期的信息交换接口(如:AP自驾,FD飞行指引和A/THR自动油门功能的衔接)。 除MCDU和FCU外,FM和FG的信息主要显示在EFIS电子飞行仪表系统的显示器上,即主飞行显示器(PFD)和导航显示器(ND)。 (1)自动驾驶(AP)/飞行指引(FD)

自动控制系统及应用

1、为什么说转矩控制是运动控制的根本?试用负载特性曲线比较恒转矩、恒功率和风 机、泵类负载的区别。 2、简]述直流PWM 变换器-电动机系统(直流斩波器)原理(画图说明)? 3、试述晶闸管触发整流器为何有失控时间?频率为50Hz 情况下,三相半波整流器的平 均失控时间是多少? 4、对于恒转矩负载,为什么调压调速的调速范围不大?电动机机械特性越软,调速范 围越大吗? 1、某调速系统,min /1500max 0r n =,min /150min 0r n =,额定负载时的速降min /15r n N =?,若不同转速下额定速降不变,则系统能达到的调速范围是多少?系统允许的静差率是多少? 2、某闭环系统开环放大倍数是15时,额定负载下的速降是8r/min ;如果开环放大倍数是30时,速降是多少?同样静差率下,调速范围扩大多少? 3、有一V-M 系统,电动机参数:额定功率2.2kW ,额定电压220V ,额定电流12.5A ,额定转速为1500r/min ,电枢电阻1.2Ω,整流装置内阻1.5Ω,触发整流环节放大倍数为35,要求系统满足调速范围D=20,静差率小于10%。若采用转速负反馈闭环系统,若主电路电感L=50mH ,系统的转动惯量1.6N.m 2,整流采用三相半波,试判断系统是否稳定?如要稳定,闭环系统的开环放大系数应调整为多少? 4、旋转编码器光栅数为1024,倍频系数为4,高频时钟脉冲频率1MHz ,旋转编码器输出脉冲个数和高频时钟脉冲个数均采用16位计数器,M 法和T 法测速时间均为0/01s ,求转速为1500r/min 和150r/min 时的测速分辨率和误差率最大值。 一个转速、电流双闭环调速系统。 已知:1)电动机:kW P N 555=,V U N 750=,A I N 760=,min /375r n N =,电动势系数r V C e min/82.1?=; 2)主回路总电阻Ω=14.0R ,允许电流过载倍数5.1=λ,触发整流环节放大倍数75=S K ,整流装置为三相桥式; 3)电磁时间常数s T l 031.0=,机电时间常数s T m 112.0=,电流反馈滤波时间常数s T oi 002.0=,转速反馈滤波时间常数s T on 02.0=,

自动控制系统概要设计

目录 1引言 (3) 1.1编写目的 (3) 1.2背景 (3) 1.3技术简介 (4) https://www.sodocs.net/doc/f815119348.html,简介 (4) 1.3.2SQL Server2008简介 (5) 1.3.3Visual Studio2010简介 (5) 1.4参考资料 (6) 2总体设计 (8) 2.1需求规定 (8) 2.2运行环境 (8) 2.3数据库设计 (8) 2.3.1数据库的需求分析 (9) 2.3.2数据流图的设计 (9) 2.3.3数据库连接机制 (10) 2.4结构 (11) 2.5功能需求与程序的关系 (11) 3接口设计 (12) 3.1用户接口 (12) 3.2外部接口............................................................................................错误!未定义书签。 3.3内部接口............................................................................................错误!未定义书签。4运行设计.....................................错误!未定义书签。 4.1运行模块组合....................................................................................错误!未定义书签。 4.2运行控制............................................................................................错误!未定义书签。 4.3运行时间............................................................................................错误!未定义书签。5测试 (13)

多无人机协同编队仿生飞行控制关键技术研究

随着单架无人机技术的发展日趋成熟,军事和民事领域对无人机的任务需求变得苛刻,人们开始关注生物界编队鸟群(如大雁、天鹅等)长途迁徙的现象,分析生物系统的进化特征与行为规律,利用多无人机协同编队飞行(Coordinated Formation Flight,简称CFF)与生物系统(个体或群体)的某些原理和行为相似性,将仿生学引入到CFF研究中,以期获得类似鸟群长途迁徙的功效,如降低飞行阻力、节省燃油、延长巡航距离等。由于多无人机CFF控制技术具有广阔的工程应用前景,因此这一项目已在世界范围内激发了科研人员越来越高的研究热情,但又因该项目需要涉及多学科和多技术领域,因此研究难度高。目前国外虽已取得了显著的研究成果,但离工程应用还有很大的差距,而国内研究才刚刚起步,还属于理论跟踪性研究,所以系统深入的研究多无人机CFF控制技术,逐步实现其工程应用已成燃眉之际。本文正是基于多无人机CFF控制技术的国内外发展背景,根据实验室的实际情况,从多无人机编队飞行的基本原理到功能的硬件实现,采取环环相扣的研究方法,完成了多无人机CFF控制技术的前期研究工作。全文研究的多无人机CFF控制关键技术主要包括四个方面:多无人机CFF的气动耦合模型、CFF中单架UAV的运动学和动力学模型、CFF控制器以及硬件在环的CFF测试平台构建技术。论文首先总结了前人在这一领域内已有的研究成果,并在此基础上对紧密编队飞行中非常重要的气动耦合问题进行了系统的研究,然后分析对比了几种常见的涡流模型,利用简化的飞机结构和一种近似平均有效风和风梯度的计算方式,针对“长机-僚机”的V型编队方式和非线性6 DOF的刚性飞机,确立了适合多无人机CFF动态特性研究的气动耦合模型,继而分析这种气动耦合对飞机各种参量所产生的影响作用,并相应完成了对已有的标准飞机气动力和力矩系数方程组的调整工作。其次,利用第一阶段的工作成果,论文给出了“长机-僚机”编队方式下多无人机CFF模型,通过惯性坐标轴系、速度坐标轴系与机体坐标轴系之间的转换关系,深入的分析了受翼尖涡流影响的CFF中单架无人机的运动特性,同时给出了其特有的运动学和动力学模型。论文的核心研究内容之一是如何设计出一种能够确保僚机实时跟随长机飞行航迹的飞行控制器。在本文前期工作的基础上,利用多无人机CFF中的单架无人机的非线性动力学模型,针对飞机特有的运动规律,即飞机的状态变量可按时间尺度的不同分成慢变量( )和快变量( ),对应的给出了双环控制器的设计方法:外环利用带积分消除跟随航迹稳态误差的变结构滑模控制器,内环则采用基于神经网络消除逆误差的动态逆控制器。整个设计过程紧紧围绕多无人机CFF系统建立的要求,由长机航迹信息已知的理想假设,到完全不用知晓情况下实施目标跟随,并保持特定的编队队形,层层深入地系统研究了飞行跟随控制律,最后利用Matlab7.1对其进行仿真验证。仿真结果表明该飞行控制器能够确保僚机在长机产生的涡流场中保持编队飞行的队形结构。本文另一个核心研究内容是硬件在环的多无人机CFF测试平台的研制。文中详细的阐述了多无人机CFF系统的设计要求和软硬件实现过程。整个系统主要由三个子系统组成:无人机飞行控制系统(Flight Control System,简称FCS)、基于Statemate构建的无人机虚拟样机(Virtual Prototype,简称VP)以及地面测试系统。硬件测试平台的设计中加入了FCS-VP思想,主要是基于低成本考虑,而FCS-VP虽然是一种数字化的软件模型,但其设计理念与系统设计自动化(System Design Automation,SDA)完全一致,可以对应的完成物理原型应该具备的所有功能,且具有研究过程用时短,飞行航迹监控实时性强等优势,并能随机的对飞机实施各种干扰,动态的显示编队飞行控制器的性能好坏。经过多次双机编队飞行的检测实验,结果表明基于多无人机CFF测试平台系统的双机编队飞行正常,达到设计要求,同时也进一步证明了本文所研究的编队飞行控制系统相关理论算法是正确和有效的。

水泵自动化控制系统使用说明书

水泵自动化控制系统使用说明书 一、························概述 乌兰木伦水泵自动化控制系统是由常州自动化研究所针对乌兰木伦矿井下排水系统的实际情况设计的自动控制系统。通过该系统可实现对水泵的开停、主排水管路的流量、水泵排水管的压力、水仓的水位等信号的实时监测,并能通过该系统实现三台主水泵的自动、手动控制并和KJ95监控系统的联网运行,实现地面监控。 基本参数: 水泵: 200D43*3 3台(无真空泵) 扬程120米流量288米3/小时 主排水管路直径 200mm 补水管路直径 100mm 水仓: 3个 水仓深度分别为: 总容量: 1800米 3 主电机: 3*160KW 电压:AC660V 启动柜控制电压: AC220V 220变压器容量: 1500VA 二、系统组成 本控制系统主要由水泵综合控制柜,电动阀门及传感器三大部分组成。参见“水泵控制柜内部元件布置图:。 1、水泵综合控制柜是本系统的控制中心,由研华一体化工控机、数据采集板、KJ95分站通讯接口、中间继电器、控制按钮及净化电源及直流稳压电源组成。 其中,净化电源主要是提供一个稳定的交流220V电压给研华一体化工控机,以保证研华一体化工控机的正常工作,直流稳压电源主要提供给外部传感器、中间继电器及数据采集板的工作电源。 控制按钮包括方式转换按钮、水泵选择按钮及手动自动控制按钮,分别完成工作方式的转换、水泵的选择及水泵的手动和自动控制。本控制柜共有40个按钮,从按钮本身的工作形式来说这些按钮有两种,一种为瞬间式,即按钮按下后再松开,按钮立刻弹起,按钮所控制的接点也不保持;另外一种为交替式,即按钮按下后再松开按钮,按钮并不立刻弹起,而是再按一次后才弹起,按钮所控制的接点保持(如方式转换按钮、水泵选择按钮等)。 中间继电器采用欧姆龙公司MY4型继电器,主要完成信号的转换和隔离。另外,还对

飞行器自动控制导论_第六章

第六章 典型飞行自动控制系统的工作原理 概述 6.1.1典型飞行自动控制系统的组成 描述飞机运动的参数有三个姿态角(θ、ψ、φ)、两个气流角(α、β)、两个线位移(H 、Y )及一个线速度(V )。飞行控制的作用,就是应用负反馈控制原理对上述参数的部分或全部进行控制。有时也根据需要也可控制与速度V 和迎角α有关的马赫数M 及法向过载。实际上飞行自动控制就是按一定飞行控制律,输出三个舵偏角(e δ、r δ及a δ)及油门T δ对飞行器实现闭环控制。 典型飞行自动控制系统一般包括三个反馈回路:舵回路、稳定回路和控制(制导)回路。 舵回路通常是一个随动系统(或称为伺服系统),一般包括舵机、反馈部件和放大器,如图所示。舵回路中的舵机作为执行机构带动舵面偏转。 图 舵回路方框图 舵回路中有两个反馈回路:位置反馈回路,使控制信号与舵机输出信号成比例关系,速度反馈回路,增加舵回路阻尼,改善舵回路的动态性能。 如果敏感部件是测量飞机的姿态,测量敏感部件、放大计算装置与舵回路构成自动驾驶仪,自动驾驶仪和飞机构成了飞行器的稳定回路,主要起稳定和控制飞机的姿态的作用。典型的稳定回路如图所示。

图稳定回路 由稳定回路和飞机重心位置测量部件以及描述飞机空间几何关系的运动环节,组成更大的回路,称为控制(或称制导回路),如图6-3所示。主要起稳定和控制飞机的运动轨迹的作用。 图控制(或制导)回路 6.1.2 纵向控制 飞行器纵向扰动运动,一般由短周期模态运动和长周期模态运动组成。随着飞行器的速度越来越快,飞行高度越来越高,飞行包线范围扩大,欲使飞行器在整个包线范围内满足飞行品质要求,普遍采用反馈控制技术。例如高空飞行时,飞行器的阻尼特性常常变差,短周期模态特性趋于恶化,造成操纵反应过程中超调量过大,振荡加剧,严重影响飞行任务的完成,此时,可以在纵向通道引入适当的反馈可以改善飞行品质。又如当飞行器要完成保持姿态角或等速V飞行时,即使飞行器具有良好的短周期模态时,但由于长周期模态振荡频率较低,衰减较慢,甚至是慢发散的。要实现上述任务时,要求驾驶员经常操纵舵面加以控制,并且过程很长。为了减轻驾驶员负担,精确地完成上述任务,需要抑制沉浮运动,同样可以引入适当反馈信号达到目的。如要完成定高飞行,除了使飞行具有良好短周期模态和长周期模态外,还可以引入高度反馈,完全脱离驾驶员操纵实现保

电磁航天器编队飞行系统概述.

电磁航天器编队飞行系统 1、引言 随着各国航天技术的不断发展,航天任务日趋多样化、复杂化,对航天器提出了更高的要求。传统的大卫星研制周期长、耗资多、风险大,而小卫星具有体积小、重量轻、成本低、研制周期短、能利用多种发射方式快速灵活发射等特点,使得小卫星成为大卫星的必要补充。但单颗小卫星由于功能单一,在应用方面受到一定的限制,通常将多颗小卫星进行编队,以实现单一大卫星的功能或对单一大卫星功能进行扩展,完成单颗卫星不能完成的任务。 卫星编队飞行是指一群相距很近、分布在特定轨道构型上、物理上不相连的成员卫星协同工作,共同完成特定任务。通常编队卫星以某一点(主航天器)为基准,构成一个特定几何形状,各颗卫星之间通过星间通信相互联系、协同工作,共同承担空间信号的采集与处理以及承载有效载荷等任务,整个星群构成一个满足任务需要的、规模较大的虚拟传感器或探测器。相对于传统的大卫星,卫星编队飞行具有巨大的观测口径或测量基线,在电子侦察、立体成像、精确定位、气象测量等应用领域具有无法比拟的突出优势,同时多颗卫星组成的分布式传感器系统能够有更好的灵活性和冗余度,可以降低飞行风险和成本。自二十世纪九十年代后期开始,航天器的编队飞行技术越来越引起世界航天领域的极大兴趣和广泛关注。包括美国航空航天局(NASA)、喷气推进实验室(JPL)、美国空军实验室(AirForce)以及欧空局(ESA)在内的多家著名的航天技术研究单位都看好编队飞行技术的广阔前景。图1为美国NASA的轨道列车计划(A-Train),利用六颗卫星编队飞行监测地球环境变化。 图 1 NASA的轨道列车计划 卫星编队飞行过程中要受到地球扁率、大气阻力和太阳光压等各种摄动因素的影响,此外为满足空间观测任务的要求,需要编队系统具有构型重构的机动能力,这就使得卫星要借助地球引力之外的力在非开普勒轨道上进行飞行,传统上一般采用火箭发动机喷气产生的推力来控制编队系统中成员卫星的相对位置,但这种推进方式存在以下几个方面的缺点:(1)火箭发动机喷射产生的羽流会污染临近卫星的光学器件,对空间光学观测任务产生比较大的影响,另外由于推进过程中产生红外线,会影响卫星在轨飞行的隐身效果。 (2)由于喷气推进是一种需要工质的推进方式,在不考虑卫星损毁情况下其工作寿命严格受到卫星所携带推进剂的影响,会影响卫星在轨飞行的寿命;

城市轨道交通列车自动控制系统简介-精选文档

城市轨道交通列车自动控制系统简介 、前言 随着城市现代化的发展,城市规模的不断扩大,城市轨道交通的发展已成为解决现代城市交通拥挤的有效手段,其最大特点是运营密度大、列车行车间隔时间短、安全正点。城市轨道交通列车自动控制系统是保证列车运行安全,实现行车指挥和列车运行现代化,提高运输效率的关键系统设备。 二、列车自动控制系统的组成 列车自动控制(ATC系统由列车自动防护系统(ATP、列车自动驾驶系统(ATO和列车自动监控系统(ATS三个子系统组成。 一列车自动防护( ATP-Automatic Train Protection 系统 列车自动控制系统中的ATP的子系统通过列车检测、列车间 隔控制和联锁(联锁设备可以是独立的,有的生产厂商的系统也可以包含在ATP系统中)控制等实现对列车相撞、超速和其他危险行为的防护。 二列车自动驾驶系统 ( AT0?CAutomatic Train Operation 列车自动驾驶子系统(ATO与ATP系统相互配合,负责车 站之间的列车自动运行和自动停车,实现列车的自动牵引、制动 等功能。ATP轨旁设备负责列车间隔控制和报文生成;通过轨道

电路或者无线通信向列车传输速度控制信息。ATP与ATO车载系 统负责列车的安全运营、列车自动驾驶,且给信号系统和司机提供接口。 三)自动监控(ATS-Automatic Train Super -vision )系统 列车自动监控子系统负责监督列车、自动调整列车运行以保证时刻表的准确,提供调整服务的数据以尽可能减小列车未正点运行造成的不便。自动或由人工控制进路,进行行车调度指挥, 并向行车调度员和外部系统提供信息。ATS功能主要由位于OCC 控制中心)内的设备实现。 三、列车自动控制系统原理 一)列车自动防护(ATP) ATP是整个ATC系统的基础。列车自动防护系统(ATP亦 称列车超速防护系统,其功能为列车超过规定的运行速度时即自动制动,当车载设备接收地面限速信息,经信息处理后与实际速度比较,当列车实际速度超过限速后,由制动装置控制列车制动系统制动。 ATP通过轨道电路或者无线GPS系统检测列车实际运行位 置,自动确定列车最大安全运行速度,连续不间断地实行速度监督,实现超速防护,自动监测列车运行间隔,以保证实现规定地行车间隔。防止列车超速和越过禁止信号机等功能。 按工作原理不同,ATP子系统可分为“车上实时计算允许速

自动控制系统管理

自动控制系统管理 控制系统主要包括DCS控制系统、PLC可编程控制器、闭路控制计算机系统、汽车装车站以及在先进过程控制中使用的上位计算机等。 一、电仪工段应加强对系统的日常维护检查,根据责任区划分进行点检和定期维护。 二、系统周检发现的问题,应及时填写缺陷记录,并立刻组织人员处理解决。 三、由电仪工段专业人员按照实际进行备品备件储备,并定期对软件进行备份。 四、岗位操作人员必须认真执行操作规程,爱护机器设备,严禁任何人运行与系统无关的软件,计算机必须专人操作,严禁串用或随意调整,操作人员和其他非电脑维护人员不得更换

电脑硬件和软件,严禁使用来历不明的软件、光盘和其它有可能带来病毒的工具,严禁使用系统电脑进行上网。 五、工艺参数、联锁设定值的修改,要由生产部门提出申请或办理联锁工作票后(申请和工作票要由生产部审批),由电仪专业人员或厂家人员进行修改并做好记录。 六、非工作人员未经批准严禁进入控制室,控制室人员应按规定着装。进入控制室作业人员必须采取静电释放措施,消除人身所带的静电 七、控制室内严禁吸烟,严禁带入易燃易爆和有毒物品,不得在控制室吃东西,机柜上下不得堆放杂物。 八、控制室内必须经常清扫,消防、安全设施要齐全,并定期进行检查。 九、系统供电及接地系统必须符合标准,UPS电源是过程控制计算机系统的专用电源,室内的维修用电、吸尘器、电风扇、空调机用电及其他临时性用电一律不得接入计算机电源系统。

十、非专业人员不得私自运行其他与生产无关的操作。操作人员和其他非电脑维护人员不得私自退出监控系统,未经许可,任何人不得随便支用电脑设备。 十一、工控电脑是我公司生产控制和管理的核心,凡因个人原因所造成的事故,要严格追究其责任事故。

污水处理厂自控完整系统工艺介绍

污水处理厂自控系统工艺介绍 污水处理厂位于市区或市郊,出水排入河流,水质达到国家一级排放标准。 工程采用水解-AICS处理工艺。其具体流程为:污水首先分别经过粗格栅去除粗大杂物,接着污水进入泵房及集水井,经泵提升后流经细格栅和沉砂池,然后进入水解池,。水解池出水自流入AICS进行好氧处理,出水达标提升排入河流。AICS反应器为改进SBR的一种。其工艺流程如下图1所示:矚慫润厲钐瘗睞枥庑赖。 污水处理厂自控系统设计的原则 从污水处理厂的工艺流程可以看出,主要工艺AICS反应器是改进SBR的一种,需要周期运行,AICS反应器的进水方向调整、厌氧好氧状态交替、沉淀反应状态轮换都有电动设备支持,大量的电动设备的开关都需要自控系统来完成,因此自控系统对整个周期的正确运行操作至关重要。而且好氧系统作为整个污水处理工艺能量消耗的大户,它的自控系统优化程度越高,整个污水处理工艺的运行费用也会越低,这也说明了自控系统在整个处理工艺中的重要性。聞創沟燴鐺險爱氇谴净。 为了保证污水厂生产的稳定和高效,减轻劳动强度,改善操作环境,同时提高污水厂的现代化生产管理水平,在充分考虑本污水处理工艺特性的基础上,将建设现代化污水处理厂的理念融入到自控系统设计当中,本自控系统设计遵循以下原则:先进合理、安全可靠、经济实惠、开放灵活。残骛楼諍锩瀨濟溆塹籟。

自控系统的构建 污水处理厂的自控系统是由现场仪表和执行机构、信号采集控制和人机界面(监控)设备三部分组成。自控系统的构建主要是指三部分系统形式和设备的选择。本执行机构主要是根据工艺的要求由工艺专业确定,预留自控系统的接口,仪表的选择将在后面的部分进行描述。信号采集控制部分主要包括基本控制系统的选择以及系统确定后控制设备和必须通讯网络的选择。人机界面主要是指中控室和现场值班室监视设备的选择。酽锕极額閉镇桧猪訣锥。 1、基本系统的选择 目前用于污水处理厂自控系统的基本形式主要有三种DCS系统、现场总线系统和基于PC控制的系统。从规模来看三种系统所适用的规模是不同。DCS系统和现场总线系统一般适用于控制点比较多而且厂区规模比较大的系统,基于PC的控制则用于小型而且控制点比较集中的控制系统。彈贸摄尔霁毙攬砖卤庑。 基于PC的控制系统属于高度集成的控制系统,其人机界面和信号采集控制可能都处于同一个机器内,受机器性能和容量的限制,本工程厂区比较大,控制点较多,因此采用基于PC的控制系统是不太合适的。謀荞抟箧飆鐸怼类蒋薔。

僚机编队飞行控制律设计

1.1 僚机编队飞行控制律设计 僚机在编队队形保持阶段需要实时跟踪动态的坐标点,并没有预定的航线。对于固定翼飞机而言,传统的控制方法难以实现对动态目标点的实时跟踪。为此本文提出了一种新的固定翼编队横侧向跟踪算法,取名为最优转弯半径(OTR, Optimal Turning Radius)算法,且已经验证了在长僚机模式下的编队跟踪中相比于传统PID 控制律有更好的性能。该算法在跟踪期望点附近引入了超前跟踪点和滞后跟踪点的概念,并将跟踪距离分为远距、中距和近距三种情况。在转弯段,僚机横侧向指令中增加长机的转弯半径实时反馈。在长机保持直线飞行时,僚机横侧向指令主要由航迹误差生成,期望航迹根据远距、中距、近距不同情况分别计算。在长机转弯时,僚机横侧向指令会加入长机的转弯半径实时反馈,保证转弯过程中僚机也能迅速的跟踪到期望点,进而让编队快速收敛到期望的队形。 1.1.1 OTR 算法的原理推导 设僚机相对于长机的设定偏差为(,,)F L e x y z →,长机坐标为 (,,)L l h λ,其中 (,,)F L e x y z →属于本地通用横墨卡托格网 (UTM, Universal Transverse Mercator) 坐标系,其 y 轴与长机航向重合,(,,)L l h λ表示长机在GPS 坐标系下的经纬高坐标。根据僚机与长机的固定偏差F L e →和长机的位置L 可以计算出僚机的期望位置(,,)c F l h λ。其计算过程分为 三步: (1) 将(,,)L l h λ转化到UTM 坐标下得到(,,)u L x y z 。 (2) 在UTM 坐标系下将(,,)u L x y z 和(,,)F L e x y z →相加得到僚机的期望UTM 坐标 (,,)u c F x y z 。 (3) 将(,,)u c F x y z 转化到GPS 坐标系下得到(,,)c F l h λ。 编队跟踪保持过程中一个很大的难点便是转弯过程中的期望路径震荡,表现出来的现象便是滚转角的震荡和航向偏向相反方向。为此本文在实际期望跟踪点附近设计超前跟踪点和滞后跟踪点,并且引入长机的实时转弯半径作为反馈。超前跟踪点的设计可以有效的解决过点转弯导致的侧向通道震荡问题,滞后跟踪点的设计使僚机在远距依旧能保持跟踪能力。定义超前跟踪点为(,,)c l F l h λ→,滞后跟踪点为(,,)c tr F l h λ→。定义函数(),,g f x d 表示在 GPS 坐标系下以位置 f 为基准点,向x 方向前进距离d 得到的经纬高位置。设相对于期望点超前距离为c l L →,相对于期望点滞后距离为c tr L →,则: ()(,,)=g (,,),,c l c c l F l h F l h L L ψλλ→→ (3.30) ()(,,)=(,,),,c tr c c tr F l h g F l h L L ψλλ→→- (3.31) 式中L ψ为长机的航向角,超前点和滞后点在期望点附近沿着长机航向方向选取。 定义长机与僚机的实时距离为L F L ?,近距离用c L F L ?表示,远距离用f L F L ?表示。则僚机期望位置的计算公式为:

自动控制系统案例分析

北京联合大学 实验报告 课程(项目)名称:过程控制 学院:自动化学院专业:自动化 班级:0910030201 学号:2009100302119 姓名:张松成绩:

2012年11月14日 实验一交通灯控制 一、实验目的 熟练使用基本指令,根据控制要求,掌握PLC的编程方法和程序调试方法,掌握交通灯控制的多种编程方法,掌握顺序控制设计技巧。 二、实验说明 信号灯受一个启动开关控制,当启动开关接通时,信号灯系统开始工作,按以下规律显示:按先南北红灯亮,东西绿灯亮的顺序。南北红灯亮维持25秒,在南北红灯亮的同时东西绿灯也亮,并维持20秒;到20秒时,东西绿灯闪亮,闪亮3秒后熄灭。在东西绿灯熄灭时,东西黄灯亮,并维持2秒。到2秒时,东西黄灯熄灭,东西红灯亮,同时,南北红灯熄灭,绿灯亮。东西红灯亮维持25秒,南北绿灯亮维持20秒,然后闪亮3秒后熄灭。同时南北黄灯亮,维持2秒后熄灭,这时南北红灯亮,东西绿灯亮……如此循环,周而复始。如图1、图2所示。 图 1

图 2 三、实验步骤 1.输入输出接线 输入SD 输出R Y G 输出R Y G I0.4 东西Q0.1 Q0.3 Q0.2 南北Q0.0 Q0.5 Q0.4 2.编制程序,打开主机电源编辑程序并将程序下载到主机中。 3.启动并运行程序观察实验现象。 四、参考程序 方法1:顺序功能图法 设计思路:采用中间继电器的方法设计程序。这个设计是典型的起保停电路。

方法2:移位寄存器指令实现顺序控制 移位寄存器位(SHRB)指令将DATA数值移入移位寄存器。S_BIT指定移位寄存器的最低位。N指定移位寄存器的长度和移位方向(移位加=N,移位减=-N)。SHRB指令移出的每个位被放置在溢出内存位(SM1.1)中。该指令由最低位(S_BIT)和由长度(N)指定的位数定义。

多无人机协同编队飞行控制的研究现状

第30卷 第4期航 空 学 报 V ol 30N o 4 2009年 4月A CT A AERO N AU T ICA ET AST RON A U T ICA SIN ICA A pr. 2009 收稿日期:2008 01 20;修订日期:2008 05 08基金项目:国家自然科学基金(60674100) 通讯作者:樊琼剑E mail:fan qiong jian@https://www.sodocs.net/doc/f815119348.html, 文章编号:1000 6893(2009)04 0683 09多无人机协同编队飞行控制的研究现状 樊琼剑1,2,杨忠1,方挺1,沈春林1 (1.南京航空航天大学自动化学院,江苏南京 210016)(2.空军航空大学航空控制工程系,吉林长春 310022) Research Status of C oordinated Formation Flight C ontrol for Multi UAVs Fan Qiong jian 1,2,Yang Zho ng 1,Fang T ing 1,Shen Chunlin 1 (1.Colleg e o f A uto matio n Engineer ing ,Nanjing U niver sity o f A eronautics and A st ronautics,N anjing 210016,China) (2.Depar tment o f A viation Co ntro l,Av iatio n U niv ersit y of A ir Fo rce,Chang chun 310022,China)摘 要:多无人机(U A V s)编队飞行的协同侦察、作战模式可以在一定程度上提高单机单次作战任务的成功概率,因而引起各国对多机编队飞行的研究热潮。针对这一情形,在介绍了多U AV 协同编队飞行(CF F)的定义和应用特点的基础上,结合近年来国内外多U A V 编队飞行的发展状况和一些主要的研究成果,着重分析和讨论了编队飞行控制中几个相关的关键技术问题,主要包括:队形设计、气动耦合、队形的动态调整、航迹规划、信息互换以及编队飞行控制策略等问题;最后对未来的发展趋势进行了展望。研究成果对正在研究的多机作战平台系统的协同作战技术具有一定的参考意义。 关键词:多无人机;协同编队飞行;飞行控制策略;测试;信息分析中图分类号:V249 1 文献标识码:A Abstract:Coo per ativ e reconnaissance,operation mo des of multi unmanned aerial v ehicles (U A V s)for matio n flight can enhance successful r ate o f t he single o per at ion for single aircraft to some ext ent,so multi U A Vs for matio n flight is cur rent ly one o f the mo st activ e research to pics in the domain of U A V r esear ch and develop ment.A cco rding to the cur rent sit uation,the concept and applicatio n o f coo rdinated fo rmatio n flig ht contr ol is intr oduced f irstly.T hen the fo reig n and domestic researches and t heir r esults in the aspect o f coo rdinated fo rmatio n flig ht (CFF)contro l of multi U A Vs are ov erv iewed,and at the same time sever al related key issues ar e discussed and analyzed respect ively,including for mat ion desig n,aer odynamic coupling ,for mation reconfig ur atio n,traject or y planning ,informat ion ex change and for mation flig ht co ntro l str ategy pr lblems.Finally ,r esear ch ar eas ar e pro po sed to address dev elo pment tendency and challeng es.T he r esear ch results also have some r efer ence value fo r coo per ativ e operatio ns o f the mult i platfo rm system. Key words:multi unmanned aer ial vehicles;coo rdinated for matio n flight;flight contro l strateg y;testing ;infor matio n annly sis 自从无人机(Unmanned Aerial V ehicle, U AV)在1991年的海湾战争中得到成功运用以来,已有三十多个国家投入大量的人力和财力从事U AV 的研究和生产。经过几十年的发展,U AV 技术已相对成熟,并在各个领域中发挥了其独特的作用。尽管如此,单架的UAV 执行任务时仍存在相应的问题,如执行侦察任务时,单架U AV 可能会受到传感器的角度限制,不能从多个不同方位对目标区域进行观测,当面临大范围搜索任务时,不能有效地覆盖整个侦察区域;而如果是执行攻击任务,同样,单架U AV 在作战范 围、杀伤半径、摧毁能力以及攻击精度等方面受到的限制,会影响整个作战任务的成功率;另外,一旦单架UAV 中途出现故障,必须立即中断任务返回,但在战争中有可能贻误战机而破坏整个作战计划。 针对以上现状,多年来人们通过分析生物群体的社会性现象,如模仿群鸟迁徙过程中,其队形保持、节省能量以及协同对抗天敌等能力,来解决目前所关注的问题,其目的是为了尽可能地发挥单架UAV 的作用,实现多UAV 协同编队飞行(Coo rdinated Formation Flight,CFF)的控制、决策和管理,从而提高U AV 完成任务的效率,拓宽U AV 使用范围,达到安全、高可靠性地执行空中加油、空中监视、侦察和作战等多种任务的目的。

(整理)自动飞行控制系统电子讲稿第一部分

学习情景1 课程导论 1.飞行控制系统发展概述 自动飞行控制系统已有100多年的研制历史,早在有人驾驶飞机出现之前,自动飞行装置即已出现。 1.1方向稳定器 1873年,法国雷纳德(C.C.Renard)无人多翼滑翔机的方向稳定器。 1.2 电动陀螺稳定装置-姿态稳定 1914年,美国的爱莫尔·斯派雷(Eimer Sperry)研制成功第一台可以保持飞机稳定平飞的电动陀螺稳定装置,该装置利用陀螺的稳定性和进动性,建立一个测量基准,用来测量飞机的姿态,它和飞机的控制装置连在一起,一旦飞机偏离指定的状态,这个机构就通过飞机的控制装置操纵飞机的舵面偏转使飞机恢复到原来的状态。 1.3 自动驾驶仪 20世纪30年代出现了可以控制和保持飞机高度、速度和航迹的自动驾驶仪。 第二次世界大战促使自动驾驶仪等设备得到进一步发展,由过去气动-液压到全电动,由三个陀螺分别控制三个通道改用一个 或两个陀螺来操纵飞机,并可作机动、爬高及自动保持高度等。 二次大战期间,美国和原苏联相继研制出功能较完善的电气式自动驾驶仪C-1和其仿制品A∏-5; 德国在二战后期研制成功飞航式导弹V-1和弹道式导弹V-2,

更进一步促进了飞行自动控制装置的研制和发展。 20世纪50年代后,和导航系统、仪表着陆系统相联,自动驾驶装置实现了长距离自动飞行和自动着陆。 1.4 自动飞行控制系统 1947年成功突破音障后,飞机的飞行包线(飞行速度和高度的变化范围)扩大,越来越复杂的飞行任务对飞机性能的要求也越来越高,仅靠气动布局和发动机设计所获得的飞机性能已经很难满足复杂飞行任务的要求。因此,借助于自动控制技术来改善飞机稳定性的飞行自动控制装置(如增稳系统)相继问世,在此基础上,自动驾驶仪的功能得到进一步的扩展,发展成为自动飞行控制系统(AFCS)。 20世纪60年代,产生了随控布局飞行器(congtrol configured vehicle--CCV)的设计思想。 20世纪60年代前的以模拟电路或模拟计算机为主要计算装置的飞行控制系统,逐渐发展成为现在已普遍应用的数字式飞行控制系统,这也为新技术应用和更复杂更完善系统的综合提供了实现的可能性。例如: 主动控制技术(active control technology—ACT); 余度技术 容错控制技术 20世纪80年代得到迅速发展的火/推/飞综合控制系统等。 20世纪70年代中期,由于计算机的应用使自动驾驶仪和飞机的指引系统组成一个综合系统,使飞机的各种传感器数据、指

相关主题