搜档网
当前位置:搜档网 › Pharmaceuticals in STP effluents and their solar photodegradation in aquatic environment

Pharmaceuticals in STP effluents and their solar photodegradation in aquatic environment

Pharmaceuticals in STP effluents and their solar photodegradation in aquatic environment
Pharmaceuticals in STP effluents and their solar photodegradation in aquatic environment

Pharmaceuticals in STP e?uents and their solar photodegradation in aquatic environment

Roberto Andreozzi

a,*

,Marotta Ra?aele a ,Pax e us Nicklas

b

a

Univ.degli Studi di Napoli ‘‘Federico II’’,Fac.di Ingegneria,Dip.di Ingegneria Chimica,p.le V.Tecchio 80,80125Napoli,Italy

b

Gryaab––G €o teborg Regional Sewage Works,Karl IX:s v €a g,41834G €o teborg,Sweden

Received 19March 2002;received in revised form 7November 2002;accepted 7November 2002

Abstract

The presence of pharmaceutical compounds in surface waters is an emerging environmental issue.Sewage treatment

plants (STPs)are recognized as being the main point discharge sources of these substances to the environment.A monitoring campaign of STP e?uents was carried out in four European countries (Italy,France,Greece and Sweden).More than 20individual pharmaceuticals belonging to di?erent therapeutic classes were found.For six selected pharmaceuticals (carbamazepine,diclofenac,clo?bric acid,o?oxacin,sulfamethoxazole and propranolol)present in the STP e?uents,the persistence towards abiotic photodegradation was evaluated submitting them to solar experiments at 40°Nlatitude during spring and summer.Based on experimentally measured quantum yields for the direct photolysis in bi-distilled water,half-life times (t 1=2)at varying seasons and latitude were predicted for each substance.In salt-and organic-free (bi-distilled)water carbamazepine and clo?bric acid are characterized by calculated half-life times of the order of 100days at the highest latitudes (50°N)in winter,whereas under the same conditions sulphamethoxazole,diclofenac,o?oxacin and propranolol undergo fast degradation with t 1=2respectively of 2.4,5.0,10.6and 16.8days.For almost all studied compounds,except propranolol the presence of nitrate ions in aqueous solutions results in a re-duction of t 1=2.When present,humic acids act as inner ?lters towards carbamazepine and diclofenac,and as photo-sensitizers towards sulphamethoxazole,clo?bric acid,o?axocin and propranolol.ó2003Elsevier Science Ltd.All rights reserved.

Keywords:Pharmaceutical;Sewage treatment plant e?uents;Abiotic processes;Phototransformations;Sensitizers

1.Introduction

After intake,pharmaceuticals are excreted with urine or faeces to raw sewage in both an unchanged form and as metabolites.Recent studies in Germany and Swit-zerland have demonstrated that elimination of many pharmaceuticals in sewage treatment plants (STP)is often incomplete (Ternes,1998;Golet et al.,2001)and these are directly discharged to surface waters.The

presence of pharmaceuticals in the aquatic environment was reported as early as at the beginning of the 1980s (Waggott,1981;Watts et al.,1983;Richardson and Bowron,1985)and was later con?rmed (Ternes,1998;Hirsch et al.,1999;Zuccato et al.,2000;Ahrer et al.,

2001;€O

llers et al.,2001).This raises the question of what impact pharmaceutical residues have in the environ-ment,which in turn requires relevant data on exposure and e?ects on aquatic living organisms.Present knowl-edge is,unfortunately,far from adequate.In order to evaluate the exposure and e?ects of the particular pharmaceutical on aquatic organisms knowledge of both emission rates and the environmental fate of the com-pound in question is

prerequisite.

Chemosphere 50(2003)

1319–1330

https://www.sodocs.net/doc/fe16192513.html,/locate/chemosphere

*

Corresponding author.Tel.:+39-81-7682251;fax:+39-81-5936936.

E-mail address:randreoz@unina.it (R.Andreozzi).

0045-6535/03/$-see front matter ó2003Elsevier Science Ltd.All rights reserved.PII:S 0045-6535(02)00769-5

Generally speaking,both abiotic and biotic processes determine the fate of organic compounds in the aquatic environment.For any pollutant,including pharmaceu-ticals,abiotic transformations in surface waters may occur via hydrolysis and photolysis.Pharmaceuticals, usually designed for oral intake,are as a rule resistant to hydrolysis suggesting the mechanism of direct and in-direct photolysis as a primary pathway for their abiotic transformation in surface waters.While direct photoly-sis of chemical species is caused by direct absorption of solar light(Zepp and Cline,1977),the indirect photo-lysis involves natural photosensitizers like nitrate and humic acids.Under solar irradiation,these naturally occurring constituents can generate strong oxidant spe-cies such as hydroxyl radicals and singlet oxygen(Zepp et al.,1981).

On the other hand,humic acids absorbing solar ra-diation(Gao and Zepp,1998)may by inner?ltering reduce the rate of photodegradation of other organic species present in the aquatic environment.An addi-tional factor that strongly in?uences the rate of photo-degradation for any particular pharmaceutical present in the surface waters is the variation in the intensity of solar irradiance with both latitude and season.For a given latitude and the season,the spectral solar irradi-ance can be measured experimentally using pyranometer or can be found in specialized literature(Frank and Klop?er,1988;EPA,1996).

The aims of the present study were:(1)to identify pharmaceutical compounds in STP e?uents of four European countries with no previous record of pollu-tants of this type;(2)to evaluate the refractoriness of the selected pharmaceuticals present in these e?uents,to undergo abiotic photodegradation.The study was per-formed within the framework of the European Project ‘‘Ecotoxicological Assessment and Removal Technolo-gies for Pharmaceuticals in Wastewater––REMPHAR-MAWATER’’.2.Methods

2.1.Description of STPs and sampling.

The Ch^a tillon-sur-Chalaronne STP(S1-F),France, situated on the Dombes plateau,northeast of Lyon, serves a population of about6000and receives domestic and industrial(pharmaceutical,plastic and metal in-dustries)discharges.The annual treated volume is0.5 Mm3with an average in?uent BOD5of about120mg O2là1.Water treatment includes primary settling and activated sludge process.The e?uent is discharged to Chalaronne River.The Pierre B e nite STP(L1-F), France,situated in the South of Lyon where the Sa^o ne River and the Rh^o ne River meet,serves a population of about475000and receives domestic and industrial (pharmaceutical,chemical and food-processing indus-tries)discharges.The annual treated volume is48Mm3 with an average in?uent BOD5of about200mg O2là1. Water treatment includes primary settling and activated sludge process.The e?uent is discharged to the Rh^o ne River.The Iraklio STP(L2-GR),Greece,situated in Iraklio,Crete,serves a population of about164000and receives domestic discharges from Iraklio city.The an-nual treated volume is7.3Mm3with an average in?uent BOD5of about350mg O2là1.Water treatment includes primary settling and activated sludge process(BIO-Denitro system of KRUGER A.S.).The e?uent is discharged to the Cretan Sea.The Latina STP(M1-I), Italy,situated in Latina,Region of Lazio,serves a population of about45000and receives predominantly domestic discharges.The annual treated volume is6.9 Mm3with an average in?uent BOD5of about250mg O2là1.Water treatment includes primary settling and activated sludge.The e?uent is discharged to a system of arti?cial canals maintaining the water level of the surrounding land,before eventually reaching the Medi-terranean Sea.The Roma STP(L3-I),Italy,situated

in 1320R.Andreozzi et al./Chemosphere50(2003)1319–1330

the north of Rome,serves a population of about400000 and receives domestic and industrial discharges.The annual treated volume is73Mm3with the average in-?uent BOD5of about280mg O2là1.Water treatment includes primary settling and activated sludge.The ef-?uent is discharged to the river Tevere.The STP plant of Naples(L4-I),Italy,situated northwest of Naples,serves a population of about900000and receives predomi-nantly domestic discharges.The annual treated volume is69.5Mm3with an average in?uent BOD5of about250 mg O2là1.Water treatment includes primary settling and activated sludge.The e?uent is discharged to the Mediterranean Sea(Bay of Naples).Ryaverket(L5-S), owned by Gryaab,Sweden,is situated in G€o teborg and serves a population of about575000.Ryaverket addi-tionally treats wastewaters from small industries,hos-pitals and large industries.The latter encompasses food and beverage industries,fabricated metal production factories,equipment and machinery manufacturies,pa-per and chemical producers,plastic matting produc-ers and industrial laundries.Water treatment includes primary settling,chemical removal of phosphorus,ac-tivated sludge and biological nitrogen removal.The annual treated volume is120Mm3with an average in-?uent BOD7of about108mg O2là1.The e?uent is discharged to the G€o ta River estuary and further to Kattegatt.

Samples of the e?uents were collected in February–March2001for each individual STP.Grab samples for L2-GR,M1-I,L3-I and L4-I and24-h averaged?ow-proportional samples for L1-F and S1-F were cooled and immediately shipped for analysis by courier.A monthly averaged?ow-proportional sample from L5-S was kept frozen before analysis.

2.2.Chemicals

The following reference compounds(purity>97%by weight,CAS no.indicated)were purchased from Sigma–Aldrich and Promochem Standard Supplies:acebutolol (34381-68-5),aminopyrine(58-15-1),betaxolol(63659-18-7),beza?brate(41859-67-0),carbamazepine(298-46-4),cipro?oxacin(85721-33-1),clo?brate(637-07-0), clo?bric acid(882-09-7),diclofenac(15307-79-6),enox-acin(74011-58-8),feno?brate(49562-28-9),fenoprofen (31879-05-07),?urbiprofen(5104-49-4),gem?brozil (25812-30-0),ibuprofen(15687-27-1),ketoprofen(22071-15-4),lome?oxacin(98079-51-7),metoprolol(37350-58-6),naproxen(22204-53-1),nor?oxacin(70458-96-7), o?oxacin(82419-36-1),oxprenolol(6452-71-7),phenaz-one(60-80-0),propranolol(525-66-6),sulfamethoxazole (723-46-6)and trimethoprim(738-70-5).Acetonitrile, methanol,and water were of gradient grade(Chroma-solv,Riedel-de-Haen).Dichloromethane from Rathburn was GC grade.Formic acid,hydrochloric acid,triethyl amine and other reagents used in this study were of p.a. grade or better.

2.3.Chemical analysis

2.3.1.HPLC analysis

The aqueous samples(irradiation experiments)were analyzed using1100HPLC equipped with UV-VIS di-ode array detector(from Hewlett-Packard).Chromato-graphic separation was performed on reversed phase column(RP-C6Phenomenex,250mm?3:2mm i.d.). Analytes were separated isocratically(?ow rate of0.5 ml minà1)using solvents A(H2O:CH3OH:H3PO4500: 25:2)and B(CH3CN)in di?erent proportions:60%A and40%B for carbamazepine,propranolol,diclofenac and clo?bric acid,80%A and20%B for sulfamethox-azole and75%A and25%B for o?oxacin.

The molar absorptivities(Mà1cmà1)for di?erent pharmaceuticals were calculated from the UV absor-bances of standard solutions bu?ered at pH5.5mea-sured on UV–VIS spectrophotometer(HP8452A)using quartz cells(path length?1cm).

2.3.2.GC–MS analysis

Acidic and neutral pharmaceuticals were extracted from0.5to1l un?ltered acidi?ed wastewater samples VacMaster processing station(IST,Inc.,UK)using Isolute(IST,Inc.,UK)SPE cartridges(6ml,1g non-end-capped RP-C18).After extraction the cartridges were dried in a stream of nitrogen and eluted with3?4 ml of CH3OH:CH2Cl2(1:1)containing2%(C2H5)3N. Access of solvent(s)was removed using rotational vac-uum concentrator RVC2-18with CT02-50(both from Martin Christ,Germany)and the?nal volume was brought to1ml by addition of CH2Cl2.The extracts were divided in two fractions.The?rst one(100l l)was analyzed for carbamazepine,clo?brate,phenazone and aminopyrine.The second one(900l l)was evaporated to dryness and treated with an excess of diazomethane (€O llers et al.,2001).In this fraction clo?bric acid,dic-lofenac,feno?brate,fenoprofen,?urbiprofen,gem?bro-zil,ibuprofen,ketoprofen and naproxen were analyzed as their methyl esters.Analysis was performed using GC–MS(GCQ Plus,Thermoquest Inc.,USA)equipped with a temperature programmable injector.Standards and sample concentrates were injected using automatic sample injector A200S(CTC Analytics,Switzerland). A60-m?0:25-mm i.d.column coated with0.25l m chemically bonded phase HP-5(Agilent Technologies, USA)was used.Injector temperature was230°C, splitless mode(split open time4min).The GC pressure and temperature program:constant velocity of35cm sà1 of He,the initial temperature of80°C held in8min, then to280°C at5°C minà1,then to300°C at3°C minà1and held at300°C for5min.The ion source temperature and the transfer line temperature were held

R.Andreozzi et al./Chemosphere50(2003)1319–13301321

at180and at275°C,respectively.The analytes were detected and quanti?ed in selective ion monitoring (SIM)mode using the same masses as described by others(Ternes et al.,1998b).A calibration(5points) with standard solutions in CH2Cl2was used for quan-ti?cation.To determine absolute recoveries,samples of the e?uent wastewater from L5-S1were spiked with analytes(5and10l g là1)and concentrated as described above.Recoveries for the solid-phase extraction proce-dure for each individual pharmaceutical were evaluated by a comparison between peak areas from extracts of spiked samples and peak areas from a direct injection of the same concentration of the respective pharmaceutical. Concentrations of the pharmaceuticals in the unspiked wastewater have been taken into account.Extracts from 1l unspiked ultra-pure grade water(UHQII from USF Elga,UK)concentrated and treated as described above were used as blanks.

2.3.3.LC–MS analysis

Basic and neutral pharmaceuticals were extracted from0.8to1.0l un?ltered acidi?ed wastewater samples using Isolute(IST,Inc.,UK)SPE cartridges(15ml,1g mixed phase sorbent of C2/ENVt).The cartridges were ?ushed with ultra-pure grade water,dried under nitrogen ?ow and analytes were eluted with3?5ml of CH3OH containing2%(C5H5)3N.After removal of the excess solvent(s)in the vacuum concentrator the volume was brought to2ml using acidi?ed(HCOOH)ultra-pure grade water containing5–20%CH3CN.The eluates were centrifuged and?nally?ltered through0.45l m glass–?bre?lter.In all eluates,the presence of undissolved brownish residue was observed.The residue did not dissolve in CH3OH.Analysis of pharmaceuticals was performed using LC–MS.The LC system consisted of Surveyor HPLC(Thermoquest Inc.,USA)equipped with a quaternary pump,a vacuum degasser and an autosampler.Chromatographic separation was perfor-med on Genesis(250mm?2:1mm i.d.)column packed with4l m end-capped,base-deactivated RP-C18(Jones Chromatography Ltd.,UK).Chromatographic condi-tions were as follows:column temperature of50°C, solvents A(95%H2O;5%CH3CN;0.1%HCOOH)and B(CH3CNcontaining0.1%HCOOH),?ow rate200 l l minà1.Gradient program:isocratic100%A for1min, then to10%B in4min,then to15%B in10min,then to20%B in10min,then to55%B in10min and?nally to100%B in5min.The mass-spectrometric detection was performed on LCQ-Duo(Thermoquest Inc.,USA) equipped with electrospray.MS/MS data were acquired in ESItmode(capillary temperature230°C;sheath and auxiliary nitrogen gas?ows set to respectively60and20; source voltage4.50kV,source current80.00l A,capil-lary voltage29V).The collision energy required to produce the desired quantity of daughter ions in selective reaction monitoring(SRM)was individually optimized for each analyte.Detection(SRM)by a selective moni-toring of daughter ions(parent ion MHt!daughter ions monitored,with the underlined m=z being used for quanti?cation)was performed for the following phar-maceuticals:acebutolol(337:1!260:1,319:1),beta-xolol(308:1!231:1,254.2,266.2),carbamazepine (237:3!194:2),cipro?oxacin(332:1!288:2),enoxa-cin(321:1!257:3),lome?oxacin(352:1!308:2),meto-prolol(268:2!191:0),nor?oxacin(320:1!276:2), o?oxacin(362:1!318:2),oxprenolol(266:10!189:1, 206.1,225:1),propranolol(260:1!157:1,183:1,260.1), sulfamethoxazole(254:0!188:0,190.2,235.7,254.0) and trimetoprim(291:1!230:1,258.1,261.2,291.1). Phenazone and aminopyrine were detected in SIM mode monitoring their m=z189.0and232.1,respectively.

A calibration(5–10points)with standard solutions in acidi?ed distilled water containing5–10%CH3OH was used for quanti?cation.Absolute recoveries for the sol-id-phase extraction procedure were evaluated in the same manner as described above for acidic pharmaceu-ticals.Extracts from1l of unspiked ultra-pure grade water concentrated and treated as described above were used as blanks.

2.4.Irradiation experiments

Sunlight irradiation experiments were performed during spring and summer in Naples(40°N–14°E) in glass disk-reactors(width14:0cm?depth2:1cm) placed horizontally in a thermostated bath at25°C. Actinometry was carried out by using a solution of PNAP(2:0?10à5mol là1)and di?erent concentrations of pyridine(Dulin and Mill,1982).The pyridine con-centration was chosen to adjust the quantum yield of the PNAP(/ATT?0:0169?pyridine )to modify the rate of loss of PNAP to match the rate of consumption of the tested pharmaceutical(OECD,2000).UV-lamp irradi-ation was performed in an annular glass reactor equip-ped with a high pressure Hg lamp(UV12F Helios Italquartz)of a nominal power of125W with main emissions at305,313and366nm(manufacturer?s data). The radiation powers were4:33?10à7E sà1at305nm by H2O2actinometry(Nicole et al.,1990),7:97?10à7 E sà1at313nm by valerophenone actinometry(Zepp, 1989)and4:77?10à7E sà1at366nm by an UV digital radiometer,from UVP https://www.sodocs.net/doc/fe16192513.html,A.The irradiated volume of the reactor(V0)and the path length(l)were0.28l and 1.1cm respectively.The solutions were prepared using bi-distilled water and bu?ered at5.5with NaH2PO4and KH2PO4salts.An Orion960pH-meter with a glass pH electrode was used for pH https://www.sodocs.net/doc/fe16192513.html,mercial humate sodium salt(from Aldrich)was used as a sub-stitute for aquatic humic acids according to previous kinetic studies(Zepp et al.,1981).The initial concen-trations of photosensitizers were5and10mg là1for nitrate and5mg là1for humic acids according to OECD

1322R.Andreozzi et al./Chemosphere50(2003)1319–1330

guideline for testing of chemicals(OECD,2000).No reaction was observed for the pharmaceuticals in the pH range2.0–8.0in blank control experiments performed in the dark.

3.Results and discussion

3.1.Determination of pharmaceuticals

Absolute recoveries of the pharmaceuticals from the spiked e?uent wastewater(L5-S)are given in Table1. For the majority of pharmaceuticals the absolute recov-eries obtained in this study are su?ciently high(>60%) and are in agreement with the previously published data.The lowest recoveries were observed for gem?-brozil(46%),clo?brate(33%)sulfamethoxazole(40%)and three?uoroquinolones––enoxacin,nor?oxacin and cipro?oxacin(34–35%).Recoveries of>80%for the?u-oroquinolones reported by Golet et al.(2001),were obtained using mixed-phase cation-exchange SPE, which requires very low salt content in the e?uent sam-ple.This requirement,however,could not be ful?lled for L5-S due to a continuous industrial discharge of sodium chloride to its sewer and thus the procedure of Golet et al.(2001)could not be applied.Attempts to increase the recovery of sulfamethoxazole from40%to77–96% by decreasing the starting pH to2.5(Hartig et al.,1999) were undertaken but failed,the only result being a drastic decrease in the recovery of b-blockers and tri-metoprim.Taking into account the aim of the present study,e.g.to identify pharmaceutical compounds in STP e?uents,the recoveries obtained using the SPE con-centration procedures described above were judged to be

Table1

Absolute recovery(%)of spiked pharmaceuticals from di?erent types of water using SPE

Literature data This work STP

e?uent(L5-S)

Tapwater a Groundwater,

mountain spring water

STP e?uents

Gem?brozil4949–89b46

Feno?brate8677

Beza?brate9370–92b79

Clo?brate33

Clo?bric acid7771–82b100c75

Ibuprofen6781–82b97c83

Fenoprofen7179–90b82

Flurbiprofen80

Naproxen6854–91b90c83

Ketoprofen8077–94b78c77

Diclofenac7050–89b68c75

Phenazone8154d61(GC)71(LC) Aminopyrine7293d65(GC)71(LC) Acebutolol72

Metoprolol9693d95

Oxprenolol80

Propranolol8491d82

Betaxolol7091d81

Carbamazepine8046c89(GC)99(LC) Trimetoprim5587e75

Sulfamethoxazole2375e77–96f40

O?oxacin72g85

Lome?oxacin80g76

Enoxacin34

Nor?oxacin92g35

Cipro?oxacin97g34

GC,LC:enrichment and detection by GC or LC(see Methods).

a Sacher et al.(2001).

b Ternes et al.(1998a).

c€O llers et al.(2001).

d Ternes et al.(1998b).

e Hirsch et al.(1998).

f Harti

g et al.(1999).

g Golet et al.(2001).

R.Andreozzi et al./Chemosphere50(2003)1319–13301323

su?cient and therefore no additional attempts to im-prove the recoveries were undertaken.

While the?nal analysis of acidic and neutral(carb-amazepine,clo?brate,phenazone and aminopyrine) pharmaceuticals by GC–MS worked satisfactorily,the technique was found inappropriate for the basic ones and for?uoroquinolones.In order to analyze these compounds a method based on HPLC separation and MS detection was developed.The use of MS as the de-tector strongly limits the choice of a mobile phase.On one hand,the mobile phase should be volatile,prefera-bly not easily ionisable,and suppress the interaction of analytes and silanol groups,which results in peak tail-ing.On the other hand,the mobile phase should react with analytes to produce charged ions.In addition, a separation of such chemically and structurally di?erent compounds as b-blockers and?uoroquinolones requires a stationary phase which is both inert(highly deacti-vated)and exhibits su?cient retention time.Di?erent combinations of HPLC phases(hexyl,phenyl,amino, cyano,etc.),solvents(CH3CN,CH3OH,(CH3)2CO,etc.) and volatile bu?ers(HCOOH,CH3COOH,CF3COOH and/or their salts with ammonium or volatile amines) were tested.The best results were achieved with an oc-tadecyl base-deactivated high purity silica phase and a mixture of water and CH3CN,acidi?ed with0.1% HCOOH.Chromatographic separation worked su?-ciently well for most of the pharmaceuticals as illustrated in Fig.1a.Metoprolol,betaxolol and carbamazepine, not shown in Fig.1a were also well separated.When all the?uoroquinolones were present in the sample,they appeared as a cluster(Fig.1c,OFLtLOMtCIPtENtNOR).Additional chromatographic separation of these compounds should be considered very limited due to their structural and chemical similarities.However,it was possible to separate and quantify three of them, namely o?oxacin(m=z362.1),lome?oxacin(m=z352.1) and cipro?oxacin(m=z332.1)as shown in Fig.1c using MS detection(SIM mode,selective monitoring of parent MHtions).For the remaining nor?oxacin and enoxacin (Fig.1c,ENtNOR),producing very close molecular ions of m=z320.1and m=z321.1respectively(Fig.1c, ENtNOR),an ion-trap mass detector employed in this study was unable to resolve their peaks in SIM mode. The peaks could,however,be easily resolved in SRM mode detecting the daughter ions of m=z257.3for enoxacin and276.2for nor?oxacin(Fig.1c,ENand NOR).In addition to improved resolution,the detection in SRM mode resulted in a signi?cant reduction in the noise level of the baseline.This was particularly impor-tant for analysis of the pharmaceuticals in the real wastewater samples(Fig.1b).

3.2.Pharmaceuticals in STPs e?uents

Concentrations of pharmaceuticals found in this study together with literature data are given in Table2. The presence of o?oxacin,lome?oxacin,enoxacin,?ur-biprofen,acebutolol and oxprenolol in the e?uents from STPs,found in this work has to the best of our knowl-edge not been reported previously.Some pharmaceuti-cals(all antibiotics,gem?brozil,feno?brate,ibuprofen, naproxen,diclofenac,carbamazepine and the majority of b-blockers)were detected in almost every sample

of Fig.1.Chromatographic separation and MS detection of pharmaceuticals in a standard solution:(a)MS detection in SIM mode),in the wastewater from L4-I;(b)MS detection in SRM mode)and in a standard solution of?uoroquinolones and(c)MS detection in SIM and SRM modes.TMP,trimetoprim;OFL,o?oxacin;LOM,lome?oxacin;ACB,acebutolol,SFM,sulfamethoxazole;OXP, oxprenolol;PRP,propranolol;CIP,cipro?oxacin;EN,enoxacin and NOR,nor?oxacin.Chromatographic conditions are provided in Chemical analysis section.

1324R.Andreozzi et al./Chemosphere50(2003)1319–1330

the e?uent,which is probably a result of their high prescription extent and wide usage in Europe.On the other hand,clo?bric acid––the major metabolite of clo?brate,eto?brate and etofyllinclo?brate,previously reported as one of the most common pharmaceutical residues in e?uents from STPs and in natural waters in Germany(Ternes,1998),was only found in about half of the studied e?uents.When present in the e?uent, clo?bric acid was,however,detected in the same con-centration range as in Germany.One possible explana-tion may be that other drugs,like gem?brozil and feno?brate,have replaced the drugs metabolising to clo?bric acid.The detected presence of parent clo?brate, but not clo?bric acid,in one e?uent(L2-GR)is rather unusual and,at present,we do not have any explana-tion.Among b-blockers,betaxolol was not detected in any of the STP e?uents in this work in contrast to the previously published data for Germany(Ternes,1998) where its presence occurred in more than50%of all studied STPs.In addition,both metoprolol and pro-pranolol were found in lower concentrations than in Germany.As for antibiotics,our data for nor?oxacin and cipro?oxacin are in agreement with the Swiss data (Golet et al.,2001)but trimetoprim and sulfamethox-azole exhibit lower concentrations than reported for the e?uents from German STPs(Hirsch et al.,1999).The discrepancy is too large to be caused by the lower re-covery of sulfamethoxazole(40%in the present study) in comparison to the recovery of77–96%reported by Hirsch et al.(1999).O?oxacin and lome?oxacin were

Table2

Concentrations of pharmaceuticals(l g là1)found in the e?uents from STPs

France Greece Italy Sweden Median–

Maximum Germany and Switzerland (?literature data)

S1-F L1-F L2-GR M1-I L3-I L4-I L5-S

Lipid regulators

Gem?brozil 1.340.060.710.810.84 4.76 2.070.84–4.760.4–1.5

Feno?brate0.120.020.160.160.10.16n.d.0.14–0.16n.d.–0.03

Beza?brate n.d. 1.07n.d.n.d.n.d.0.91n.d.n.d–1.07 2.2–4.6

Clo?brate n.d.n.d.0.8n.d.n.d.n.d.n.d.n.d–0.8n.d.

Clo?bric acid n.d.n.d.n.d.0.68n.d.0.230.46n.d–0.680.36–1.6(n.d–0.06?) Antiphlogistics

Ibuprofen 1.820.020.050.180.020.027.110.05–7.110.37–1.2(<0.1–1.5?) Fenoprofen0.280.19n.d.n.d.n.d.n.d.n.d.n.d.–0.28n.d.

Flurbiprofen0.21n.d.n.d.n.d.n.d.0.34n.d.n.d.–0.34n.r.

Naproxen 1.730.51n.d.0.290.41 5.22 2.15 1.12–5.220.3–0.42(0.1–3.5?) Ketoprofen n.d. 1.62n.d.n.d.n.d.n.d.n.d.n.d.–1.620.20–0.38(n.d.–0.2?) Diclofenac0.410.250.890.47 1.48 5.45n.d.0.68–5.450.81–2.1(0.1–0.7?) Phenazone n.d.n.d.n.d.n.d.0.37n.d.n.d.n.d.–0.370.16–0.41 Aminopyrine0.43n.d.n.d.n.d.n.d.n.d.n.d.n.d.–0.43n.d.–1.0

b-Blockers

Acebutolol0.130.080.010.040.020.11<0.010.06–0.13n.r.

Metoprolol0.080.080.10.010.010.10.390.08–0.390.73–2.2 Oxprenolol0.050.020.010.01<0.010.03n.d.0.02–0.05n.r.

Propranolol0.010.040.010.010.010.090.010.01–0.090.17–0.29 Betaxolol n.d.n.d.n.d.n.d.n.d.n.d.n.d.n.d.0.06–0.19

Antiepileptic

Carbamazepine0.98 1.2 1.030.30.340.50.870.87–1.2 2.1–6.3(0.1–0.8?) Antibiotics

Trimetoprim0.040.020.080.040.030.130.050.04–0.130.32–0.66 Sulfamethoxazole0.090.070.090.01n.d.0.030.020.05–0.090.40–2.0

Antibiotics–?uoroquinolones

O?oxacin0.330.510.460.580.290.310.120.33–0.58n.r.

Lome?oxacin0.180.190.290.320.180.220.130.19–0.32n.r.

Enoxacin0.030.010.030.030.010.030.010.03–0.03n.r.

Nor?oxacin0.050.080.070.070.060.060.030.06–0.080.05–0.12?

Cipro?oxacin0.060.060.070.070.060.040.030.06–0.070.05–0.11?

n.d.:not detected;n.r.:not reported previously;literature data:median and maximum values(Ternes,1998;Hirsch et al.,1999)for Germany and concentration range(Golet et al.,2001;€O llers et al.,2001)for Switzerland.

R.Andreozzi et al./Chemosphere50(2003)1319–13301325

not found in the e?uents from STPs in Switzerland (Golet et al.,2001).In the present study,the concen-tration levels of o?oxacin and lome?oxacin are,on the contrary,much higher than for the other ?uoroquinol-ones.Concentrations of o?oxacin in the STP e?uents (0.12–0.58l g l à1)are actually close to the concentration (0.4l g l à1)found in untreated sewage from the regional hospital in Sweden (Johansson and Tysklind,2001).Based on the results above,a limited number of chemically and structurally di?erent pharmaceuticals frequently occurring in the STP e?uents were selected to study their persistence to abiotic photodegradation.These pharmaceuticals from di?erent therapeutic classes were carbamazepine,diclofenac,o?oxacin,propranolol and sulfamethoxazole.Among lipid regulators clo?bric acid was selected due to its widely reported presence in various aquatic compartments including surface and ground waters and even seawater of the North Sea (Stan

et al.,1994;Heberer et al.,1997;Buser and M €u

ller,1998;Ternes,1998).

3.3.Determination of quantum yield

The decay of the concentration of both the investi-gated substrate (S)and PNAP follows pseudo ?rst-order kinetics.Therefore,if the results collected during a single photolytic run are reported as lnS t =S 0vs.ln ?PNAP t =?PNAP 0a linear relationship is obtained:ln

S t S 0?k S k ATT ln

?PNAP t

?PNAP 0

e1T

For a ?xed latitude and season,the measured rate

constants,k S and k ATT ,depend on the reaction quantum yields (/S and /ATT )and molar absorptivities of the substrates and of PNAP:

k S ?/S

X

k

ee k L k TS e2Tk ATT ?/ATT

X

k

ee k L k TATT

e3T

where e k (l mol à1cm à1)are molar absorption coe?cients at wavelength k and L k is the average daily irradiance over wavelength interval centred at wavelength k (10à3E cm à2day à1).The product e k L k has the units of day à1.Values of L k and P

ee k L k TATT are reported in the litera-ture for di?erent seasons and decadic latitudes (Zepp and Cline,1977;EPA,1996).Rearranging Eqs.(2)and (3)will result in:/S P k ee k L k TS k S ?/ATT P

k ee k L k TATT

k ATT e4T

The quantum yields for the reaction with di?erent chemicals in bi-distilled water under sunlight irradiation can be derived by rearranging Eq.(4):

/S ?

k S k ATT /ATT P

k ee k L k TATT

P k ee k L k TS

e5T

In the present work,half-life times of the pharmaceutical at varying season and latitudes were calculated using the following equation:t 1=2?

ln 2k S ?

ln 2

/S P k ee k L k TS

e6T

From linear plots of lnS t =S 0vs.ln ?PNAP t =ln ?PNAP 0,

the ratios k S =k ATT were derived for o?oxacin,carb-amazepine,clo?bric acid and propranolol and used to evaluate their quantum yields (Table 3).

Because of their shorter characteristic reaction times it was decided to carry out photolytic experiments for diclofenac and sulfamethoxazole by using a high-pres-sure mercury vapor lamp.The evaluation of quantum yields was performed by a comparison of experimental data with the data calculated by integrating the follow-ing equation (De Laat et al.,1995):dS ?à2:3/0S

l 0X

k

ee S ek TI 0ek TT?S e7T

with k ?305,313and 366nm and the initial condition:?S ??S 0for t ?0./0S was assumed to be independent upon the wavelength k .

For each species,/0S has been estimated as the value which minimizes the objective function F :

F ?X N i ?1

eY i àC i T2

where N is the number of experimental data points for a single run and Y i and C i are respectively calculated and measured concentrations of the investigated species.For diclofenac,the measurements performed by submitting the aqueous solution to solar irradiation

Table 3

Quantum yields for the direct photolysis of the pharmaceuticals investigated in bi-distilled water at pH ?5:5Pharmaceutical Quantum yield Carbamazepine 4:77?10à5(sunlight)Propranolol 2:22?10à3(sunlight)Clo?bric acid 5:53?10à3(sunlight)O?oxacin

7:79?10à5(sunlight)Sulfamethoxazole 4:29?10à3(lamplight)a Diclofenac 3:13?10à2(lamplight)a Diclofenac

3:75?10à2

(sunlight)b

a

In agreement with Eq.(7)the unit of quantum yield is mol E à1.b

This value has been calculated from that found in the solar experiments (9:56?10à2)by taking into account the di?erence in the geometry of both types of reactors.

1326R.Andreozzi et al./Chemosphere 50(2003)1319–1330

were compared with lamplight irradiation experiments. Di?erences in the geometry of both types of the reactors were compensated by introducing the correction factor f de?ned as:

/0

S

?/S=f?9:56?10à2=2:55?3:75?10à2molEà1

The value of f was determined from lamplight irradia-tion of an actinometric solution of PNAP in pyridine to (/ATT?1:69?10à2?pyridine ?7:64?10à3)for which

an experimental/0

ATT ?3:00?10à3mol Eà1was found.

The value of the correction factor f obtained from this

experiment was f?/ATT=/0

ATT ?2:55.

A comparison between the values of quantum yield for diclofenac obtained from solar irradiation and lamp-light irradiation experiments showed good agreement (Table3)but both values are much lower than/S?0:22 reported by Moore et al.(1990).

Quantum yields for all six pharmaceuticals in the present study were used(Eq.(6))to predict half-life times for each species at varying seasons and latitudes (Fig.2a–c).3.4.E?ects of photosensitizers

To evaluate the e?ects of naturally occurring photosensitizers on photodegradation of chosen sub-strates,photolytic experiments(o?oxacin as an exam-ple,Fig.3)were carried out in the presence of nitrate and/or humic acids.Relative transformation rates ob-tained for the pharmaceuticals studied in this work and expressed as ratios between half-life time values (t1=2esensitizersT=t1=2edistillated waterT)are given in Table4.

As appears from the table the presence of nitrate in the aqueous solution enhances the rate of phototrans-formation for almost all investigated compounds but propranolol.The observed e?ect may be ascribed to the formation of HO radicals due to photolysis of nitrate. This e?ect has previously been reported(Zepp et al., 1987;Mack and Bolton,1999)for irradiation with k>280nm.

NOà

3

!h m NOà?

3

!NO?

2

tO?à!

H2O

NO?

2

tHOàtHO?The HO radicals formed in the reaction above would in turn react with the substrate:

R.Andreozzi et al./Chemosphere50(2003)1319–13301327

StHO?!products

In the solar irradiated aqueous solution containing a photodegradable substrate,e.g.a pharmaceutical,the added nitrate would thus account for an additional contribution to the substrate degradation.This addi-tional term may be expressed as the product between the kinetic constant of the OH radicals attack on the sub-strate S and the OH radicals‘‘steady-state’’concentra-tion:

k HO;S?HO?

SS

The kinetic constant k HO;S depends strictly on the nature of the substrate S whereas the second factor can be written as:?HO?

SS

?

rate of NOà

3

photolysis

HO;S

P

i i

with the term

P

k i?P i accounting for the reactions of OH radicals with other species present in the solution.

It is clear that the term‘‘rate of NOà

3

photolysis’’depends on the irradiating power available in the solu-tion which can be signi?cantly reduced when the sub-strate itself strongly absorbs in the same UV range as nitrate ions.Therefore,the e?ect exerted by the addition of nitrate on the phototransformation rates would strictly be dependent on the individual substance.

Besides pharmaceutical residues,even other species targeted by OH radicals,e.g.naturally occurring organic constituents,are present in real waters.For this reason, the e?ect caused by nitrate on the degradation rates of the pharmaceuticals found in this study should be in-terpreted just as a tendency no other organic molecules being present in solution during the runs but the sub-strate.

A more complex situation arises when humic acids are added to the solutions containing the pharmaceuti-cal.Humic acids are known to exert two opposite e?ects on the rate of photodegradation of organic molecules in water(Stangroom et al.,1998).

Due to their capability to absorb UV radiation in a broad range of wavelengths they can reduce the avail-able energy for the organic molecules present in the solution,thus acting as an inner?lter(Gao and Zepp, 1998).At the same time,the molecules of humic acids submitted to UV irradiation are promoted to a transient excited state(triplet state),in which they may react with oxygen in the solution forming reactive species as sin-glet oxygen(Haag and Hoign e,1986),or to react di-rectly with other organic species,thus promoting their phototransformation(Zepp et al.,1985;Canonica et al., 1995).The latter occurs only with substances able to support an energy transfer from molecules in their triplet states(Zepp et al.,1981).

The overall e?ect of humic acids on the phototrans-formation rate of an organic substance will therefore depend on the balance between these two opposite contributions.When humic acids act mainly as inner

Table4

Half-life times ratios of the pharmaceuticals in the presence and in the absence of photosensitizers(spring/summer sunlight) Compounds t1=2esensitizersT=t1=2edistillated waterT

With nitrate 5:0?10à3g là1With nitrate

10?10à3g là1

With nitrate

15?10à3g là1

With humic acids

5:0?10à3g là1

Diclofenac–0.622– 2.23 Sulfamethoxazole–0.235–0.326 Propranolol– 1.02–0.747 O?oxacin–0.120–0.198 Carbamazepine–0.4260.216 4.22 Clo?bric acid0.795––0.483 1328R.Andreozzi et al./Chemosphere50(2003)1319–1330

?lters,their addition will result in a decrease of the rate of photodegradation compared to the rate measured in bi-distilled water(as in the case of carbamazepine and diclofenac in the present study).On the other hand,if the promoting e?ect by humic acids prevails an en-hancement in the rate of phototransformation is ob-served(as in the case of o?oxacin,sulfamethoxazole, propranolol and clo?bric acid).

4.Conclusions

STP e?uents from four European countries(France, Italy,Greece and Sweden)with no previous record of pollutants of this type have been analyzed for the pres-ence of pharmaceutical residues.The analyses were per-formed using GC–MS and HPLC–MS/MS procedures developed in this study.More than20individual phar-maceuticals belonging to di?erent therapeutic classes have been found.Antibiotics,gem?brozil,ibuprofen, naproxen,carbamazepine and the majority of b-blockers have been detected in all samples.The presence of o?oxacin,lome?oxacin,enoxacin and?urbiprofen found in this study has not previously been reported in STP e?uents.In contrast to data published for Germany, betaxolol was not detected in any of the investigated STP e?uents,while trimetoprim and sulfamethoxazole were present in much lower concentrations than reported for the e?uents from German STPs.

The persistence to abiotic photodegradation has been evaluated for six selected pharmaceuticals among those found in the STP e?uents.Quantum yields for photo-degradation in salt-and organic-free water estimated for carbamazepine,diclofenac,clo?bric acid,sulphameth-oxazole,o?axocin and propranolol have been used to predict half-life times at varying seasons and latitudes. The results demonstrate that the photodegradation half-life times of carbamazepine and clo?bric acid are ap-proaching100days in winter at the highest latitudes (50°N),whereas under the same conditions sulfameth-oxazole,diclofenac,o?oxacin and propranolol undergo much faster degradations with t1=2respectively of2.4, 5.0,10.6and16.8days.The presence of nitrate ions in aqueous solutions(5.0–15.0mg là1)results in a reduc-tion of t1=2for the studied compounds,propranolol ex-cepted.Humic acids(concentration of5.0mg là1)act as inner?lters during the photodegradation of carb-amazepine and diclofenac and as photosensitizers for sulphamethoxazole,clo?bric acid,o?axocin and pro-pranolol.

Acknowledgements

The authors would like to acknowledge the Com-mission of the European Communities for the?nancial support of this work under Grant no.EVK1-CT-2000-00048.

References

Ahrer,W.,Scherwenk,E.,Buchberger,W.,2001.Determina-tion of drug residues in water by combination of liquid chromatography or capillary electrophoresis with electro-spray mass spectrometry.J.Chromatogr.A910,69–78. Buser,H.R.,M€u ller,M.,1998.Occurrence of the pharmaceu-tical drug clo?bric acid and the herbicide mecoprop in various Swiss lakes and in the North Sea.Environ.Sci.

Technol.32,188–192.

Canonica,S.,Jans,U.,Stemmler,K.,Hoign e,J.,1995.

Transformation kinetics of phenol in water:photosensiti-zation by dissolved natural organic material and aromatic ketones.Environ.Sci.Technol.29,1822–1831.

De Laat,J.,Berger,P.,Poinot,T.,Vel Leitner,N.K.,Dor e,M., 1995.Modelling the oxidation of organic compounds by H2O2/UV.Estimation of kinetic parameters.In:Proceed-ings of the12th Ozone World Congress of the International Ozone Assessment,Lille,May1995,pp.373–384.

Dulin, D.,Mill,T.,1982.Development and evaluation of sunlight actinometers.Environ.Sci.Technol.16,815–820. EPAOPPTS835.2210-Fate,transport and transformation test guidelines:Direct photolysis rate in water by sunlight,1996.

United States Environmental Protection Agency,Washing-ton,DC.

Frank,R.,Klop?er,W.,1988.A convenient model and program for the assessment of abiotic degradation of chemicals in natural waters.Ecotoxicol.Environ.Saf.17,323–332. Gao,H.,Zepp,R.G.,1998.Factors in?uencing photoreac-tions of dissolved organic matter in a coastal river of the Southeastern United States.Environ.Sci.Technol.32, 2940–2946.

Golet,E.M.,Alder,A.C.,Hartmann,A.,Ternes,T.,Giger,W., 2001.Trace determination of?uoroquinolone antibacterial agents in urban wastewater by solid-phase extraction and liquid chromatography with?uorescence detection.Anal.

Chem.73,3632–3638.

Haag,W.R.,Hoign e,J.,1986.Singlet oxygen in surface waters.

3Photochemical formation and steady-state concentrations in various types of waters.Environ.Sci.Technol.20,341–348.

Heberer,T.,D€u nnbier,U.,Reilich, C.,Stan,H.-J.,1997.

Detection of drugs and drug metabolites in groundwater samples of a drinking water treatment plant.Fresenius Envir.Bull.6,438–443.

Hartig,C.,Storm,T.,Jekel,M.,1999.Detection and identi-?cation of sulphonamide drugs in municipal wastewater by liquid chromatography coupled with electrospray ionisation tandem mass spectrometry.J.Chromatogr.A854,163–173. Hirsch,R.,Ternes,T.,Haberer,K.,Mehlich,A.,Ballwanz,F., Kratz,K.-L.,1998.Determination of antibiotics in di?erent water compartments via liquid chromatography–electro-spray tandem mass spectrometry.J.Chromatogr.A815, 213–223.

Hirsch,R.,Ternes,T.,Haberer,K.,Kratz,K.-L.,1999.

Occurrence of antibiotics in the aquatic environment.Sci.

Total Environ.225(1–2),108–118.

R.Andreozzi et al./Chemosphere50(2003)1319–13301329

Johansson,M.,Tysklind,M.,2001.The occurrence,transport and e?ects of antibiotics in the environment.Final report.

SNV-Swedish Environmental Protection Agency.

Mack,J.,Bolton,J.R.,1999.Photochemistry of nitrite and nitrate in aqueous solution:a review.J.Photochem.

Photobiol.A:Chem.128,1–13.

Moore,D.E.,Thomson,S.R.,Zhen,D.,Duke,C.C.,1990.

Photochemical studies on the anti-in?ammatory drug dic-lofenac.Photochem.Photobiol.52(4),685–690.

Nicole,I.,De Laat,J.,Dor e,M.,Duguet,J.P.,Bonnel,C., https://www.sodocs.net/doc/fe16192513.html,e of UV radiation in water treatment:measurement of photonic?ux by hydrogen peroxide actinometry.Water Res.24(2),157–168.

OECD(Organisation for Economic Co-operation and Devel-opment),2000.Guidance document for testing of chemicals.

Phototransformation of Chemicals in water––Direct and indirect photolysis.OECD Environmental Health and Safety Publication.

€O llers,Sj.,Singer,H.,F€a ssler,Ph.,M€u ller,S.R.,2001.

Simultaneous quanti?cation of neutral and acidic pharma-ceuticals and pesticides in low-ng/l level in surface and waste water.J.Chromatogr.A911,225–234.

Richardson,M.L.,Bowron,J.M.,1985.The fate of pharma-ceutical chemicals in the aquatic environment:A review.

J.Pharm.Pharmacol.37,1–12.

Sacher,F.,Lange,F.T.,Brauch,H.-J.,Blankenhorn,I.,2001.

Pharmaceuticals in groundwaters.Analytical methods and results of a monitoring program in Baden,Wu¨rttemberg, Germany.J.Chromatogr.A938,199–210.

Stan,H.J.,Haberer,T.,Linkerh€a gner,M.,1994.Occurrence of clo?bric acid in aquatic system––is the use of human medical care the source of the contamination of surface, ground and drinking water?Vom Wasser83,57–68. Stangroom,S.J.,MacLeod,C.L.,Lester,J.N.,1998.Photosen-sitized transformation of the herbicide4-chloro-2-methyl-phenoxy acetic acid(MCPA)in water.Water Res.32(3), 623–632.Ternes,T.,1998.Occurrence of drugs in German sewage treatment plants and rivers.Water Res.32(11),3245–3260. Ternes,T.,Stumpf,M.,Schuppert,B.,Haberer,K.,1998a.

Simultaneous determination of antiseptics and acidic drugs in sewage and river water.Vom Wasser90,295–309. Ternes,T.,Hirsch,R.,Mueller,J.,1998b.Methods for the determination of neutral drugs as well as betablockers and b-sympathomimetics in aqueous matrices using GC/MS and LC/MS/MS.Fresenius J.Anal.Chem.362,329–340. Waggott, A.,1981.Trace organic substances in the River Lee Great Britain.In:Cooper,W.J.(Ed.),Chemical Water Reuse,vol.2.Ann Arbor Science,Ann Arbor,MI,pp.55–99. Watts,C.D.,Crathorne,M.,Fielding,M.,Steel,C.P.,1983.

Identi?cation of non-volatile organics in water using?eld desorption mass spectrometry and high performance liq-uid chromatography.In:Angeletti,G.(Ed.),Analysis of Organic Micropollutants in Water.Reidel Publ.Corp., Dordrecht,pp.120–131.

Zepp,R.,https://www.sodocs.net/doc/fe16192513.html, Environmental Protection Agency,College Station road,Athens,private communication.

Zepp,R.G.,Cline,D.M.,1977.Rates of direct photolysis in aquatic environment.Environ.Sci.Technol.11(4),359–366. Zepp,R.G.,Baughman,G.L.,Schlotzhauer,P.F.,https://www.sodocs.net/doc/fe16192513.html,-parison of photochemical behaviour of various humic substances in water:I Sunlight induced reactions of aquatic pollutants photosensitized by humic substances.Chemo-sphere10,109–117.

Zepp,R.G.,Schlotzauer,P.F.,Sink,R.M.,1985.Photosensi-tized transformations involving electronic energy transfer in natural waters:role of humic substances.Environ.Sci.

Technol.19,74–81.

Zepp,R.G.,Hoign e,J.,Bader,H.,1987.Nitrate-induced photooxidation of trace organic chemicals in water.Envi-ron.Sci.Technol.21,443–450.

Zuccato,E.,Calamari,D.,Natangelo,M.,Fanelli,R.,2000.

Presence of therapeutic drugs in the https://www.sodocs.net/doc/fe16192513.html,ncet 355,1789–1790.

1330R.Andreozzi et al./Chemosphere50(2003)1319–1330

百事可乐分析报告

百事可乐市场分析报告 一、背景: 在全球市场上针锋相对已经超过110年的食品饮料两大巨头——可口可乐与百事可乐,又把赌注压到了中国,它们分别希望在三年内分别投入20亿美元和35亿美元来拓展这个新兴市场,这项大手笔的投资,分别占其2009年全年净利润的近1/3和1/2。根据国际权威调查公司对北京、广州两大城市饮料市场的调查数据显示:1998年北京饮料市场中,按升数计算市场份额,可口可乐市场占有率为36.6%,百事可乐市场占有率为6.0%,健力宝市场占有率为3.1%,如果将可口可乐公司的雪碧、芬达等品牌以及百事可乐公司的七喜、美年达等品牌计算在内的话,则两乐公司旗下品牌在市场上占有率高达82.9%;而1998年广州饮料市场中,按升数计算,可口可乐市场占有率为32.6%,百事可乐市场占有率为15.1%,健力宝市场占有率为4.9%,两乐旗下品牌市场总占有率为86.6%。 二、竞争者 在中国可乐市场,可口可乐仍然处于绝对优势。1998年的中国碳酸饮料市场上,前5名中有4名是可口可乐公司的品牌。1999年2月1日—28日,可口可乐公司在位于上海市人民广场的中国民生银行大厦上,挂起了四幅总面积近9000平方米的可口可乐巨型广告,

公然在百事可乐的家门口向百事可乐挑战,可见其气势之盛。 1999年2月2日,推出非常可乐的娃哈哈集团通过《中国经营报》,对全国的消费者进行了“为非常可乐打分”的问卷调查。北京市统计局计算中心对回收的问卷进行了统计,结果在参加调查的消费者中,63%的人在购买可乐时首选品牌是可口可乐,34%的人首选非常可乐,而百事可乐仅为3%。据分析,中国人有两种心态:崇尚外国生活和对国货潜藏在心的爱护。可口可乐以纯正的美国口味成为“可乐”的同义词,得到了前一种心态的一致喜爱;而非常可乐则争取了后一部分人;百事可乐面向年轻人的定位并没有得到普遍认同,所以位居末席。连初出茅庐的非常可乐都竞争不过,看来百事可乐在中国还有很长的路要走。 三、消费群体 该饮品消费群体主要有三种:学生、白领和层次较高的自由职业者(广告人、自由撰稿人等)。消费群体以"小于16岁"和"16~30岁"这两个年龄段最为集中。以上职业和年龄段的消费群体正是年轻富激情、对时尚最为过敏的一族 1、消费群体 该饮料消费群体主要有三种:学生、白领和层次较高的自由职业者,消费群体“小于16~~岁这两个年龄段最为中,以上职业和年龄段的消费正年轻富激情、对时尚最为过敏的一族。 2、购买因素 在对喜欢喝“百事可乐”的理由调查中,消费者购买因素有“品牌知名度”“有种年轻时尚感”“包装时尚等”。所以,品牌是关键。 3、饮用场合 从高到低依次排列为:看球赛时,思考时,聚会时,游玩时,口渴时,身心交瘁时,饮用该饮料的场合多与年轻、激情、时尚有关。 四、产品的竞争优势 1)、迎合了饮料市场的发展趋势 虽然百事可乐比可口可乐问世晚12年,但是在当时他们的机遇很好,从而使百事可乐有更进一步的发展。二战以后,美国诞生了一大批年轻人,他们没有经过大危机和战争洗礼,

手机市场STP分析报告

手机市场STP分析报告 鉴于目前的市场情况分析了解,把公司手机产品定位于国内市场,同时国内市场又分为华南,华北,华东,华中,东北,西南,西北七大区域。 中国七大区域中,华南,华北,华东的市场需求及人口数会相对大于华中,东北,西南及西北地区,且人均消费水平较高,对手机的认识较其他区域早,中高档次产品接受度高。而华中,东北,西南及西北地区的人均消费水平较低,对手机接受度较低。 一.市场分析(S) 首先,从以价格细分的市场来看,我们可以大致将手机市场分为高、中、低三大块。由上面的诺基亚产品线可以看出,诺基亚在这三块市场都有十分丰富的产品,特别是高、中端的产品数量很多。 商务取向、全面取向等。

二、选择目标市场(T) 1.商务取向:这类主要是白领工作阶层的商务人士,属于高端市场。这类手机主要根据工作阶层的特点来设计,因此,这样的手机注重商务性能,娱乐性能较弱,但足以满足他们的工作需要。 2. 娱乐取向:这类大部分是学生一族和时尚达人。对于这类人的需求则必须在手机性能上下大力气,提高整体性能,这类消费人群往往也注重时尚,因此手机设计上也得注意外观。 3.全面取向:这类手机的设计要求更高,性能要十分的强悍,对为市面上顶级的配置,当然这样的手机售价也很高,毕竟是面向少数人群。 市场竞争中,企业之间的既排斥又依赖的程度,视目标市场的容量、层次和企业的条件而不同,其目标市场竞争的类型大致可分为四类: 1.排挤型:即在目标市场竞争中,一个企业的进展必使另企业衰退,优胜劣 汰。这通常发生在不少企业同时以同一产品进入容量不大的目标市场争夺中。我们不断的推出新产品,快速的占领市场 2.分占型:即在目标市场竞争中,各企业的产品各占一定的市场份额。当目 标市场容量大而各企业产品尚不能满足需求时,可常见到这种分占现象。 这种分占,有的发生在异质区域市场之间,有的发生在异质层次市场之间,有的则发生在同质市场中。 3.独占型:即某企业以其独特的技艺独占别的企业所难以渗透的某一目标市 场。作为手机市场的领导企业,诺基亚从事开发、制造并销售最可靠的、安全易用的技术产品及优质专业的服务,帮助全球客户和合作伙伴取得成功。 4.联合型:即某些企业为增强竞争实力,相互联合起来,以各自的长处协作 生产同一产品进入目标市场,这种竞争,有的是以强手为龙头,联结弱家而增强优势。 三.产品定位(P) 诺基亚的产品定位是非常广泛的,诺基亚的作战策略则是全系列、全战线,款式多样,低、中、高端系列各具特色,能够满足不同层次用户的使用诉求。 从低端到高端,从音乐手机到商务手机到高端智能机都能够广泛覆盖。 1系列:低端系列。如1100,1108,1110,1110i基本在300元钱以内就能买到,仅仅有简单的电话功能,旨在为低端消费群体服务 2系列:入门级手机的低端手机,彩屏低端系列也叫学生系列,如2610,2626,2630等,有英汉词典、30W摄像头等基本功能,主要定位于学生群体。 3系列:真我个性系列,造型怪异,如3100,3108,3110c,3220,3230,3250等。这系列产品针对追求个性化的群体,并且价格也处于较低水平。 5系列:运动活力系列。如5070,5200,5300,5310,5500,5610,5700,5710,5800等,这系列手机有着强大的音乐功能,市场定位为喜爱听音乐的群体。 6系列:商务精英系列。6020,6021,6030,6070,6080,6110,6120c,6300,6301,6500c,6500s等。这系列手机是较早的商务手机系列,支持双网待机、待机时间长、在预防手机丢失以及数据加密等方面有很强大的功能,旨在服务于商务人士。

百事公司市场分析报告

实训项目二 百事公司市场分析报告 年级专业:连锁3122 指导老师:吕凯 姓名:陈康 日期:2013年5月

一、百事公司背景 百事公司是世界上最成功的消费品公司之一,在全球200多个国家和地区拥有14万雇员,2004年销售收入293亿美元,为全球第四大食品和饮料公司。在2004年公布的《财富》杂志全球500强排名中,百事公司位列第166位,并于最近连续两年被评为《财富》“全球最受赞赏的饮料公司”第一名。在2004年《福布斯》杂志“全美最有价值公司品牌”中百事公司位列在前十名。2003年8月《商业周刊》评选的全球最有价值品牌的排名中,百事公司旗下的百事可乐品牌排名在第二十三位。百事公司的前身百事可乐公司创建于1898年。百事可乐公司于1965年与世界休闲食品最大的制造与销售商菲多利(Frito-lay)公司合并,组成了百事公司。为了更好的发挥产品结构优势,将市场经营重点在核心品牌方面,百事公司曾于1997年10月作出重大战略调整,将拥有必胜客(Pizza Hut)、肯德基(KFC)和Taco Bell的餐厅从公司分离出去,使之成为一家独立的上市公司,即百胜全球公司,现公司名为YUM!),这也以便集中精力进行品牌建设和品牌营销。 1999年,百事公司将其百事可乐罐装百事公司是世界上最成功的消费品公司之一,在全球200多个国家和地区拥有14万雇员,2004年销售收入293亿美元,为全球第四大食品和饮料公司。在2004年公布的《财富》杂志全球500强排名中,百事公司位列第166位,并于最近连续两年被评为《财富》“全球最受赞赏的饮料公司”第一名。在2004年《福布斯》杂志“全美最有价值公司品牌”中百事公司位列在前十名。2003年8 月《商业周刊》评选的全球最有价值品牌的排名中,百事公司旗下的百事可乐品牌排名在第二十三位。百事公司的前身百事可乐公司创建于1898年。百事可乐公司于1965年与世界休闲食品最大的制造与销售商菲多利(Frito-lay)公司合并,组成了百事公司。 二、市场分析的目的 随着社会经济的发展,人们对饮料,休闲食品,快餐需求越来越大,市场潜力巨大,但生活水平提高时,人们对饮食健康越来越看重,对糖和脂肪这两种东西越来越受到人们畏惧。人们对健康的关注、对快餐和零食的忌讳,已威胁了白事帝国的根本。 面对日益变化的市场,对市场进行调研,分析市场,更好的把握市场动向,适应市场变化。针对市场的变化,制定应对方案;发现潜在市场,开发新产品。 市场分析的主要目的是研究商品的潜在销售量,开拓潜在市场,安排好商品地区之间的合理分配,以及企业经营商品的地区市场占有率。 通过市场分析,可以更好地认识市场的商品供应和需求的比例关系,采取正确的经营战略,满足市场需要,提高企业经营活动的经济效益。 三、市场环境分析 1、市场需求分析 (1)饮料、休闲食品和快餐曾是百事三大主营业务,在欧美,休闲食品是百事公司的主要利润来源之一。在消费者市场占有很大的比重。 (2) 百事进军快餐行业,借此来提高核心产品的竞争地位。其中百事可乐的主

华为公司STP分析报告

华为公司STP分析报告 云南工商学院 Yunnan Technology and Business University 院系:经济管理学院 专业:国际经济与贸易 班级: 16级国贸1班 姓名:付怀权 2016年11月

目录 前言 (3) 公司简介 (3) 一、市场细分(S) (4) 1.价格市场细分 (4) 2.需求市场细分 (4) 3.地理市场细分 (5) 4.心理细分 (5) 二、目标市场(T) (5) 1.差异性营销 (5) 三、市场定位(P) (6) 1.根据竞争地位定位 (6) 2.根据使用者定位 (7) 3.多重因素定位 (7) 总结 (7)

前言 近年来国产手机品牌取得了较好的业绩,市场份额大增,国内手机市场的竞争也达到了白热化状态,各种款式,功能,价格的手机竞相面市,吸引了众多消费者的眼球。但是由于一些手机制造商对消费者需求细分不明确,产品定位模糊,消费者想买到一款真正适用于自己的手机也很难抉择。大多消费者对自己的需求特点是十分明确的,很清楚自己的消费需求、购买能力、消费心理,只是供需双方的信息沟通机制不太完善,造成了消费者需求与手机制造商之间的信息不对称导致市场上许多产品的滞销。不同的消费者有不同的需求特点,需要不同的手机,只有根据消费者特征进行市场细分,在此基础上给产品以准确的市场定位,向目标消费群体传播一致的宣传信息,有的放矢,才能提高自己的竞争能力,取得手机营销战的成功。 公司简介 华为技术有限公司是一家生产销售通信设备的民营通信科技公司,总部位于中国广东省深圳市龙岗区坂田华为基地。华为的产品主要涉及通信网络中的交换网络、传输网络、无线及有线固定接入网络和数据通信网络及无线终端产品,为世界各地通信运营商及专业网络拥有者提供硬件设备、软件、服务和解决方案。华为于1987年在中国深圳正式注册成立。 管理核心理念: 一、聚焦:新标识更加聚焦底部的核心,体现出华为坚持以客户需求为导向,持续为客户创造长期价值的核心理念; 二、创新:新标识灵动活泼,更加具有时代感,表明华为将继续以积极进取的心态,持续围绕客户需求进行创新,为客户提供有竞争力的产品与解决方案,共同面对未来的机遇与挑战; 三、稳健:新标识饱满大方,表达了华为将更稳健地发展,更加国际化、职业化; 四、和谐:新标识在保持整体对称的同时,加入了光影元素,显得更为和谐,表明华为将坚持开放合作,构建和谐商业环境,实现自身的健康成长。

百事公司案例分析报告——战略管理.doc

百事公司案例分析报告 一、百事公司历史 1893年,在美国北卡罗莱纳州伯恩市,年轻的药剂师科尔贝?布莱德汉姆(Caleb Bradham)试验时发现了一种新口味,深受苏打柜台顾客的喜爱。他由此意外发明了一种由可乐果、香草和珍贵精油混合而成的碳酸饮料,取名为“布莱德(Brad)饮料”。1898年8月28日,科尔贝将其易名为“百事可乐” (Pepsi-Cola) ,这种饮料能够发挥类似胃蛋白酶的功能,有助于消化。1902年,科尔贝创建了百事可乐公司。起初,科尔贝自己将浆液混合配制,通过苏打柜台出售。后来他意识到一个巨大的商机的存在——将百事可乐灌装起来,这样各地的人们就都可以享用到。 二、企业使命 我们立志将百事公司建成为世界首屈一指的、主营方便食品和饮料的消费品公司。在为我们的员工、业务伙伴及业务所在地提供发展和创收机会的同时,我们也努力为投资者提供良性的投资回报。诚信、公开、公平是我们所有经营活动所遵循的原则。

三、企业愿景 百事公司的责任是在环境、社会、经济等各个方面不断改善周围的世界,创造更加美好的未来百事公司的可持续发展愿景是“百事公司的承诺”的基础。它表达了我们的基本信念:即只有对社会有益的行为才是企业正当的行为,这涉及整个世界的繁荣兴旺,以及公司自身的健康发展。 四、公司未来方向 百事是一家比可口可乐规模更大,更加多元化的公司,拥有无数增长的机会和方向,尽管从美国来看可乐市场有些停滞,但可乐和零食的全球市场依然强劲,在某些国家增长甚至达到了两位数。此外百事继续在非可乐市场扩张领域,似乎增进了可乐和咸味食品,水和运动饮料早餐和果汁产品之间的协同。 2009年后期,百事在巴西并购当地的最大的包装椰汁饮料商。此外,百事耗资78亿美元收购了两大独立灌装商这一前向整合战略,是数月来百事公司主要的行动。 五、公司目前战略 本土化战略 本土化管理与本土化生产是当前全球跨国公司的趋势百事在中国的本土化进展成绩斐然。百事中国区的管理层70%已经由中国人担任,其中只有1个不是中国内地土生土长的。 广告战略 从美国到亚洲,消费者和电视观众经常能看到一群当红明星同时出

百事公司市场分析报告

百事公司市场分析报告 连锁3121班周雅静 指导老师吕凯

目录 一、百事公司的发展历程 二、百事公司市场环境分析 三、百事可乐与可口可乐的竞争 四、消费群体眼中的百事 五、百事公司品牌分析 六、分析报告的结论与建议(一)总结 (二)百事公司的不足之处(三)对百事公司的建议

一、百事公司的发展历程 1894年,美国药剂师科尔贝.布莱德汉姆(Caleb Bradham)试制了一种碳酸饮料,取名为“布莱德(Brad)饮料”。 1898年,布莱德汉姆将其易名为“百事可乐(Pepsi-Cola)。 1902年,布莱德汉姆创建了百事可乐公司。 1948年便开始生产罐装软饮料。 1965年,与休闲食品巨头菲多利(Frito-lay)合并,正式更名为百事公司,从此将休闲食品业务纳入公司核心业务。 1977年,百事公司进军快餐业,先后将必胜客(Pizza Hut)、Taco Bell和肯德基(KFC)收归麾下,进入多元化经营的高峰。 1997年10月,将拥有必胜客、Taco Bell和肯德基的餐厅业务从公司分离出去,使之成为一家独立的上市公司, 1999年,百事公司将百事可乐灌装集团(PBG)分离上市,以便集中精力进行品牌建设和品牌营销。 2000年,百事公司收购SoBe饮料公司,推出一系列自然口味的健康饮品。2001年8月,经欧盟委员会和美国联邦贸易委员会批准,正式与世界著名的食品公司Quaker公司合并。后来又与立顿公司合并。 1998年6月,公司又推出了仅含1卡路里热量的新型饮料Pepsi One 。 最近,百事成功地取代可口可乐,成为迪斯尼旗下Dixon International Field of Anaheim 所经销的品牌饮料的合作伙伴,除此之外,百事已成为影片The Phantom Menace的饮料赞助商。 时至今日,百事公司已在中国成立了40余家合资、合作、独资企业和项目,总投资超过10亿美元,在华直接雇员近1万人。 二、百事公司市场环境分析

STP分析报告

《营销实务》结课作业 独美味方便面STP战略分析报告 班级:市场营销102 姓名:盛洁 学号: 2013年5月 独美味方便面STP战略分析报告 一、企业背景 独美味方便面属于绿康食品有限责任公司所生产的主要商品。绿康企业位于安徽芜湖市,邻近滁州市定远县优良麦产区和亳州市药材产区,依托于南京、合肥等经济技术开发带,有强有力的人员和技术支持且企业拥有员工80余人。企业致力于打造绿色健康方便食品,主要针对快餐消费比例高和希望更健康的人群,给消费者带来全新的方便面理念,让食品更加健康安全。 二、行业发展现状 中国的方便面行业是中国市场化竞争最为充分的几个行业之一,目前的市场化程度、技术指标和科技创新程度都居全球领先水平。一个中国传统主食之外的附属食品在中国居民生活中的影响与日俱增,随着社会资源竞争的加剧和生活节奏的加快,方便面逐渐成为老百姓生活不可或缺的一部分。伴随着经济的迅速发展与经济全球化进程加快,中国方便食品行业也面临着前所未有的发展机遇。 三、STP战略分析 1、市场细分

独美味方便面主要进行区域的细分、商品的细分和消费者的细分。 首先将全国分为东北区、东南区、西南区、西北区等几大部分,根据独美味方便面的产品诉求最终选择了经济发展较好、消费力水平较高的东南地区。 商品的细化主要采用顾客类型和产品用途划分出商品口味的细分和商品价格的细分。商品口味细分主要包括西红柿鸡蛋口味、牛肉味等;商品价格可划分为高端价格、终端价格和低端价格。根据独美味方便面的成本及定位,选择不同口味的高端价格产品。 消费者主要从职业方面进行细分,可分为学生、白领、农民等,而学生又可以进一部分为小学生、中学生、大学生及研究生和博士生,独美味方便面主要针对消费水平较高且生活节奏较快的大学生和白领人群。 采用多因素细分方法来确定市场。 2、选择目标市场 确定目标市场的营销战略有:无差异市场营销、密集性市场营销、差异性市场营销。其中,无差异营销针对相同的需要,不做市场细分,优势在于,大量生产、均衡生产、营销成本低,但容易引起竞争过度;密集性市场营销针对相对较少的市场细分,优势在于成本相对低,销量较平稳,但差异化小,销售量减少;差异营销针对两个或两个以上细分市场,分别设计营销方案,优势在于,能够增加总销量,但同时也增加了成本。 独美味方便面选择密集性市场营销战略,对于已细分的市场,企业选择一个细分的子市场即东南地区市场作为目标市场,对细分子市场目标顾客提供产品、服务以及相应的销售措施。企业再根据细分市场的特点,分

百事公司市场营销分析报告

百事公司市场营销分析报告 一.营销环境分析 1.宏观分析 ⑴百事公司是全球最大的食品和饮料公司之一。业务范围遍及世界上近200个国家,雇有员工185,000人。公司2007年销售额超过390亿美元。 ⑵公司的主要业务包括菲多利休闲食品、百事可乐饮料、佳得乐运动饮料、纯果乐果汁和桂格麦片食品。公司的系列产品中有18个品牌的年销售额都在10亿美元以上。 ⑶百事饮料国际集团是美国的一家享誉全球的跨国公司。在欧美,休闲食品是百事公司的利润主要来源。 2. 市场状况 百事在欧美等全球最大的休闲食品市场上占据着相当的份额,其休闲食品的年销售额达120多亿美元。在超市的10个休闲品牌中,有9个是百事的品牌。百事公司2001年度营销业收入和利润分别达到270亿美元,名列《财富》杂志最新公布的500强第63位,以其66美元的身价,在“全球最有价值的品牌”中排名第35位。 二.市场需求分析分析 1.饮料、休闲食品和快餐曾是百事三大主营业务,在欧美,休闲食品是百事公司的主要利 润来源之一。在消费者市场占有很大的比重。 2.百事进军快餐行业,借此来提高核心产品的竞争地位。其中百事可乐的主要消费群体是 年轻一代,这是它与可口可乐最大的区别。 3.人们对健康的关注、对快餐和零食的忌讳,已威胁到了百事帝国的根本。因此在饮料的 选择上,人们也更倾向于非碳酸类的健康型饮料,如果汁、茶饮料等。 4.休闲食品占到了百事公司收入的54%和运营利润35%。百事公司旗下的产品—百事可 乐、激浪、乐事薯片、立体脆、桂格麦片等年售额均超过十亿美元。在饮料领域,碳酸饮料还是百事可乐和可口可乐两大巨头的主要利润来源,利润远高于非碳酸饮料的利润。 5.在中国市场,百事一直是主打产品,与中国碳酸饮料行业5%的增长率相比,百事的成 长速度是同行业的近四倍。虽然非碳酸饮料如果汁、水等在中国内地市场份额日益增大,百事在此领域的势力相对于碳酸饮料还有待壮大。 6. 消费群体 ⑴该饮料消费群体主要有三种:学生、白领和层次较高的自由职业者,消费群体“小于16~~30”岁这两个年龄段最为中,以上职业和年龄段的消费正年轻富激情、对时尚最为过敏的一族。 ⑵购买因素 在对喜欢喝“百事可乐”的理由调查中,消费者购买因素有“品牌知名度”“有种年轻时尚感”“包装时尚等”。所以,品牌是关键。 ⑶饮用场合 从高到低依次排列为:看球赛时,思考时,聚会时,游玩时,口渴时,身心交瘁时,饮用该饮料的场合多与年轻、激情、时尚有关。 三.产品分析 1.产品特点: 百事可乐是典型的碳酸饮料,其主要特点是在饮料中加入CO2,根据国家饮料分类标准,在碳酸饮料中专门有一种类型是可乐型,它是含有遮糖色,可乐香精或类似可乐果,果香混合而成的碳酸饮料。且CO2可以起杀菌、抑菌的作用,还能通过蒸发带走体内的热量,起到降

百事可乐营销案例分析报告

百事可乐营销案例分析 文文医药营销2班 百事公司是世界上最成功的消费品公司之一,在全球200多个国家和地区拥有14万雇员,2004年销售收入293亿美元,是全球第四大食品和饮料公司。并在2004年公布的《财富》杂志全球500强排名中,百事公司位列第166位,并于最近连续两年被评为《财富》“全球最受赞赏的饮料公司”第一名。在2004年《福布斯》杂志“全美最有价值公司品牌”中百事公司名列在前十名。2003年8月《商业周刊》评选的全球最有价值品牌的排名中,百事公司旗下的百事可乐品牌排名是在第二十三位。百事公司的前身百事可乐公司是创建于1898年。百事可乐公司于1965年与世界休闲食品最大的制造与销售商菲多利(Frito-lay)公司一起合并,组成了百事公司。它为了更好的发挥产品结构优势,将市场经营重点在核心品牌方面,百事公司曾于1997年10月作出重大战略调整,将拥有必胜客(Pizza Hut)、肯德基(KFC)和Taco Bell的餐厅从公司分离出去,使之成为一家独立的上市公司,即百胜全球公司这也以便集中精力进行品牌建设和品牌营销。 营销环境分析 一品牌定位

与众不同、锋芒、扬。广义目标消费群为15-30岁的男生和女生。年轻人是最有活力、最有潮流触觉,心充满对梦想的渴望,渴望挑战现实、展现自我,对时尚潮流紧跟不舍,百事正是紧紧抓住年轻人的心理状态,以最潮设计理念带给年轻人与众不同的体验。其品牌理念为CROSSOVER(跨界)+MLX AND MATCH(混搭)。 二购买决策 购买决策在很多情况下都是一种群体决策的过程。一般而言,分为五种角色:发起者,影响者,决策者,购买者,使用者。这五种角色相辅相成,共同促成购买行为。因此,正确识别不同角色才能找准营销对象,提高药效活动的效果。而百事可乐产品一般而言都是由使用者来决定的。但是饮料的好喝程度,对健康的影响程度等等都对其是否购买产品产生影响。 三市场细分 (一)地理自然环境。一个国家或地区的地形地貌和气候,是企业开展市场营销所必须考虑的地理因素。例如城市的人比较富裕,所以在城市的百事可乐的销量就会较好,而在农村这样比较贫穷的地方,那么其就难以有生存的空间。再比如,从经营成本上考虑,平原地区道路平坦,运输费用比较低;而山区丘陵地带道路崎岖,运费自然就高。

百事可乐公司战略分析报告

百事可乐公司战略分析报告 百事可乐公司战略分析报告 案例背景 一、百事可乐公司简介 百事可乐公司成立于1903年,当年药剂师卡勒布·D.布雷德汉姆开始在北卡罗来纳州销售他发明的饮料。1995年,百事可乐牌饮料在全球的零售总额达到了320亿美元,占软饮料所有零售额的20%。百事可乐公司是世界上第二大软饮料生产商。据旧金山德尔联合咨询公司的调查,百事可乐在被调查的7><6000个品牌中,名列最知名品牌的第十位(在美国居第四位)。1995年,百事可乐公司在本土的销售额增长了7%,而行业整体的销售额只增长了3.<6%,同年,它的国际市场销售增长率超过了19%。 199<6年,百事可乐的销售额为31<6亿美元,净利润为11.5亿美元。公司30%的销售收入来自于美国以外市场的经营活动,这表明了公司的地域市场及业务的多元化。

百事可乐公司198<6-199<6年度的董事长和首席执行官是威利·卡洛威。他认为,由于饮料、零食、饭店三个行业获得成功的核心因素具有相似性,所以这三项业务的组合提供了宝贵的协同作用和战略性匹配机会。卡洛威于199<6年初因患癌症而辞去百事可乐公司首席执行官一职。199<6年4月1日,罗格·伊诺科就任百事可乐公司新任首席执行官。伊诺科是公司一名有着25年工作经验的老职员,在公司的三个大类业务里都干过。在伊诺科就任百事可乐公司董事长和首席执行官的头几个月里,他发现自己不得不处理公司许多相当严重的问题。百事可乐的饮料业务,尽管列行业第二,但在国内、国际市场上的市场差距越来越大,开始落在了可口可乐公司的后面。弗罗托雷公司是美国唯一的加盐食品的制造商和销售商,但是却因受到反竞争性商业行为的制控而受到了美国司法部的调查。尽管伊诺科通过推出新菜单在恢复公司饭店业务的活力方面取得了不少的成绩,但饭店业务作为一个整体却还是陷入了销售额递减和利润萎缩的困境之中。饭店集团销售额的增长是口额外兴建更多的饭店来实现的,而不是靠现有饭店销售额的增加来实现的。199<6年,百事可乐的股票全年未涨,然而此时整个股市的上涨却超过了25%,同时百事可乐公司最主要的竞争对手可口可乐公司的股票升值了42%。有迹象表明,华尔街的投资家们对百事可乐业务组合的长期增长潜力表示担忧。 二、百事可乐公司目前业务组合及现状 1997年,百事可乐公司已是一家拥有多元化产品的公司,它拥有饮料,零食及饭店三个方面的业务。 饮料业有百事可乐,在全球194个国家有供应。软饮料是百事可乐公司产品线组合中历史最悠久和规模最大的业务。199<6年百事可乐公司是世界上最大的

手机的STP分析报告范文

“炫沃”手机市场STP分析 ——陈闰 前言 近年来国产手机品牌取得了较好的业绩,市场份额大增,国内手机市场的竞争也达到了白热化状态,各种款式,功能,价格的手机竞相面市,吸引了众多消费者的眼球。但是由于一些手机制造商对消费者需求细分不明确,产品定位模糊,消费者想买到一款真正适用于自己的手机也很难抉择。大多消费者对自己的需求特点是十分明确的,很清楚自己的消费需求、购买能力、消费心理,只是供需双方的信息沟通机制不太完善,造成了消费者需求与手机制造商之间的信息不对称导致市场上许多产品的滞销。不同的消费者有不同的需求特点,需要不同的手机,只有根据消费者特征进行市场细分,在此基础上给产品以准确的市场定位,向目标消费群体传播一致的宣传信息,有的放矢,才能提高自己的竞争能力,取得手机营销战的成功。 一、市场细分(Segmenting) 市场细分是根据消费者对不同产品的不同欲望和需求以及不同 的购买行为和购买习惯,把整体市场划分为若干有意义的消费者群体的过程。市场细分有利于企业生产真正适合消费者需求的产品,有利于发现市场“真空”地带和有目的有针对性的实施营销策划方案。 1.价格市场细分 从以价格细分的市场来看,可以大致将手机分为高端、中端、低端三个档位。低端市场,如一般不知名的国产山寨手机可以逃避政府管理不纳税,也不做研发,成本低。对于低端市场,建议只在低价市场投入少量机型,并以稳定性和品牌价值优势,以简单和丰富实用为特色争夺低中价市场。中端市场,像一些国际大厂之前的摩托罗拉、

索尼、爱立信;国内的华为、金立等。对于中端市场,企业应该加强研发,扩大产品线、加快产品价格调整、依靠消费者对品牌的认可。高端市场,如苹果、三星。对于高端市场,企业应该加强科技研发,对某些机型的配置、功能进行适量增减,从而生成更多不同产品,衍生产品线。 2.需求市场细分 从消费者需求来看,手机市场主要被分为娱乐取向、商务取向、全面取向等。娱乐取向的消费者追求新科技和新的时尚潮流,注重科技含量和款式,同时希望手机具有丰富多样的新型娱乐功能,满足消费者追求个性化娱乐化生活的需求。对娱乐取向市场,厂商需要加强科技研发,研发新的娱乐功能,提高摄像头性能和多媒体播放功能等。代表企业索尼、OPPO、苹果。商务取向的消费者重视手机的商务实用功能重视手机的保密性,对于商务取向市场,企业需要开发手机强大的商务功能,全键盘设计,舍弃多余的摄像头,可采用多种系统界面,针对性的特别增强邮件、日程、数据保密等功能等。代表企业如黑莓、金立。全面取向的消费者重视手机的性价比和功能的全面性,追求实用。对全面取向市场,企业应该凭借丰富的产品线提供了高中低档不同价位不同功能含量的机型。代表企业有华为。 3.地理市场细分 从地理区域上对手机市场进行划分,可以分为国内市场和国际市场。国内市场可以分为华南、西南、华东、华中、华北、西北、东北这些地区,其下又可以分为大城市、中小城市、乡镇。据调查数据显示,我国这七大地理区域中,华南、华北、华东的人口密度和消费需求和能力更强,华中、东北、西北、西南次之。我国大中等城市的消费能力普遍强于小城镇和乡镇。此外经济发达人均消费水平高的地理

百事市场STP分析

市场营销课内实验报告 项目名称百事市场STP分析 所属课程名称市场细分与目标市场决策项目类型STP分析 实验(实训)日期2011年11月1—4日 班级营销一班 学号01106016 姓名卜小韩 指导教师邢岗

百事市场STP分析 实训类型:操作性 实训目的: 掌握运用STP营销制订目标市场策略的方法、步骤,掌握产品市场定位的方法和技巧 实训背景资料: 在欧美,休闲食品是百事公司的主要利润来源之一。百事在欧美等全球最大的休闲食品市场上占据着相当的份额。 百事进军快餐业是为了借助快餐业广泛的营销网络,来促进饮料的销售,从而提高核心产品的市场竞争力。但也使百事面临多个领域的竞争压力,尤其是快餐业务,百事适时地剥离了快餐业务,包括塔克贝尔、必胜客和肯德基,以争取快餐食品连锁店的订单。同时饮料行业的变化,也促使百事积极应对。 以中国的数据看,国内饮料市场已经进入了一个多元化的发展时期,为了掌控市场,早在1998年,百事公司全盘收购了世界著名的康纳果汁饮料公司,以进一步强化饮料产品在世界各地的主导地位。2000年12月,百事公司以134亿美元收购了世界著名的佳格燕麦公司,佳格拥有在美国非常成功的佳得乐运动型饮料。 在中国市场,百事尚未遇到如同美国本土的麻烦。实因百事的休闲食品业务进入中国时日不多而且品种较少。碳酸饮料一直是百事在中国的主打产品。非碳酸饮料如果汁、水等在中国内地市场份额日益增大,百事在此领域的势力相对于碳酸饮料还有待壮大。由于中国内地的运动型饮料市场目前还不够成熟,百事将会选择更合适的时机进入。 百事在适应市场采取新对策的同时,也没有放松传统食品或饮料的销售。在饮料领域,碳酸饮料还是百事可乐和可口可乐两大巨头的主要利润来源。利润率远高于非碳酸饮料的利润率 一.市场细分(S)

百事可乐调查报告1

百事可乐的营销调研报告 委托单位:10无双营销 调研机构:最大风险 调研时间:2013.5.24

黑龙江东方学院 目录 1.引言 ···················································································································· - 3 - 2.数据分析与结果 ····································································································· - 3 - 2.1.数据分析········································································································· - 3 - 2.1.1性别及年龄差异··························································································· - 3 - 2.1.2广告策略 ······································································································ - 4 - 2.1.3百事的其他产品调查··················································································· - 4 - 2.1.4消费者的购买场所分析 ················································································· - 5 - 2.1.5百事可乐的广告代言人的调查数据分析····················································· - 6 - 2.1.6百事可乐的促销方式调查 ············································································· - 7 - 2.1.7整合营销传播的中心思想是在与消费者的沟通中 ······································· - 7 - 2.1.8满意度调查 ·································································································· - 8 - 2.2结果 ························································································································· - 9 - 2.2.1现有市场以年轻男性居多 ············································································· - 9 - 2.2.2消费者获知途径以广告为主·········································································· - 9 - 2.2.3最受青睐促销活动是买一赠一······································································ - 9 - 3.建议 ························································································································ - 9 - 3.1以广告宣传为主要载体···························································································· - 9 - 3.2产品代言人以年轻人喜爱的明星为主····································································· - 9 - 3.3将学生做为主要的销售群体···················································································· - 9 - 3.4推出健康型饮品······································································································· - 9 - 4.调研方法··············································································································· - 10 - 4.1调研目的 ··············································································································· - 10 - 4.2调查内容 ··············································································································· - 10 - 4.3调查方法 ··············································································································· - 11 - 4.4调查对象和调查范围························································································ - 11 - 4.5经费预算 ················································································································ - 11 - 4.6调查的时间进度安排 ····························································································· - 11 - 5.局限性说明··········································································································· - 12 - 5.1调查地点局限性····································································································· - 12 - 5.2调查对象局限性····································································································· - 12 - 5.3调查方法具有一定的局限性·················································································· - 12 - 5.4调查组员的局限性 ································································································· - 12 - 5.5调查样本局限性····································································································· - 13 - 6.附件及说明··········································································································· - 13 - - 2 -

关于可口可乐和百事可乐的渠道分析报告

渠道分析报告 ——关于可口可乐和 百事可乐的分析 参与人:张洁高蓓 刘艳樊永青 报告日期:2012年10月15日

目录 一、前言——————————3 二、调研概述————————3 三、公司背景————————4 四、调查目的————————5 五、调查结论————————5 六、启示——————————7 七、结论与建议———————7 八、附录——————————13

一、前言 目前,随着经济的发展,人们生活水平的不断提高,为满足顾客需求企业推出各种各样的饮料。我国的软饮料市场以碳酸饮料、瓶装水、茶饮料、果汁饮料和功能饮料为主。其中,碳酸饮料已进入成熟期,市场已被“两乐”基本瓜分完毕,两者合计占有率接近80%。但两家仍通过产品自身、价格、促销、以及渠道等不同的方面相互竞争。销售渠道决定着消费者能否顺利地购买到产品。渠道不畅,产品在销售终端铺开率不高,那么即使广告做得再好也是徒劳。两乐公司经过多年销售渠道的研究与实践,均形成了一套科学的渠道管理方式。但是为了更加详细地了解“两乐”的分销渠道,以及他们各自的优劣势我们组就对此在汉台区莲湖路展开了一次市场调研并进行渠道分析。 二、调研概述 1、调研目的:对选定区域内的所有饮料售点进行全面调查统计可口可乐和百事可乐饮料的铺货率,从而了解可口可乐和百事可乐的网点分布及销售情况,分析两家公司在渠道上的优劣。 2、调研对象:莲湖路所有销售点 3、调研方法:实地访谈法 4、调研经过:首先大家先每个人自己出几个问题,然后大家再一起从中选出几个精选问题,大家熟悉问题,再绘制一个表格以便记录收

集到的信息,复印四份,大家分工,两人去莲湖路的北边做调,两人在马路南边,这样经过一天的实地访谈调研,完成了任务。然后由高蓓开始做数据整理,刘艳,樊永青和张洁分项做调研报告,张洁最后整合并以word形式呈现,完成了最终的整个调研工作。 三、公司背景 可口可乐公司是全球最大的饮料公司,其系列产品畅销200多个国家和地区,拥有近400个饮料品牌。可口公司在全球生产超过2600种产品,每日销量超过14亿杯,并拥有全球最畅销软饮料品牌在前五名中的四个,包括可口可乐、健怡可口可乐、雪碧和芬达。 百事公司成立于1898年,是世界上最成功的消费品公司之一,其产品行销全球200多个国家和地区,拥有约157,000万雇员,公司2005年销售收入达320亿美元。在2005年公布的《财富》杂志全球500强和美国500强排名中,百事公司以营业收入292.61亿美元分列第172位和第61位,百事可乐商标价值突破1000亿美元。在饮料行业,可口可乐和百事可乐一个是市场领导者,一个是市场追随者(挑战者)。作为市场追随者,有两种战略可供选择:向市场领导者发起攻击以夺取更多的市场份额;或者是参与竞争,但不让市场份额发生重大改变。显然,经过近半个世纪的实践,百事可乐公司发现,后一种选择连公司的生存都不能保障,是行不通的。于是,百事可乐开始

相关主题