搜档网
当前位置:搜档网 › 酚:氯仿:异丙醇抽提核酸的一些问题

酚:氯仿:异丙醇抽提核酸的一些问题

酚:氯仿:异丙醇抽提核酸的一些问题
酚:氯仿:异丙醇抽提核酸的一些问题

酚:氯仿:异丙醇抽提核酸的一些问题2014-01-4 23:19

1.异丙醇和乙醇沉淀质粒的区别:

异丙醇和酒精都是有机溶剂,一般来讲,提取质粒的时候一开始都要用异丙醇沉淀,因为异丙醇沉淀的效果要好一些,但最后大多用酒精沉淀,因为酒精容易挥发,对下游的实验影响小。

异丙醇比较疏水,能很更好地沉淀核酸,用乙醇的目的是去盐,它比异丙醇更亲水,所以能去掉一些盐离子。有时还用70%的乙醇洗样品也是为了增加盐的溶解度。

在沉淀核酸时可用乙醇与异丙醇,乙醇的极性要强于异丙醇,所以一般用2倍体积乙醇沉淀,但在多糖、蛋白含量高时,用异丙醇沉淀可部分克服这种污染,尤其用异丙醇在室温下沉淀对摆脱多糖、杂蛋白污染更为有效。

异丙醇沉淀核酸时,高浓度盐存在将使大量多糖存在溶液中,从而可达到去多糖的作用。但高浓度的盐存在会影响核酸的进一步操作,因此必须用乙醇多次洗涤脱盐。

0.54~1.0倍体积的异丙醇可选择性沉淀DNA和大分子rRNA和mRNA;但对5sRNA、

tRNA和多糖产物不产生沉淀,一般不需要在低温条件下长时间放置。

缺点:易使盐类(如NaCl、蔗糖)与DNA共沉淀;在DNA沉淀中异丙醇难以挥发除

去,所以常规需要用70%的乙醇漂洗DNA沉淀数次。

DNA乙醇是首选的有机溶剂,对盐类沉淀少,DNA沉淀中所含的衡量乙醇易蒸发去处,不影响以后的实验。

在适当的盐浓度下,2倍样品容积的95%乙醇可有效沉淀DNA,对于RNA则需要将乙醇量增加至2.5倍缺点是总体积较大。需在-20放置很长时间,30分钟-1小时。同样需要70%乙醇洗涤。

2.一般用的是酚:氯仿:异丙醇为25:24:1(v/v),其中酚是强烈的蛋白质变性剂,

能有效使蛋白质变性而除去,氯仿有强烈的脂溶性,去除脂类杂质,

3.本身酚:氯仿:异戊醇=25:24:1的主要作用是抽提蛋白质步骤:质粒用等体积的酚

/氯仿/异丙醇抽提一次,重复此步骤,加入两倍体积的无水乙醇和1/10体积的3 mol/L

乙酸钠溶液后混匀,零下20摄氏度沉淀30 min后12000 r/min离心10 min,沉淀用75%乙醇洗涤一次,12000 r/min离心5 min,弃上清,沉淀自然干燥后溶于20~40微升去

离子水中或者0.5 mol/L pH8.0的TE中。

4.

1)酚:使蛋白质变性,同时抑制了DNase的降解作用。用苯酚处理匀浆液时,由于蛋白与

DNA

使用酚的优点:1. 有效变性蛋白质;2. 抑制了DNase的降解作用。

缺点:1. 能溶解10-15%的水,从而溶解一部分poly(A)RNA。2. 不能完全抑制

RNase的活性。

2)氯仿的作用:克服酚的缺点;加速有机相与液相分层。最后用氯仿抽提:去除核酸溶液中

的过量酚。(酚易溶于氯仿中)

3)用酚-氯仿抽提细胞基因组DNA时,通常要在酚-氯仿中加少许异戊醇,为什么?

异戊醇:减少蛋白质变性操作过程中产生的气泡。异戊醇可以降低表面张力,从而减少气泡产生。另外,异戊醇有助于分相,使

4)用乙醇沉淀DNA时,为什么加入单价的阳离子?

用乙醇沉淀DNA时,通常要在溶液中加入单价的阳离子,如NaCl 或 NaAc,Na+中和DNA分子上的负电荷,减少DNA分子之间的同性电荷相斥力,而易于聚集沉淀。

5) 酚氯仿法提取DNA的一些试剂的作用酚氯仿法提取DNA的原理用酚抽提细胞DNA时,有什么作用?

使蛋白质变性,同时抑制了DNase的降解作用。用苯酚处理匀浆液时,由于蛋白与DNA 联结

键已断,蛋白分子表面又含有很多极性基团与苯酚相似相溶。蛋白分子溶于酚相,而DNA溶

于水相。使用酚的优点:1. 有效变性蛋白质;2. 抑制了DNase的降解作用。缺点:1. 能溶解

10-15%的水,从而溶解一部分poly(A)RNA。2. 不能完全抑制RNase的活性。

氯仿的作用?

氯仿:克服酚的缺点;加速有机相与液相分层。最后用氯仿抽提:去除核酸溶液中的迹量酚。(酚易溶于氯仿中)

用酚-氯仿抽提细胞基因组DNA时,通常要在酚-氯仿中加少许异戊醇,为什么?

异戊醇:减少蛋白质变性操作过程中产生的气泡。异戊醇可以降低表面张力,从而减少气泡产生。另外,异戊醇有助于分相,使离心后的上层含DNA的水相、中间的变性蛋白相及下层有

机溶剂相维持稳定。

用乙醇沉淀DNA时,为什么加入单价的阳离子?

用乙醇沉淀DNA时,通常要在溶液中加入单价的阳离子,如NaCl 或 NaAc,Na+中和DNA分子

上的负电荷,减少DNA分子之间的同性电荷相斥力,而易于聚集沉淀。

原理:动物和植物组织的脱氧核1mol/L氯化钠),但在0.14mol/L氯化钠盐溶液中溶解度最低,而核)则在0.14mol/L氯化钠中溶

解度最大,利用这一性质可将其分开。

DNA与蛋白质分离开。加入固体氯化钠使其浓度达到1mol/L,使DNA溶解。

加氯仿-异戊醇去除蛋白质,也可重复该步操作得较纯DNA。

最后用95%乙醇沉淀DNA。

溶解:将离心后除去RNA的沉淀,用30ml生理盐水溶解,充分搅拌后,匀浆一次。加4毫升10%SDS溶液,使溶液的SDS浓度达到1%左右,边加边搅拌,放置60 ℃水浴保温10分钟

(不停搅拌),冷却。加固体氯化钠,使溶液氯化钠浓度达到1mol/L,充分搅拌10分钟;

除杂质:加等体积氯仿-异戊醇混合液,充分震荡10分钟,8000 r/min离心7分钟,取上层液,量好体积,倒入烧杯中(离心管),

加同体积的氯仿-异戊醇混合液,重复上次操作。直至界面不出现蛋白凝胶为止;

沉淀:准确量取上清液体积,加2倍体积95%冷乙醇,搅拌后,置冰箱静止冷却,待有白色

丝状物出现,约10-15分钟,离心8000 r/min离心7分钟,得白色沉淀;

溶解:将沉淀物用0.1mol/L NaOH约10毫升溶解,得DNA溶液。

溶液I—溶菌液:

溶菌酶:它是糖苷水解酶,能水解菌体细胞壁的主要化学成分肽聚糖中的β-1,4糖苷键,因而具有溶菌的作用。当溶液中pH小于8时,溶菌酶作用受到抑制。

葡萄糖:增加溶液的粘度,维持渗透压,防止DNA受机械剪切力作用而降解。

EDTA:(1)螯合Mg2+、Ca2+等金属离子,抑制脱氧核糖核酸酶对DNA的降解作用(DNase作用时需要一定的金属离子作辅基);

(2)EDTA的存在,有利于溶菌酶的作用,因为溶菌酶的反应要求有较低的离子强度的环境。

溶液II-NaOH-SDS液:

NaOH:核酸在pH大于5,小于9的溶液中,是稳定的。但当pH>12或pH<3时,就会引起双链之间氢键的解离而变性。在溶液II中的NaOH浓度为0.2mo1/L,加抽提液时,该系统的pH就高达12.6,因而促使染色体DNA与质粒DNA的变性。

SDS:SDS是离子型表面活性剂。

它主要功能有:(1)溶解细胞膜上的脂质与蛋白,因而溶解膜蛋白而破坏细胞膜。

(2)解聚细胞中的核蛋白。

(3)SDS能与蛋白质结合成为R-O-SO3-…R+-蛋白质的复合物,使蛋白质变性而沉淀下来。但是SDS能抑制核糖核酸酶的作用,所以在以后的提取过程中,必须把它去除干净,防止在下一步操作中(用RNase去除RNA时)受到干扰。

溶液III--3mol/L NaAc(pH4.8)溶液:

NaAc的水溶液呈碱性,为了调节pH至4.8,必须加入大量的冰醋酸。所以该溶液实际上是NaAc-HAc的缓冲液。用pH4.8的NaAc溶液是为了把pH12.6的抽提液,调回pH至中性,使变性的质粒DNA能够复性,并能稳定存在。而高盐的3mol/L NaAc有利于变性的大分子染色体DNA、RNA以及SDS-蛋白复合物凝聚而沉淀之。前者是因为中和核酸上的电荷,减少相斥力而互相聚合,后者是因为钠盐与SDS-蛋白复合物作用后,能形成较小的钠盐形式复合物,使沉淀更完全。

为什么用无水乙醇沉淀DNA?

用无水乙醇沉淀DNA,这是实验中最常用的沉淀DNA的方法。乙醇的优点是可以任意比和水相混溶,乙醇与核酸不会起任何化学反应,对DNA很安全,因此是理想的沉淀剂。 DNA溶液

是DNA以水合状态稳定存在,当加入乙醇时,乙醇会夺去DNA周围的水分子,使DNA失水而

易于聚合。一般实验中,是加2倍体积的无水乙醇与DNA相混合,其乙醇的最终含量占67%

左右。因而也可改用95%乙醇来替代无水乙醇(因为无水乙醇的价格远远比95%乙醇昂贵)。但是加95%的乙醇使总体积增大,而DNA在溶液中有一定程度的溶解,因而DNA损失也增大,尤其用多次乙醇沉淀时,就会影响收得率。折中的做法是初次沉淀DNA时可用95%乙醇代替

无水乙酵,最后的沉淀步骤要使用无水乙醇。也可以用0.6倍体积的异丙醇选择性沉淀DNA。

一般在室温下放置15-30分钟即可。

在用乙醇沉淀DNA时,为什么一定要加NaAc或NaCl至最终浓度达0.1~0.25mol/L?

在pH为8左右的溶液中,DNA分子是带负电荷的,加一定浓度的NaAc或NaCl,使Na+中和DNA分子上的负电荷,减少DNA分子之间的同性电荷相斥力,易于互相聚合而形成DNA钠盐

沉淀,当加入的盐溶液浓度太低时,只有部分DNA形成DNA钠盐而聚合,这样就造成DNA沉

淀不完全,当加入的盐溶液浓度太高时,其效果也不好。在沉淀的DNA中,由于过多的盐杂

质存在,影响DNA的酶切等反应,必须要进行洗涤或重沉淀。

加核糖核酸酶降解核糖核酸后,为什么再要用SDS与KAc来处理?

加进去的RNase本身是一种蛋白质,为了纯化DNA,又必须去除之,加SDS可使它们成为SDS-蛋白复合物沉淀,再加KAc使这些复合物转变为溶解度更小的钾盐形式的SDS-蛋白质复合物,使沉淀更加完全。也可用饱和酚、氯仿抽提再沉淀,去除RNase。在溶液中,有人以KAc

代替NaAc,也可以收到较好效果。

在基因操作实验中,选择缓冲液的主要原则是考虑DNA的稳定性及缓冲液成分不产生干扰

作用。磷酸盐缓冲系统(pKa=7.2)和硼酸系统(pKa=9.24)等虽然也都符合细胞内环境的生

理范围(pH),可作DNA的保存液,但在转化实验时,磷酸根离子的种类及数量将与Ca2+产生Ca3(PO4)2沉淀;在DNA反应时,不同的酶对辅助因子的种类及数量要求不同,有的要求高离

子浓度,有的则要求低盐浓度,采用Tris-HCl(pKa=8.0)的缓冲系统,由于缓冲液是

TrisH+/Tris,不存在金属离子的干扰作用,故在提取或保存DNA时,大都采用Tris-HCl系统,

而TE缓冲液中的EDTA更能稳定苯酚、氯仿、异戊醇在DNA提取时的作用

抽提DNA去除蛋白质时,怎样使用酚与氯仿较好?

酚与氯仿是非极性分子,水是极性分子,当蛋白水溶液与酚或氯仿混合时,蛋白质分子之间

的水分子就被酚或氯仿挤去,使蛋白失去水合状态而变性。经过离心,变性蛋白质的密度比水

的密度为大,因而与水相分离,沉淀在水相下面,从而与溶解在水相中的DNA分开。而酚与

氯仿有机溶剂比重更大,保留在最下层。作为表面变性的酚与氯仿,在去除蛋白质的作用中,

各有利弊,酚的变性作用大,但酚与水相有一定程度的互溶,大约10%~15%的水溶解在酚

相中,因而损失了这部分水相中的DNA,而氯仿的变性作用不如酚效果好,但氯仿与水不相混溶,不会带走DNA。所以在抽提过程中,混合使用酚与氯仿效果最好。经酚第一次抽提后的水

在抽提DNA时,为了混合均匀,必须剧烈振荡容器数次,这时在混合液内易产生气泡,气

泡会阻止相互间的充分作用。加入异戊醇能降低分子表面张力,所以能减少抽提过程中的泡沫产生。一般采用氯仿与异戊醇为24:1之比。也可采用酚、氯仿与异戊醇之比为25:24:1(不必先配制,可在临用前把一份酚加一份24:1的氯仿与异戊醇即成),同时异戊醇有助于分相,使离心后的上层水相,中层变性蛋白相以及下层有机溶剂相维持稳定。

苯酚:氯仿:异戊醇为什么要25:24:1?抽提DNA去除蛋白质时,怎样使用酚与氯仿较好?

酚与氯仿是非极性分子,水是极性分子,当蛋白水溶液与酚或氯仿混合时,蛋白质分子之间

的水分子就被酚或氯仿挤去,使蛋白失去水合状态而变性。经过离心,变性蛋白质的密度比水

的密度为大,因而与水相分离,沉淀在水相下面,从而与溶解在水相中的DNA分开。而酚与

氯仿有机溶剂比重更大,保留在最下层。作为表面变性的酚与氯仿,在去除蛋白质的作用中,

各有利弊,酚的变性作用大,但酚与水相有一定程度的互溶,大约10%~15%的水溶解在酚

相中,因而损失了这部分水相中的DNA,而氯仿的变性作用不如酚效果好,但氯仿与水不相混溶,不会带走DNA。所以在抽提过程中,混合使用酚与氯仿效果最好。经酚第一次抽提后的水相中有残留的酚,由于酚与氯仿是互溶的,可用氯仿第二次变性蛋白质,此时一起将酚带走。

也可以在第二次抽提时,将酚与氯仿混合(1:1)使用。

为什么用酚与氯仿抽提DNA时,还要加少量的异戊醇?

在抽提DNA时,为了混合均匀,必须剧烈振荡容器数次,这时在混合液内易产生气泡,气

泡会阻止相互间的充分作用。加入异戊醇能降低分子表面张力,所以能减少抽提过程中的泡沫

产生。一般采用氯仿与异戊酵为24:1之比。也可采用酚、氯仿与异戊醇之比为25:24:1(不

必先配制,可在临用前把一份酚加一份24:1的氯仿与异戊醇即成),同时

异戊醇有助于分相,使离心后的上层水相,中层变性蛋白相以及下层有机溶

剂相维持稳定。

乙醇沉淀DNA和异丙醇沉淀DNA的区别

异丙醇和酒精都是有机溶剂,一般来讲,提取质粒的时候一开始都要用异丙醇沉淀,因为异

丙醇沉淀的效果要好一些,但最后大多用酒精沉淀,因为酒精容易挥发,对下游的实验影响小

异丙醇比较疏水,能很更好地沉淀核酸,用乙醇的目的是去盐,它比异丙醇更亲水,所以能

去掉一些盐离子。有时还用70%的乙醇洗样品也是为了增加盐的溶解度。

在沉淀核酸时可用乙醇与异丙醇,乙醇的极性要强于异丙醇,所以一般用2倍体积乙醇沉淀,但在多糖、蛋白含量高时,用异丙醇沉淀可部分克服这种污染,尤其用异丙醇在室温下沉淀对

摆脱多糖、杂蛋白污染更为有效。异丙醇沉淀核酸时,高浓度盐存在将使大量多糖存在在溶液中,从而可达到去多糖的作用。但高浓度的盐存在会影响核酸的进一步操作,因此必须用乙醇

多次洗涤脱盐。

异丙醇:

优点:所需容积小且速度快,适用于浓度低,而体积大DNA样品的沉淀。0.54~1.0倍体积的异丙醇可选择性沉淀DNA和大分子rRNA和mRNA;但对5sRNA、tRNA和多糖产物不产生沉淀,一般不需要在低温条件下长时间放置。

缺点:易使盐类(如NaCl、蔗糖)与DNA共沉淀;在DNA沉淀中异丙醇难以挥发除去,所

以常规需要用70%的乙醇漂洗DNA沉淀数次。

乙醇:沉淀DNA乙醇是首选的有机溶剂,对盐类沉淀少,DNA沉淀中所含的衡量乙醇易蒸

对于

后处理及提纯方法合成心得

后处理的几个常用而实用的方法: (1)有机酸碱性化合物的分离提纯 具有酸碱性基团的有机化合物,可以得失质子形成离子化合物,而离子化合物与原来的母体化合物具有不同的物理化学性质。碱性化合物用有机酸或无机酸处理得到胺盐,酸性化合物用有机碱或无机碱处理得到钠盐或有机盐。根据有机化合物酸碱性的强弱,有机、无计酸碱一般为甲酸、乙酸、盐酸、硫酸、磷酸。碱为三乙胺、氢氧化钠、氢 氧化钾、碳酸钠、碳酸氢钠等。在一般情况下,离子化合物在水中具有相当大的溶解性,而在有机溶剂中溶解度很小,同时活性碳只能够吸附非离子型的杂质和色素。利 用以上的这些性质可对酸碱性有机化合物进行提纯。以上性质对所有酸碱性化合物并 不通用,一般情况下,分子中酸碱性基团分子量所占整个分子的分子量比例越大,则 离子化合物的水溶性就越大,分子中含有的水溶性基团例如羟基越多,则水溶性越大,因此,以上性质适用于小分子的酸碱化合物。对于大分子的化合物,则水溶性就明显 降低。 酸碱性基团包括氨基。酸性基团包括:酰氨基、羧基、酚羟基、磺酰氨基、硫酚基、1,3-二羰基化合物等等。值得注意的是,氨基化合物一般为碱性基团,但是在连有 强吸电子基团时就变为酸性化合物,例如酰氨基和磺酰氨基化合物,这类化合物在氢 氧化钠、氢氧化钾等碱作用下就容易失去质子而形成钠盐。 中合吸附法: 将酸碱性化合物转变为离子化合物,使其溶于水,用活性碳吸附杂质后过滤,则除去了不含酸碱性基团的杂质和机械杂质,再加酸碱中合回母体分子状态,这是回收和提 纯酸碱性产品的方法。由于活性碳不吸附离子,故有活性碳吸附造成的产品损失忽劣 不计。 中和萃取法: 是工业过程和实验室中常见的方法,它利用酸碱性有机化合物生成离子时溶于水而母体分子状态溶于有机溶剂的特点,通过加入酸碱使母体化合物生成离子溶于水实现相 的转移而用非水溶性的有机溶剂萃取非酸碱性杂质,使其溶于有机溶剂从而实现杂质 与产物分离的方法。 成盐法: 对于非水溶性的大分子有机离子化合物,可使有机酸碱性化合物在有机溶剂中成盐析出结晶来,而非成盐的杂质依然留在有机溶剂中,从而实现有机酸碱性化合物与非酸 碱性杂质分离,酸碱性有机杂质的分离可通过将析出的结晶再重结晶,从而将酸碱性 有机杂质分离。对于大分子的有机酸碱化合物的盐此时还可以采用水洗涤除去小分子 的酸碱化合物已经成盐且具有水溶性的杂质。 对于水溶性的有机离子化合物,可在水中成盐后,将水用共沸蒸馏或直接蒸馏除去,残余物用有机溶剂充分洗涤几次,从而将杂质与产品分离。 以上三种方法并不是孤立的,可根据化合物的性质和产品质量标准的要求,采用相结

有机化学试题库六——鉴别与分离提纯题及解答

试题库六——鉴别与分离提纯题及解答 6-1.(A) 己烷 (B) 1-己炔 (C) 2-己炔 答:加入溴水不褪色的为(A),余下两者加入Ag(NH3)2+溶液有白色沉淀生成的为(B),另者为(C)。 6-2.(A) 1-戊炔 (B) 1-戊烯 (C) 正戊烷 答:加入KMnO4溶液不褪色的为(C),余下两者加入Ag(NH3)2+溶液有白色沉淀生成的为(A),另者为(B)。 6-3.(A) 1-戊炔 (B) 2-戊炔 (C) 1,3-戊二烯 答:加入Ag(NH3)2+溶液有白色沉淀生成的为(A),余下两者加入顺丁烯二酸酐有白色沉淀生成的为(C),另者为(B)。 6-4.(A) 甲苯 (B) 苯乙烯 (C) 苯乙炔 答:加入溴水不褪色的为(A),余下两者加入Ag(NH3)2+溶液有白色沉淀生成的为(C),另者为(B)。 6-5.(A) 环己烯 (B) 1,1-二甲基环丙烷 (C) 1,3-环己二烯 答:加入KMnO4溶液不褪色的为(B),余下两者加入顺丁烯二酸酐有白色沉淀生成的为(C),另者为(A)。 6-6.(A) 2-丁烯 (B) 1-丁炔 (C) 乙基环丙烷 答:加入KMnO4溶液不褪色的为(C),余下两者加入Ag(NH3)2+溶液有白色沉淀生成的为(B),另者为(A)。 6-7.(A) 1-庚炔 (B) 2-庚炔 (C) 1,3-庚二烯 答:加入Ag(NH3)2+溶液有白色沉淀生成的为(A),余下两者加入顺丁烯二酸酐有白色沉淀生成的为(C),另者为(B)。 6-8.(A) 环己基乙炔 (B) 环己基乙烯 (C) 2-环己基丙烷 答:加入Ag(NH3)2+溶液有白色沉淀生成的为(A),余下两者加入溴水,使褪色的为(B),另者为(C)。 6-9.(A) 2-辛炔 (B) 环丙烷 (C) 1,3-环戊二烯 答:加入KMnO4溶液不褪色的为(B),余下两者加入顺丁烯二酸酐有白色沉淀生成的为(C),另者为(A)。 6-10.(A) 丙烯 (B) 环丙烷 (C) 丙炔 答:加入氯化亚铜氨溶液有砖红色沉淀生成的为(C),另两者加入稀的KMnO4溶液,使之褪色的为(A),余者为(B)。 6-11.苯乙炔环己烯环己烷 加溴水使溴水不褪色的为环己烷,余者加Ag(NH3)2+有白色沉淀为苯乙炔。 6-12. 1-戊烯 1,2-二甲基环丙烷 加KMnO4不褪色的为1,2-二甲基环丙烷。 6-13.2-丁烯 1-丁炔乙基环丙烷 加KMnO4不褪色的为乙基环丙烷,余者加Ag(NH3)2+有白色沉淀为1-丁炔。 6-14. 环丙烷与丙烷 5.1,2-二甲基环丙烷与环戊烷 加溴水使溴水褪色的为环丙烷。加溴水褪色的为1,2-二甲基环丙烷。 6-15.乙基环丙烷和环戊烷 7.乙基环丙烷和乙烯基环丙烷 加溴水使溴水褪色的为乙基环丙烷。加KMnO4褪色的为乙烯基环丙烷。 6-16.环己烯与异丙基环丙烷 9.丁烷和甲基环丙烷

有机溶剂沉淀法分离与纯化蛋白质

有机溶剂沉淀法分离与纯化蛋白质 摘要:有机溶剂能降低溶液的电解常数,从而增加蛋白质分子上不同电荷的引力,导致溶解度的降低;另外,有机溶剂与水的作用,能破坏蛋白质的水化膜,故蛋白质在一定浓度的有机溶剂中的溶解度差异而分离的方法,称“有机溶剂分段沉淀法”,它常用于蛋白质或酶的提纯。 关键词:有机溶剂沉淀分离与纯化 正文 一、有机溶剂沉淀法 1.有机溶剂沉淀法的概念 利用与水互溶的有机溶剂(如甲醇、乙醇、丙酮等)能使蛋白质在水中的溶解度显著降低而沉淀的方法,称为有机溶剂沉淀。 2.有机溶剂沉淀法的原因 有机溶剂引起蛋白质沉淀的主要原因是加入有机溶剂使水溶液的介电常数降低,因而增加了两个相反电荷基团之间的吸引力,促进了蛋白质分子的聚集和沉淀。有机溶剂引起蛋白质沉淀的另一种解释认为与盐析相似,有机溶剂与蛋白质争夺水化水,致使蛋白质脱除水化膜,而易于聚集形成沉淀。 3.有机溶剂沉淀法的影响因素 (一)有机溶剂的选择在实际生产中,常用的有机溶剂有乙醇、丙酮、异丙醇、氯仿等。丙酮的介电常数小,沉淀能力强;而乙醇无毒,广泛应用于药品生产中。 (二)温度的控制有机溶剂沉淀时,温度是重要的控制指标。根据沉淀对象不同,采用的温度不同,为防止生物大分子在较高温度时发生变性,一般要求在低温下进行,同时还要考虑有机溶剂与水混合时的放热现象。 (三)pH值等电点时,蛋白质的溶解度最低。在有机溶剂沉淀时,应选择pH值在等电点附近,但是pH值的控制还必须考虑目的药物的稳定性条件,一般生产中常用缓冲液来控制溶液的pH值。 (四)离子强度在有机溶剂和水的混合液中离子强度是一个特别重要的因素。因为盐在一定的浓度范围内能增加蛋白质或酶在有机溶剂中的溶解度,使有机溶剂沉淀收率降低,因此当采用盐析沉淀法得到蛋白质或酶后,如需进一步用有机溶剂沉淀法纯化,一定要先透析除盐。 4.有机溶剂沉淀法的溶剂选择原则

浅析混合物分离提纯的方法及选择

浅析混合物分离提纯的方法及选择 人教版化学必修1第一章“从实验学化学”第一节开篇介绍了过滤、蒸发、蒸馏和萃取、分液等分离和提纯混合物的方法,定下实验是高中化学学习的一种基本方法的基调,同时,也告诉我们分离提纯是物质获取和制备工艺的重要环节。 奥苏泊尔认为,无论是客体的知识结构,还是主体的认知结构,都具有纵横联系的性质,因而提出了综合贯通的原则,该原则有助于教师根据学生认知结构的特点来设计教学内容、安排教学序列,从而有助于学生对知识的学习和保持、迁移和应用。由于混合物分离提纯的方法多种多样,且零散分布在不同年级教材和不同的章节中,因此,在高三总复习过程中,教师需要将其综合连贯在一起进行梳理和考量,对比其中的原理,把握各自的操作特征,促进学生形成系统分析“混合物分离提纯”的视角和思路,引导学生建构分离提纯混合物方案设计的思维模型。 本文结合一些实例,就典型的分离提纯方法做一归纳,找出它们与性质特别是沸点、密度、溶解性及聚集态等物理性质之间的关联,阐述它们的适用条件,以期帮助学生克服死记硬背,增强处理综合实验或工业工艺流程中有关分离提纯环节问题的能力。 一、蒸馏 蒸馏,是利用液体混合物中各组分沸点的差别,加热液体混合物使之部分汽化,又将蒸气冷凝为液体,从而实现其所含组分的分离。 人教版化学必修1第7页讲述了蒸馏的基本原理,并从使用自来水制取蒸馏水实验入手获得蒸馏操作的直接经验;必修2第75页生成乙酸乙酯实验涉及了酯的蒸出,第90页结合海水资源利用讲述了海水蒸馏原理,第96页介绍了石油的分馏,将蒸馏原理的应用推向高潮。选修5在“研究有机物的一般步骤和方法”,进一步总结了蒸馏原理和适用条件,并进行了“含有杂质的工业乙醇的蒸馏”实验,熟悉蒸馏基本操作步骤,真正认识到蒸馏是液体混合物分离、纯化的有效手段。 例1.(2013海南,20节选)高纯硅是现代信息、半导体和光伏发电等产业都需要的基础材料。工业上提纯硅有多种路线,其中一种工艺流程示意图及主要反应如下:

正丙醇-异丙醇-水共沸体系分离工艺模拟

第34卷第5期2017年5月 吉林化工学院学报 JOURNAL OF JILIN INSTITUTE OF CHEMICAL TECHNOLOGY V 〇1.34 N 〇.5May . 2017 文章编号:1007-2853(2017)05-0001-05 正丙醇-异丙醇-水共沸体系分离工艺模拟 王桂英\刘艳杰\陈丽\王树东 2 (1.吉林化工学院石油化工学院,吉林吉林132022;2.德惠市东华化工有限责任公司,吉林德惠130326) 摘要:利用Aspen Plus 软件,分析正丙醇-异丙醇-水三元物系的剩余曲线,确定了分离序列和以二甲基 亚砜为萃取剂的萃取精馏流程;优化了各精馏塔的工艺参数,模拟结果可为正丙醇-异丙醇-水共沸体系 的分离提供理论依据,并有效地指导了实际生产.关键词:正丙醇;异丙醇;萃取精馏;二甲基亚砜中图分类号:TQ 028 文献标志码:A DOI : 10.16039/https://www.sodocs.net/doc/fd17150632.html,22-1249.2017.05.001 异丙醇(IPA )和正丙醇(NPA )均是重要的化 学产品和化工原料,被广泛地应用于制药、有机原 料、香料、化妆品、塑料和涂料等领域[1].东华公司 采用气相丙烯直接水合法生产IPA ,同时副产 NPA ,水合液主要为NPA -IPA -H 20的混合物.由 于IPA 与H 20、NPA 与H 20均形成共沸物[2_6],采 用普通精馏难以得到高纯度的醇产品.目前,对于 共沸物的分离常采用萃取精馏[7~、加盐萃取精 傭[1()]、共沸精馏[11_12]、超临界萃取[13]等方法.而 萃取精馏相比于其他特殊精馏具有明显的优势, 应用更为广泛.结合东华公司现有的生产条件,拟 采取萃取精馏对NPA -IPA -H 20物系进行分离.本 文采用Aspen Plus 软件,对丙醇混合液进行定性 判断及剩余曲线分析,确定适宜的萃取剂和萃取 精馏流程.从能耗和分离要求等角度综合考虑,优 化各塔的工艺条件,为NPA -IPA -H 20共沸体系的 分离提供理论依据,以指导实际装置的开发和 生产. 1 npa -ipa -h 20 分离流程的确定 1.1 n p a -ip a -h 2〇三元物系剩余曲线分析 利用Aspen Plus 软件,采用NRTL -RK 模型, 绘制常压下NPA -IPA -H 20三元物系的剩余曲线, 见图1. 由图1可见,常压下n pa -ipa -h 20形成两个 二元最低共沸物,即 A 1(IPA -H 20)和A 2(NPA - H 20),共沸温度分别为80.14 〇C 和87.63 〇C .图1 体现该三元体系在常压下,存在I 和II 两个蒸馏 区域,拟研究三元混合液组成位于蒸馏区域I 内, 在该区域内,NPA 为稳定节点,根据蒸馏原理,塔 釜可得到NPA (B l ), 塔顶馏出IPA -H 20混合物 (D 1).由于IPA -H 20形成最低共沸物,可采用萃 取精馏提纯IPA . 1.2萃取剂的筛选 选择适宜的萃取剂是萃取精馏成功与否的关 键,工业生产中萃取剂选择主要满足选择性高、溶 解能力大、与被分离物不发生化学反应、易于回收 并可循环使用、价格低廉且易得等条件[14].根据 萃取剂选择原则,拟选用乙二醇(EG )、二甘醇 ( DEG )和二甲基亚砜(DMS 0)作为IPA -H 20 共 沸体系萃取精馏分离的萃取剂. 采用Aspen P lus 软件,在60kP a 考察 DMS 0、 收稿日期:2017-04-13 作者简介:王桂英(1964-),女,吉林长春人,吉林化工学院教授,博士,主要从事化工热力学、催化动力学方面的 研究.

DNA的分离纯化及测定知识讲解

D N A的分离纯化及测 定

第一章DNA的分离、纯化及测定 第一节DNA的提取 一、提取程序的原理 植物DNA的提取程序应包括以下几项; 1,破碎(或消化)细胞壁释放出细胞内容物。 然而许多操作在破壁的同时也会剪切DNA,因此任何方法都是在DNA的完整性和产量这两个方面之间折衷考虑的结果。 分离总基因组DNA常用的破壁方法 是将植物组织胀水,然后研磨成细粉, 或者将新鲜植物组织在干冰或液氮中快速冷冻后,用研钵将其磨成粉。 分离核DNA或细胞器DNA时则应采取较为温和的破壁方法,以免过早破坏内膜系统,人们通常采用在含有渗透剂的缓冲液中4o C匀浆的方法来破壁。 2、破坏细胞膜使DNA释放到提取缓冲液中。 这一步骤通常靠诸如SDS或CTAB一类的去污剂来完成。去污剂还可以保护DNA免受内源核酸酶的降解。通常提取缓冲液中还包含EDTA,它可以螯合大多数核酸酶所需的辅助因子——镁离子。 3、去除RNA、蛋白质、多糖、丹宁和色素等杂质

一旦DNA释放出来,其剪切破坏的程度必须要降到最低。剧烈振荡或小孔快速抽吸都会打断溶液中高相对分子质量的DNA 。一般说来,如果操作得当,可以得到相对分子质量长度为50—l00kb的DNA。 在DNA粗提物中往往含有大量RNA、蛋白质、多糖、丹宁和色素等杂质,这些杂质有时很难从DNA中除去。大多数蛋白可通过氯仿或苯酚处理后变性、沉淀除去,绝大部分RNA则可通过经处理过的RNase A除去。但多糖类杂质一般较难去除,这些杂质浓度高时,常常使DNA提取物呈胶状,更为重要的是即使是低浓度情况下它们也会干扰后续操作,如抑制某些DNA修饰酶包括限制性内切酶的活性,从而阻碍Southern杂交或基因克隆;同时多糖杂质还会影响分光光度法对核酸的定量分析等。 (植物分子生物学----实验手册(英) Clarke M. S. 主编顾红雅瞿礼嘉主译高等教育出版社 1998 ) 二、基因组DNA的提取 1、基因组DNA用途 DNA是遗传信息的载体,是重要的生物信息分子, 是分子生物学研究的主要对象。 为了进行测序, Southern杂交|, 基因文库的构建,PCR扩增等,高分子量和高纯度的基因组 DNA是非常重要的前提. 2、基因组DNA提取的原则

异丙醇-环己烷双液系相图

东北师范大学等校编(第二版) 高等教育出版社出版 异丙醇—环己烷双液系相图 一、实验目的: 1.了解物理化学实验手段中常用的物理方法—光学方法的基本原理。 2.绘制异丙醇—环己烷双液系的沸点—组成图,确定其恒沸组成及恒沸温度。 3.进一步理解分馏原理。 4.掌握阿贝折射计的原理及使用方法。 二.基本原理: 根据相律:f + φ = c + 2 ,对二组分体系:f = 4 - φ,f max = 3 (T,P,x)。 对于二组分体系,常常保持一个变量为常量,而得到立体图形的平面截面图。这种平面图可以有三种:p-x图,T-x图,T-p图。常用的是前两种。在平面图上,f*=3-φ,f*max=2,同时共存的相数φmax=3。 单组分的液体在一定外压下,它的沸点是一定值,把两种完全互溶的挥发性液体(组分A和B)互相混合后,在某一定温度下,平衡共存的气液两相的组成,通常并不相同,因此如果在恒压下将溶液蒸馏,测定馏出物(气相)和蒸馏液(液相)的折射率,就能找出平衡时气液两相的成分,并绘出沸点—组成(T—x)图线,在常温下,两种液态物质以任意比例相互溶解所组成的体系称之为完全互溶双液系。完全互溶双液系在恒定压力下的沸点—组成图可分为三类: (1)溶液沸点介于两纯组分沸点之间(如图1),(2)溶液存在最低沸点(图2)和(3)溶液存在最高沸点(图3)。 (2)、(3)被称为具有恒沸点的双液系,即体系处于恒沸点时气、液两相的组成相同,其相应的溶液称为恒沸点混合物。此时对恒沸点混合物进行蒸馏,所得气相与液相组成相同,因此我们不能用普通蒸馏方法获得任一纯组分。异丙醇—环己烷双液系属于具有最低恒沸点一类的体系。 T—x图在进行蒸馏或分馏时是必不可少的,而分馏在提纯溶剂和石油工业中也得到广泛应用,所以这种图是具有很大的实用价值的。 本实验的目的就是要绘制异丙醇—环己烷的T—x图并找出恒沸点混合物的组成。1.沸点—组成图的绘制 为了绘制沸点—组成图,可采取不同的方法。在本实验中,我们采用的是一种物理方法

分离与纯化技术

提取:又称浸出、固液萃取,是应用有机或无机溶剂将固体原料中的可溶性组分溶解,使其进入液相,再将不溶性固体和溶液分开的操作。影响因素:粉碎度,提取温度,浓度差,提取时间。 萃取:两相溶剂提取又简称萃取法,是利用混合物中各成分在两种互不相溶的溶剂中分配系数的不同进行分离的方法。 微波提取:是利用微波能进行物质萃取的一种新发展起来的技术。原理:由于物质分子偶极振动同微博振动具有相似的频率,在快速振动的微波磁场中,被辐射的极性物质分子吸收电磁能,以每秒数十亿次的高速振动而产生热能。特点:投资少、设备简单、适用范围广、重现性好、选择性高、操作时间短、溶剂耗量少、有效成分得率高、不产生噪音、不产生污染、适于热不稳定性物质。 超声波提取:是利用超声波具有的机械效应、空化效应及热效应,通过增大介质分子的运动速度、增大介质的穿透力以提高生物有效成分的方法。原理:1、机械效应:超声波在介质中的传播可以使介质质点在其传播空间内产生振动,从而强化介质的扩散、传质。2、空化效应:通常情况下,介质内都或多或少地溶解了一些微气泡,这些气泡在超声波的作用下产生振动,当声压达到一定值时,气泡由于定向扩散而增大,形成共振腔,然后突然闭合。3、热效应:超声波在介质的传播过程中,其声能可以不断被介质的质点吸收,介质将所吸收能量的全部或大部分转变成热能,从而导致介质本身和药材组织温度的升高。影响因素:时间、超声波频率、温度、超声波的凝聚机制。 过滤:是利用多空性介质阻留固体而让液体通过,是固体与液体分离的方法。影响因素:液体黏度、温度、滤材的毛细管长度、压力、滤渣层厚度、沉淀中的胶状物或其他可压缩物质。 蒸发浓缩:蒸发是溶液表面的水或溶剂分子获得的动能超过溶液内分子间的吸引力之后,脱离表面进入空间的过程。影响因素:溶液的浓度、溶解度、物料的热敏性、泡沫的形成、压力和温度、结垢和设备材料。 盐析沉淀法:原理:由于大量盐的溶入,使高分子物质失去水化层,分子之间相互聚集而沉淀。影响因素:离子强度、蛋白质的性质、pH、温度。 有机溶剂沉淀法:影响因素:温度、样品浓度、pH、金属离子、离子强度。 铅盐沉淀法:原理:由于醋酸铅及碱式醋酸铅在水及醇溶液中能与多种植物成分生成难溶的铅盐,故可利用这种性质使有效成分与杂质分离。 酸碱沉淀法:此法是利用某些成分在酸(或碱)中溶解、在碱(或酸)中沉淀的性质达到分离的方法。 结晶:是物质从液态或气态形成晶体的过程。方法:盐析法,有机溶剂结晶法,等电点结晶法等。 树脂吸附分离技术:吸附是利用吸附剂对液体或气体中某一组分具有选择性吸附的能力,使其富集在吸附剂表面,再用适当的洗脱剂将其解吸达到分离纯化的过程。 膜分离技术:是用膜作为选择障碍层,在分子水平上,不同粒径、不同性质的混合物质在通过膜时,允许某些组分透过而保留混合物中其他组分,从而达到分离的技术。原理:以选择性透膜为分离介质,通过在膜两边施加一个推动力时,使原料侧组分选择性地透过膜,以达到分离提纯的目的。 分子蒸馏技术:是指在高真空(0.133~1Pa)条件下,蒸发面和冷凝面的间距小于或等于被分离物料蒸汽分子的平均自由程,由蒸发面逸出的分子,既不与残余空气的分子碰撞,自身也不相互碰撞,而是毫无阻碍地到达并凝集在冷凝面上,从而实现液-液分离的技术。 天然产物提取的每步操作目的:(1)减少产品体积(2)提高产品纯度(3)增加后续操作效率 色谱法:色谱法又称层析法,是利用混合物中各个组分的化学、物理性质的差异,各个组分不同程度的分布于两相中,一个固定相,另一个流动相,由于被分离混合物中各组分受固定相的作用力不同(吸附、分配、交换、分子间氢键结合力等)在流动相与固定相发生相对移动过程中,当待分离的混合物通过固定相时,由于各组分的理化性质存在差异,与两相发生相互作用的能力不同,在两相中的分配不同,与固定相相互作用力月弱的组分,随流动相移动时收到的阻力越小,向前移动快。反之,作用强的移动速度慢。从而达到分离的目的。 固定相:色谱分离过程中的一个固定的介质。 流动相:在层析过程中推动固定相上待分离物质朝一个方向移动的液体气体或超临界流体等 色谱分离的共同点:(1)存在流动相固定相(2)物质的分离还必须借助流动相的移动来推动(3)差速运动分离原理 迁移率:(比移值)指在一定条件下,在相同时间内某一组分在固定相移动的距离与流动相本身移动距离的比值。Rf值与分配系数K密切相关:k大Rf小 分配系数影响因素:(1)被分离物的本身性质(2)固定相流动相的性质(3)层析柱的温度 正向色谱:固定相极性大于流动相的极性

间歇恒沸精馏法分离异丙醇水溶液的过程研究

摘要: 采用单塔间歇恒沸精馏法 ,选择环己烷作为恒沸剂 ,分离异丙醇和水。应用 ChemCAD5.2 化工模拟软件中的 CC-BATCH间歇精馏模块对间歇恒沸精馏工艺过程进行了模拟计算 ,并应用最优模拟条件来指导实验 ,得到了环己烷-异丙醇-水三元体系的最优操作条件:进料质量比 m (环己烷) / m (异丙醇) / m (水) = 0.428/ 0.5/ 0.07 ,回流比 19 ,汽化量 0.3kg/ h ,塔板数 7。采用环己烷-异丙醇-水三元非均相恒沸精馏脱水法将异丙醇与水分离 ,从含水 12.6 %左右的异丙醇溶液可制得含水小于 0.3 %的异丙醇产品 ,异丙醇单程质量收率可达 61.1 %。 0前言 异丙醇作为一种优良的溶剂 ,在实验室和工业上都有广泛的用途。因此,经常需要从异丙醇水溶液中回收异丙醇。例如,奈普生原药生产过程中就有一定数量的含水为 12.6 %的异丙醇水溶液需要脱水,要求异丙醇中水含量小于0.5 %。HPLC(高效液相色谱) 流动相中也要大量使用异丙醇(IPA) ,其在使用后转化成HPLC 流动相废液。对其进行回收利用 ,既可以作为生产其它高附加值化工产品的优质原料 ,又可以消除对环境的污染。 本文对正己烷-异丙醇-水及少量磷酸的溶液进行分离。该溶液经过预处理再行精馏 ,分离效果较好。预处理过程主要包括以中和、除杂为辅的化学过程和萃取为主的物理过程。首先少量磷酸通过加碱中和 ,然后用水萃取 ,体系分为油相(主要含正己烷)和水相(主要含异丙醇和水)两相 ,对两相分别进行分离提纯。油相通过精馏 ,就能得到满足纯度要求的目标产物之一的正己烷。水相经过简单精馏可得异丙醇和水的共沸物。由于异丙醇和水形成共沸物(见表 1) ,因此不能用一般的蒸馏法制得无水异丙醇。目前 ,制无水异丙醇最具工业意义的是三元非均相恒沸精馏脱水法。 近年来,利用模拟计算来开发新工艺的报道越来越多。本文利用大型化工系统模拟软件Chem-CAD5.2 对三元恒沸精馏工艺过程进行了模拟计算 ,找出了最优条件 ,并用来指导实验。实践证明把过程模拟与实验相结合 ,将大大缩短工艺开发过程 ,且可在较短时间内找出最优。 操作条件 ,这对生产和实验均有积极的参考意义。 1 恒沸剂的选择

相关主题