搜档网
当前位置:搜档网 › 细长轴零件的加工方法

细长轴零件的加工方法

细长轴零件的加工方法

细长轴零件的加工方法

在普通车床上加工细长轴对操作人员车工操作技能水平要求比较高。笔者经过不断的摸索,找出了一些方法和技巧,在此,谈几点车削细长轴零件的步骤和体会。

一、车中心架位、车端面、钻中心孔

为了能够在细长轴两端轴径上加工出圆柱度和粗糙度较高的中心架位,为下一步车端面、钻中心孔打好基础,笔者制作了尾座夹头,其原理类似于四爪卡盘。尾座夹头的一端安装在莫氏5号活顶尖上,夹头内径、锥度与活顶尖外径、锥度实配,夹头的另一端孔径、比零件毛坯尺寸大15mm~20mm,深50mm,并在对称位置打4个M16~M20顶丝孔(如用3个顶丝不易调整、找正工件)。使用四爪卡盘装夹工件,依靠车床前端的四爪卡盘和尾座夹头的四个顶丝固定调正工件位置,这种方法方便、实用、好操作,俗称“借余量”,可以很好地避免出现因工件毛坯的弯曲变形造成影响正常加工的问题。

1.车两端中心架位

工件调正位置后,操作者依次车出细长轴两端的中心架位,并保证两端中心架位外径尺寸一致,以便于中心架的安装和调整,同时,要保证所车出的中心架位表面粗糙度和圆柱度精度,否则会影响工件下一步的加工精度。

2.车端面、钻中心孔、车卡盘装夹位置

先架上中心架,研磨中心架三个支撑爪与工件的接触面,调整支撑爪的位置,使工件旋转中心与机床轴心重合,并使支撑爪与工件外圆保持微小间隙接触,充分注油润滑、锁紧中心架、启动设备,然后,开始车端面、钻中心孔、车出卡盘装夹位置。

这样操作的优点是:中心架位粗糙度和圆柱度精度高,支撑工件牢固、稳定、调整方便,材料毛坯如有弯曲变形等缺陷容易校正,车端面钻中心孔的质量高,并且不易打刀、不易折断中心钻。在实际生产中,有时钻出的中心孔为椭圆形或为棱形,原因就是由于中心架位精度不高造成的。

二、装卡工件方式

在工件同轴度要求不是特别高的情况下,车削细长轴通常采用一卡一顶装夹的方法,这样夹紧力大、便于调正,工件的刚性好,同时配合使用跟刀架做辅助支撑,需要注意的是:卡盘夹持工件的长度要尽可能缩短,并尽量多倒一至两次头,以提高卡盘爪夹紧面与工件顶尖孔的同轴度,消除过定位对工件造成的扭曲(俗称别劲),也可以在卡盘爪和工件之间缠一圈钢丝并研磨顶尖孔。

轴类零件的加工工艺资料

轴类零件的加工工艺 绪论 本课题主要研究轴类零件加工过程,加工工艺注意点及改进的方法,通过总结非标件的加工以及典型半成品轴类零件的加工实例来加以说明。现在许多制造最终成品的工厂为了提高机器的某些性能或者降低成本,需要找机械加工厂定做的,常常会因为设备、技术或者工艺规程制定的不是很好,加工出来的部件无法满足使用要求,所以需要一次次的总结,改进加工工艺,从而完善产品。经过总结了生产上出现的问题,写下了这篇论文。 轴类零件是机器中经常遇到的典型零件之一。它在机械中主要用于支承齿轮、带轮、凸轮以及连杆等传动件,以传递扭矩。按结构形式不同,轴可以分为阶梯轴、锥度心轴、光轴、空心轴、曲轴、凸轮轴、偏心轴、各种丝杠等。 图轴的种类 a)光轴 b)空心轴 c)半轴 d)阶梯轴 e)花键轴 f)十字轴 g)偏心轴 h)曲轴 i) 凸轮轴 1 轴类零件的功用、结构特点 轴类零件是机器中经常遇到的典型零件之一。它在机械中主要用于支承齿轮、带轮、凸轮以及连杆等传动件,以传递扭矩。按结构形式不同,轴可以分为阶梯轴、锥度心轴、光轴、空心轴、曲轴、凸轮轴、偏心轴、各种丝杠等。它主要用来支承传动零部件,传递扭矩

和承受载荷。轴类零件是旋转体零件,其长度大于直径,一般由同心轴的外圆柱面、圆锥面、内孔和螺纹及相应的端面所组成。根据结构形状的不同,轴类零件可分为光轴、阶梯轴、空心轴和曲轴等。 轴的长径比小于5的称为短轴,大于20的称为细长轴,大多数轴介于两者之间。 1.1轴类零件的毛坯和材料 1.1.1轴类零件的毛坯 轴类毛坯常用圆棒料和锻件;大型轴或结构复杂的轴采用铸件。毛坯经过加热锻造后,可使金属内部纤维组织沿表面均匀分布,获得较高的抗拉、抗弯及抗扭强度。 根据生产规模的不同,毛坯的锻造方式有自由锻和模锻两种。中小批生产多采用自由锻,大批大量生产时采用模锻。 1.1.2轴类零件的材料 轴类零件材料常用45钢,精度较高的轴可选用40Cr、轴承钢GCr15、弹簧钢65Mn,也可选用球墨铸铁;对高速、重载的轴,选用20Mn2B、20Cr等低碳合金钢或38CrMoAl氮化钢。 45钢是轴类零件的常用材料,它价格便宜经过调质(或正火)后,可得到较好的切削性能,而且能获得较高的强度和韧性等综合机械性能,淬火后表面硬度可达45~52HRC。 40Cr等合金结构钢适用于中等精度而转速较高的轴类零件,这类钢经调质和淬火后,具有较好的综合机械性能。 轴承钢GCr15和弹簧钢65Mn,经调质和表面高频淬火后,表面硬度可达50~58HRC,并具有较高的耐疲劳性能和较好的耐磨性能,可制造较高精度的轴。 精密机床的主轴(例如磨床砂轮轴、坐标镗床主轴)可选用38CrMoAIA氮化钢。这种钢经调质和表面氮化后,不仅能获得很高的表面硬度,而且能保持较软的芯部,因此耐冲击韧性好。与渗碳淬火钢比较,它有热处理变形很小,硬度更高的特性。 2 轴类零件一般加工要求及方法 2.1 轴类零件加工工艺规程注意点

普通车床加工细长轴工艺制作和加工方法

普通车床加工细长轴工艺制作和加工方法 一般工件长度与直径25:1 时称为细长轴。干过车工的人都知道,细长轴是机床加工中最难加工的一种零部件。过去在机械加工行业当中有句俗话:“车工怕车杆,钳工怕挫眼”。“杆”就是指细长轴。“眼”,指的是孔。实际上这句话现在来讲也不过时。细长轴始终是困扰着机床加工中的一项技术难题。 下面根据我多年干车工的实际经验给大家讲一讲在普通车床上车削细长轴的工艺制作和加工方法: 一,下料:细长轴的下料尺寸和一般零部件的下料尺寸有一些区别,通常的零部件下料长度加长5-6mm直径加大2-3mm即可。而细长轴就不同了,由于细长轴的刚性差,主轴旋转起来所产生的离心力比较大,工件在加工过程中,很容易脱落,造成机械事故和人伤亡事故。为了安全起见,卡盘爪加持的长度一般不少于20mm下料尺寸一般为30长,直径最少加大5-6mm。 二,粗车:也就是除锈,主要是给调质打基础,除锈的方法一般的分三种:1),锉刀挫。2),砂布打。3),车刀车。一般的前两种不用。用车刀车一下见光 为止。注意,在编排工艺的时候一定要注明不准打中心孔

三,调质,硬度可根据技术要求而定。 四,校直,1),在平板上用锤子敲打的方法。2),用压力机校直的方法。 ,时效,一般在空气中放置一段时即可 六,车:一般的可分为粗车、半精车、精车三种。 细长轴的装卡方法,可分为一夹一顶、两顶和一加一拉的方法。 今天我给大家讲的是一夹一顶的方法加工细长轴。首先平端面,打中心孔,最好是两头打中心孔,但不能同时把两头的中心孔打出来。由于细长轴本身的刚性差,故在车削过程中过程中会常常出现以下问题: 1 在切削过程中,工件受热会产生弯曲变形,甚至会使工件卡死在顶尖间而无法加工。 2 工件受切削力作用产生弯曲,从而引起震动影响工 件的精度和表面粗糙度。 3 由于工件的自重、变形、振动影响工件圆柱度和表面粗糙度。 4 工件在高速旋转时,在离心力的作用下,加剧工件弯曲与振动。因此,切削速度不宜过高。 由此可知对车削细长轴,不论对刀具,机床精度,辅助工具精度,切削用量的选择,工艺安排与具体操作技能都应有较高的要求,是一项工艺较强的综合技术。 七,防止细长轴车削时振动和变形的方法防止细长轴

细长轴的加工技术方法

车工技师论文 车工职业文章 文章类型:技师论文 文章题目:细长轴的加工技术方法 姓名:杨强 职业:不落轮镟床工 准考证号: 工作单位:长沙市轨道交通运营有限公司 2015年9月8日

细长轴的加工技术方法 长沙市轨道交通运营有限公司杨强 摘要:由于细长轴在加工中刚性差,在切削时受切削力、重力、切削热等因素影响产生弯曲变形,产生震动、锥度、腰鼓形和竹节形等缺陷,难以保证加工精度。通过分析细长轴加工各关键技术问题对细长轴加工的影响,找到改进方法,从而提高细长轴加工的精度,保证合格率。 关键字:细长轴技术问题加工方法精度 引言 通常轴的长度与之直径比大于20~25(即L/d≥20~25)的轴称之为细长轴。这类零件一般在车床上进行加工。在车削加工过程中,由于其刚性差,在切削力和切削热的作用下,细长轴很容易产生弯曲变形,使加工出来的细长轴产生中间粗、两头细的形状,严重影响零件的加工精度。同时细长轴产生弯曲变形后,还会引起工艺系统振动,影响零件的粗糙度。 在切削力、重力和顶尖顶紧力的作用下, 横置的细长轴很容易弯曲甚至失稳, 因此, 车削细长轴时必须改善细长轴的受力问题。加工方法:采用反向进给车削, 选用合理的刀具几何参数、切削用量、一夹一顶和轴套式跟刀架、中心架等一系列有效措施。 一、提出问题 细长轴是机器上的重要零件之一。用来支配机器中的传动零件,使传动零件有确定的工作位置,并且传递运动和转矩。当轴的长度与直径之比L/D>25时,轴称为细长轴。“车工怕杆。钳工怕眼’’是人们熟悉的口头语。也就是说,由于细长轴的加工精度要求高,但细长轴本身的结构特点使之刚性差、振动大,所以加工起来存在一定的难度。其加工特点如下: 1、细长轴刚性很差。在车削加工时,如果装夹不当,很容易因

典型轴类零件的数控加工工艺编制

典型轴类零件的数控加工工艺编制数控技术是用数字信息对机械运动和工作过程进行操纵的技术,数控装备是以数控技术为代表的新技术对传统制造产业和新兴制造的渗透形成的机电一体化产品,即所谓的数字化装备。 本次设计确实是进行数控加工工艺设计典型轴类零件,要紧侧重于该零件的数控加工工艺和编程,包括完成该零件的工艺规程,要紧工序工装设计,并绘制零件图、夹具图等。 通过本次毕业设计,对典型轴类零件的设计又有了深的认识。从而达到了巩固、扩大、深化所学知识的目的,培养和提高了综合分析咨询题和解决咨询题的能力以及培养了科学的研究和创新能力。 关键词:数控技术典型轴类零件加工工艺毕业设计

摘要 (1) 目录 (2) 1.引言 (3) 1.引言 (3) 2.零件分析 (4) 2.1毛坯的选择 (4) 2.2 机床的选择 (4) 3.零件图加工艺分析 (7) 3.1零件的工艺分析 (7) 3.2 零件的加工工艺设计 (11) 4.零件图加工程序编写 (21) 4.1零件左端加工程序编写 (21) 4.2零件右端加工程序编写 (22) 5. 程序调试 (25) 致谢 (26) 参考文献 (27)

数控技术集传统的机械制造技术、运算机技术、成组技术与现代操纵技术、传感检测技术、信息处理技术、网络通讯技术、液压气动技术、光机电技术于一体,是现代先进制造技术的基础和核心。数控车床己经成为现代企业的必需品。随着数控技术的不断成熟和进展及市场日益繁荣,其竞争也越来越猛烈,人们对数控车床选择也有了更加宽敞的范畴,对数控机床技术的把握也越来越高。随着社会经济的快速进展,人们对生活用品的要求也越来越高,企业对生产效率也有相应的提高。数控机床的显现实现了宽敞人们的这一愿望。数控车削加工工艺是实现产品设计、保证产品的质量、保证零件的精度,节约能源、降低消耗的重要手段。是企业进行生产预备、打算调度、加工操作、安全生产、技术检测和健全劳动组织的重要依据。也是企业对高品质、高品种、高水平,加速产品更新,提高经济效益的技术保证。这不但满足了宽敞消费者的目的,即实现了产品多样化、产品高质量、更新速度快的要求,同时推动了企业的快速进展,提高了企业的生产效率。 数控工艺规程的编制是直截了当指导产品或零件制造工艺过程和操作方法的工艺文件,它将直截了当阻碍企业产品质量、效益、竞争能力。本文通过对典型轴类零件数控加工工艺的分析,对零件进行编程加工,给出了关于典型零件数控加工工艺分析的方法,关于提高制造质量、实际生产具有一定的意义。依照数控机床的特点,针对具体的零件,进行了工艺方案的分析,工装方案的确定,刀具和切削用量的选择,确定加工顺序和加工路线,数控加工程序编制。通过整个工艺的过程的制定,充分表达了数控设备在保证加工精度,加工效率,简化工序等方面的优势。 本人以严谨务实的认真态度进行了此次设计,但由于知识水平与实际体会有限。在设计中会显现一些错误、缺点和疏漏,诚请各位评审老师提出批判和指正。

典型轴类零件加工工艺标准规范标准分析

阶梯轴加工工艺过程分析 图6—34为减速箱传动轴工作图样。表6—13为该轴加工工艺过程。生产批量为小批生产。材料为45热轧圆钢。零件需调质。

(一)结构及技术条件分析 该轴为没有中心通孔的多阶梯轴。根据该零件工作图,其轴颈M、N,外圆P,Q及轴肩G、H、I有较高的尺寸精度和形状位置精度,并有较小的表面粗糙度值,该轴有调质热处理要求。 (二)加工工艺过程分析 1.确定主要表面加工方法和加工方案。

传动轴大多是回转表面,主要是采用车削和外圆磨削。由于该轴主要表面M,N,P,Q的公差等级较高(IT6),表面粗糙度值较小(Ra0.8μm),最终加工应采用磨削。其加工方案可参考表3-14。 2.划分加工阶段 该轴加工划分为三个加工阶段,即粗车(粗车外圆、钻中心孔),半精车(半精车各处外圆、台肩和修研中心孔等),粗精磨各处外圆。各加工阶段大致以热处理为界。 3.选择定位基准 轴类零件的定位基面,最常用的是两中心孔。因为轴类零件各外圆表面、螺纹表面的同轴度及端面对轴线的垂直度是相互位置精度的主要项目,而这些表面的设计基准一般都是轴的中心线,采用两中心孔定位就能符合基准重合原则。而且由于多数工序都采用中心孔作为定位基面,能最大限度地加工出多个外圆和端面,这也符合基准统一原则。 但下列情况不能用两中心孔作为定位基面: (1)粗加工外圆时,为提高工件刚度,则采用轴外圆表面为定位基面,或以外圆和中心孔同作定位基面,即一夹一顶。 (2)当轴为通孔零件时,在加工过程中,作为定位基面的中心孔因钻出通孔而消失。为了在通孔加工后还能用中心孔作为定位基面,工艺上常采用三种方法。 ①当中心通孔直径较小时,可直接在孔口倒出宽度不大于2mm的60o内锥面来代替中心孔;

轴类零件机械加工工艺规程设计

轴类零件机械加工工艺规程设计 零件图七

摘要 本设计所选的题目是有关轴类零件的设计与加工,通过设计编程,最终用数控机床加工出零件,数控加工与编程毕业设计是数控专业教学体系中构成数控加工技术专业知识及专业技能的重要组成部分,它是运用数控原理,数控工艺,数控编程,制图软件和数控机床实际操作等专业知识对零件进行设计,是对所学专业知识的一次全面训练。熟悉设计的过程有利于对加工与编程的具体掌握,通过设计会使我们学会相关学科的基本理论,基本知识,进行综合的运用,同时还会对本专业有较完善的系统的认识,从而达到巩固,扩大,深化知识的目的。 此次设计也是我们走出校园之前学校对我们的最后一次全面的检验以及提高我们的素质和能力。毕业设计和完成毕业论文也是我们获得毕业资格的必要条件。 设计是以实践为主,理论与实践相结合的,通过对零件的分析与加工工艺的设计,提高我们对零件图的分析能力和设计能力。达到一个毕业生应有的能力,使我们在学校所学的各项知识得以巩固,以更好的面对今后的各种挑战。 此次设计主要是围绕设计零件图七的加工工艺及操作加工零件来展开的,我们在现有的条件下保证质量,加工精度及以及生产的经济成本来完成,对我们来说具有一定的挑战性。其主要内容有:分析零件图,确定生产类型和毛坯,确定加工设备和工艺设备,确定加工方案及装夹方案,刀具选择,切削用量的选择与计算,数据处理,对刀点和换刀点的确定,加工程序的编辑,加工时的实际操作,加工后的检验工作。撰写参考文献,组织附录等等。 关键词 加工工艺、工序、工步、切削用量:切削速度(m/min)、切削深度(mm)、进给量(mm/n、mm/r)。

数控机床轴类零件加工工艺分析

数控机床轴类零件加工工 艺分析 Prepared on 22 November 2020

X X X学院 毕业 设计 任务书 论文 机械工程系数控技术专业 XX 班 毕业设计 题目 数控机床轴类零件加工工艺分析论文 专题题目 数控机床轴类零件加工工艺分析 发题日期:2010年11月15日设计、论文自2010年11月20日完成期限:至2010年月日答辩日期:2010年月日 学生姓名: 指导教师: 系主任:

毕业设计版权使用授权书 本人完全了解云南机电职业技术学院关于收集、保存、使用毕业设计的规定,同意如下各项内容:按照学校要求提交毕业设计的印刷本和电子版本;学校有权保存毕业设计的印刷本和电子版,并采用影印、缩印、扫描、数字化或其它手段保存毕业设计;学校有权提供目录检索以及提供本

毕业设计全文或者部分的阅览服务;学校有权按有关规定向国家有关部门或者机构送交毕业设计的复印件和电子版;在不以赢利为目的的前提下,学校可以适当复制毕业设计的部分或全部内容用于学术活动。 作者签名: 年月日 作者签名: 年月日 摘要 世界制造业转移,中国正逐步成为世界加工厂。美国、德国、韩国等国家已经进入发展的高技术密集时代与微电子时代,钢铁、机械、化工等重化工业发展中期。 由于数控机床综合应用了电子计算机、自动控制、伺服系统、精密检测与新型机械结构等方面的技术成果,具有高的高柔性、高精度与高度自动化的特点,因此,采用数控加工手段,解决了机械制造中常规加工技术难以解决甚至无法解决的单件、小批量,特别是复杂型面零件的加工,应用数控加工技术是机械制造业的一次技术革命,使机械制造的发展进入了一个新的阶段,提高了机械制造业的制造水平,为社会提供高质量,多品种及高可靠性的机械产品。 本次设计主要是对数控加工工艺进行分析与具体零件图的加工,首先对数控加工技术进行了简单的介绍,然后根据零件图进行数控加工分析。第一,根据本零件材料的加工工序、切削用量以及其他相关因素选用刀具及

普通车床细长轴车削加工工艺

普通车床细长轴车削加工工艺 (总7页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

( 长度与之直径比大于20~25(即L/d≥20~25)的轴称之为细长轴。这类零件一般在车床上进行加工。在车削过程中,由于其刚性差,在切削力和切削热的作用下,细长轴很容易产生弯曲变形,这样就破坏了刀具和零件相对运动的准确性,使加工出来的细长轴产生中间粗、两头细的形状,严重影响零件的加工精度.同时细长轴产生弯曲变形后,还会引起工艺系统振动,影响零件的粗糙度。在切削力、重力和顶尖顶紧力的作用下,横置的细长轴是很容易弯曲甚至失稳,提高细长轴的加工精度问题,就是控制工艺系统的受力及受热变形的问题。因此,采用反向进给车削,配合以最佳的刀具几何参数、切削用量、拉紧装置和轴套式跟刀架等一系列有效措施。以提高细长轴的刚性,得到良好的几何精度和理想的表面粗糙度,保证加工要求。 2细长轴车削的工艺特点 细长轴车削的工艺特点细长轴车削的工艺特点细长轴车削的工艺特点: ①细长轴刚性很差,车削时装夹不当,很容易因切削力及重力的作用而发生弯曲变形,产生振动,从而影响加工精度和表面粗糙度。 ②细长轴的热扩散性能差,在切削热作用下,会产生相当大的线膨胀。如果轴的两端为固定支承,则工件会因伸长而顶弯。 ③由于轴较长,一次走刀时间长,刀具磨损大,从而影响零件的几何形状精度。④车细长轴时由于使用跟刀架,若支承工件的两个支承块对零件压力不适当,会影响加工精度。若压力过小或不接触,就不起作用,不能提高零件的刚

度:若压力过大,零件被压向车刀,切削深度增加,车出的直径就小,当跟刀架继续移动后,支承块支承在小直径外圆处,支承块与工件脱离,切削力使工件向外让开,切削深度减小,车出的直径变大,以后跟刀架又跟到大直径圆上,又把工件压向车刀,使车出的直径变小,这样连续有规律的变化,就会把细长的工件车成“竹节”形。造成机床、工件、刀具工艺系统的刚性不良给切削加工带来困难,不易获得良好的表面粗糙度和几何精度 3引起细长轴产生弯曲变形的原因 在车床上车削细长轴采用的传统装夹方式主要有两种:一种方式是细长轴的一端用卡盘夹紧,另一端用车床尾架顶尖支承(一夹一顶);另一种方式是细长轴的两端均由顶尖支撑(双顶尖)。主要分析一夹一顶的装夹方式.其力学模型如图1所示。 图1 一夹一顶装夹方式及力学模型 切削力导致变形

细长轴的加工方法

细长轴的加工方法 细长轴的长径比大于20,刚性差,在加工中产生的切削力、切削热、振动等因素都将直接影响工件的尺寸精度和平行精度。加工难度较大,当用较高的切削速度加工长径比大于100的细长轴时,则加工难度更高。细长轴常规加工法为一夹一顶或两顶。 以前我们在一线加工长径大于40,直径公差、形位公差为6级的细长轴,采用常规的加工方法装卡加工,很难达到加工要求,且经常造成产品在精加工时报废,而影响产品交付日期,大大提加工成本。我经过多次分析、试验,在零件热处理、装卡、加工方法,刀具等方面采取了一定技术措施,可以加工出长径比大于80,直径公差、形位公差较高的细长轴。 由于细长轴的长径比很大,刚性很差。在切削时,受切削力、装卡力、自身重力、切削热、振动等因素的影响,容易出现以下问题: 1、切削是生产的径向切削力与装卡径向分力的合力,会使工件弯曲,工件旋转时引起振动,从而影响加工精度和表面质量。 2、由于工件自重变形而加剧工件的振动,影响加工精度和表面质量。 3、工件转速高时,离心力的作用,加剧了工件的弯曲和振动。 4、在加工中,在切削热作用下,会引起工件弯曲变形。 因此,在车削细长轴时,无论对刀具、机床、辅助工具、切削用量的选择,工艺安排和技术操作有较高的要求,要求合理选择切削参数,合理选择切削用量。车削时,一般当V=30~70m/min,在此速度范围内,容易产生振动,此时相应的振幅有较大值,高于或低于这个速度范围,振动呈现减弱趋势。当加工直径小于10mm时,取V≤30m/min;当加工直径大于10mm时,取V≤70m/min,是极限切削宽度与切削速度的变化关系曲线。在高速或低速范围进行切削,自振就不易产生。特别是在高速范围内进行切削,既可提高生产率,又可避免颤振,是值得采用的方法。进给量f的选择,振动强度随进给量f的增大而减小。宽度随进给量的增大而增大。为了避免颤振的产生,在许可的情况下,如:机床有足够的刚度,足够的电机功率,工件的表面粗糙度参数较低等,应该取大的进给量。粗车时取f=0.15mm,半精车时取f=0.1mm,精车时f=0.06mm。切削深度aP的选择,车削时,切削量不宜过大。当切削深度和进给量不变时,随主偏角的增大,振幅逐渐减小,这是因为径向切削力减小了,同时实际切削宽度将减小。在精加工细长轴时取Kr=75~80°,精车时dr=85~90°刀具进行切削,可避免或减小振动。后角对切削稳定性无多大影响,但当后角减小到2~3°时,使振动有明显的减弱,再生产中也发现,后刀面有一定程度的磨损后,会有明显的减振作用。刀具刀尖圆弧半径rS增大时,径向力量随之增大,为避免自振rS越小越好。但随的减小,将会使刀具寿命降低,同时也不利于表面粗糙度的改善。故加工时,断

典型轴类零件加工工艺分析

阶梯轴加工工艺过程分析? 图6—34为减速箱传动轴工作图样。表6—13为该轴加工工艺过程。生产批量为小批生产。材料为45热轧圆钢。零件需调质。

(一)结构及技术条件分析??该轴为没有中心通孔的多阶梯轴。根据该零件工作图,其轴颈M、N,外圆P,Q及轴肩G、H、I有较高的尺寸精度和形状位置精度,并有较小的表面粗糙度值,该轴有调质热处理要求。?

(二)加工工艺过程分析? 1.确定主要表面加工方法和加工方案。 传动轴大多是回转表面,主要是采用车削和外圆磨削。由于该轴主要表面M,N,P,Q的公差等级较高(IT6),表面粗糙度值较小(Ra0.8μm),最终加工应采用磨削。其加工方案可参考表3-14。 2.划分加工阶段 该轴加工划分为三个加工阶段,即粗车(粗车外圆、钻中心孔),半精车(半精车各处外圆、台肩和修研中心孔等),粗精磨各处外圆。各加工阶段大致以热处理为界。 3.选择定位基准 轴类零件的定位基面,最常用的是两中心孔。因为轴类零件各外圆表面、螺纹表面的同轴度及端面对轴线的垂直度是相互位置精度的主要项目,而这些表面的设计基准一般都是轴的中心线,采用两中心孔定位就能符合基准重合原则。而且由于多数工序都采用中心孔作为定位基面,能最大限度地加工出多个外圆和端面,这也符合基准统一原则。 但下列情况不能用两中心孔作为定位基面: ?(1)粗加工外圆时,为提高工件刚度,则采用轴外圆表面为定位基面,或以外圆和中心孔同作定位基面,即一夹一顶。? (2)当轴为通孔零件时,在加工过程中,作为定位基面的中心孔因钻出通孔而消失。为了在通孔加工后还能用中心孔作为定位基面,工艺上常采用三种方法。 ①当中心通孔直径较小时,可直接在孔口倒出宽度不大于2mm的60o内锥面来代替中心孔;

轴类零件工艺制定实例

一、轴类零件是机器中经常遇到的典型零件之一。它主要用来支承传动零部件,传递扭矩 和承受载荷。轴类零件是旋转体零件,其长度大于直径,一般由同心轴的外圆柱面、圆锥面、内孔和螺纹及相应的端面所组成。根据结构形状的不同,轴类零件可分为光轴、阶梯轴、空心轴和曲轴等。 轴的长径比小于5的称为短轴,大于20的称为细长轴,大多数轴介于两者之间。 轴用轴承支承,与轴承配合的轴段称为轴颈。轴颈是轴的装配基准,它们的精度和表面质量一般要求较高,其技术要求一般根据轴的主要功用和工作条件制定,通常有以下几项: (一)尺寸精度起支承作用的轴颈为了确定轴的位置,通常对其尺寸精度要求较高 (IT5~IT7)。装配传动件的轴颈尺寸精度一般要求较低(IT6~IT9)。 (二)几何形状精度轴类零件的几何形状精度主要是指轴颈、外锥面、莫氏锥孔等的 圆度、圆柱度等,一般应将其公差限制在尺寸公差范围内。对精度要求较高的内外圆表面,应在图纸上标注其允许偏差。 (三)相互位置精度轴类零件的位置精度要求主要是由轴在机械中的位置和功用决定 的。通常应保证装配传动件的轴颈对支承轴颈的同轴度要求,否则会影响传动件(齿轮等)的传动精度,并产生噪声。普通精度的轴,其配合轴段对支承轴颈的径向跳动一般为0.01~0.03mm,高精度轴(如主轴)通常为0.001~0.005mm。 (四)表面粗糙度一般与传动件相配合的轴径表面粗糙度为Ra2.5~0.63μm,与轴承相 配合的支承轴径的表面粗糙度为Ra0.63~0.16μm。 一、概述 (一)、轴类零件的功用与结构特点 1、功用:为支承传动零件(齿轮、皮带轮等)、传动扭矩、承受载荷,以及保证装在主轴上的工件或刀具具有一定的回转精度。 2、2、分类:轴类零件按其结构形状的特点,可分为光轴、阶梯轴、空心 轴和异形轴(包括曲轴、凸轮轴和偏心轴等)四类。

浅谈细长轴车削加工方法

细长轴车削变形因素及解决方法探讨 周秀香 华亭煤业集团公司砚北煤矿 摘要:通过对细长轴类零件车削加工时产生弯曲变形的原因分析,阐述了保证细长轴加工质量的工艺方法、切削用量以及刀具几何角度的选择。 在机械加工过程中,有很多轴类零件的长径比L/d>25。在切削力、重力和顶尖顶紧力的作用下, 横置的细长轴很容易弯曲甚至失稳, 因此, 车削细长轴时必须改善细长轴的受力问题。加工方法:采用反向进给车削, 选用合理的刀具几何参数、切削用量、拉紧装置和轴套式跟刀架等一系列有效措施。 一、车削细长轴产生弯曲变形的因素分析 在车床上车削细长轴采用的传统装夹方式主要有两种:一种方式是:一夹一顶安装;另一种方式是:两顶尖安装。这里主要分析一夹一顶的装夹方式。如图1所示。 图1 一夹一顶装夹方式及受力分析 通过用普通车床实际加工分析,车削细长轴弯曲变形的原因有: 1、切削力导致变形 在车削过程中,产生的切削力可以分解为轴向切削力PX、径向切削力PY及切向切削力PZ。不同的切削力对车削细长轴时产生弯曲变形的影响是不同的。

径向切削力PY的影响:径向切削力是垂直作用在通过细长轴轴线水平平面内的,由于细长轴的刚性较差,径向切削力将会把细长轴顶弯,使其在水平面内发生弯曲变形.径向切削力对细长轴弯曲变形的影响,见图1。 轴向切削力PX的影响:轴向切削力是平行作用在细长轴轴线方向上的,它对工件形成一个弯矩。对于一般的车削加工,轴向切削力对工件弯曲变形的影响并不大,可以忽略。但是由于细长轴的刚性较差,其稳定性也较差,当轴向切削力超过一定数值时,将会把细长轴压弯而发生纵向弯曲变形。如图2所示。 图2 轴向切削力的影响及受力分析 2、切削热产生的影响 车床加工工件时产生的切削热,会引起工件热变形伸长。由于在车削过程中,卡盘和尾架顶尖都是固定不动的,因此两者之间的距离也固定不变。这样细长轴受热后的轴向伸长量受到限制,导致细长轴受到轴向挤压而产生弯曲变形。 由此可以看出,提高细长轴的加工精度问题,实质上就是控制工艺系统的受力及受热变形问题。 二、解决细长轴加工变形问题的措施 在细长轴加工过程中,为提高加工精度,应根据不同的生产条件,采取不同的措施,才能保证细长轴的加工精度。 1、选择合适的装夹方法 在普通车床上车削细长轴的两种传统装夹方式中,采用双顶尖装夹,工件定位准确,容易保证同轴度。但用这种方法装夹细长轴,其刚性较差,细长轴弯曲变形较大,而且容易产生振动.因此只适宜于安

细长轴车削方法

细长轴车削方法 机械系袁凤艳 摘要本文对加工细长轴时的受力和变形进行了分析,讨论了影响细长轴加工精度的因素,并从装夹方式、刀具角度、切削用量,以及新加工方法等方面阐述了提高细长轴加工精度的措施,得出切削细长轴减少其弯曲变形,保证轴的加工精度的基本方法 关键词细长轴锥形车削方法刀具选择 (一)前言 细长轴的直径和长度之比(L/D)一般都大于20,车削时机床—工件—刀具工艺系统的刚性较差,工件极易弯曲且产生振动,特别是加工锥形部分刚度更差。另外,由于细长轴热扩散性差,切削过程中切削热使工件产生的线膨胀,也会使工件容易产生腰鼓形、麻花形、竹节形等缺陷,不易获得满意的表面粗糙度及几何精度。因此车削细长轴,尤其上锥形细长轴时,关键是要提高工艺系统的刚度,这对刀具、机床、辅助工具和工艺方法均有较高要求。 (二)车削细长轴常见的工件缺陷 细长轴的定义:当工件长度跟直径直比大于20~25倍(L/d>20~25)时,称为细长轴。 常见的工件缺陷产生原因及削除方法: 1.弯曲 1)坯料自重和本身弯曲。应经校直和热外省处理。 2)工件装夹不良,尾座顶尖与工件中心孔顶得过紧。 3)刀具几何参数和切削用量选择不当,造成切削力过大。可减小切削深度,增加进给次数。 4)切削时产生热变形。应采用冷却润滑液。 5)刀尖与支承块间距离过大。应不超过2mm为宜。 2.竹节形 1)在调整和修磨跟刀架支承块后,接刀不良,使第二次和第一次进给的径向尺寸不一致,引起工作全长上出现与支承块宽度一致的击期性直径变化。当削中出现轻度竹节形时,可调节上侧支承块的压紧力,也可调节中拖板手柄,改变切削浓度或减少车床大拖板和中拖板间的间隙。 2)跟刀架外侧支承块调整过紧,易在工件中段出现周期性直径变化,应调整压紧,使支承块与工件保持良好接触。 3.多边形 1)跟刀架支承块与工件表面接触不良,留有间隙,使工件中心偏离旋转中心。应合理选用跟刀架结构,正确修磨支承块弧面,使其与工件良好接触。 2)因装夹、发热等各种因素造成的工件偏摆,导致切削深度变化。可利用托架、并改善托架与工件的接触状态。 4.锥度 1)尾座顶尖与主轴中心线对床身导轨的不平行。

在普通外圆磨床上磨削细长轴的一种工艺汇总

在普通外圆磨床上磨削细长轴的一种新工艺 【论文摘要】本文介绍了一种在普通外圆磨床上高效磨削高精度、低粗糙度细长轴(空筒件)的新工艺——,其特点是操作简便,容易掌握,对工人技术水平要求低,在磨削过程只需进行粗、精磨两工序,这种工艺非常适用于长径比L/D≥50的细长轴、难加工材料和较硬材质的超精磨削。 ----------在普通外圆磨床上磨削细长轴的一种新工艺---------- 在普通外圆磨床上超精磨削细长轴一直是老大难问题,易产生灼伤、振纹、落沙,圆轴度超差等缺陷,特别是,当工件的长径比超过30(L/D>30)时,尤为困难。国外机械工业发达地方的中小型机械修造公司(厂)的长期实践表明,只要检修、调整好普通外圆磨床,合理地选择砂轮、磨削用量和工艺过程,就能满足细长轴的技术要求。本论文介绍在普通外圆磨床一种超精磨削细长轴的缓进恒压力磨削工艺方法。 二.磨削前的几项准备工作: 1. 校直

细长轴校直方法有热校和冷校两种方法,热校比冷校理想。校直后的弯曲度应控制在工件每1000mm长度,其弯曲度<0.15mm,圆轴度<0.05mm。 2. 中心孔 细长轴两端的中心孔是细长轴的定位装夹基准,细长轴经过车加工、热处理和校直后,中心孔将会产生变形。对细长轴两端的中心孔进行研磨,使用多棱的60°硬质合金顶尖挤研,60°锥孔与磨床顶尖的接触面大于80%,圆度<0.001t等标准要求。 3. 检修机床 保证检修后的外圆磨床各项精度达到如下指标。

4. 调整机床 主要是调整头架与尾架间的中心距离。将工件顶在两顶尖间,用手旋转工件。感觉不松不紧为好,如果尾座顶尖是弹簧式的,可使弹簧顶尖压缩0.5~2mm,再顶住工件中心孔。 5. 检查工件 两顶尖顶住工件,先用百分表对细长轴的全长作径向跳动检查,特别是对中间弯曲度最大的地方,观察其跳动量方向是否一致。然后再用千分尺检查工件的磨削余量和各项尺寸。细长轴的磨削余量取较小值为宜,粗磨为0.20-0.25mm.精磨为0.05-0.10mm。 三:砂轮及磨削用量的选择 1. 砂轮的选择 图1 砂轮形状(代号:P) 根据细长轴材料的不同,选择不同磨料、硬度、粒度的砂轮,这是很重要的。磨细长轴的砂轮硬度应稍软,粒度应稍粗。砂轮的形状如图1所示,可以减少细长轴在旋转中产生自激振动,砂轮的选择见表1,砂轮宽60mm。

轴类零件机械加工工艺规程制定

轴类零件机械加工工艺规程制定 发表时间:2013-12-03T10:54:32.420Z 来源:《赤子》2013年10月下总第292期供稿作者:江灵智[导读] 对一些适用于特殊场合、对其加工条件及方式存在多种限制的零部件,可对其进行此操作 江灵智 (浙江申林汽车部件有限公司,浙江温岭 317507) 摘要:在机械运动装置传递运动形式中,轴类零件是不可或缺的部件之一。各传动件不仅通过轴类零件传递扭矩带动运动,另外也通过其承受载荷。轴类零件的加工质量决定着它在机械运动中的性能,本文就轴类加工工艺规程予以讨论,以求获得更为完善的产品,提高其利用率,延长使用寿命。 关键词:轴类零件;加工工艺;规程 中图分类号:TH162 文献标识码:A 文章编号:1671-6035(2013)10-0000-01 轴类零件是机械装置中的典型零件之一。它不仅是传动零部件的载体,还具有扭矩和运动形式传送的作用,实现机械装置间连续运动。轴类零件根据外形的差异,有直轴、曲轴和软轴之分,这里讨论的主要以直轴为主。其包括有光轴、阶梯轴等。由于轴类零件在机械传动中至关重要,其精度、表面粗糙度等需符合使用标准,因而其加工工艺流程必须经过严格的工艺规程。无论是加工光轴、阶梯轴或是空心轴等其他轴类零件,其加工工艺基本上是一致的,针对不同的结构,只需要在细节上做些处理。 一、毛坯及材料的选择 加工轴类零件之前,首先应该挑选使用哪种材料的毛坯。毛坯是否选取适当,将决定后期加工难度和工作量。轴类毛坯根据轴类现场使用场合、加工制造分类、加工预期成本、现有加工车床的限制等而定,一般常使用棒料、锻件等,棒料适用于阶梯不太明显趋近于光轴的轴类零件,相反地,若是外圆间变化较大的阶梯轴或是起到关键作用的轴类,通常是选取锻件毛坯。另在选择毛坯时,优先选择外形形状和大小贴近于制造零件的毛坯,这样可减少零件加工所需的冗余工作,提高生产效率,同时也降低了生产成本。毛坯材料的选择需根据实际使用中轴类零件工作而定,如其支承的传动件的重量,其传递的扭矩等。因而,在选择毛坯材料时,其抗变形能力、抗弯曲能力、耐磨度等是重要参数,并需经过不同的热处理来强化这些参数。[1] 二、定位及装夹方式的确定 待选定使用哪种毛坯后,需通过定位和装夹装置标记最优的加工点。基准表面及装夹方式的确定,决定着零件经过车削后其大小和切削位置与理论上的偏移程度。在选择参考平面用作基准时,主要有粗基准和精基准类型,根据零件各位置不同功能而定的误差范围值,选取合适的基准。一般粗基准使用可加工范围广、表面平滑、较为重要的未加工表面;优先使用已加工处理的表面作为精基准的参考面,尤其是其他未进行修改的面都能以此为准的表面。在一些情况下,也可采用互为基准和自为基准等方式确定基准面。[2] 毛坯零件的装夹方式根据待加工零件的形状而定,针对矩形的零件,使用合适的平口钳夹住固定;针对圆状零件,使用三爪卡盘压在铣床床面上;针对特殊形状的零件,可制作专用的铣床夹具。 三、加工工艺分析 轴类零件加工遵循的原则与其他加工类似,切削工艺安排严格按照“先攻基准、先粗后精、先主后次、先面后孔”的原则执行。使用数控车床车削误差变化范围较小的零件时,起始位置点选择为轴的最右端。 1.首先分析零件样图。 零件图样中给出的一些使用参数,以及表面粗糙度、平行度、同心度等数值要求,是我们在作加工工艺的指导依据。 2.加工路线的拟定。 对零件图分析后,可确定零件的定位基准。根据加工工序中“基准先行”的规则要求,在设计中作为基准使用的外围面需优先进行,方便其他表面的加工。此加工可采用外圆车削的方式,包括有粗车、半粗车、精车等阶段;其次,根据“先主后次”的原则,优先处理尺寸接近于理想状态约束较多的零件外围部分。而轴上的矩形键槽、花型键槽及螺孔等在外围表面加工到某个精度后执行;再次,当零件要求钻孔时,需先加工端面,然后再钻孔,这样就可确保一些情况下指定的同心度、平行度等条件,提高孔的加工精度。 四、工艺过程 确定了轴类零件的主要基准面和实施方案,待毛坯正确地装上和固定时,其操作流程可开始执行。轴类零件常用的加工方法为车削和磨削。前者适用于粗加工场合,相反地,后者则在精加工上占有优势。零件成型历时三种时期,即预加工处理、半精加工处理、精加工处理时期,若是对零件的尺寸等有更严格限制,可再加上光整加工工序。[3] 1.毛坯的预加工。 在选择毛坯时,其与成品是有差别的,通过粗加工切除毛坯上的多余存量,使得毛坯的形状和大小接近于成品,为后续加工提供便利,节约生产成本。预加工主要包括有对毛坯的校正,主要针对毛坯在各种条件下产生的变形弯曲等情况;另有当使用棒料时,应切除毛坯与实际成品相比的多余部分;当一些零件需要钻孔时,需先切端面然后钻孔;若是使用锻件或是尺寸较大的铸件,还需拉荒处理,除去其表面的氧化层,减少加工余量。 2.轴类零件的半精加工。 半精加工方案实施在粗加工之后,进一步缩小与理论上的差距,使成品更接近于要求。在使用半精方式加工前,需添加一道工序,即对零件实行调质,改变物理结构,进而改善其抗弯曲和抗变形能力。 3.精加工。 零件经过半精加工后还会存在较小范围的误差,此时需要通过精加工处理零件,以符合零件图样中的指标。同样地,在进行精加工前,其物理结构也需改变,对零件的一些部分需进行加热升温处理;并通过对外圆表面和一些锥面进行精磨,以确保主轴中最重要表面的精度要求。精加工一般选择使用磨具,其对零件的切除操作影响甚微,可实现趋近与理想状态下的成品。 4.光整加工。 对一些适用于特殊场合、对其加工条件及方式存在多种限制的零部件,可对其进行此操作。

数控轴类零件加工工艺设计毕业论文

数控轴类零件加工工艺设计毕业论文 目录 第1章前言 (1) 第2章工艺方案分析 (2) 2.1 零件图 (2) 2.2 零件图分析 (2) 2.3 确定加工方法 (2) 2.4 确定加工方案 (2) 第3章 (4) 3.1 定位基准的选择 (4) 3.2 定位基准选择的原则 (4) 3.3 确定零件的定位基准 (4) 3.4 装夹方式的选择 (4) 3.5 数控车床常用的装夹方式 (4) 3.6 确定合理的装夹方式 (4) 第4章刀具及切削用量 (5) 4.1 选择数控刀具的原则 (5) 4.2 选择数控车削用刀具 (5) 4.3 设置刀点和换刀点 (6) 4.4 确定切削用量 (6) 第5章典型轴类零件的加工 (7) 5.1 轴类零件加工工艺分析 (7) 5.2 典型轴类零件加工工艺 (9) 5.3 加工坐标系设置 (11) 5.4 手工编程 (12) 第6章结束语 (15) 第7章致谢词 (16) 参考文献 (17)

第一章前言 在机械加工工艺教学中,机械制造专业学生及数控技术专业学生都要学习数控车床操作技术。让学生了解相关工种的先进技术,同时培养工作岗位的前瞻性。数控车工基础工艺理论及技能有机融合,包括夹具的使用、量具的识读和使用、刃具的刃磨及使用、基准定位等,分类叙述了车床操作、数控车床自动编程仿真操作、数控车床编程与操作的初、中级容。以机械加工中车工工艺学与数控车床技能训练密切结合为主线,常用量具识读及工件测量、刀具及安装、工件定位与安装、金属切削过程及精加工,较清晰地展示了数控车工必须掌握的知识和技能的训练途径。对涉及与数控专业相关的基础知识、专业计算,都进行了有针对性的论述,目的在于塑造理论充实、技能扎实的专业技能型人才。 本文以与切削用量的选择,工件的定位装夹,加工顺序和典型零件为例,结合数控加工的特点,分别进行工艺方案分析,机床的选择,刀具加工路线的确定,数控程序的编制,最终形成可以指导生产的工

细长轴的车削加工要领

细长轴类零件的车削加工 1. 中心架和跟刀架在细长轴零件 加工中的应用 车削细长轴工件,长度是直径10~12倍以上的长轴时,如车床光杠、丝杠等,由于这些轴本身的刚性差,加上切削力、切削热和震动等影响,车削时易产生弯曲、锥度、腰鼓度和竹节形等缺陷。此外,在车削过程中还会引起震动,影响工件表面粗糙度。为了防止这种现象产生,我们可以应用一种叫做中心架的特殊支承夹具。中心架和跟刀架是车床附件之一,用卡盘顶针与中心架,或前后顶针与跟刀架装夹,可提高切削加工系统的刚性。 使用这些附加的装卡工具,可以增加工件的装卡刚度,减少震动,保证加工质量,避免零件产生鼓面,提高工件表面形状精度和表面粗糙度,并允许采用大切削用量加工,提高劳动生产率。下面分别就中心架与跟刀架在细长轴零件中的应用加以说明。 一、中心架在细长轴零件加工中的应用 1.中心架的结构 中心架的结构组成如图5-1所示。 中心架一般固定在床面一定位置上,如图5-1(b)所示。它的主体座l通过压板4和螺母5紧固在床面上。盖子3与主体1用销作活落连接,盖子3可以打开或盖住,并用螺钉2固定。三个爪的向心或离心位置,可以用螺钉6调节,以适应不同直径大小的工件,并用螺钉9紧固爪7和8,使爪在需要位置上固定不动。 2.中心架的使用 (1)中心架的使用调整方法 工件装上中心架之前,先在毛坯中间处车一条安装中心架卡爪的沟槽,槽的直径等于工件的直径,其宽度略比爪宽大些。接着把中心架安装在床面适当位置上并加以固定,打开盖子3,把工件安装在两顶针中间(床尾要先调整好),用划针盘或百分表检查槽是否跳动,然后将盖子3盖好,并调整中心架3个爪,使他们与工件沟槽轻轻接触。这时慢慢转动工件,看是否能转得动。在爪与工件之间最好垫一层铜皮或平皮带,并加些润滑油,或者3个爪用夹布胶木制造,这样可防止擦伤工件表面。在车削大型工件或工件转速较高时,就必须采用带滚动轴承的中心架,如图5-2所示。 (2)车削步骤 车削时,先车一端,一直车到沟槽为止。然后把工件调个头,用同样方法安装和调整工件,

细长轴加工方法

车削细长轴 1、细长轴的加工特点 通常认为在机械中做旋转运动的、长度大于直径的圆柱零件,叫做轴; 而长度为直径20倍以上的轴,叫做细长轴。 车削细长轴和一般轴类相比,又有其特点,例如加工35x4095或10x1300毫米细长轴时,它们毛坯的直径与长度之比达1:100、1:150左右,工件的刚性很差,给切削加工带来困难,不易获得良好的表面光洁度及几何精度。以下简单介绍几种加工细长轴的方法,如果使用得当,可以获得比较满意的加工结果。 2、工件装夹方法的改进 2.1、在卡盘的每只卡爪下面横向垫入4x20毫米的钢丝,夹入长度为15~2毫米,使工件与卡爪之间的夹持转变为线接触,避免工件被卡爪夹死,如图1. 图1 细长轴工件的装夹 2.2、在尾座上改用弹性顶针,以使在工件受到切削热而膨胀伸长时,顶针能轴向压缩,避免工件弯曲变形。 3、跟刀架结构的改进 3.1普通车床跟刀架的两个支撑块,与工件的接触面小,刚性差,不能满足高速切削细长轴的要求,如改用图2所示结构的跟刀架,就可获得比较好的效果。 图2 车削细长轴的跟刀架 这种跟刀架配备三只支撑块,用角耐磨的QT60-2球墨铸铁制成。支撑

块的圆弧R,应经粗车后与工件外圆研磨,宽度B大于工件直径,一般取B=(1.2~1.5)D。车削时,工件外圆被夹持在刀具和三个滑配合的支撑块之间,组成两对径向压力,限制工件上下,左右移动,只能绕轴线旋转,故而能有效底减少切削振动和工件的变形。 3.2、除了装置跟刀架外,还可根据工件长度,在工件下面垫放不等距的木块(在切削中随放随取,保证托板正常进给),如图3所示,木块直接放在床身上,其厚度以能轻微拖牢工件为宜,木块制成半圆弧凹坑,运转时加机油润滑。这种垫块还具有消振作用。另外对直径较小的细长轴,还可采用托架支承如图4所示。 图3 车削细长轴的垫块 图4 车削细长轴的托架 4、细长轴的车削方法及车刀 4.1细长轴的车削方法 车削细长轴,在上述夹紧方式下,应采用反向进给车削,以使工件受轴向力后,能向弹性顶尖处伸缩图5,减小车削变形。 4.2细长轴车刀 4.2.1粗车刀及其特点

相关主题