搜档网
当前位置:搜档网 › 液体火箭发动机技术发展的现状及未来

液体火箭发动机技术发展的现状及未来

液体火箭发动机技术发展的现状及未来
液体火箭发动机技术发展的现状及未来

液体火箭发动机技术发展

的现状及未来

李坤鹏 10151157 101513 摘要:本文从燃烧室推力、系统工作循环方式以及最大推力三个方面叙述世界各国液体火箭发动机的技术水平,简单介绍了世界各国液体火箭发动机技术发展趋势和中国的最新进展,分析了中国液体火箭发动机技术发展的可能前景

主题词:火箭发动机,液体推进剂火箭发动机,运载火箭

1.国内外现状

液体火箭发动机子第二次世界大战进入实用阶段以来,可以由燃烧室推力、系统循环方式及使用的推进剂来说明其技术上的飞跃,因为无论是采用新的推进剂,或是大幅度提高燃烧室推力,或是大幅度提高发动机推力,都需要采用一些新的技术,要克服研制中的许多困难,要结局许多的技术关键问题,从而将发动机技术推向一个新的水平。

单台发动机推力及燃烧室压力以美国和俄罗斯为最高,按不同推进剂的单台发动机和燃烧室压力来看,我国可贮存推进剂发动机比法国高,日本则没有;液氧-煤油发动机则不如日本,与法国一样同属空白;而氢-氧发动机则不如法国,也不如日本,更不如美国和俄罗斯,我国发动机系统工作循环只有发生器循环,与法国相当,不如美国和苏联,也不如日本。

2.我国液体火箭发动机技术的新进展

近几年来,我国液体火箭发动机技术的最大进展是YF-25发动机的研制,目前即将有初样研制转入试样研制,并正为明年的飞行试验进行准备,它使我国液氢-液氧火箭发动机技术达到了早期的国际水平。

我国YF-25发动机的推力及燃烧室压力超过60年代美国的RL-10及70年代末法国的HM-7,接近80年代中期日本的LE-5发动机。YF-25发动机系统功率平

衡采用串联双涡轮,与日本的LE-5相同,优于美国RL-10和法国HM-7的单涡轮齿轮传动。YF-75发动机具有整体双向摇摆的功能,燃气发生器采用单壁不冷却身部。这些与HM-7和LE-5发动机是一致的,YF-75发动机的螺旋管大喷管方案类似于法国正在研制的HM-60发动机,达到了国际先进水平。YF-75发动机还将我国可贮存发动机上推进剂利用系统的技术移植到液氢=液氧发动机上,并获得成功。此外,YF-75发动机在研制试验中,采用了某些参数红线关机,如涡轮泵最高转速及最低转速限,涡轮泵振动加速度值,氧泵前推进剂温度等,这是我国液体火箭发动机故障监控系统的雏型。

3.国外液体火箭发动机技术发展趋势

国外液体火箭发动机技术发展分为近期和远期。近视发展除法国和日本继续完成HM-60及LE-7氢氧发动机的研制外,只侧重于现有型号发动机的改进,主要有提高工作可靠性,提高性能或降低成本。,其典型代表是美国的SSME和RL-10发动机。

RL-10发动机改进的衍生方案有:为提高发动机工作可靠性而增加涡轮泵冷备份和为提高性能而增加可延伸大喷管方案。

SSME为提高工作可靠性,对现有涡轮叶片材料和涡轮进口温度都在进行改进研究。

远期发展则侧重羽一次入轨的各种发动机系统循环方案研究,这些发动机机要工作可靠,又要有高的效能,同时还要降低研制成本和生产成本,这些方案包括

(1)三组元(液氢、液氧、煤油或甲烷)发动机。

(2)双喷管-双膨胀发动机。

(3)双喉部发动机。

(4)双燃料组合发动机。

(5)双燃料型塞式发动机。

还有一种发展趋势,实在对现有成功使用的运载器进行改进时研制新的氢-氧发动机。用改进现有运载器取代重新设计的运载器,同样可以达到提高运载能力和减少研制费用的目的。大力神-人马座的改进方案就是这样。方案之一是用研制一种500~1000KN的氢氧发动机构成的新级取代原芯级第二级和人马座级;

方案之二是用这种新级取代原芯级第一级。新研制的氢-氧第二级还可以作为轨道转移飞行器与新的运载器一起使用。

4.我国液体火箭发动机发展的建议

液体火箭发动机技术是一门工程技术。如汽车、火车、轮船、甚至自行车这些工程技术一样,有其自身的发展规律。从已经过去的50年液体火箭发动机发展史来看,世界各国走过的是一条大同小异的导率,就推进剂来说,都采用过煤油、可贮存推进剂、以及液氢-液氧;从推力来说,都是从小到大;

从燃烧室压力来说,都是又低到高;而系统循环也无非是燃气发生器循环、膨胀循环、分级燃烧循环。本文仅从统计观点来说明我国液体火箭发动机今后发展的趋势。

4.1研制大推力液氢-液氧发动机

运载用液体火箭发动机可以不研制可贮存推进剂发动机,如日本。也可以不研制液氧-煤油发动机,如法国,但世界火箭大国无一不研制液氢-液氧发动机,而且要研制大推力氢氧发动机。

4.2研制液氢-液氧发动机要优先于液氢-煤油发动机

液氢-煤油是一种无毒、无污染、廉价的推进剂,由于其容积密度比冲高,适合于助推发动机应用。因此,在经济允许时应研制助推用的液氢-煤油发动机,以取代有毒、有污染的可贮存推进剂发动机。但作为助推发动机,研制液氢-煤油发动机并不是唯一的途径、不但现有的可贮存推进剂发动机可以替代它、如法国的阿里安、我国的CZ-2E,而用固体火箭也可以代替它,如日本的H-Ⅱ火箭。因此,在经济不允许的条件下、对研制液氧-煤油发动机和液氢-液氧发动机只能作出一种选择时,首先研制的应是液氧-液氧发动机,这种发动机不但可以作二级芯级,而且可以作一级芯级。

4.3发动机系统采用中压(<10MPa)燃气发生器(或膨胀)循环

采用高压分级燃烧循环是液体火箭发动机技术发展的必然趋势,因为这种循环法师可以获得较高的发动机性能。但是,对于商业应用的运载火箭发动机,追求性能已经不是唯一的目标,而且也不是一个重要的目标,重要的是经济性(当然是在可靠的基础上),即要求发动机的研制成本和生产成本要低:法国对HM-60发动机的系统循环进行了分析,采用高压分级燃烧循环发动机,其研制成本和生

产成本要比燃气发生器循环的发动机高,如果其高出的成本控制在10%~13%以内,则采用高压分级燃烧循环是可以接受的。但在法国当时的工艺、材料及技术水平下,预计高压分级燃烧循环发动机的研制成本要比燃气发生器循环高出30%,发动机的生产成本要高出20%,这是HM-60发动机不采用高压分级燃烧循环的

主要原理。日本的LE-7发动机采用了高压分级燃烧循环,当时(1984年)的研制经费预算是2.2亿美元、实际上已经超过了这个数值、研制周期也比原计划拖后了,正如日本人自己说的:“太昂贵了。

但是高压分级燃烧循环用于重复使用的发动机上则是另一回事,这是由于重复使用降低了其使用(生产)成本。据统计,一次性使用运载器(如美国大力神、宇宙神,前苏联的能源号、质子号,西欧的阿里安及我国的长征系列运载器等),由于其硬件用完后就抛掉,造成运载器的硬件成本更高,约占每次飞行总发射成本的75%;部分重复使用的发动机可以采用高压分级燃烧循环。如果具备前苏联那样的材料、工艺水平、以及高压分级燃烧循环的液体火箭发动机技术贮备,也可以采用这种系统循环方式。

我国下一代液体火箭发动机仍是一次性使用的发动机,加上我国材料、工艺及火箭技术水平并不比法国高。因此,采用高压分级燃烧循环系统、将使发动机的研制成本和生产成本大幅度增加。从经济上考虑,以采用中压燃气发生器循环(或膨胀循环)为宜。

4.4液氢-液氧发动机的推力以500KN为宜

推力之所以取500KN,除了可以满足我国近期运载器的需求以外,还有就是出于经济上的考虑。500KN发动机的研制可以充分利用我国现有的发动机试验设备。日本LE-7发动机研制中的试验设施经费占总研制费的16%,即3500万美元、还不包括全程试验台。

4.5跟踪世界技术水平的发展

如前所述,当今世界技术水平意味着我国今后的发展方向。为了今后液体火箭发动机的发展,我们必须对当今世界液体火箭发动机的先进技术进行预先研究。近期要开展的预先研究,近期要开展的预研课题应包括:

1.高压分级燃烧循环研究。

2.三组元液氢-液氧-煤油系统研究。

3.双膨胀系统研究。

4.双燃料线型发动机研究。

5.液体火箭发动机领域内的专用理论计算方法的改进研究,包括液体火箭发动机故障监控系统研究。

参考文献

1.高压火箭发动机技术Dederra C.H. and Krebs IAF-85-190

2.PouhquenM.f. HM-60 cryogenic rocket engine for the Ariane V

launcher.AIAA-82-1250

3.才旗瑞航天运载器的回收与重复使用.航天科技情报研究报告系列文集(二)

航空发动机发展史

航空发动机发展史 摘要:航空发动机的历史大致可分为两个时期。第一个时期从首次动力开始到第二次世界大战结束。在这个时期,活塞式发动机统治了40年左右。第二个时期从第二次世界大战至今。60多年来,航空燃气涡轮发动机取代了活塞式发动机,开创了喷气时代。 关键词:活塞式喷气式 航空发动机诞生一百多年来,主要经过了两个阶段。 前40年(1903~1945),为活塞式发动机的统治时期。 后60年(1939~至今),为喷气式发动机时代。在此期间,航空上广泛应用的是燃气涡轮发动机,先后发展了直接产生推力的涡轮喷气发动机和涡轮风扇发动机。亦派生发展了输出轴功率的涡轮螺旋桨发动机和涡轮轴发动机。 一、活塞式发动机统治时期 很早以前,我们的祖先就幻想像鸟一样在天空中自由飞翔,也曾作过各种尝试,但是多半因为动力源问题未获得解决而归于失败。最初曾有人把专门设计的蒸汽机装到飞机上去试,但因为发动机太重,都没有成功。到19世纪末,在内燃机开始用于汽车的同时,人们即联想到把内燃机用到飞机上去作为飞机飞行的动力源,并着手这方面的试验。 1903年,莱特兄弟把一台4缸、水平直列式水冷发动机改装之后,成功地用到他们的"飞行者一号"飞机上进行飞行试验。这台发动机只发出8.95 kW的功率,重量却有81 kg,功重比为0.11kW/daN。发动机通过两根自行车上那样的链条,带动两个直径为2.6m的木制螺旋桨。首次飞行的留空时间只有12s,飞行距离为36.6m。但它是人类历史上第一次有动力、载人、持续、稳定、可操作的重于空气飞行器的成功飞行。 在两次世界大战的推动下,活塞式发动机不断改进完善,得到迅速发展,第二次世界大战结束前后达到其技术的顶峰。发动机功率从近10kW提高到2500kW 左右,功率重量比(发动机功率与发动机质量的重力之比,简称功重比,计量单位是kW/daN)从0.11kW/daN提高到1.5kW/daN,飞行高度达15000m,飞行速度从16km/h提高到近800km/h,接近了螺旋桨飞机的速度极限。 20世纪30~40年代是活塞式发动机的全盛时期。活塞式发动机加上螺旋桨,

7266.未来10年(2020-2030)运载火箭力学及环境测试设备行业生存之路及发展报告

未来10年(2020-2030)运载火箭力学及环境测试设备行业生存 之路及发展报告

2020年10月

目录 2 近五年行业政策环境....................................... 2.1政策将会持续利好行业发展........................... 2.2行业政策体系趋千完善............................... 2.3一级市场火热,国内专利不断攀升...................... 2.4宏观环境下行业的定位............................... 3产业未来十年发展前景..................................... 3.1中国行业市场规模前景预测........................... 3.2行业进入大面积推广应用阶段......................... 3.3中国行业市场增长点................................. 3.4细分化产品将会最具优势............................. 3.5产业与互联网等产业融合发展机遇..................... 3.6人才培养市场大、国际合作前景广阔................... 3.7行业发展需突破创新瓶颈............................. 4 2020-2030年行业发展战略分析............................. 4.1树立战略突围理念...................................

液体火箭发动机故障检测与诊断技术综述——张惠军

第 30 卷 第 5 期 火 箭 推 进 Vol.30,№.5 2004年10月 JOURNAL OF ROCKET PROPULSION Oct.2004  收稿日期:2004-05-20;修回日期:2004-06-25。 作者简介:张惠军(1971—),男,工程师,研究领域为姿控发动机试验测量技术。 液体火箭发动机故障检测与诊断技术综述 张惠军 (西安航天动力试验技术研究所,陕西 西安 710100) 摘 要:对几种主要的液体火箭发动机故障检测与诊断技术的研究应用现状作了阐述,对国内外的有效经验作了简单介绍,提出了有待解决的问题。 关键词:液体火箭发动机;故障检测;故障诊断 中图分类号:V434 文献标识码:A 文章编号:(2004)05-0040-06  Study on Liquid Rocket Engine Fault Detection and Diagnostic Technology Zhang Huijun (Xi’an Aerospace Propulsion Test Technique Institute, Xi’an 710100, China ) Abstract :Application of liquid rocket engine fault detection and diagnostic methods are summarized and presented. Some useful domestic and foreign experiences are briefly introduced. Questions are given for future study. Key words :liquid rocket engine; fault detection; fault diagnosis 1 引言 液体火箭发动机故障包括试验和飞行中的一切非正常状态(包括性能下降与失效)。由于发动机是火箭的动力核心,如果发生故障就有可能造成巨大的人员和财产损失,所以对发动机的状态进行监测,及时准确地发现异常征兆,不仅可以采取紧急补救措施减少损失,还可以为改进设计和生产工艺、合理选择材料、制定合理的操作规程积累有益的经验。 液体火箭发动机是复杂的大系统,其故障的表现也呈现复杂性,这种复杂性体现为环境干扰的多样性,故障特征的多样性,故障的多样性以及内部的多耦合表现出的强非线性,这给液体火箭发动机故障检测与诊断带来很大困难,但电子信息技术、信号分析处理技术、人工智能技术、非线性理论等相关学科的发展为解决困难带来了突破。 近年来,液体火箭发动机的检测与诊断方法和技术的研究在国内外逐渐得到重视并取得了重要的进展,主要体现在以下几方面:基于信号分析的方法,基于模型的方法,基于人工智能的方法,

论航空航天发展成就及未来展望

论航空航天发展成就及未来展望 20110603·王斌 中国航天事业自1956 年创建以来,经历了艰苦创业、配套发展、改革振兴和走向世界等几个重要时期,迄今已达到了相当规模和水平。 1970 年4 月24 日21 时31 分,中国“东方红”一号飞向太空,这是中国发射的第一颗人造卫星;1975 年11 月26 日,中国首颗返回式卫星发射成功,天后顺利返回,3 中国成为世界上第三个掌握卫星返回技术的国家;1987 年8 月,中国返回式卫星为法国搭载试验装置。这是中国打入世界航天市场的首次尝试;2003 年10 月15 日,神舟五号载人飞船升空;2005 年10 月12 日,航天员费俊龙、聂海胜乘坐神舟六号飞船再次飞上太空,并在遨游太空5 天、完成一系列太空实验后安全返回地面;2007 年10 月24 日18 时05 分,搭载着我国首颗探月卫星嫦娥一号的长征三号甲运载火箭在西昌卫星发射中心三号塔架点火成功发射;2008 年9 月25 日神舟七号发射升空,并实现中国首次太空出仓活动;2010 年10 月1 日18 时59 分57 秒,“嫦娥二号” 在西昌卫星发射中心发射升空,并获得了圆满成功。 我国的航空事业起步很晚,但是经过我国科研工作者的不懈努力,也取得了辉煌的成就。初教-5 教练机,我国第一种自行制造的初级教练机;歼-5 由沈飞工业公司研制,是单座单发高亚音速喷气

式战斗机,主要用于昼间截击,具有一定的对地攻击能力;歼-12 轻型战斗机是我国第一种完全依靠本国技术力量进行设计和制造的喷气战斗机。它摆脱前苏联系列飞机的设计格局,为我国独立自主研制战斗机奠定了良好基础;运-5 运输机是我国第一种自行制造的运输机;直-5 是我国制造的第一种多用途直升机,也是新中国直升机科研应用的开端;歼-8 战斗机是我国在歼-7,即米格-21 的基础上独立进行重大改进研制而成的高空高速战斗机,长期守卫我国领空;歼-10将是我国第一种自行设计的、装备部队使用的第三代战斗机,第一种自行设计的、真正兼有空优/对地双重作战能力的作战飞机我国航空航天经历了艰苦创业、配套发展、改革振兴和走向世界等几个重要时期,迄今已达到了相当规模和水平:形成了完整配套的研究、设计、生产和试验体系;取得了显著的社会效益和经济效益;建立了具有一定水平的科学研究系统,取得了多项创新成果;培育了一支素质好、技术水平高的航空航天科技队伍,二十一世纪将是世界航天活动蓬勃发展的新世纪,我们航空航天人应该百尺竿头,更进一步。我国航空航天的发展大多走的是仿制的道路,一个航空航天大国需要的是创新,自主创新能力是国家竞争力的核心。一个国家只有拥有强大的自主创新能力,才能在激烈的国际竞争中把握先机、赢得主动。所以国家要多培养创新型人才,加强预先研究和技术基础建设,集中力量攻克重大关键技术,掌握核心技术,形成自主知识产权。同时加强技术基础建设,扩大国际合作,继续保持中国航空航天事业的发展势头。我国的科研单位大多是行政化管理,缺失有效的管理机

层板发汗冷却在液体火箭发动机中的应用与发展综述

第33卷第6期 2007年12月 火箭推进 JOURNALOFROCKETPROPULSION Vol.33,№.6Dec.2007 收稿日期:2006-10-30;修回日期:2007-10-18。基金项目:国家自然科学基金(50276067)。作者简介:张峰(1980—),男,博士研究生,研究领域为航天器及其动力系统热分析与热控制。 层板发汗冷却在液体火箭发动机中的 应用与发展综述 张峰,刘伟强 (国防科技大学航天与材料工程学院,湖南,长沙410073) 摘要:较系统地介绍了应用于液体火箭发动机推力室冷却的层板技术,指出了层板发 汗冷却的技术优势。介绍了一内壁全部由层板构成的液体火箭发动机推力室结构及其层板发汗冷却单元的设计和加工工艺问题。总结了国内外关于层板发汗在火箭推力室冷却方面的研究进展,并简要论述了其应用前景。 关键词:层板;发汗冷却;液体火箭发动机;推力室中图分类号:V434 文献标识码:A 文章编号: (2007)06-0043-06 Applicationanddevelopmentofplatelettranspiration coolingtechnologyinLRE ZhangFeng,LiuWeiqiang (Inst.ofAerospaceandMaterialEngineering,NationalUniv.ofDefenseTechnology,Changsha410073,China) Abstract:Platelettechnologyanditsadvantagesareintroducedindetail.Athrustchamberstructurewithwholeinnerwallconsistingofplateletsanditsmanufactureprocessarepresented.ProgressesinplatelettechnologyapplicationstoLRE'sthrustchamberbothindomesticandabroadaresummarized.Itsfutureapplicationprospectisdiscussed. Keywords:platelet;transpirationcooling;LRE;thrustchamber 1引言 上世纪六十年代,美国空军火箭推进实验室(AirForceRocketPropulsionLaboratory)在研究 高压火箭燃烧室时,Kuntz等人设计并制成了用 多个表面刻有冷却剂通道的薄板构成的发汗冷却推力室,如图1[1]所示。到目前为止,已经出现了数百种层板热控制装置。该冷却方式有降低冷却系统压降,减轻涡轮泵负担,所用冷却剂量较小

世界航空发动机发展史

世界航空发动机发展史 摘要:航空发动机的历史大致可分为两个时期。第一个时期从首次动力开始到第二次世界大战结束。在这个时期,活塞式发动机统治了40年左右。第二个时期从第二次世界大战至今。60多年来,航空燃气涡轮发动机取代了活塞式发动机,开创了喷气时代。 关键词:活塞式喷气式 航空发动机诞生一百多年来,主要经过了两个阶段。 前40年(1903~1945),为活塞式发动机的统治时期。 后60年(1939~至今),为喷气式发动机时代。在此期间,航空上广泛应用的是燃气涡轮发动机,先后发展了直接产生推力的涡轮喷气发动机和涡轮风扇发动机。亦派生发展了输出轴功率的涡轮螺旋桨发动机和涡轮轴发动机。 一、活塞式发动机统治时期 很早以前,我们的祖先就幻想像鸟一样在天空中自由飞翔,也曾作过各种尝试,但是多半因为动力源问题未获得解决而归于失败。最初曾有人把专门设计的蒸汽机装到飞机上去试,但因为发动机太重,都没有成功。到19世纪末,在内燃机开始用于汽车的同时,人们即联想到把内燃机用到飞机上去作为飞机飞行的动力源,并着手这方面的试验。 1903年,莱特兄弟把一台4缸、水平直列式水冷发动机改装之后,成功地用到他们的"飞行者一号"飞机上进行飞行试验。这台发动机只发出8.95 kW的功率,重量却有81 kg,功重比为0.11kW/daN。发动机通过两根自行车上那样的链条,带动两个直径为2.6m的木制螺旋桨。首次飞行的留空时间只有12s,飞行距离为36.6m。但它是人类历史上第一次有动力、载人、持续、稳定、可操作的重于空气飞行器的成功飞行。 在两次世界大战的推动下,活塞式发动机不断改进完善,得到迅速发展,第二次世界大战结束前后达到其技术的顶峰。发动机功率从近10kW提高到2500kW 左右,功率重量比(发动机功率与发动机质量的重力之比,简称功重比,计量单位是kW/daN)从0.11kW/daN提高到1.5kW/daN,飞行高度达15000m,飞行速

大型飞机发动机的发展现状和关键技术分析

第23卷第6期2008年6月 航空动力学报 Journal of Aerospace Pow er Vol.23No.6 J une 2008 文章编号:100028055(2008)0620976205 大型飞机发动机的发展现状和关键技术分析 刘大响1,金 捷2,彭友梅1,胡晓煜3 (1.中国航空工业第一集团公司科技委,北京100012; 2.北京航空航天大学航空发动机数值仿真研究中心,北京100083; 3.中国航空工业第一集团公司发展研究中心,北京100012) 摘 要:对军民用大涵道比涡扇发动机的现状和发展趋势等进行了阐述,从国家大型飞机工程的战略目标、大型飞机发动机的重要性和市场前景等方面,对我国大涵道比涡扇发动机的需求、现状和差距进行了初步分析,简要介绍了我国大涵道比涡扇发动机的总体方案,提出了发展我国大涵道比涡扇发动机的主要关键技术,并分别从大涵道比涡扇发动机、国际合作、材料工艺试验条件建设等方面,简要论述了关键技术解决途径与措施建议. 关 键 词:大涵道比涡扇发动机;综述;需求分析;关键技术;措施途径中图分类号:V231 文献标识码:A 收稿日期:2007208209;修订日期:2008204208 作者简介:刘大响(1937-),男,湖南祁东人,教授、博导、工程院院士,主要研究方向:发动机发展战略、发动机总体、稳定性分析 和评定、发动机数值仿真技术等. Summarization of development status and key technologies for large airplane engines L IU Da 2xiang 1,J IN Jie 2,PEN G Y ou 2mei 1,HU Xiao 2yu 3 (https://www.sodocs.net/doc/fe11082557.html,mittee of Science and Technology of China Aviation Indust ry Corporation I , Beijing 100012,China ; 2.Aeroengine Numerical Simulation Research Center , Beijing University of Aeronautics and Ast ronautics ,Beijing 100083,China ;3.Develop ment and Research Center of China Aviation Indust ry Corporation I , Beijing 100012,China )Abstract :The develop ment stat us and trends of military and civil high bypass pressure ratio (BPR )t urbofan engines for large airplanes has been summarized in t he paper.In t he as 2pect s of st rategical goals ,importance and marketing foreground of t he high BPR t urbofan engines for national large airplanes engineering in China ,t he requirement s ,stat us and gap s of high BPR t urbofan engines in China have been analysis briefly as well as t he int roduction of t he overall engine scheme for t he high BPR t urbofan engines wit h t he main key technolo 2gies for t he engines.In terms of military and civil high BPR t urbofan engines technologies ,international cooperation ,materials and techniques and test facilities ,some suggestion and app roach have been discussed for t he technical challenges wit h t he develop ment of high BPR t urbofan engines in China. K ey w ords :highbypass pressure ratio (BPR )t urbofan engine ;summarization ; requirement s ;key technologies ;app roach

汽车发动机发展史

汽车发动机发展史 汽车整体技术日新月异,而作为汽车的心脏——发动机技术的进步显得更受关注。如今介绍一辆汽车的发动机时:可变气门正时技术,双顶置凸轮轴技术,缸内直喷技术,VCM汽缸管理技术,涡轮增压技术,等等都已经运用的相当广泛;在用料上也是往轻量化的方向发展:全铝发动机目前的应用已经非常广泛;汽车的污染也是不可避免,于是新能源技术,包括柴油机的高压共轨,燃料电池,混合动力,纯电动,生物燃料技术也已经有普及的趋向,但回顾一下发动机的历史或许更能理解这一百多年来汽车技术所发生的巨大变革。 十佳发动机VQ35 汽车技术的迅猛发展从我国的汽车教材也能看出端倪:新技术的发展已经让汽车教材难以跟上步伐!如今大部分汽车教材还是以东风汽车的发动机来作为范例,而东风发动机还是带化油器的老式发动机,与如今全电子化的发动机简直就隔了几个世纪。 回到汽车的起步阶段,那时的汽车被马车嘲笑,污染严重,但起步的意义却非同寻常。 汽油机之前的摸索阶段

18世纪中叶,瓦特发明了蒸气机,此后人们开始设想把蒸汽机装到车子上载人。法国的居纽(N.J.Cugnot)是第一个将蒸汽机装到车子上的人。1770年,居纽制作了一辆三轮蒸汽机车。这辆车全长7.23米,时速为3.5公里,是世界上第一辆蒸汽机车。1771年古诺改进了蒸汽汽车,时速可达9.5千米,牵引4-5吨的货物。 蒸汽机汽车 1858年,定居在法国巴黎的里诺发明了煤气发动机,并于1860年申请了专利。发动机用煤气和空气的混合气体取代往复式蒸汽机的蒸汽,使用电池和感应线圈产生电火花,用电火花将混合气点燃爆发。这种发动机有气缸、活塞、连杆、飞轮等。煤气机是内燃机的初级产品,因为煤气发动机的压缩比为零。 N.J.Cugnot 1867年,德国人奥托(Nicolaus August Otto)受里诺研制煤气发动机的启发,对煤气发动机进行了大量的研究,制作了一台卧式气压煤气发动机,后经过改进,于1878年在法国举办的国际展览会上展出了他制作的样品。由于该发动机工作效率高,引起了参观者极大的兴趣。在长期的研究过程中,奥托提出了内燃机的四冲程理论,为内燃机的发明奠定了理论基础。德国人奥姆勒和卡尔·本茨根据奥托发动机的原理,各自研制出具有现代意义的汽油发动机,为汽车的发展铺平了道路。 1892年,德国工程师狄塞尔根据定压热功循环原理,研制出压燃式柴油机,并取得了制造这种发动机的专利权。

火箭发动机发汗冷却技术文献综述

中图分类号:V434 文献综述 火箭发动机发汗冷却技术Transpiration cooling technologyin rocket motor 学科专业: 航空宇航推进理论与工程

航天防热技术是保证航天器在上升段和再入段的外部加热环境下不至于发生过热和烧毁的一项关键技术,同时也是保证导弹在再入气动加热环境下正常工作和保证火箭发动机在严重的内部加热环境下正常工作的一项关键技术。防热技术的目的是设计吸收或耗散气动加热,通过采用各种防热结构和材料实现。 随着航空航天技术的发展,对所需材料——尤其高温工作部件的材料的各种性能的要求越来越高,在航天领域有些材料的工作温度远远超过材料的熔点,火箭发动机内的燃气温度高达3000~4800 K,喷管出口处的燃气流马赫数最高可达6 Ma以上,这样的高温燃气将会产生巨大的热流并传向发动机燃烧室壁面和喷管壁面,若不采取有效的发动机热防护措施,将会造成发动机结构的破坏,要求其保持较好的气动外形以及重要性能指标仍然保持在一定的水平,常规的材料不能满足要求;为此除研制新型高温特殊材料外,从20世纪60年代初对材料采用相应冷却技术进行了研究,以提高材料的使用温度,从而增加推重比和推进效率,使推进系统和燃烧室承受更高的压力和温度,这就需要在所能接受的极限温度范围内采用更加可靠有效的冷却技术来保持材料的可靠性和完整性。防热技术包括烧蚀防热、辐射防热、热沉防热、隔热、发汗冷却和主动冷却等多种防热方式。如图1所示,左中右分别是辐射冷却、烧蚀冷却和再生冷却的原理图。本文,我们主要介绍发汗冷却。发汗冷却技术是将要在液体火箭发动机中得到了广泛应用的一种行之有效的热防护措施[1]。 图1辐射冷却、烧蚀冷却和再生冷却原理图

先进航空发动机关键制造技术发展现状与趋势

先进航空发动机关键制造技术发展现状与趋势 一、轻量化、整体化新型冷却结构件制造技术1 整体叶盘制造技术整体叶盘是新一代航空发动机实现结构创新与 技术跨越的关键部件,通过将传统结构的叶片和轮盘设计成整体结构,省去传统连接方式采用的榫头、榫槽和锁紧装置,结构重量减轻、零件数减少,避免了榫头的气流损失,使发动机整体结构大为简化,推重比和可靠性明显提高。在第四代战斗机的动力装置推重比10 发动机F119 和EJ200上,风扇、压气机和涡轮采用整体叶盘结构,使发动机重量减轻20%~30%,效率提高5%~10%,零件数量减少50% 以上。目前,整体叶盘的制造方法主要有:电子束焊接法;扩散连接法;线性摩擦焊接法;五坐标数控铣削加工或电解加工法;锻接法;热等静压法等。在未来推重比15~20 的高性能发动机上,如欧洲未来推重比15~20 的发动机和美国的IHPTET 计划中的推重比20的发动机,将采用效果更好的SiC 陶瓷基复合材料或抗氧化的C/C 复合材料制造整体涡轮叶盘。2 整体叶环(无盘转子)制造技术如果将整体叶盘中的轮盘部分去掉,就成为整体叶环,零件的重量将进一步降低。在推重比15~20 高性能发动机上的压气机拟采用整体叶环,由于采用密度较小的复合材料制造,叶片减轻,可以直接固定在承力环上,从而取消了轮盘,使结构质量减轻70%。目前正

在研制的整体叶环是用连续单根碳化硅长纤维增强的钛基复合材料制造的。推重比15~20 高性能发动机,如美国XTX16/1A 变循环发动机的核心机第3、4 级压气机为整体叶环转子结构。该整体叶环转子及其间的隔环采用TiMC 金属基复合材料制造。英、法、德研制了TiMMC 叶环,用于改进EJ200的3级风扇、高压压气机和涡轮。3 大小叶片转子制造技术大小叶片转子技术是整体叶盘的特例,即在整体叶盘全弦长叶片通道后部中间增加一组分流小叶片,此分流小叶片具有大大提高轴流压气机叶片级增压比和减少气流引起的振动等特点,是使轴流压气机级增压比达到3 或3 以上的有发展潜力的技术。4 发动机机匣制造技术在新一代航空发动机上有很多机匣,如进气道机匣、外涵机匣、风扇机匣、压气机机匣、燃烧室机匣、涡轮机匣等,由于各机匣在发动机上的部位不同,其工作温度差别很大,各机匣的选材也不同,分别为树脂基复合材料、铁合金、高温合金。树脂基复合材料已广泛用于高性能发动机的低温部件,如F119 发动机的进气道机匣、外涵道筒体、中介机匣。至今成功应用的树脂基复合材料有PMR-15(热固性聚酰亚胺)及其发展型、Avimid(热固性聚酰亚胺)AFR700 等,最高耐热温度为290℃~371℃,2020 年前的目标是研制出在425℃温度下仍具有热稳定性的新型树脂基复合材料。树脂基复合材料构件的制造技术是集自动铺带技术(ATL)、自动纤维铺放

未来运载火箭发展方向

学校:…… 班级:…… 成员:…… 指导老师:……

随着人类航天技术的发展,运载火箭成为人类进行卫星发射、载人航天的主要工具。而随着科技的进步,运载火箭技术也在不断的更新换代着。 现代运载火箭 目前常用的运载火箭按其所用的推进剂来分,可分为固体火箭、液体火箭和固液混合型火箭三种类型。固体火箭发动机为使用固体推进剂的化学火箭发动机,推进剂有聚氨酯、聚丁二烯、端羟基聚丁二烯、硝酸酯增塑聚醚等。固体火箭发动机与液体火箭发动机相比较,工作时间短,加速度大导致推力不易控制,重复起动困难,从而不利于载人飞行。因此,固体火箭发动机主要用作火箭弹、导弹和探空火箭的发动机,以及航天器发射和飞机起飞的助推发动机。

液体火箭发动机是指液体推进剂的化学火箭发动机,常用的液体氧化剂有液态氧、四氧化二氮等,燃烧剂由液氢、偏二甲肼、煤油等。现代液体燃料火箭是美国人戈达德搞出来的,采用液氧-煤油。液体火箭发动机的优点是比冲高,推力范围大、能反复起动、能控制 推力大小、工作时间较长等。

但是,无论运载火箭使用的推进剂是什么,它所造成的污染却是一个不可忽视的问题。在火箭发射过程中产生的烃类物质和氮类物质会破坏臭氧层.而且在平流层产生的大量污染气体,在平流层稳定的环境下很长一段时间也得不到较好的分解。另外,一些推进剂本身就有许多不足。以液体推进剂中的偏二甲肼/四氧化二氮组合为例,毒性大、污染严重、价格高、性能低,尤其是偏二甲肼/四氧化二氮的燃烧产物——由于不完金燃烧产生的一氧化碳及剩余的燃料或氧化剂都是大气污染物。其中N2O4会部分分解为NO2。NO2等氮氧化物在紫外线的作用下能强烈地破坏臭氧层,威力不下于氟氯代烷。 下图为挑战者号航天飞机失事时的图片,橘红色烟雾为四氧化二氮

航空发动机发展史

航空发动机发展史 航空发动机诞生一百多年来,主要经过了两个阶段:前40年(1903~1945),为活塞式发动机的统治时期;后60年(1939~至今),为喷气式发动机时代。在此期间,航空上广泛应用的是燃气涡轮发动机,先后发展了直接产生推力的涡轮喷气发动机和涡轮风扇发动机。亦派生发展了输出轴功率的涡轮螺旋桨发动机和涡轮轴发动机。 一、活塞式发动机统治时期 很早以前,我们的祖先就幻想像鸟一样在天空中自由飞翔,也曾作过各种尝试,但是多半因为动力源问题未获得解决而归于失败。最初曾有人把专门设计的蒸汽机装到飞机上去试,但因为发动机太重,都没有成功。到19世纪末,在内燃机开始用于汽车的同时,人们即联想到把内燃机用到飞机上去作为飞机飞行的动力源,并着手这方面的试验。 1903年,莱特兄弟把一台4缸、水平直列式水冷发动机改装之后,成功地用到他们的"飞行者一号"飞机上进行飞行试验。这台发动机只发出8.95 kW的功率,重量却有81 kg,功重比为0.11kW/daN。发动机通过两根自行车上那样的链条,带动两个直径为2.6m的木制螺旋桨。首次飞行的留空时间只有12s,飞行距离为36.6m。但它是人类历史上第一次有动力、载人、持续、稳定、可操作的重于空气飞行器的成功飞行。 在两次世界大战的推动下,活塞式发动机不断改进完善,得到迅速发展,第二次世界大战结束前后达到其技术的顶峰。发动机功率从近10kW提高到2500kW 左右,功率重量比(发动机功率与发动机质量的重力之比,简称功重比,计量单位是kW/daN)从0.11kW/daN提高到1.5kW/daN,飞行高度达15000m,飞行速度从16km/h提高到近800km/h,接近了螺旋桨飞机的速度极限。 20世纪30~40年代是活塞式发动机的全盛时期。活塞式发动机加上螺旋桨,构成了所有战斗机、轰炸机、运输机和侦察机的动力装置;活塞式发动机加上旋翼,构成所有直升机的动力装置。著名的活塞式发动机有:美国普拉特·惠特尼公司(简称普·惠公司)的“黄蜂”系列星形气冷发动机,气缸7~28个,功率970~2500kW,广泛用于各种战斗机、轰炸机和运输机。 带螺旋桨的活塞式发动机的最大缺点是飞行速度受到限制(800km/h以下)。

液体火箭发动机工作原理

液体火箭发动机工作原理: 液体火箭发动机是指液体推进剂的化学火箭发动机。 常用的液体氧化剂有液态氧、四氧化二氮等,燃烧剂由液氢、偏二甲肼、煤油等。氧化剂和燃烧剂必须储存在不同的储箱中。 液体火箭发动机一般由推力室、推进剂供应系统、发动机控制系统组成。 推力室是将液体推进剂的化学能转变成推进力的重要组件。它由推进剂喷嘴、燃烧室、喷管组件等组成,见图。推进剂通过喷注器注入燃烧室,经雾化,蒸发,混合和燃烧等过成生成燃烧产物,以高速(2500一5000米/秒)从喷管中冲出而产生推力。燃烧室内压力可达200大气压(约200MPa)、温度300℃~4000℃,故需要冷却。 推进剂供应系统的功用是按要求的流量和压力向燃烧室输送推进剂。按输送方式不同,有挤压式(气压式)和泵压式两类供应系统。挤压式供应系统是利用高压气体经减压器减压后(氧化剂、燃烧剂的流量是靠减压器调定的压力控制)进入氧化剂、燃烧剂贮箱,将其分别挤压到燃烧室中。挤压式供应系统只用于小推力发动机。大推力发动机则用泵压式供应系统,这种系统是用液压泵输送推进剂。 发动机控制系统的功用是对发动机的工作程序和工作参数进行调节和控制。工作程序包括发动机起动、工作、关机三个阶段,这一过程是按预定程序自动进行的。工作参数主要指推力大小、推进剂的混合比。 液体火箭发动机的优点是比冲高(250~500秒),推力范围大(单台推力在1克力~700吨力)、能反复起动、能控制推力大小、工作时间较长等。液体火箭发动机主要用作航天器发射、姿态修正与控制、轨道转移等。 液体火箭发动机是航天发射的主流,构造上比固体发动机复杂得多,主要由点火装置,燃烧室,喷管,燃料输送装置组成。点火装置一般是火药点火器,对于需要多次启动的上面级发动机,则需要多个火药点火器,如美国战神火箭的J-2X发动机,就具备2个火药点火器实现2次启动功能,我国的YF-73和YF-75也都安装了2个火药点火器,具备了2次启动能力;燃烧室是液体燃料和氧化剂燃烧膨胀的地方,为了获得更高的比冲,一般具有很高的压力,即使是普通的发动机,通常也有数十个大气压之高的压力,苏联的RD-180等发动机,燃烧室压力更是高达250多个大气压。高压下的燃烧比之常压下更为复杂,同时随着燃烧室体积的增加,燃烧不稳定情况越来越严重,解决起来也更加麻烦。目前根本没有可靠的数学模型分析燃烧稳定性问题,主要靠大量的发动机燃烧试验来解决。美国的土星5号火箭的F-1发动机,进行了高达20万秒的地面试车台燃烧测试,苏联能源号火箭的RD-170发动机,也进行了10多万秒的地面试车台燃烧测试,在反复的燃烧测试中不断优化发动机各项参数,

浅谈军事航天技术发展动向及对未来作战的影响

浅谈军事航天技术发展动向及对未来作 战的影响 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 1 军事航天技术发展动向 按照作用的不同,军事航天技术包括进入空间装备技术、利用空间装备技术和控制空间装备技术。进入空间装备技术和利用空间装备技术已广泛应用与军事领域,且性能不断提升,控制空间装备技术不断取得突破,以具备一定的实战能力。 进入空间装备技术向系列化、快速化方向发展 系列化、组合化成为火箭发展的重点方向,将有效提升其多任务适应能力。未来的运载火箭将通过不同发动机的组合,实现运载火箭的通用化,运载能力的系列化。美国提出的改进型一次性运载火箭(EELV)将形成包括小型、中型、重型在内的具有不同运载能力的一次性运载火箭系列,可执行近地轨道、地球同步转移轨道、太阳同步轨道和地球同步轨道发射任务。美国在EELV 计划下研制的“宇宙神-5”运载火箭有3个系列,10 余种型号,可提供4~13 吨的地球同步轨道运载能力。

快速、机动发射成为火箭发展的重要方向,将有效提升空间系统的快速重构与恢复能力。当前世界各国正在积极研发新一代快速、机动、廉价、可靠的小型运载工具,进一步缩短发射准备周期,降低发射成本。美国在“力量运用与从本土发射”计划中提出,快速响应火箭应能在24小时内将有效载荷送入低地球轨道。2011 年,DARPA 启动“空射辅助空间进出”(ALASA)快速响应空中发射运载火箭项目,目标是在接到卫星发射通知后一天内完成发射,并通过将整个发射流程转为自动化降低成本。 可重复使用运载器备受重视,将有效降低进入空间成本并提高快速响应能力。2010 年 4 月,美国空军制定出下一代“可复用助推器系统”架构,提出发展两种构型的可复用助推器。可复用助推器的寿命可达100 次,发动机寿命10 次。2011 年12 月,美空军授出 3 份合同,在“可重复使用助推级系统飞行与地面试验”计划中进行系统设计、制造和试验,使完全可重复使用第一级推进系统技术成熟化[2]。2011 年,欧洲可重复使用运载器发展计划,“过渡试验飞行器”完成关键设计。 利用空间装备技术向高精度、高时效性、大容量、抗干扰方向发展

氢气发动机的发展和现状

课程结业论文 题目:氢气发动机的发展和现状 学生姓名: 学生学号: 专业班级: 课程名称:现代汽车新技术概论 所属院部: 指导教师: 2013——2014学年第 1 学期

目录 第一章绪论 (1) 1.1氢气发动机的历史 (1) 1.2 氢动力汽车的现状 (2) 1.3氢动力汽车的研究发展方向 (3) 1.4发展氢动力汽车的必要性 (3) 第二章氢气能源性质 (4) 2.1 氢的特征 (4) 2.2氢气与传统燃料的性质对比 (5) 2.3 氢能的开发和利用 (6) 2.3.1 氢能的开发 (6) 2.3.2氢能的应用 (8) 第三章氢气的存储 (10) 3.1高压气瓶储氢 (10) 3.2液氢储氢 (11) 3.3金属氢化物储氢 (11) 3.4 浆液储氢技术 (12) 第四章氢气发动机的发展前景 (13)

氢气发动机的发展和现状 第一章绪论 1.1氢气发动机的历史 随着“汽车社会”的逐渐形成,汽车保有量不断地上升,而石油等资源却捉襟见肘,同时,消耗大量汽油的车辆不断排放有害气体和污染物质,对环境造成严重的危害。这一问题的解决之道当然不是限制汽车产业的发展,而是开发替代石油的新能源—氢能。氢作为内燃机的燃料并是人类最近的发明。在内燃机中使用氢气已有相当长的历史。 人类历史上第一款氢气内燃机的历史可以上溯到 1807 年,瑞士人伊萨克·代·李瓦茨制成了单缸氢气内燃机。他把氢气充进气缸,氢气在气缸内燃烧,最终推动活塞往复运动。该项发明在 1807 年 1 月 30 日获得法国专利,这是第一个关于汽车产品的专利。但由于受当时的技术水平所限,制造和使用氢气远比使用蒸汽和汽油等资源复杂,氢气内燃机于是被蒸汽机、柴油机以及汽油机“淹没”。 早在十九世纪中期,人们就开始对使用氢气作为内燃机燃料产生了兴趣。1841 年英国颁发了第一个用氢气和氧气的混合气体工作的内燃机专利证。1852 年,慕尼黑的宫廷钟表技师制成一台用氢气-空气混合气体工作的内燃机。 在氢内燃机的历史上,德国一直占有很重要的地位。德国的 Rudolph Erren 尝试在氢内燃机中采用内部混气的方式。在他的研究工作中,穿过内燃机的冷水套的管道,氢气被一些小喷嘴直接喷入气缸内进行混合。氢喷入的质量和时间由燃料分配器控制,这种方案可以用任何燃料或是采用双燃料的方式让发动机工作。他还提出氢氧内燃机构想,并据此设计了实验,用到潜艇上。德国的奔驰公司开发组建的氢动力车队是世界首个用氢气作为内燃机燃料的车队,该车队在柏林已经试运行多年。氢气输送管道,加氢站也是最先在德国兴建的。现在,空中客车公司德国分部,奔驰航空公司也都正在努力开发装备氢动力内燃机的空中飞机。德国的其他汽车公司如宝马等都在大力发展氢动力汽车。 1.2 氢动力汽车的现状 日本自 1984 年实施“阳光计划”,投入示范运行氢动力车,仅日本武藏工业大学就有多达九辆的氢动力车投入试验,且型号各不相同;日本各大汽车公司,如马自达,本田等,也都在积极加入氢动力车行列;马自达公司推出了第一款氢动力概念车 HR-X,金属氢化物储氢罐储氢,

液体火箭发动机综述

液体火箭发动机发展现状及发展趋势概述 摘要:介绍了液体火箭发动机的优缺点、工作原理,总结了大推力和小推力发动机的国内外发展现状,提出了未来液体火箭发动机的发展方向。 关键词:液体火箭发动机,推进系统,发展现状,发展趋势 1 引言 液体火箭发动机作为目前最为成熟的推进系统之一,具有诸多独特的优势,仍然是各国努力发展的主力推进系统,并且在大推力和小推力方面都取得了诸多成果,本文将美国、俄罗斯、欧洲、日本、中国等国家的发展状况进行了综述,目前美国仍然在大多数推进系统方面领先世界,俄罗斯则继续保持液体推进特别是大推力液体火箭方面的领先地位,欧盟和日本在追赶美国的技术水平,以中国为代表的第三世界国家也开始在液体推进领域同传统强国展开竞争。 2 定义与分类 液体火箭发动机(Liquid Rocket Motor)是指液体推进剂火箭发动机,即使用液态化学物质作为能源和工质的化学火箭推进系统。按照推进剂供应系统,可以分为挤压式和泵压式;按照推进剂组元可分为单组元、双组元、三组元;按照功能分,一类用于航天运载器和弹道导弹,包括主发动机、助推发动机、芯级发动机、上面级发动机、游动发动机等,另一类用于航天器主推进和辅助推进,包括远地点发动机、轨道机动发动机、姿态控制和轨道控制发动机等。 3 工作原理 液体火箭发动机工作时(以双组元泵压式液体火箭发动机为例),推进剂和燃料分别从储箱中被挤出,经由推进剂输送管道进入推力室。推进剂通过推力室头部喷注器混合雾化,形成细小液滴,被燃烧室中的火焰加热气化并剧烈燃烧,在燃烧室中变成高温高压燃气。燃气经过喷管被加速成超声速气流向后喷出,产生作用在发动机上的推力,推动火箭前进。

航空航天器的发展与展望

航空航天器的发展与展望 摘要:在科学技术不够发达的古代,人类虽然对飞行梦寐以求,但始终只能将这种热情寄托在遥远的幻想中。几千年来中国、印度、希腊和埃及等文明古国流传着许许多多关于人类飞上天空的神话故事,如我国古代传说中的“嫦娥奔月”和西方神话中长有翅膀的天使们的各种故事。从古代开始,人类就通过自身的努力和开拓,制造也风筝和热气球等飞行工具,来追求伟大的以待梦想,这些简单的手工造制作便成就了飞器的雏形。无数的飞行先驱者不断努力尝试飞行,终于于1903年12月17日,莱特兄弟综研制的“飞行者”1号飞机首先试飞成功。此后几十年的光阴里,飞机从实验室走向了战场,正因在战场上的应用而使得其飞速发展;并而在后来中应用到民航中,而使其作用发扬光大。展望未来,航空器将会向实用型和智能型方向继续发展。 关键词:航天器航天技术应用发展史 Abstract : in science and technology is not developed in ancient times, although the dream of human flight, but always only the passion lies in the distant fantasy. For thousands of years in China, India, Greece and Egypt and other ancient civilizations circulate many about the human fly in the sky of fairy tales, such as the ancient Chinese legend of the" Moon" and Western mythology winged angel 's story. Since the ancient times, humans have through their own efforts and development, manufacturing and kite and balloon flight instruments, to the pursuit of great to dream, these simple hand-made production made the aircraft prototype. Numerous flight pioneers constantly try to fly, and finally in December 17, 1903, the Wright brothers fully developed "flight" aircraft 1 first successful test flight. After decades of time, aircraft from the laboratory to the battlefield, because on the battlefield and the rapid development of the application; and in later applied to civil aviation, and the role of carry forward. Looking to the future, the aircraft will be to the practical and intelligent direction of continued development. 引言 远古时代那些关于航空航天的神话,深刻影响着人类的生活和思想。这些迷人的故事,激发着一代又一代人创造飞行器的兴趣,并不断激励着人类进行着各种飞行冒险和科学实践。在古人幻想飞上天空的几种方法——借天神的帮助、飞禽鸟兽运载、自己身上绑上翅膀和依靠“会飞的车子”中,最终人类还是依赖于自己的聪明才智和不懈的实践,发明了“会飞的车子”,实现了飞天的梦想。这些“会飞的车子”,今天统称为飞行器。如今航空航天技术的发展与应用取得了巨大的科技成就,放眼未来航空航天的发展前景巨大,商业价值和科学价值都很高,航天技术的发展将领导人类迈向一个新的科技领域。 人类认识自然、改造自然、扩大活动范围经历了十分漫长的过程,从陆地到海洋,从地面到空中,从大气层内到宇宙空间,在探索宇宙中,人类的科学技术也在一次又一次飞跃。

相关主题