搜档网
当前位置:搜档网 › 动量与动量守恒定律全章典型习题精讲

动量与动量守恒定律全章典型习题精讲

动量与动量守恒定律全章典型习题精讲
动量与动量守恒定律全章典型习题精讲

动量及动量守恒定律全章典型习题精讲

一.学法指导:

动量这部分内容,本身并不复杂,主要有冲量和动量这两个概念,还有动量定理和动量守恒定律这两个重要规律.动量定理是对一个物体说的,它受到合外力的冲量等于该物体动量的增量.动量守恒定律是对相互作用的系统而言的,在系统不受外力作用的情况下,系统的总动量守

本章的难点主要在于冲量和动量都是矢量,矢量的运算比起标量的运算来要困难得多.我们中学阶段目前只要求计算同一直线上的动量问题,对于同一直线上的动量,可以用正负号表示方向,从而把矢量运算转化为代数运算.

这部分内容的另一个难点是涉及到相互作用的系统内物体的动量和机械能的综合问题,为此,我们在学习时要把动量这部分内容与机械能部分联系起来.下面三个方面的问题是我们学习中要重点理解和掌握的.

1、4个重要的物理概念,即冲量、动量、功和动能,下面把它们归纳、整理、比较如下:

(1)冲量和功,都是“力”的,要注意是哪个力的冲量,哪个力做的功.动量和动能,都是“物体”的,要注意是哪个物体的动量、哪个物体的动能.(2)冲量和功,都是“过程量”,与某一段过程相对应.要注意是哪个过程的冲量,是哪个过程中做的功.

动量和动能,都是“状态量”,与某一时刻相对应.要注意是哪个时刻的动量或动

能,过程量是不能与状态量划等号的,即决不能说某力的冲量等于某时刻的动量,或说某个功等于某时刻的动能.动量定理和动能定理都是“过程关系”,它们说的是在某段过程中,物体受到的合外力的冲量或做的功,等于物体动量或动能的增量,这里“增量”又叫“变化量”,是相应过程的“始”、“末”两个状态量的差值,表示的还是某一段过程的状态的变化

此外,还有一点要注意,那就是这些物理量与参考系的关系.由于位移和速度都是与参考系有关的物理量,因此动量、功、动能都是与参考系有关的物理量,只有冲量与参考系无关.凡没有提到参考系的问题,都是以地面为参考系的.

2、两个守恒定律是物理学中的重要物理规律,下面把有关两个守恒定律的问题整理列表如下:

3.几点说明:

(1).对于动量守恒定律,“系统”指的是相互作用的物体组成的系统,系统内的物体数量可以多于两个,但我们中学阶段多数情况下只物体组成的系统,在“实质”一栏中就是以两个物体组成的系统为例的.

对于机械能守恒定律,我们课本上写的是“在只有重力做功的情形下,物体的动能和重力势能发生相互转化,但机械能的总量保持不变.”这里讨论的对象是“物体”.但我们实际遇到的问题,包括很多试题,都涉及到几个物体组成的系统,因此我们在表格里把机械能守恒定律列成两行,即对物体的机械能守恒和对系统的机械能守恒.在系统

的机械能守恒问题中,系统内的物体要发生相互作用,有内力做功,但只要内力中没有滑动摩擦力等能使机械能向其他形式能量转化的力做功,系统的总机械能的总量就会保持不变,而内力做功的结果,是使机械能从系统内的一个物体转移到另一个物体.

(2).系统在不受外力作用的情形下,总动量守恒,这与牛顿第三定律有密切的联系.牛顿第三定律指出相互作用的两物体间的作用力与反作用力总是大小相等、方向相反,而且它们的作用时间总是相等,因此这两物体受到的力的冲量大小相等、方向相反,又根据动量定理,两物体的动量的变化量大小相等、方向相反.在满足不受外力的条件时,该系统的总动量保持不变,这就是动量守恒.

相互作用的两物体间的作用力与反作用力虽然总是大小相等、方向相反,但它们对两物体所做的功却不一定绝对值相等,这是因为两物体的位移不一定相等.以摩擦力为例说明问题:对于一对静摩擦力,由于两物体间没有相对运动.位移数值一定是相等的,从而这一对静摩擦力对两物体做的功的代数和一定为零,这种情况下,有机械能从一个物体向另一个物体转移,但机械能的总量仍保持不变.但对于一对滑动摩擦力,由于两物体间的有相对运动,从而二者的位移数值不相等,一对滑动摩擦力做功的代数一定为负值,这表示有机械能向内能的转化,即平时所说的“摩擦生热”,这样系统的机械能就不守恒了.

二.例题分析

【例1】一质量为100g的小球从0.80m高处自由下落到一厚软垫上.若从小球接触软垫到小球陷至最低点经历了0.2s,则这段时间内软垫对小球的冲量为________.(取,不计空气阻力).

【分析与解】小球从高处自由下落到软垫陷至最低点经历了两个过程,从高处自由下落到接触软垫前一瞬间,是自由下落过程,接触软垫前一瞬间速度由:

求出=

接触软垫时受到软垫向上作用力N和重力G(=mg)作用,规定向下为正,由动量定理:

故有:

在重物与地面撞击问题中,是否考虑重力,取决于相互作用力与重力大小的比较,此题中N=0.3N,mg=0.1N,显然在同一数量级上,不可忽略.若二者不在同一数量级,相差极大,则可考虑忽略不计(实际上从同一高度下落,往往要看撞击时间是否极短,越短冲击力越大。

【例2】一粒钢珠从静止状态开始自由下落,然后陷入泥潭中.若把在空中下落的过程称为过程I,进入泥潭直到停住的过程称为过程II,则:

A、过程I中钢珠动量的改变量等于重力的冲量

B、过程II中阻力的冲量的大小等于过程I中重力冲量的大小

C、过程II中钢珠克服阻力所做的功等于过程I与过程II中钢珠所减少的重力势能之和

D、过程II中损失的机械能等于过程I中钢珠所增加的动能

【分析与解】钢珠在过程I中只受重力,所以由动量定理可判断A正确.过程I中动量的增加量与过程II中的动量减少量大小相等,而过程II中的动量变化量应等于在这个过程中钢珠所受合力(阻力和重力)的冲量,所以B选项错误.由于全过程中,钢珠的动能变化量为零,所以重力在全过程中所做正功与阻力在过程II中所做负功大小相等,故C选项正确.过程II中损失的机械能应等于过程II中阻力所做的功,结合C选项的分析,可知D错误

通过此题,应注意理解动量定理和动能定理两个定理的物理意义,理解物体运动的过程中,状态量(动量、动能)的变化与过程量(冲量、功)的对应关系,必要时画出过程草

图,帮助思考.

【例3】如图所示的装置中,木块B与水平桌面间的接触是光滑的,子弹A沿水平方向射入木块后留在木块内,将弹簧压缩到最短.现将子弹、木块和弹簧合在一起作为研究对象(系统),则此系统在从子弹开始射入木块到弹簧压缩至最短的整个过程中:

A、动量守恒、机械能守恒

B、动量不守恒、机械能不守恒

C、动量守恒、机械能不守恒

D、动量不守恒、机械能守恒

【分析与解】若以子弹、木块和弹簧合在一起作为研究对象(系统),从子弹开始射入木

块到弹簧压缩至最短时,弹簧固定端墙壁对弹簧有外力作用,因此动量不守恒.而在子

弹射入木块时,存在剧烈摩擦作用,有一部分能量将转化为内能,机械能也不守恒.实

际上,在子弹射入木块这一瞬间过程,取子弹与木块为系统则可认为动量守恒(此瞬间

弹簧尚未形变).子弹射入木块后木块压缩弹簧过程中,机械能守恒,但动量不守恒.物

理规律总是在一定条件得出的,因此在分析问题时,不但要弄清取谁作研究对象,还要

弄清过程的阶段的选取,判断各阶段满足物理规律的条件.

【例4】在质量为M的小车中挂有一单摆,摆球的质量为.小车(和单摆)以恒定的速度v沿光滑水平地面运动,与位于正对面的质量为m的静止木块发生碰撞,碰撞的时间极短.在此碰撞过程中,下列哪个或哪些说法是可能发生的

A、小车、木块、摆球的速度都发生变化,分别为、、,满足:

B、摆球的速度不变,小车和木块的速度变和,满足:

C、摆球的速度不变,小车和木块的速度都变为v,满足

D、小车和摆球的速度都变为,木块的速度变为,满足

【分析与解】本题首先应注意理解系统与过程前后时刻的选取关系,由于碰撞过程是在

极短时间内发生的,因摆球的摆线在碰撞之前是竖直的,可以不考虑在这个极短时间内

摆球与小车在水平方向上的相互作用(这与例3中子弹射入木块瞬间可不考虑弹簧形变

类似),而只需考虑小车与木块的相互作用力,因此选择小车与木块为系统动量守恒.其

次,应注意理解碰撞可能出现的情况.即在本题中小车与木块碰撞可能出现结合在一起或分离两种情况.因而B、C两种情况均有可能,B、C正确.

【例5】质量为M的小船以速度行驶,船上有两个质量均为m的小孩和b.分别静止站在船头和船尾.现小孩沿水平方向以速率(相对于静止水面)向前跃入水中,然后小孩b沿水平方向以同一速率(相对于静止水面)向后跃入水中.求小孩b跃出后小船的速度.

【分析与解】在本问题中,研究对象即系统和过程有两种方法,第一种方法分为两个过程,是先取小孩和小船(及小孩b)为系统,因水平方向无外力,水平方向动量守恒.规定方向为正,并设小孩向前跃入水中后小船的速度为,有:

再取小孩b和小船为系统,同样因水平方向无外力,水平方向动量守恒.并设小孩b 向后跃入水中后小船的速度为有:

两式联立,消去,有:

解出:

第二种方法是直接取小孩、小孩b和小船为系统,因水平方向始终无外力,水平方向动量守恒.规定方向为正,并设小孩向前跃入水中后小船的速度为,把小孩向前跃入水中至小孩b向后跃入水中选作过程的初态与末态,则可直接列出:

解出

解答则简捷得多.在实际问题中,应体会这种方法.

【例6】向空中发射一物体,不计空气阻力.当此物体的速度恰好沿水平方向时,物体炸

裂成、b两块,若质量较大的块的速度方向仍沿原来的方向,则:

A、b的速度方向一定与原速度方向相反

B、从炸裂到落地的这段时间里,飞行的水平距离一定比b的大

C、、b一定同时到达水平地面

D、在炸裂过程中,、b受到的爆炸力的冲量大小一定相等

【分析与解】当物体速度方向为水平时,物体炸裂.其中较大质量的块仍沿原来方向飞行,因水平方向无外力,可知水平方向动量守恒,爆炸瞬间相互作用力方向也是水平的,对块,爆炸作用力方向沿原方向,故块速度将比原来速度大,动量增加.而b块受爆炸作用力方向应与原方向相反,b块动量将减少.因爆炸过程中两块间作用与反作用等值反向,故受到冲量大小是相等的,D正确.由于两块在同一高度水平飞行,无论初速大小,下落高度相同,由平抛规律,下落时间相同,故C也正确.

题中未给出爆炸前后具体数据,对b块而言,虽然受到冲量方向与原速度方向相反,但有三种可能性,一是速度减少,仍沿原方向飞行;二是速度恰好变为零;三是沿反方向飞行,因此A不正确.因质量大于b,又两者爆炸时所受冲量大小相同,动量变化量大小也相同,可知b的速度变化量必大于,因此b的末速度有可能比还大(但沿反方向).所以B也不正确.本题要求对动量守恒的本质即相互作用过程有较深刻的理解.

【例7】如图所示,甲、乙两小孩各坐一辆冰车在摩擦不计的冰面上相向运动,已知甲连同冰车的总质量M=30kg,乙连同冰车的总质量也是M=30kg,甲还推着一只质量m=15kg 的箱子.甲、乙滑行的速度大小均为2m/s,为了避免相撞,在某时刻甲将箱子沿冰面推给乙,箱子滑到乙处时被乙接住.试求:①甲至少用多大的速度(相对于地面)将箱子推出,才可避免和乙相撞?②甲在推出时对箱子做了多少功?

【分析与解】甲推出箱子可使自己减速,而乙接住箱子,也可使其自己减速,甚至反向运动.若甲、乙刚好不相撞,条件应是在乙接住箱子后,甲、乙(包括箱子)的速度相同.根据动量守恒定律,我们先做定性分析:选甲、乙、箱子为系统,由于甲推出箱子前,系统的总动量的方向与甲的运动方向相同,所以在达到共同速度时,系统的总动量方向应不变,故判断共同速度的方向在甲的原运动方向上.设:甲推出箱子前的运动方向为正方向,甲、乙初速度大小为,甲、乙、箱子后来的共同速度为,根据动量守律:

【分析与解】甲推出箱子可使自己减速,而乙接住箱子,也可使其自己减速,甚至反向运动.若甲、乙刚好不相撞,条件应是在乙接住箱子后,甲、乙(包括箱子)的速度相同.根据动量守恒定律,我们先做定性分析:选甲、乙、箱子为系统,由于甲推出箱子前,系统的总动量的方向与甲的运动方向相同,所以在达到共同速度时,系统的总动量方向应不变,故判断共同速度的方向在甲的原运动方向上.设:甲推出箱子前的运动方向为正

方向,甲、乙初速度大小为,甲、乙、箱子后来的共同速度为,根据动量守律:

,可求出=0.4m/s;再以甲与箱子为研究对象,甲推出箱子的过程中动量守恒,设箱子被推出后的速度为,可求出被推出后箱子的速度为.由动能定理,甲推出箱子的过程对箱子做功等于箱子动能的增加量J.在本题中,对甲、乙不相撞的条件的分析,是解决问题的关键.而在具体的求解过程中,如何选择研究对象和过程始末去运用动量守恒定律,可以有不同的方式,例如,先选甲和箱子为系统,再选箱子和乙为系统也可解出,但要麻烦一些,不妨试一试,作一比较.

【例8】一个连同装备共有kg的宇宙行员,脱离宇宙飞船后,在离飞船L=45m处与飞船处于相对静止状态,他带着一个装有0.5kg氧气的贮氧筒,贮氧筒有个可以使氧气以v=50m/s的速度喷出的喷嘴.宇航员必须向着与返回飞船相反的方向释放氧气,才能回到飞船上去,同时又必须保留一部分氧气供他在飞向飞船的途中呼吸.飞行员呼吸的耗氧率为.如果他在开始返回的瞬间释放的氧气,他能安全回到飞船吗? 如果宇航员想以最短的时间返回飞船,他开始最多能释放出多少氧气?这时他返回飞船所用时间是多少?

【分析与解】本题立意在分析解决实际问题.宇航员放出氧气后,由于反冲使自己获得返回飞船的速度.设其反冲速度为,由动量守恒定律:

因,故有

宇航员返回飞船的时间

在这900s内,宇航员需要呼吸氧气

可以看出:

所以,宇航员可以安全返回飞船.

如果宇航员以最短的时间返回飞船,设时间为t,宇航员放出氧气的质量为Δm,则留下呼吸的氧气至少为m-Δm.根据动量守恒定律,宇航员获得的反冲速度:

故有:

而宇航员呼吸氧气应满足:两式联立,可得:

代入数据解出Δm=0.45kg(另一解Δm=0.05kg舍去)

求出

【例9】质量为m的钢板与直立轻弹簧的上端连接,弹簧下端固定在地上.平衡时,弹簧的压缩量为,如图所示.—物块从钢板正上方距离为3的A处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连.它们到达最低点后又向上运动.已知物块质量也为m

时,它们恰能回到O点.若物块质量为2m,仍从A处自由落下,则物块与钢板回到O点时,还具有向上的速度.求物块向上运动到达的最高点与O点的距离.

【分析与解】物块与钢板碰撞时的速度可由自由落体公式求出,为.由于碰撞时间极短,碰撞过程中可认为重力远小于物块与钢板之间的碰撞弹力大小,系统动量守恒,以表示碰后物块与钢板的共同速度,则有:

因O点是弹簧的原长位置,所以物块碰后与弹簧向下运动压缩弹簧至最低点又弹起回到O 点时,弹簧的弹性势能应恰为零,题目中说,这时物块与钢板的速度也恰为零.这个过程机械能守恒,设刚碰完时的弹性势能为,有:

按照同样的思路,设质量是2m的物体与钢板碰撞后的共同速度是,由动量守恒定律:

碰后压缩弹簧至最低点又回到O点时,若物块的速度为,则有:

因题目中给定的是轻弹簧,所以弹簧回到O点时不再上升,而物块因有向上的速度,仍继续向上运动,也就是说,在O点物块与弹簧分离.物块还能上升的高度为:

将以上关系式联立,可求出:

本题是动量守恒与涉及弹簧的机械能守恒的综合问题,具有学科内综合解决问题特点.需要理解弹簧的弹性势能零点在弹簧的原长处,能正确分析表达涉及重力势能、弹性势能和动能的初末态机械能、以及正确判断出在极短时间内物块与弹簧碰撞过程可以运用动量守恒定律【例10】如图所示,—质量为M、长为l的长方形木板B放在光滑的水平地面上,在其右端放一质量为m的小木块A,m<M.现以地面为参照系给A和B以大小相等、方向相反的初速度(如图),使A开始向左运动、B开始向右运动,但最后A刚好没有滑离B板.以地面为参照系,

(1)若已知A和B的初速度大小为,求它们最后的速度的大小和方向.

(2)若初速度的大小未知,求小木块A向左运动到达的最远处(从地面上看)离出发点的距离.

【分析与解】(1)A刚好没有滑离B板,表示当A滑到B板的最左端时,A、B具有相同的速度.设此速度为V,根据m<M,可知,判断出V的方向应与B板初速度同向,即向右.A 和B的初速度的大小为,则由动量守恒可得:

解得:方向向右

(2)本题应着重理解物理过程的定性分析方法,在此基础上形成正确的物理图景.注意以下说理分析:A在B板的右端时初速度向左,而到达B板左端时的末速度向右,若以地面为参考,可见A在运动过程中必经历先向左受摩擦力作用而作减速运动,直到相对地面速度

为零的阶段,而后经历因B板速度方向向右,A相对B板向左,故A所摩擦力方向向右,A向右作初速度为零的加速运动直到有共同速度为的阶段,如下图所示.在前一阶段,摩擦力阻碍A向左运动,在后一阶段,摩擦力为动力,使A向右加速.设为A开始运动到速度变为零过程中向左运动的过程,为A从速度为零增加到速度过程中向右运动的路程,L 为A从开始运动到刚到达B的最左端的过程中B运动的路程.设A与B之间的滑动摩擦力为,则由功能关系可知:

对于B:

对于A:

由几何关系

由以上四式解得

【例11】如图所示,一个带斜面的物体A静止在光滑的水平面上,它的质量为M=0.5kg.另一个质量为m =0.2kg的小物体B从高处自由下落,落到B的斜面上,下落高度为h=1.75 m.与斜面碰撞后B的速度变为水平向右,碰撞过程中A、B组成的系统的机械能没有损失.(计算时取g=10 m/s2)

(1)碰后A、B的速度各多大?

(2)碰撞过程中A、B的动量变化量各多大?

【分析与解】(1)当B落到A的斜面上时,B的速度方向竖直向下,而A的速度为0.由于水平面光滑,两物体相互作用过程中,水平方向不受外力作用,因此系统水平方向的动量守恒.由于碰前系统水平方向的动量为0,碰后总动量仍为0.设碰后两物体速度大小分别是和.

列动量守恒的关系式:

再根据碰撞过程中系统的机械能没有损失,得:.

解上面2式,得=-2m/s,=5m/s,或=2m/s,=-5m/s.

正负号代表二者的方向相反,由于我们事前没有规定正方向,因此两组解都可以认为正确.根据实际情况我们知道,碰后方向是向右,若以向右为正方向,则应取

=-2m/s,=5m/s;

若取向左为正方向,则应取

=2m/s,=-5m/s.

(2)我们规定向右为正方向,则碰撞过程中A的动量变化量是:

,其中负号代表方向向左.

由于B的初、末动量不在同一直线上,不能简单地用正负号表示方向,求动量变化需利用平行四边形定则,初动量大小为kg·m/s=1.2kg·m/s,方向竖直向下,末动量大小为=1kg·m/s,方向水平向右,动量变化量的大小为

kg·m/s=1.5 kg·m/s,

方向斜向右上,与水平方向夹角为.

(本题中A、B两物体组成的系统在碰撞过程中,动量并不守恒,从上面的计算可以清

楚看到这一点(二者的动量变化量并不是大小相等、方向相反),它们只是在水平方向上的动量分量守恒.其原因是除了A、B两物体间的相互作用以外,还受到重力及水平面的支持力,但由于重力及水平面的支持力都是沿竖直方向的,水平方向满足“不受外力”的条件,因此水平方向动量分量守恒.)

【例12】带有斜面的木块P原静止在光滑的水平桌面上,另一个小木块Q从P的顶端由静止开始沿光滑的斜面下滑.当Q滑到P的底部时,P向右移动了一段距离,且具有水平向右的速度v,如图所示.下面的说法中正确的是:

(A)P、Q组成的系统的动量守恒

(B)P、Q组成的系统的机械能守恒

(C)Q减少的重力势能等于P增加的动能

(D)Q减少的机械能等于P增加的动能

【分析与解】选项A是学生最容易错选的,其实在这个过程中,P、Q组成的系统只是在水平方向不受外力,水平方向的动量分量守恒,而在竖直方向上,由于地面对P的支持力在Q 下滑过程中要大于P的重力,但小于P、Q的重力之和,竖直方向上不满足不受外力的条件,因此竖直方向上动量不守恒,总的动量也就不守恒.

P、Q组成的系统在这个运动过程中,除了重力对Q做功以外,P对Q的支持力要做负功,而Q对P的压力要做正功,这两个力的大小相等而方向相反,两物体沿力的方向的位移相等(即图中的s),因此这两个力的功的代数和为0,这说明在两物体间只有机械能的转移(由Q向P转移),而没有能量的形式的转化,因此系统的总的机械能守恒.选项B正确.P、Q组成的系统的机械能守恒,意味着系统损失的重力势能等于系统增加的动能,但这过程中重力势能减少的只是P,而动能增加的则是P和Q,因此选项D正确而选项C错误.本题的正确答案是BD.

(本题中地面及P的斜面都是光滑的,在系统相对运动的过程中,没有机械能向内能的转化,只有动能与重力势能间的转化,因此系统的机械能守恒.如果斜面是不光滑的,存在着滑动摩擦力,则本题的4个选项都不正确.但自然界的总能量仍是守恒的,D选项只要改为“P减少的机械能等于Q增加的动能与生热的和”,则它是正确的.)

【例13】甲、乙两个小球在水平光滑直轨道上向同方向运动,已知它们的动量分别是kg·m/s,kg·m/s.甲从后面追上乙并发生碰撞,碰后乙球的动量变为kg·m/s.则两球质量m1与m2间的关系可能是下面的哪几种?

A、B、

C、D、

【分析与解】本题没有说明两球发生的碰撞的性质,但所有的碰撞都只能介于完全弹性碰撞与完全非弹性碰撞之间.我们分别讨论这两种极端的情况:

设两球发生的是弹性碰撞,则碰撞过程动量守恒并且机械能守恒.由于物体动能与动量间满足关系式,

因此.

代入数据解出.

如果是完全非弹性碰撞,则碰后二者速度大小相等,由于速度跟动量的关系式是.

所以,

代入数据解出.

总起来看,两小球的质量间的关系必须满足.本题的4个选项中只有C选项在这个范围内,其余3个选项都是不可能的.

(所有的碰撞都满足动量守恒的条件,因此总动量都是守恒的.但能量的关系则比较复杂,完全没有机械能损失的,称为弹性碰撞,碰完后两物体分开运动,并且完全恢复原来的形状和体积.碰完后粘在一起,以共同的速度运动,称为完全非弹性碰撞,在各种可能的碰撞中,完全非弹性碰撞损失的机械能最大.完全弹性碰撞是一种理想情况,实际的碰撞或多或少都会有一定的机械能损失,可以说实际的碰撞都是非弹性碰撞,但不一定是完全非弹性碰撞.)

动量守恒定律典型例题解析

动量守恒定律·典型例题解析 【例1】 如图52-1所示,在光滑的水平面上,质量为m 1的小球以速度v 1追逐质量为m 2,速度为v 2的小球,追及并发生相碰后速度分别为v 1′和v 2′,将两个小球作为系统,试根据牛顿运动定律推导出动量守恒定律. 解析:在两球相互作用过程中,根据牛顿第二定律,对小球1有:F ==,对有′==.由牛顿第三定律得=m a m m F m a m F 1112222????v t v t 12 -F ′,所以F ·Δt =-F ′·Δt ,m 1Δv 1=-m 2Δv 2,即m 1( v 1′-v 1)=-m 2(v 2′-v 2),整理后得:m 1v 1+m 2v 2=m 1v 1′+ m 2v 2′,这表明以两小球为系统,系统所受的合外力为零时,系统的总动量守恒. 点拨:动量守恒定律和牛顿运动定律是一致的,当系统内受力情况不明,或相互作用力为变力时,用牛顿运动定律求解很繁杂,而动量定理只管发生相互作用前、后的状态,不必过问相互作用的细节,因而避免了直接运用牛顿运动定律解题的困难,使问题简化. 【例2】 把一支枪水平地固定在光滑水平面上的小车上,当枪发射出一颗子弹时,下列说法正确的是 [ ] A .枪和子弹组成的系统动量守恒 B .枪和车组成的系统动量守恒 C .子弹、枪、小车这三者组成的系统动量守恒 D .子弹的动量变化与枪和车的动量变化相同 解析:正确答案为C 点拨:在发射子弹时,子弹与枪之间,枪与车之间都存在相互作用力,所以将枪和子弹作为系统,或枪和车作为系统,系统所受的合外力均不为零,系统的动量不守恒,当将三者作为系统时,系统所受的合外力为零,系统的动量守恒,这时子弹的动量变化与枪和车的动量变化大小相等,方向相反.可见,系统的动量是否守恒,与系统的选取直接相关. 【例3】 如图52-2所示,设车厢的长度为l ,质量为M ,静止于光滑的水平面上,车厢内有一质量为m 的物体以初速度v 0向右运动,与车厢壁来

最新物理动量守恒定律练习题20篇

最新物理动量守恒定律练习题20篇 一、高考物理精讲专题动量守恒定律 1.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A、B、C,三球的质量分别为m A=1kg、m B=2kg、m C=6kg,初状态BC球之间连着一根轻质弹簧并处于静止,B、C连线与杆垂直并且弹簧刚好处于原长状态,A球以v0=9m/s的速度向左运动,与同一杆上的B球发生完全非弹性碰撞(碰撞时间极短),求: (1)A球与B球碰撞中损耗的机械能; (2)在以后的运动过程中弹簧的最大弹性势能; (3)在以后的运动过程中B球的最小速度. 【答案】(1);(2);(3)零. 【解析】 试题分析:(1)A、B发生完全非弹性碰撞,根据动量守恒定律有: 碰后A、B的共同速度 损失的机械能 (2)A、B、C系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大 根据动量守恒定律有: 三者共同速度 最大弹性势能 (3)三者第一次有共同速度时,弹簧处于伸长状态,A、B在前,C在后.此后C向左加速,A、B的加速度沿杆向右,直到弹簧恢复原长,故A、B继续向左减速,若能减速到零则再向右加速. 弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有: 根据机械能守恒定律: 此时A、B的速度,C的速度

可知碰后A 、B 已由向左的共同速度减小到零后反向加速到向右的 ,故B 的最小速度为零 . 考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞. 【名师点睛】A 、B 发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A 球与B 球碰撞中损耗的机械能.当B 、C 速度相等时,弹簧伸长量最大,弹性势能最大,结合B 、C 在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答 2.如图:竖直面内固定的绝缘轨道abc ,由半径R =3 m 的光滑圆弧段bc 与长l =1.5 m 的粗糙水平段ab 在b 点相切而构成,O 点是圆弧段的圆心,Oc 与Ob 的夹角θ=37°;过f 点的竖直虚线左侧有方向竖直向上、场强大小E =10 N/C 的匀强电场,Ocb 的外侧有一长度足够长、宽度d =1.6 m 的矩形区域efgh ,ef 与Oc 交于c 点,ecf 与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m 2=3×10-3 kg 、电荷量q =3×l0-3 C 的带正电小物体Q 静止在圆弧轨道上b 点,质量m 1=1.5×10-3 kg 的不带电小物体P 从轨道右端a 以v 0=8 m/s 的水平速度向左运动,P 、Q 碰撞时间极短,碰后P 以1 m/s 的速度水平向右弹回.已知P 与ab 间的动摩擦因数μ=0.5,A 、B 均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小g =10 m/s 2.求: (1)碰后瞬间,圆弧轨道对物体Q 的弹力大小F N ; (2)当β=53°时,物体Q 刚好不从gh 边穿出磁场,求区域efgh 内所加磁场的磁感应强度大小B 1; (3)当区域efgh 内所加磁场的磁感应强度为B 2=2T 时,要让物体Q 从gh 边穿出磁场且在磁场中运动的时间最长,求此最长时间t 及对应的β值. 【答案】(1)2 4.610N F N -=? (2)1 1.25B T = (3)127s 360 t π = ,001290143ββ==和 【解析】 【详解】 解:(1)设P 碰撞前后的速度分别为1v 和1v ',Q 碰后的速度为2v

高中物理动量守恒定律练习题及答案及解析

高中物理动量守恒定律练习题及答案及解析 一、高考物理精讲专题动量守恒定律 1.如图所示,在倾角为30°的光滑斜面上放置一质量为m 的物块B ,B 的下端连接一轻质弹簧,弹簧下端与挡板相连接,B 平衡时,弹簧的压缩量为x 0,O 点为弹簧的原长位置.在斜面顶端另有一质量也为m 的物块A ,距物块B 为3x 0,现让A 从静止开始沿斜面下滑,A 与B 相碰后立即一起沿斜面向下运动,但不粘连,它们到达最低点后又一起向上运动,并恰好回到O 点(A 、B 均视为质点),重力加速度为g .求: (1)A 、B 相碰后瞬间的共同速度的大小; (2)A 、B 相碰前弹簧具有的弹性势能; (3)若在斜面顶端再连接一光滑的半径R =x 0的半圆轨道PQ ,圆弧轨道与斜面相切 于最高点P ,现让物块A 以初速度v 从P 点沿斜面下滑,与B 碰后返回到P 点还具有向上的速度,则v 至少为多大时物块A 能沿圆弧轨道运动到Q 点.(计算结果可用根式表示) 【答案】20132v gx =01 4 P E mgx =0(2043)v gx =+【解析】 试题分析:(1)A 与B 球碰撞前后,A 球的速度分别是v 1和v 2,因A 球滑下过程中,机械能守恒,有: mg (3x 0)sin30°= 1 2 mv 12 解得:103v gx = 又因A 与B 球碰撞过程中,动量守恒,有:mv 1=2mv 2…② 联立①②得:21011 322 v v gx == (2)碰后,A 、B 和弹簧组成的系统在运动过程中,机械能守恒. 则有:E P + 1 2 ?2mv 22=0+2mg?x 0sin30° 解得:E P =2mg?x 0sin30°? 1 2?2mv 22=mgx 0?34 mgx 0=14mgx 0…③ (3)设物块在最高点C 的速度是v C ,

高中物理动量守恒定律练习题

一、系统、内力和外力┄┄┄┄┄┄┄┄① 1.系统:相互作用的两个(或多个)物体组成的一个整体。 2.内力:系统内部物体间的相互作用力。 3.外力:系统以外的物体对系统内部的物体的作用力。 [说明] 1.系统是由相互作用、相互关联的多个物体组成的整体。 2.组成系统的各物体之间的力是内力,将系统看作一个整体,系统之外的物体对这个整体的作用力是外力。 ①[填一填]如图,公路上有三辆车发生了追尾事故,如果把前面两辆车看作一个系统,则前面两辆车之间的撞击力是________,最后一辆车对前面两辆车的撞击力是________(均填“内力”或“外力”)。 答案:内力外力 二、动量守恒定律┄┄┄┄┄┄┄┄② 1.内容:如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变。 2.表达式:对两个物体组成的系统,常写成: p1+p2=或m1v1+m2v2=。 3.适用条件:系统不受外力或者所受外力的矢量和为0。 4.动量守恒定律的普适性 动量守恒定律是一个独立的实验规律,它适用于目前为止物理学研究的一切领域。 [注意] 1.系统动量是否守恒要看研究的系统是否受外力的作用。

2.动量守恒是系统内各物体动量的矢量和保持不变,而不是系统内各物体的动量不变。 ②[判一判] 1.一个系统初、末状态动量大小相等,即动量守恒(×) 2.两个做匀速直线运动的物体发生碰撞,两个物体组成的系统动量守恒(√) 3.系统动量守恒也就是系统的动量变化量为零(√) 1.对动量守恒定律条件的理解 (1)系统不受外力作用,这是一种理想化的情形,如宇宙中两星球的碰撞,微观粒子间的碰撞都可视为这种情形。 (2)系统受外力作用,但所受合外力为零。像光滑水平面上两物体的碰撞就是这种情形。 (3)系统受外力作用,但当系统所受的外力远远小于系统内各物体间的内力时,系统的总动量近似守恒。例如,抛出去的手榴弹在空中爆炸的瞬间,弹片所受火药爆炸时的内力远大于其重力,重力可以忽略不计,系统的动量近似守恒。 (4)系统受外力作用,所受的合外力不为零,但在某一方向上合外力为零,则系统在该方向上动量守恒。 2.关于内力和外力的两点提醒 (1)系统内物体间的相互作用力称为内力,内力会改变系统内单个物体的动量,但不会改变系统的总动量。 (2)系统的动量是否守恒,与系统的选取有关。分析问题时,要注意分清研究的系统,系统的内力和外力,这是正确判断系统动量是否守恒的关键。 [典型例题] 例 1.[多选]如图所示,光滑水平面上两小车中间夹一压缩了的轻弹簧,两手分别按住小车,使它们静止,对两车及弹簧组成的系统,下列说法中正确的是() A.两手同时放开后,系统总动量始终为零

四动量守恒定律练习题及答案

四 动量守恒定律 姓名 一、选择题(每小题中至少有一个选项是正确的) 1.在下列几种现象中,动量守恒的有( ) A .原来静止在光滑水平面上的车,从水平方向跳上一个人,人车为一系统 B .运动员将铅球从肩窝开始加速推出,以运动员和球为一系统 C .从高空自由落下的重物落在静止于地面上的车厢中,以重物和车厢为一系统 D .光滑水平面上放一斜面,斜面光滑,一个物体沿斜面滑下,以重物和斜面为一系统 2.两物体组成的系统总动量守恒,这个系统中( ) A .一个物体增加的速度等于另一个物体减少的速度 B .一物体受的冲量与另一物体所受冲量相同 C .两个物体的动量变化总是大小相等,方向相反 D .系统总动量的变化为零 3.砂子总质量为M 的小车,在光滑水平地面上匀速运动,速度为v 0,在行驶途中有质量为m 的砂子从车上漏掉,砂子漏掉后小车的速度应为 ( ) A .v 0 B .m M Mv -0 A .m M mv -0 A .M v m M 0)(- 、B 两个相互作用的物体,在相互作用的过程中合外力为0,则下述说法中正确的是( ) A .A 的动量变大, B 的动量一定变大 B .A 的动量变大,B 的动量一定变小 C .A 与B 的动量变化相等 D .A 与B 受到的冲量大小相等 5.把一支枪水平固定在小车上,小车放在光滑的水平地面上,枪发射子弹时,关于枪、子弹、车的下列说法正确的有( ) A. 枪和子弹组成的系统动量守恒 B.枪和车组成的系统动量守恒 C .枪、弹、车组成的系统动量守恒 D .若忽略不计弹和枪筒之间的摩擦,枪、车组成的系统动量守恒 6.两球相向运动,发生正碰,碰撞后两球均静止,于是可以判定,在碰撞以前( ) A .两球的质量相等 B .两球的速度大小相同 C .两球的动量大小相等 D .以上都不能断定 7.一只小船静止在水面上,一个人从小船的一端走到另一端,不计水的阻力,以下说法正确的是( ) A .人在小船上行走,人对船的冲量比船对人的冲量小,所以 人向前运动得快,小船后退得慢 B .人在小船上行走时,人的质量比船的质量小,它们受到的 冲量大小是一样的,所以人向前运动得快,船后退得慢 C .当人停止走动时,因为小船惯性大,所以小船要继续后退 D .当人停止走动时,因为总动量守恒,所以小船也停止后退 8.如图所示,在光滑水平面上有一静止的小车,用线系一小球, 将球拉开后放开,球放开时小车保持静止状态,当小球落下以后 与固定在小车上的油泥沾在一起,则从此以后,关于小车的运动状态是 ( ) A .静止不动 B .向右运动 C .向左运动 D .无法判断 *9.木块a 和b 用一根轻弹簧连接起来,放在光滑水平面上,a 紧靠在墙壁上,在b 上施加向左的水平力使弹簧压缩,如图所示,当撤去外力后,下列说法中正确的是( ) A .a 尚未离开墙壁前,a 和b 系统的动量守恒 B .a 尚未离开墙壁前,a 与b 系统的动量不守恒 C .a 离开墙后,a 、b 系统动量守恒 D .a 离开墙后,a 、b 系统动量不守恒 *10.向空中发射一物体.不计空气阻力,当物体的速度恰好沿水平方向 时,物体炸裂为a,b 两块.若质量较大的a 块的速度方向仍沿原来的方向则 ( ) A .b 的速度方向一定与原速度方向相反 B .从炸裂到落地这段时间里,a 飞行的水平距离一定比b 的大

动量定理与动量守恒定律·典型例题解析

动量定理与动量守恒定律·典型例题解析 【例1】 在光滑的水平面上有一质量为2m 的盒子,盒子中间有一质量为m 的物体,如图55-1所示.物体与盒底间的动摩擦因数为μ现给物体以水平速度v 0向右运动,当它刚好与盒子右壁相碰时,速度减为 v 02 ,物体与盒子右壁相碰后即粘在右壁上,求: (1)物体在盒内滑行的时间; (2)物体与盒子右壁相碰过程中对盒子的冲量. 解析:(1)对物体在盒内滑行的时间内应用动量定理得:-μmgt = m mv t 0·-,=v v g 0022 (2)物体与盒子右壁相碰前及相碰过程中系统的总动量都守恒,设碰 撞前瞬时盒子的速度为,则:=+=+.解得=,=.所以碰撞过程中物体给盒子的冲量由动量定理得=-=,方向向右. v mv m v 22mv (m 2m)v v v I 2mv 2mv mv /61001212210v v 0043 点拨:分清不同的物理过程所遵循的相应物理规律是解题的关键. 【例2】 如图55-2所示,质量均为M 的小车A 、B ,B 车上 挂有质量为的金属球,球相对车静止,若两车以相等的速率M 4 C C B 1.8m/s 在光滑的水平面上相向运动,相碰后连在一起,则碰撞刚结束时小车的速度多大?C 球摆到最高点时C 球的速度多大? 解析:两车相碰过程由于作用时间很短,C 球没有参与两车在水平方向的相互作用.对两车组成的系统,由动量守恒定律得(以向左为正):Mv -Mv =

2Mv 1两车相碰后速度v 1=0,这时C 球的速度仍为v ,向左,接着C 球向左上方摆动与两车发生相互作用,到达最高点时和两车 具有共同的速度,对和两车组成的系统,水平方向动量守恒,=++,解得==,方向向左.v C v (M M )v v v 0.2m /s 222M M 4419 点拨:两车相碰的过程,由于作用时间很短,可认为各物都没有发生位移,因而C 球的悬线不偏离竖直方向,不可能跟B 车发生水平方向的相互作用.在C 球上摆的过程中,作用时间较长,悬线偏离竖直方向,与两车发生相互作用使两车在水平方向的动量改变,这时只有将C 球和两车作为系统,水平方向的总动量才守恒. 【例3】 如图55-3所示,质量为m 的人站在质量为M 的小车的右端,处于静止状态.已知车的长度为L ,则当人走到小车的左端时,小车将沿光滑的水平面向右移动多少距离? 点拨:将人和车作为系统,动量守恒,设车向右移动的距离为s ,则人向左移动的距离为L -s ,取向右为正方向,根据动量守恒定律可得M ·s -m(L -s)=0,从而可解得s .注意在用位移表示动量守恒时,各位移都是相对地面的,并在选定正方向后位移有正、负之分. 参考答案 例例跟踪反馈...;;.×·3 m M +m L 4 M +m M H [] 1 C 2h 300v 49.110N s 04M m M 【例4】 如图55-4所示,气球的质量为M 离地的高度为H ,在气球下方有一质量为m 的人拉住系在气球上不计质量的软绳,人和气球恰悬浮在空中处于静止状态,现人沿软绳下滑到达地面时软绳的下端恰离开地面,求软绳的长度.

《动量守恒定律》单元测试题含答案(4)

《动量守恒定律》单元测试题含答案(4) 一、动量守恒定律 选择题 1.两滑块a 、b 沿水平面上同一条直线运动,并发生碰撞,碰撞后两者粘在一起运动.两者的位置x 随时间t 变化的图象如图所示.若a 滑块的质量a m 2kg =,以下判断正确的是 ( ) A .a 、b 碰撞前的总动量为3 kg m /s ? B .碰撞时a 对b 所施冲量为4 N s ? C .碰撞前后a 的动量变化为4 kg m /s ? D .碰撞中a 、b 两滑块组成的系统损失的动能为20 J 2.如图所示,固定的光滑金属水平导轨间距为L ,导轨电阻不计,左端接有阻值为R 的电阻,导轨处在磁感应强度大小为B 、方向竖直向下的匀强磁场中.质量为m 、电阻不计的导体棒ab ,在垂直导体棒的水平恒力F 作用下,由静止开始运动,经过时间t ,导体棒ab 刚好匀速运动,整个运动过程中导体棒始终与导轨垂直并保持良好接触.在这个过程中,下列说法正确的是 A .导体棒ab 刚好匀速运动时的速度22 FR v B L = B .通过电阻的电荷量2Ft q BL = C .导体棒的位移222 44 FtRB L mFR x B L -= D .电阻放出的焦耳热22222 44 232tRF B L mF R Q B L -= 3.将质量为m 0的木块固定在光滑水平面上,一颗质量为m 的子弹以速度v 0沿水平方向射入木块,子弹射穿木块时的速度为 3 v .现将同样的木块放在光滑的水平桌面上,相同的子弹仍以速度v 0沿水平方向射入木块,设子弹在木块中所受阻力不变,则以下说法正确的是()

A.若m0=3m,则能够射穿木块 B.若m0=3m,子弹不能射穿木块,将留在木块中,一起以共同的速度做匀速运动 C.若m0=3m,子弹刚好能射穿木块,此时子弹相对于木块的速度为零 D.若子弹以3v0速度射向木块,并从木块中穿出,木块获得的速度为v1;若子弹以4v0速度射向木块,木块获得的速度为v2;则必有v1<v2 4.在光滑水平面上,有两个小球A、B沿同一直线同向运动(B在前),已知碰前两球的动量分别为pA=10 kg·m/s、pB=13 kg·m/s,碰后它们动量的变化分别为ΔpA、ΔpB.下列数值可能正确的是( ) A.ΔpA=-3 kg·m/s、ΔpB=3 kg·m/s B.ΔpA=3 kg·m/s、ΔpB=-3 kg·m/s C.ΔpA=-20 kg·m/s、ΔpB=20 kg·m/s D.ΔpA=20kg·m/s、ΔpB=-20 kg·m/s 5.如图所示,左图为大型游乐设施跳楼机,右图为其结构简图.跳楼机由静止从a自由下落到b,再从b开始以恒力制动竖直下落到c停下.已知跳楼机和游客的总质量为m,ab 高度差为2h,bc高度差为h,重力加速度为g.则 A.从a到b与从b到c的运动时间之比为2:1 B.从a到b,跳楼机座椅对游客的作用力与游客的重力大小相等 C.从a到b,跳楼机和游客总重力的冲量大小为m gh D.从b到c,跳楼机受到制动力的大小等于2mg 6.如图所示,小车质量为M,小车顶端为半径为R的四分之一光滑圆弧,质量为m的小球从圆弧顶端由静止释放,对此运动过程的分析,下列说法中正确的是(g为当地重力加速度)() A.若地面粗糙且小车能够静止不动,则地面对小车的静摩擦力最大为mg B.若地面粗糙且小车能够静止不动,则地面对小车的静摩擦力最大为3 2 mg

高中物理动量守恒定律练习题及答案

高中物理动量守恒定律练习题及答案 一、高考物理精讲专题动量守恒定律 1.如图:竖直面内固定的绝缘轨道abc ,由半径R =3 m 的光滑圆弧段bc 与长l =1.5 m 的粗糙水平段ab 在b 点相切而构成,O 点是圆弧段的圆心,Oc 与Ob 的夹角θ=37°;过f 点的竖直虚线左侧有方向竖直向上、场强大小E =10 N/C 的匀强电场,Ocb 的外侧有一长度足够长、宽度d =1.6 m 的矩形区域efgh ,ef 与Oc 交于c 点,ecf 与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m 2=3×10-3 kg 、电荷量q =3×l0-3 C 的带正电小物体Q 静止在圆弧轨道上b 点,质量m 1=1.5×10-3 kg 的不带电小物体P 从轨道右端a 以v 0=8 m/s 的水平速度向左运动,P 、Q 碰撞时间极短,碰后P 以1 m/s 的速度水平向右弹回.已知P 与ab 间的动摩擦因数μ=0.5,A 、B 均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小g =10 m/s 2.求: (1)碰后瞬间,圆弧轨道对物体Q 的弹力大小F N ; (2)当β=53°时,物体Q 刚好不从gh 边穿出磁场,求区域efgh 内所加磁场的磁感应强度大小B 1; (3)当区域efgh 内所加磁场的磁感应强度为B 2=2T 时,要让物体Q 从gh 边穿出磁场且在磁场中运动的时间最长,求此最长时间t 及对应的β值. 【答案】(1)2 4.610N F N -=? (2)1 1.25B T = (3)127s 360 t π = ,001290143ββ==和 【解析】 【详解】 解:(1)设P 碰撞前后的速度分别为1v 和1v ',Q 碰后的速度为2v 从a 到b ,对P ,由动能定理得:221011111 -22 m gl m v m v μ=- 解得:17m/s v = 碰撞过程中,对P ,Q 系统:由动量守恒定律:111122m v m v m v ' =+ 取向左为正方向,由题意11m/s v =-', 解得:24m/s v =

高中物理动量守恒定律基础练习题及解析

高中物理动量守恒定律基础练习题及解析 一、高考物理精讲专题动量守恒定律 1.如图所示,小明站在静止在光滑水平面上的小车上用力向右推静止的木箱,木箱最终以速度v 向右匀速运动.已知木箱的质量为m ,人与车的总质量为2m ,木箱运动一段时间后与竖直墙壁发生无机械能损失的碰撞,反弹回来后被小明接住.求: (1)推出木箱后小明和小车一起运动的速度v 1的大小; (2)小明接住木箱后三者一起运动的速度v 2的大小. 【答案】①2v ;②23 v 【解析】 试题分析:①取向左为正方向,由动量守恒定律有:0=2mv 1-mv 得12v v = ②小明接木箱的过程中动量守恒,有mv+2mv 1=(m+2m )v 2 解得223 v v = 考点:动量守恒定律 2.如图所示,质量为M =2kg 的小车静止在光滑的水平地面上,其AB 部分为半径R =0.3m 的光滑 1 4 圆孤,BC 部分水平粗糙,BC 长为L =0.6m 。一可看做质点的小物块从A 点由静止释放,滑到C 点刚好相对小车停止。已知小物块质量m =1kg ,取g =10m/s 2。求: (1)小物块与小车BC 部分间的动摩擦因数; (2)小物块从A 滑到C 的过程中,小车获得的最大速度。 【答案】(1)0.5(2)1m/s 【解析】 【详解】 解:(1) 小物块滑到C 点的过程中,系统水平方向动量守恒则有:()0M m v += 所以滑到C 点时小物块与小车速度都为0 由能量守恒得: mgR mgL μ= 解得:0.5R L μ= =

(2)小物块滑到B 位置时速度最大,设为1v ,此时小车获得的速度也最大,设为2v 由动量守恒得 :12mv Mv = 由能量守恒得 :221211 22 mgR mv Mv =+ 联立解得: 21/ v m s = 3.两个质量分别为0.3A m kg =、0.1B m kg =的小滑块A 、B 和一根轻质短弹簧,弹簧的一端与小滑块A 粘连,另一端与小滑块B 接触而不粘连.现使小滑块A 和B 之间夹着被压缩的轻质弹簧,处于锁定状态,一起以速度03/v m s =在水平面上做匀速直线运动,如题8图所示.一段时间后,突然解除锁定(解除锁定没有机械能损失),两滑块仍沿水平面做直线运动,两滑块在水平面分离后,小滑块B 冲上斜面的高度为 1.5h m =.斜面倾角 o 37θ=,小滑块与斜面间的动摩擦因数为0.15μ=,水平面与斜面圆滑连接.重力加速度g 取210/m s .求:(提示:o sin 370.6=,o cos370.8=) (1)A 、B 滑块分离时,B 滑块的速度大小. (2)解除锁定前弹簧的弹性势能. 【答案】(1)6/B v m s = (2)0.6P E J = 【解析】 试题分析:(1)设分离时A 、B 的速度分别为A v 、B v , 小滑块B 冲上斜面轨道过程中,由动能定理有:2 cos 1sin 2 B B B B m gh m gh m v θμθ+?= ① (3分) 代入已知数据解得:6/B v m s = ② (2分) (2)由动量守恒定律得:0()A B A A B B m m v m v m v +=+ ③ (3分) 解得:2/A v m s = (2分) 由能量守恒得: 222 0111()222 A B P A A B B m m v E m v m v ++=+ ④ (4分) 解得:0.6P E J = ⑤ (2分) 考点:本题考查了动能定理、动量守恒定律、能量守恒定律. 4.如图所示,光滑水平面上有两辆车,甲车上面有发射装置,甲车连同发射装置质量M 1=1 kg ,车上另有一个质量为m =0.2 kg 的小球,甲车静止在水平面上,乙车以v 0=8 m/s

动量守恒定律测试题及解析

动量守恒定律测试题及解析 1.(2019·北京海淀一模)如图所示,站在车上的人,用锤子连续敲打小车。 初始时,人、车、锤子都静止。假设水平地面光滑,关于这一物理过程,下列 说法正确的是( ) A .连续敲打可使小车持续向右运动 B .人、车和锤子组成的系统机械能守恒 C .当锤子速度方向竖直向下时,人和车水平方向的总动量为零 D .人、车和锤子组成的系统动量守恒 解析:选C 人、车和锤子整体看做一个处在光滑水平地面上的系统,水平方向上所受合外力为零,故水平方向上动量守恒,总动量始终为零,当锤子有相对地面向左的速度时,车有向右的速度,当锤子有相对地面向右的速度时,车有向左的速度,故车做往复运动,故A 错误;锤子击打小车时,发生的不是完全弹性碰撞,系统机械能有损耗,故B 错误;锤子的速度竖直向下时,没有水平方向速度,因为水平方向总动量恒为零,故人和车水平方向的总动量也为零,故C 正确;人、车和锤子在水平方向上动量守恒,因为锤子会有竖直方向的加速度,故锤子竖直方向上合外力不为零,竖直方向上动量不守恒,系统总动量不守恒,故D 错误。 2.质量为1 kg 的物体从距地面5 m 高处自由下落,落在正以5 m /s 的速度沿水平方向匀速前进的小车上,车上装有砂子,车与砂的总质量为4 kg ,地面光滑,则车后来的速度为(g =10 m/s 2)( ) A .4 m /s B .5 m/s C .6 m /s D .7 m/s 解析:选A 物体和车作用过程中,两者组成的系统水平方向不受外力,水平方向系统的动量守恒。已知两者作用前,车在水平方向的速度v 0=5 m/s ,物体在水平方向的速度v =0;设当物体与小车相对静止后,小车的速度为v ′,取原来小车速度方向为正方向,则根据水平方向系统的动量守恒得:m v +M v 0=(M +m )v ′,解得:v ′=m v +M v 0M +m =4×51+4 m /s =4 m/s ,故选项A 正确,B 、C 、D 错误。 3.[多选](2020·泸州第一次诊断)在2019年世界斯诺克国际锦标赛中,中国选手丁俊晖把质量为m 的白球以5v 的速度推出,与正前方另一静止的相同质量的黄球发生对心正碰,碰撞后黄球的速度为3v ,运动方向与白球碰前的运动方向相同。若不计球与桌面间的摩擦,则( ) A .碰后瞬间白球的速度为2v B .两球之间的碰撞属于弹性碰撞 C .白球对黄球的冲量大小为3m v D .两球碰撞过程中系统能量不守恒 解析:选AC 由动量守恒定律可知,相同质量的白球与黄球发生对心正碰,碰后瞬间白球的速度为 2v ,故A 正确。碰前的动能为12m (5v )2=252m v 2,碰后的动能为12m (3v )2+12m (2v )2=132 m v 2,两球之间的碰撞不属于弹性碰撞,故B 错误。由动量定理,白球对黄球的冲量I 大小就等于黄球动量的变化Δp ,Δp =

高中物理动量守恒定律题20套(带答案)

高中物理动量守恒定律题20套(带答案) 一、高考物理精讲专题动量守恒定律 1.如图所示,在光滑的水平面上有一长为L 的木板B ,上表面粗糙,在其左端有一光滑的四分之一圆弧槽C ,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B 、C 静止在水平面上.现有滑块A 以初速度0v 从右端滑上B ,一段时间后,以0 2 v 滑离B ,并恰好能到达C 的最高点.A 、B 、C 的质量均为m .求: (1)A 刚滑离木板B 时,木板B 的速度; (2)A 与B 的上表面间的动摩擦因数μ; (3)圆弧槽C 的半径R ; (4)从开始滑上B 到最后滑离C 的过程中A 损失的机械能. 【答案】(1) v B =04v ;(2)20516v gL μ=(3)2064v R g =(4)20 1532 mv E ?= 【解析】 【详解】 (1)对A 在木板B 上的滑动过程,取A 、B 、C 为一个系统,根据动量守恒定律有: mv 0=m 2 v +2mv B 解得v B = 4 v (2)对A 在木板B 上的滑动过程,A 、B 、C 系统减少的动能全部转化为系统产生的热量 2 220001 11()2()22224 v v mgL mv m m μ?=-- 解得20 516v gL μ= (3)对A 滑上C 直到最高点的作用过程,A 、C 系统水平方向上动量守恒,则有: 2 mv +mv B =2mv A 、C 系统机械能守恒: 22200111 ()()222242 v v mgR m m mv +-?= 解得2 64v R g = (4)对A 滑上C 直到离开C 的作用过程,A 、C 系统水平方向上动量守恒

动量守恒定律及其应用·典型例题精析

动量守恒定律及其应用·典型例题精析 [例题1]平静的湖面上浮着一只长l=6m,质量为550 kg的船,船头上站着一质量为m=50 kg的人,开始时,人和船均处于静止.若船行进时阻力很小,问当人从船头走到船尾时,船将行进多远? [思路点拨]以人和船组成的系统为研究对象.因船行进时阻力很小,船及人所受重力与水对船的浮力平衡,可以认为人在船上行走时系统动量守恒,开始时人和船都停止,系统总动量为零,当人在船上走动时,无论人的速度如何,系统的总动量都保持为零不变. [解题过程]取人运动方向为正方向,设人对岸的速度为v,船对岸的速度为V,其方向与v相反,由动量守恒定律有 0=mv+(-MV). 解得两速度大小之比为

此结果对于人在船上行走过程的任一瞬时都成立. 取人在船上行走时任一极短时间Δt i,在此时间内人和船都可视为匀速运动,此时间内人和船相对地面移动的距离分别为ΔS mi=v iΔt i和ΔSM i=V iΔt i,由此有 这样人从船头走到船尾时,人和船相对地面移动的总距离分别为 S m=∑ΔS mi,S M=∑ΔS Mi. 由图中几何关系可知S m+S M=L.这样,人从船头走到船尾时,船行进的距离为 代入数据有 S M=0.5 m.

[小结]本题表明,在动量守恒条件得到满足的过程中,系统任一瞬时的总动量保持不变. [例题2]如图7-9示,物块A、B质量分别为m A、m B,用细绳连接,在水平恒力F的作用下A、B一起沿水平面做匀速直线运动,速度为v,如运动过程中,烧断细绳,仍保持力F大小方向不变,则当物块B停下来时,物块A的速度为多大? [思路点拨]以A和B组成的系统作为研究对象.绳子烧断前,A、B 一起做匀速直线运动,故系统所受外力和为零,水平方向系统所受外力计有拉力F,物块A受到地面的摩擦力f A,物体B受到地面的摩擦力f B,且F=f A +f B.绳烧断后,直到B停止运动前F与f A、f B均保持不变,故在此过程中系统所受外力和仍为零,系统总动量保持不变.所以此题可用动量守恒定律求解. [解题过程]取初速v的方向为正方向,设绳断后A、B的速度大小分别为v′A、v′B,由动量守恒定律有 (m A+m B)v=m A v′A+m B v′B.

动量守恒定律测试题含复习资料

1 / 9 第16章 《动量守恒定律》测试题 一、单选题(每小题只有一个正确答案) 1.质量为m ,速度为v 的棒球,与棒相互作用后以被原速率弹回,则小球动量的变化量为(取作用前的速度方向为正方向)( ) A .0 B .-2mv C .2mv D .mv 2.相向运动的A 、B 两辆小车相撞后,一同沿A 原来的方向前进,则碰撞前的瞬间( ) A .A 车的动量一定大于 B 车的速度 B .A 车的速度一定大于B 车的动量 C .A 车的质量一定大于B 车的质量 D .A 车的动能一定大于B 车的动能 3.将质量为m 的铅球以大小为v 0、仰角为θ的初速度抛入一个装着沙子的总质量为m '的静止小车中,如图所示,小车与地面间的摩擦力不计,则最后铅球与小车的共同速度等于( ) A .0cos mv m m θ+' B .0sin mv m m θ+' C .0mv m m +' D .0tan mv m m θ+' 4.物体在恒定合力F 作用下做直线运动,在1t ?内速度由0增大到1E ,在2t ?内速度由v 增大到2v.设2E 在1t ?内做功是1W ,冲量是1I ;在2t ?内做功是2W ,冲量是2I ,那么( ) A .1212I I W W <=, B .1212I I W W <<, C .1212,I I W W == D .1212I I W W =<, 5.沿光滑水平面在同一条直线上运动的两物体A 、B 碰撞后以共同的速度运动,该过程的位移—时间图象如图所示。则下列判断错误的是( ) A .碰撞前后A 的运动方向相反 B .A 、B 的质量之比为1:2 C .碰撞过程中A 的动能变大,B 的动能减小 D .碰前B 的动量较大 6.如图所示,质量M=3kg 的滑块套在水平固定着的轨道上并可在轨道上无摩擦滑动。

(物理)动量守恒定律练习题含答案及解析

(物理)动量守恒定律练习题含答案及解析 一、高考物理精讲专题动量守恒定律 1.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的 1 2 反弹,小球向右摆动一个小角度即被取走。已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度2 10m/s g =。求: (1)碰撞后瞬间,小球受到的拉力是多大? (2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】 解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理: 22 1111011=22 m gL m v m v μ-- 解之可得:1=4m/s v 因为1v v <,说明假设合理 滑块与小球碰撞,由动量守恒定律:21111221 =+2 m v m v m v - 解之得:2=2m/s v 碰后,对小球,根据牛顿第二定律:2 22 2m v F m g l -= 小球受到的拉力:42N F = (2)设滑块与小球碰撞前的运动时间为1t ,则()0111 2 L v v t =+ 解之得:11s t = 在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ?=-= 设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ??-=-? ???

动量守恒定律经典习题(带答案)

动量守恒定律习题(带答案)(基础、典型) 例1、质量为1kg的物体从距地面5m高处自由下落,正落在以5m/s的速度沿水平方向匀速前进的小车上,车上装有砂子,车与砂的总质量为 4kg,地面光滑,则车后来的速度为多少? 例2、质量为1kg的滑块以4m/s的水平速度滑上静止在光滑水平面上的质量为3kg的小车,最后以共同速度运动,滑块与车的摩擦系数为0.2,则此过程经历的时间为多少? 例3、一颗手榴弹在5m高处以v0=10m/s的速度水平飞行时,炸裂成质量比为3:2的两小块,质量大的以100m/s的速度反向飞行,求两块落地 点的距离。(g取10m/s2) 例4、如图所示,质量为0.4kg的木块以2m/s的速度水平地滑上静止的平板小车,车的质量为1.6kg,木块与小车之间的摩擦系数为0.2(g取10m/s2)。设 小车足够长,求: (1)木块和小车相对静止时小车的速度。 (2)从木块滑上小车到它们处于相对静止所经历的时间。 (3)从木块滑上小车到它们处于相对静止木块在小车上滑行的距离。 例5、甲、乙两小孩各乘一辆冰车在水平冰面上游戏,甲和他所乘的冰车的质量共为30kg,乙和他所乘的冰车的质量也为30kg。游戏时,甲推着一个质量为15kg的箱子和甲一起以2m/s的速度滑行,乙以同样大小的速度迎面滑来。为了避免相撞,甲突然将箱子沿冰面推向乙,箱子滑到乙处,乙迅速将它抓住。若不计冰面的摩擦,甲至少要以多大的速度(相对于地面)将箱子推出,才能避免与乙相撞? 答案:1.

h b 分析:以物体和车做为研究对象,受力情况如图所示。 在物体落入车的过程中,物体与车接触瞬间竖直方向具有较大的动量,落入车后,竖直方向上的动量减为0,由动量定理可知,车给重物的作用力远大于物体的重力。因此地面给车的支持力远大于车与重物的重力之和。 系统所受合外力不为零,系统总动量不守恒。但在水平方向系统不受外力作用,所以系统水平方向动量守恒。以车的运动方向为正方向,由动量守恒定律可得: 车 重物初:v 0=5m/s 0末:v v ?Mv 0=(M+m)v ?s m v m N M v /454 14 0=?+=+= 即为所求。 2、分析:以滑块和小车为研究对象,系统所受合外力为零,系统总动量守恒。 以滑块的运动方向为正方向,由动量守恒定律可得 滑块 小车初:v 0=4m/s 0末:v v ?mv 0=(M+m)v ?s m v m M M v /143 11 0=?+=+= 再以滑块为研究对象,其受力情况如图所示,由动量定理可得 ΣF=-ft=mv-mv 0 ?s g v v t 5.110 2.0) 41(0=?--=-=μf=μmg 即为所求。 3、分析:手榴弹在高空飞行炸裂成两块,以其为研究对象,系统合外力不为零,总动量不守恒。但手榴弹在爆炸时对两小块的作用力远大于自身的重力,且水平方向不受外力,系统水平方向动量守恒,以初速度方向为正。 由已知条件:m 1:m 2=3:2 m 1 m 2 初:v 0=10m/s v 0=10m/s

物理动量守恒定律练习题20篇.docx

物理动量守恒定律练习题20 篇 一、高考物理精讲专题动量守恒定律 1.在图所示足够长的光滑水平面上,用质量分别为3kg 和1kg 的甲、乙两滑块,将仅与甲 拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板恢复原长时,甲的速度大小为 2m/s ,此时乙尚未与 P.现将两滑块由静止释放,当弹簧 P 相撞. ①求弹簧恢复原长时乙的速度大小; ②若乙与挡板P 碰撞反弹后,不能再与弹簧发生碰撞.求挡板P 对乙的冲量的最大值. 【答案】 v 乙=6m/s.I =8N 【解析】 【详解】 (1)当弹簧恢复原长时,设甲乙的速度分别为 左的方向为正方向,由动量守恒定律可得: 和,对两滑块及弹簧组成的系统,设向 又知 联立以上方程可得,方向向右。 (2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为 由动量定理可得,挡板对乙滑块冲量的最大值为: 2.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A、B、 C,三球的质量分别为m A=1kg、 m B=2kg、 m C=6kg,初状态BC球之间连着一根轻质弹簧并处于 静止, B、C 连线与杆垂直并且弹簧刚好处于原长状态, A 球以 v0=9m/s 的速度向左运动,与同 一杆上的 B 球发生完全非弹性碰撞(碰撞时间极短),求: (1) A 球与 B 球碰撞中损耗的机械能; (2)在以后的运动过程中弹簧的最大弹性势能; (3)在以后的运动过程中 B 球的最小速度. 【答案】( 1);(2);(3)零. 【解析】 试题分析:( 1) A、 B 发生完全非弹性碰撞,根据动量守恒定律有:

碰后 A、 B 的共同速度 损失的机械能 (2) A、 B、C 系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大 根据动量守恒定律有: 三者共同速度 最大弹性势能 (3)三者第一次有共同速度时,弹簧处于伸长状态,速,A、 B 的加速度沿杆向右,直到弹簧恢复原长,故A、 B 在前, C 在后.此后C 向左加A、 B 继续向左减速,若能减速到零 则再向右加速. 弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有: 根据机械能守恒定律: 此时 A、 B 的速度,C的速度 可知碰后A、B 已由向左的共同速度减小到零后反向加速到向右的,故 的最小速度为零. 考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞. 【名师点睛】 A、 B 发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定 律和机械能守恒定律求出 A 球与 B 球碰撞中损耗的机械能.当B、C 速度相等时,弹簧伸 长量最大,弹性势能最大,结合B、 C 在水平方向上动量守恒、能量守恒求出最大的弹性 势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答 B 3.如图甲所示,物块A、 B 的质量分别是m A=4.0kg 和m B=3.0kg .用轻弹簧拴接,放在光 滑的水平地面上,物块 B 右侧与竖直墙相接触.另有一物块 C 从 t=0 时以一定速度向右运动,在 t=4s 时与物块 A 相碰,并立即与 A 粘在一起不再分开,物块 C 的 v-t 图象如图乙所示.求:

相关主题