搜档网
当前位置:搜档网 › 如何使用Matlab检验数据服从什么分布

如何使用Matlab检验数据服从什么分布

如何使用Matlab检验数据服从什么分布
如何使用Matlab检验数据服从什么分布

MatLab实现数据分布检验的程序

拿到数据的时候,首先要判断以下这批数据服从什么分布,下面是matlab程序/

function f=p_judge(A,alpha)

% 本程序用于判别所给数据源在置信率为0.05时的概率分布形式。A的形式为n×1。A=A(:);

[mu,sigma]=normfit(A);

p1=normcdf(A,mu,sigma);

[H1,s1]=kstest(A,[A,p1],alpha)

n=length(A);

if H1==0

disp('该数据源服从正态分布。')

else

disp('该数据源不服从正态分布。')

end

phat=gamfit(A,alpha);

p2=gamcdf(A,phat(1),phat(2));

[H2,s2]=kstest(A,[A,p2],alpha)

if H2==0

disp('该数据源服从γ分布。')

else

disp('该数据源不服从γ分布。')

end

lamda=poissfit(A,alpha);

p3=poisscdf(A,lamda);

[H3,s3]=kstest(A,[A,p3],alpha)

if H3==0

disp('该数据源服从泊松分布。')

else

disp('该数据源不服从泊松分布。')

end

mu=expfit(A,alpha);

p4=expcdf(A,mu);

[H4,s4]=kstest(A,[A,p4],alpha)

if H4==0

disp('该数据源服从指数分布。')

else

disp('该数据源不服从指数分布。')

end

[phat, pci] = raylfit(A, alpha)

p5=raylcdf(A,phat);

[H5,s5]=kstest(A,[A,p5],alpha)

if H5==0

disp('该数据源服从rayleigh分布。')

else

disp('该数据源不服从rayleigh分布。') end

数据插值和函数逼近 MATLAB实现

数据插值和函数逼近 1 数据插值 由已知样本点,以数据更为平滑为目标,求出其他点处的函数 值。在信号处理与图像处理上应用广泛。 求解方法: y1=interp1(x,y,x1,'方法') z1=interp2(x,y,z,x1,y1,'方法') 1.1 一维数据的插值 例:假设样本点来自x e x x x f x sin )53()(52-+-=,进行插值处理,得到平 例:草图样条曲线功能。 function sketch() x=[]; y=[]; gca; hold on; axis([0 1,0 1]); while 1 [x0,y0,button]=ginput(1);

if(isempty(button)) break; end; x=[x x0]; y=[y y0]; plot(x,y,'*'); end; xx=[x(1):(x(end)-x(1))/100:x(end)]; yy=interp1(x,y,xx,'spline'); plot(xx,yy,x,y,'*'); end 1.2 二维网格数据的插值 例3:假设样本点来自xy y x e x x z ----=2 2)2(2,进行插值处理,得到平滑的曲

1.3 二维一般分布数据的插值 例4:假设样本点来自xy y x e x x z ----=22)2(2,进行插值处理,得到平滑的曲 2 样条插值函数逼近 由已知样本点,求能对其较好拟合的函数表达式。 求解方法: S=csapi(x,y); % 定义一个三次样条函数类 S=spapi(k,x,y); % 定义一个k 次B 样条函数类 ys=fnval(S,xs); % 计算插值结果 fnplt(S); % 绘制插值结果 例:从)sin(x y =中取样本点,计算三次样条函数。

MATLAB数值实验一(数据的插值运算及其应用完整版)

佛山科学技术学院 实 验 报 告 课程名称 数值分析 实验项目 插值法与数据拟合 专业班级 机械工程 姓 名 余红杰 学 号 10 指导教师 陈剑 成 绩 日 期 月 日 一、实验目的 1、学会Lagrange 插值、牛顿插值和三次样条插值等基本插值方法; 2、讨论插值的Runge 现象 3、学会Matlab 提供的插值函数的使用方法,会用这些函数解决实际问题。 二、实验原理 1、拉格朗日插值多项式 2、牛顿插值多项式 3、三次样条插值 三、实验步骤 1、用MATLAB 编写独立的拉格朗日插值多项式函数 2、用MATLAB 编写独立的牛顿插值多项式函数 3、用MATLAB 编写独立的三次样条函数(边界条件为第一、二种情形) 4、已知函数在下列各点的值为: 根据步骤1,2,3编好的程序,试分别用4次拉格朗日多项式4()L x 、牛顿插值多项式4()P x 以及三次样条函数()S x (自然边界条件)对数据进行插值,并用图给出 {(,),0.20.08,0,1,2, ,10i i i x y x i i =+=},4()L x 、4()P x 和()S x 。 5、在区间[-1,1]上分别取10,20n =用两组等距节点对龙格函数 2 1 (),(11)125f x x x = -≤≤+作多项式插值,对不同n 值,分别画出插值函数及()f x 的图形。 6、下列数据点的插值

可以得到平方根函数的近似,在区间[0,64]上作图。 (1)用这9个点作8次多项式插值8()L x 。 (2)用三次样条(第一边界条件)程序求()S x 。 7、对于给函数2 1 ()125f x x = +在区间[-1,1]上取10.2(0,1, ,10)i x i i =-+=,试求3次 曲线拟合,试画出拟合曲线并打印出方程,与第5题的结果比较。 四、实验过程与结果: 1、Lagrange 插值多项式源代码: function ya=lag(x,y,xa) %x 所有已知插值点 %y 插值点对应函数值 %xa 所求点,自变量 %ya 所求点插值估计量 ya=0; mu=1; %初始化 %循环方式求L 系数,并求和: for i = 1:length(y) for j = 1:length(x) if i ~= j mu = mu * (xa - x(j) ) / ( x(i) - x(j) ); else continue end end ya = ya + y(i) * mu ; mu = 1; end 2、Newton 源代码: function ya = newton(x,y,xa) %x 所有已知插值点 %y 插值点对应函数值 %xa 所求点,自变量 %ya 所求点插值估计量 %建立系数零矩阵D 及初始化:

认知无线电频谱切换源码matlab仿真

clear clc %rand('twister',1); blockpu=[]; blocksu=[]; for N=3:2:7 block=[]; for lambdap =0.01:0.05:0.5 %***************************************** %假设 1. CR网络和主网络(授权网络)共同存在于同一区域,并且使用同一频段。假设该频段共有N个信道,每个主用户或CR用户每次接入只占用一个信道。 % 若所有信道均被主用户占用,此时CR用户到达就被阻塞。若CR用户正在使用的信道有主用户出现,此时CR用户被迫中断,并进入缓存区排队等待 % 空闲可用信道以继续刚被中断的通信,若等待超过一定时限,则判定CR用户强制中断退离缓存区。 % 故共有三个队列,分别表示如下: % X队列——主用户队列,抢占优先,优先级最高 % Y队列——次用户队列,优先级最低 % Z队列——次用户切换队列,优先级次高,若在时延Tao内,则较次用户队列优先接入可用信道 % 2. 主用户和次用户的到达服从泊松分布,参数分别为lambdap和lambdas,平均服务时间服从参数为mup和mus的负指数分布 % 3. 对次用户而言,主用户抢占优先。总共有N个信道,也就是最多可以有N个主用户抢占所有信道, % 故Z队列的长度不会超过N,这里给定Z队列长度为N。 % 4. 假设初始状态所有N个信道均空闲,次用户理想感知,感知延时为0.005 %***************************************** % 2009年10月12日10月25日 %***************************************** %初始化 %***************************************** a = 100; %主用户数量 b = 100; %次用户数量 %N =3 %Z队列最大长度/总的信道数 %Tao=5 %切换时延门限Tao A = [ ]; %某主用户到达时刻占用信道序号的集合 B = [ ]; %某次用户到达时刻占用信道序号的集合 C = [ ]; %切换用户占用的当前所有信道序号集合 D = [ ]; %某次用户到达时刻主用户占用信道集合 member = [ ]; member_CR = [ ]; j1=1; %主用户参数*****************************************

实验1熟悉matlab环境和基本操作

实验1 熟悉Matlb环境及基本操作 实验目的: 1.熟悉Matlab环境,掌握Matlab的主要窗口及功能; 2.学会Matlab的帮助使用; 3.掌握向量、矩阵的定义、生成方法和基本运算; 4.掌握Matlab的基本符号运算; 5.掌握Matlab中的二维图形的绘制和控制。 实验内容: 1.启动Matlab,说明主窗口、命令窗口、当前目录窗口、工作空间窗口、历史窗口、图形窗口、M文件编辑器窗口的功能。 2.实例操作Matlab的帮助使用。 3.实例操作向量、矩阵的定义、生成方法和基本运算。 4.实例操作Matlab的基本符号运算。 5.实例操作Matlab中的二维图形绘制和控制。 实验仪器与软件: 1.CPU主频在2GHz以上,内存在512Mb以上的PC; 2.Matlab 7及以上版本。 实验讲评: 实验成绩: 评阅教师: 年月日

实验1 熟悉Matlab环境及基本操作 一、Matlab环境及主要窗口的功能 运行Matlab安装目录下的matlab.exe文件可启动Matlab环境,其默认布局如下图: 其中, 1.主窗口的功能是:主窗口不能进行任何计算任务操作,只用来进行一些整体的环境参数设置,它主要对6个下拉菜单的各项和10个按钮逐一解脱。 2.命令窗口的功能是:对MATLAB搜索路径中的每一个M文件的注释区的第一行进行扫描,一旦发现此行中含有所查询的字符串,则将该函数名及第一行注释全部显示在屏幕上。 3. 历史窗口的功能是:历史窗口显示命令窗口中的所有执行过的命令,一方面可以查看曾经执行过的命令,另一方面也可以重复利用原来输入的命令行,可以从命令窗口中直接通过双击某个命令行来执行该命令,

matlab实现数值分析插值及积分

Matlab实现数值分析插值及积分 摘要: 数值分析(numerical analysis)是研究分析用计算机求解数学计算问题的数值计算方法及其理论的学科,是数学的一个分支,它以数字计算机求解数学问题的理论和方法为研究对象。在实际生产实践中,常常将实际问题转化为数学模型来解决,这个过程就是数学建模。学习数值分析这门课程可以让我们学到很多的数学建模方法。 分别运用matlab数学软件编程来解决插值问题和数值积分问题。题目中的要计算差值和积分,对于问题一,可以分别利用朗格朗日插值公式,牛顿插值公式,埃特金逐次线性插值公式来进行编程求解,具体matlab代码见正文。编程求解出来的结果为:=+。 其中Aitken插值计算的结果图如下: 对于问题二,可以分别利用复化梯形公式,复化的辛卜生公式,复化的柯特斯公式编写程序来进行求解,具体matlab代码见正文。编程求解出来的结果为: 0.6932 其中复化梯形公式计算的结果图如下:

问题重述 问题一:已知列表函数 表格 1 分别用拉格朗日,牛顿,埃特金插值方法计算。 问题二:用复化的梯形公式,复化的辛卜生公式,复化的柯特斯公式计算积分,使精度小于5。 问题解决 问题一:插值方法 对于问题一,用三种差值方法:拉格朗日,牛顿,埃特金差值方法来解决。 一、拉格朗日插值法: 拉格朗日插值多项式如下: 首先构造1+n 个插值节点n x x x ,,,10 上的n 插值基函数,对任一点i x 所对应的插值基函数 )(x l i ,由于在所有),,1,1,,1,0(n i i j x j +-=取零值,因此)(x l i 有因子 )())(()(110n i i x x x x x x x x ----+- 。又因)(x l i 是一个次数不超过n 的多项式,所以只 可能相差一个常数因子,固)(x l i 可表示成: )())(()()(110n i i i x x x x x x x x A x l ----=+- 利用1)(=i i x l 得:

实验一 MATLAB基本操作及运算

实验一 MATLAB 基本操作及运算 一、 实验目的 二、 实验的设备及条件 三、 实验内容 1、 建立以下标量: 1) a=3 2) ,(j 为虚数单位) 3) c=3/2πj e 2、 建立以下向量: 1) Vb= 2.71382882????????-???? 2) Vc=[4 3.8 … -3.8 -4 ] (向量中的数值从4到-4,步长为-0.2) 3、 建立以下矩阵: 1) 3 333Ma ????=?????? Ma 为一个7×7的矩阵,其元素全为3. 2) 11191212921020100Mb ??????=??????

Mb 为一个10×10的矩阵. 3) 114525173238Mc ????=?????? 4、 使用题1中的变量计算下列等式的x,y,z 的值: 1) ((15)/6)111a x e --=+ 2) 2x π= 3) 3ln([()()]sin(/3))x b c b c a π=+-R ,其中R 表示复数实部。 5、 求解函数值22/(2.25)ct y e -=,其中c 取值见题1,t 的取值范围为题2中行 向量Vc 。 6、 使用题1和题3中所产生的标量和矩阵计算等式 1()()T Mx a Mc Mc Mc -=?? 其中*为矩阵所对应行列式的值,参考det 。 7、 函数的使用和矩阵的访问。 1) 计算矩阵Mb 每一列的和,结果应为行向量形式。 2) 计算整个矩阵Mb 的平均值。 3) 用向量[1 1…1] 替换Mb 的最上一行的值 4) 将矩阵Mb 的第2~5行,第3到9列的元素所构成的矩阵赋值给矩阵SubMb 。 5) 删除矩阵Mb 的第一行; 6) 使用函数rand 产生一个1×10的向量r ,并将r 中值小于0.5的元素设置为0。 8、 已知CellA (1, 1)=‘中国’,CellA (1,2)=‘北京’,CellA (2,1)是一个3乘3的单位阵,CellA (2, 2)=[1 2 3],试用MATLAB 创建一个2×2的细胞数组CellA 。 9、 已知结构数组student 中信息包含有姓名,学号,性别,年龄和班级,试用MATLAB 创建相应的结构数组student 。该数组包含有从自己学号开始连续5个同学的信息(如果学号在你后面的同学不足5个则往前排序),创建完成后查看自己的信息。

实验一 Matlab基本操作(2016)

实验一 MATLAB 基本操作 一、实验目的 1. 学习和掌握MA TLAB 的基本操作方法 2. 掌握命令窗口的使用 3. 熟悉MATLAB 的数据表示、基本运算 二、实验内容和要求 1. 实验内容 1) 练习MATLAB7.0或以上版本 2) 练习矩阵运算与数组运算 2. 实验要求 1) 每位学生独立完成,交实验报告 2) 禁止玩游戏! 三、实验主要软件平台 装有MATLAB7.0或以上的PC 机一台 四、实验方法、步骤及结果测试 1. 实验方法:上机练习。 2. 实验步骤: 1) 开启PC ,进入MA TLAB 。 2) 使用帮助命令,查找sqrt 函数的使用方法 答: help sqrt 3) 矩阵、数组运算 a) 已知 ??????????=987654321A ,???? ??????=963852741B ,求)2()(A B B A -?+ 答: A=[1, 2, 3; 4, 5, 6; 7, 8, 9]; B=[1, 4, 7; 2, 5, 8; 3, 6, 9]; (A+B)*(2*B-A) b) 已知?? ????-=33.1x ,??????=π24y ,求T xy ,y x T c) 已知??????????=987654321A ,???? ??????=300020001B ,求A/B, A\B. d) 已知???? ??????=987654321A ,求:(1) A 中第三列前两个元素;(2) A 中所有第二行元素;(3) A 中四个角上的元素;(4) 交换A 的第1、3列。(5) 交换A 的第1、2行。(6) 删除A 的第3列。

e) 已知[]321=x ,[]654=y ,求:y x *.,y x /.,y x \.,y x .^, 2.^x ,x .^2。 f) 给出x=1,2,…,7时,x x sin 的值。 3)常用的数学函数 a )随机产生一个3x3的矩阵A ,求:(1) A 每一行的最大、最小值,以及最大、最小值所在的列;(2) A 每一列的最大、最小值,以及最大、最小值所在的行;(3) 整个矩阵的最大、最小值;(4) 每行元素之和;(5) 每列元素之和;(6) 每行元素之积;(7) 每列元素之积。 b) 随机产生两个10个元素的向量x ,y 。(1) 求x 的平均值、标准方差。(2) 求x ,y 的相关系数。(3)对x 排序,并记录排序后元素在原向量中的位置。 4) 字符串操作函数 建立一个字符串向量(如‘ABc123d4e56Fg9’),然后对该向量做如下处理: (1) 取第1~5个字符组成的子字符串。 (2) 将字符串倒过来重新排列。 (3) 将字符串中的小写字母变成相应的大写字母,其余字符不变。 (4) 统计字符串中小写字母的个数。

泊松分布及其应用研究

泊松分布及其应用研究 Prepared on 22 November 2020

湖南科技大学 信息与电气工程学院 《课程论文》 题目:泊松分布及其应用研究 专业:通信工程 班级: 13级3班 姓名:黄夏妮 学号: 目录 一、摘要 (1) 二、泊松分布的概念 (2) 三、计数过程为广义的泊松过程 (4) 四、泊松分布及泊松分布增量 (5) 五、泊松分布的特征 (5) 六、泊松分布的应用 (6) 七、基于MATLAB的泊松过程仿真 (8) 八、参考文献 (12)

摘要 作为一种常见的离散型随机变量的分布,泊松分布日益显示其重要性,成为概率论中最重要的几个分布之一。服从泊松分布的随机变量是常见的,它常与时间单位的计数过程相联系。 在现实生活中应用更为广泛,如数学建模、管理科学、运筹学及自然科学、概率论等等。并且在某些函数关系起着一种重要作用。例如线性的、指数的、三角函数的等等。同样, 在为观察现象构造确定性模型时, 某些概率分布也经常出现。泊松分布作为大量试验中稀有事件出现的频数的概率分布的数学模型, 它具有很多性质。为此本文讲述了泊松分布的一些性质, 并讨论了这些性质在实际生活中的重要作用。

二、泊松分布的概念: 定义1 设随机变量X 的可能取值为,,2,1,0 且 {}0,,2,1,0,! >===-λλ k e k x k X P k 为常数。 则称X 服从参数为λ的泊松分布,记作X ~ D(λ) 。 定义2 设ε是任意一个随机变量,称 )t (- e t)(it +∞<<∞=Φε是ε的特征函数。 主要结论: 定理1 如果X 是一个具有以λ为参数的泊松分布,则E( X) = λ且D ( X) =λ。 证明 设X 是一随机变量,若 ] X) E( - X [ E{2}存在,则称它为X 的方差,记作D( X) ,即 ] X) E( - X [ E{ X) D(2}=。设X 服从泊松分布D ( X) ,即有: 则()()λλλλλλλλ λ=?=-==- ∞ =--∞ =-∑∑ e e k e k e k X E k k k k 11 0!1! 从而()() () λλλλλλλ λ +=-+-==-∞ =-∞ =--∞ =∑ ∑ ∑2122 2 2 !1!2! e k e k e k k X E k k k k k k 故λλλλ - X) E( - ) X E( X) D(2222=+== 定理2 设随机变量) , ,2 1 n ( x n =服从二项分布,其分布律为 {}n k p p C k x P k n n k n k n n ,,2,1,0,)1( =-==-。 又设0>=λn np 是常数,则{}λλ-∞ →==e k k x P k n n ! lim 。 证明 由λ=n np 得: 显然,当k = 0 时,故λ-n e k} x P{→=。当k ≥1 且k → ∞时,有

(完整版)Matlab学习系列13.数据插值与拟合

13. 数据插值与拟合 实际中,通常需要处理实验或测量得到的离散数据(点)。插值与拟合方法就是要通过离散数据去确定一个近似函数(曲线或曲面),使其与已知数据有较高的拟合精度。 1.如果要求近似函数经过所已知的所有数据点,此时称为插值问 题(不需要函数表达式)。 2.如果不要求近似函数经过所有数据点,而是要求它能较好地反 映数据变化规律,称为数据拟合(必须有函数表达式)。 插值与拟合都是根据实际中一组已知数据来构造一个能够反映数据变化规律的近似函数。区别是:【插值】不一定得到近似函数的表达形式,仅通过插值方法找到未知点对应的值。【拟合】要求得到一个具体的近似函数的表达式。 因此,当数据量不够,但已知已有数据可信,需要补充数据,此时用【插值】。当数据基本够用,需要寻找因果变量之间的数量关系(推断出表达式),进而对未知的情形作预测,此时用【拟合】。

一、数据插值 根据选用不同类型的插值函数,逼近的效果就不同,一般有:(1)拉格朗日插值(lagrange插值) (2)分段线性插值 (3)Hermite (4)三次样条插值 Matlab 插值函数实现: (1)interp1( ) 一维插值 (2)intep2( ) 二维插值 (3)interp3( ) 三维插值 (4)intern( ) n维插值 1.一维插值(自变量是1维数据) 语法:yi = interp1(x0, y0, xi, ‘method’) 其中,x0, y0为原离散数据(x0为自变量,y0为因变量);xi为需要插值的节点,method为插值方法。 注:(1)要求x0是单调的,xi不超过x0的范围; (2)插值方法有‘nearest’——最邻近插值;‘linear’——线性插值;‘spline’——三次样条插值;‘cubic’——三次插值;

实验一数据处理方法MATLAB实现

实验一数据处理方法的MATLAB实现 一、实验目的 学会在MATLAB环境下对已知的数据进行处理。 二、实验方法 1. 求取数据的最大值或最小值。 2. 求取向量的均值、标准方差和中间值。 3.在MATLAB环境下,对已知的数据分别进行曲线拟合和插值。 三、实验设备 1.586以上微机,16M以上内存,400M硬盘空间,2X CD-ROM 2.MATLAB5.3以上含CONTROL SYSTEM TOOLBOX。 四、实验内容 1.在MATLAB环境下,利用MATLAB控制系统工具箱中的函数直接求取数据的最大值或最小值,以及向量的均值、标准方差和中间值。 2.在MATLAB环境下,选择合适的曲线拟合和插值方法,编写程序,对已知的数据分别进行曲线拟合和插值。 五、实验步骤 1. 在MATLAB环境下,将已知的数据存到数据文件mydat.mat中。 双击打开Matlab,在命令窗口(command window)中,输入一组数据:实验一数据处理方法的MATLAB实现 一、实验目的 学会在MATLAB环境下对已知的数据进行处理。 二、实验方法 1. 求取数据的最大值或最小值。 2. 求取向量的均值、标准方差和中间值。 3.在MATLAB环境下,对已知的数据分别进行曲线拟合和插值。 三、实验设备 1.586以上微机,16M以上内存,400M硬盘空间,2X CD-ROM 2.MATLAB5.3以上含CONTROL SYSTEM TOOLBOX。 四、实验内容

1.在MATLAB环境下,利用MATLAB控制系统工具箱中的函数直接求取数据的最大值或最小值,以及向量的均值、标准方差和中间值。 2.在MATLAB环境下,选择合适的曲线拟合和插值方法,编写程序,对已知的数据分别进行曲线拟合和插值。 五、实验步骤 1. 在MATLAB环境下,将已知的数据存到数据文件mydat.mat中。 双击打开Matlab,在命令窗口(command window)中,输入一组数据: x=[1,4,2,81,23,45] x = 1 4 2 81 2 3 45 单击保存按钮,保存在Matlab指定目录(C:\Program Files\MATLAB71)下,文件名为“mydat.mat”。 2. 在MATLAB环境下,利用MATLAB控制系统工具箱中的函数直接求取数据的最大值或最小值,以及向量的均值、标准方差和中间值。 继续在命令窗口中输入命令: (1)求取最大值“max(a)”; >> max(x) ans = 81 (2)求取最小值“min(a)”; >> min(x) ans = 1 (3)求取均值“mean(a)”; >> mean(x) ans =

matlab插值(详细 全面)

Matlab中插值函数汇总和使用说明 MATLAB中的插值函数为interp1,其调用格式 为: yi= interp1(x,y,xi,'method') 其中x,y为插值点,yi为在被插值点xi处的插值结果;x,y为向量, 'method'表示采用的插值方法,MATLAB提供的插值方法有几种: 'method'是最邻近插值, 'linear'线性插值; 'spline'三次样条插值; 'cubic'立方插值.缺省时表示线性插值 注意:所有的插值方法都要求x是单调的,并且xi不能够超过x的范围。 例如:在一天24小时内,从零点开始每间隔2小时测得的环境温度数据分别为 12,9,9,10,18 ,24,28,27,25,20,18,15,13, 推测中午12点(即13点)时的温度. x=0:2:24; y=[12 9 9 10 18 24 28 27 25 20 18 15 13]; a=13; y1=interp1(x,y,a,'spline') 结果为: 27.8725 若要得到一天24小时的温度曲线,则: xi=0:1/3600:24; yi=interp1(x,y,xi, 'spline'); plot(x,y,'o' ,xi,yi)

命令1 interp1 功能一维数据插值(表格查找)。该命令对数据点之间计算内插值。它找出一元函数f(x)在中间点的数值。其中函数f(x)由所给数据决定。 x:原始数据点 Y:原始数据点 xi:插值点 Yi:插值点 格式 (1)yi = interp1(x,Y,xi) 返回插值向量yi,每一元素对应于参量xi,同时由向量x 与Y 的内插值决定。参量x 指定数据Y 的点。 若Y 为一矩阵,则按Y 的每列计算。yi是阶数为length(xi)*size(Y,2)的输出矩阵。(2)yi = interp1(Y,xi) 假定x=1:N,其中N 为向量Y 的长度,或者为矩阵Y 的行数。 (3)yi = interp1(x,Y,xi,method) 用指定的算法计算插值: ’nearest’:最近邻点插值,直接完成计算; ’linear’:线性插值(缺省方式),直接完成计算; ’spline’:三次样条函数插值。对于该方法,命令interp1 调用函数spline、ppval、mkpp、umkpp。这些命令生成一系列用于分段多项式操作的函数。命令spline 用它们执行三次样条函数插值; ’pchip’:分段三次Hermite 插值。对于该方法,命令interp1 调用函数pchip,用于对

基于MATLAB的泊松分布的仿真

泊松过程样本轨道的MATLAB 仿真 一、 Poisson Process 定义 若有一个随机过程{:0}t N N t =≥是参数为λ>0的Poisson 过程,它满足下列条件: 1、0N = 0; 2、对任意的时间指标0s t ≤<,增量()()t s N N t s ω-ωλ(-)服从参数为泊松分布。 3、对任意的自然数n ≥2和任意的时间指标0120n t t t t =<<

Matlab figure 基本操作

Matlab figure基本操作 set(gcf,'Position',[300 300 700 220]); %调整Figure位置和大小。前两个为离屏幕左下角的X,Y距离,后两个值为Figure窗口的宽和高 set(gca,'Position',[.05 .1 .9 .8]); %调整绘图范围(比例关系)。0.05+0.9为横向比例,最大为1;0.1+0.8为纵向比例。0.05和0.1为距离Figure左下角的X,Y距离 figure_FontSize=12; set(gca,'FontSize',figure_FontSize,'FontName','Arial'); xlabel('Distance (m)','FontSize',figure_FontSize,'fontweight','b','FontName','Arial'); ylabel('Thickness (m)','FontSize',figure_FontSize,'fontweight','b','FontName','Arial'); box off; %关闭上和右侧刻度线 grid on; %添加网格线 xkd=[10 20 30]; %定义坐标刻度数量 ykd=[100 200 300]; xkd_label=[1 3 5]; %更改刻度 ykd_label=[100 200 300]; set(gca,'xtick',xkd); set(gca,'xticklabel',xkd_label); set(gca,'ytick',ykd); set(gca,'yticklabel',ykd_label); set(gca,'xscale','log'); %改为对数坐标

matlab牛顿插值法例题与程序

题目一:多项式插值 某气象观测站在8:00(AM )开始每隔10分钟对天气作如下观测,用三次多项式插值函数(Newton )逼近如下曲线,插值节点数据如上表,并求出9点30分该地区的温度(x=10)。 二、数学原理 假设有n+1个不同的节点及函数在节点上的值(x 0,y 0),……(x n ,y n ),插值多项式有如下形式: )() )(()()()(n 10n 102010n x -x )(x -x x -x x P x x x x x x -??-+??+-++=αααα (1) 其中系数i α(i=0,1,2……n )为特定系数,可由插值样条i i n y x P =) ((i=0,1,2……n )确定。 根据均差的定义,把x 看成[a,b]上的一点,可得 f(x)= f (0x )+f[10x x ,](0x -x ) f[x, 0x ]= f[10x x ,]+f[x,10x x ,] (1x -x ) …… f[x, 0x ,…x 1-n ]= f[x, 0x ,…x n ]+ f[x, 0x ,…x n ](x-x n ) 综合以上式子,把后一式代入前一式,可得到: f(x)= f[0x ]+f[10x x ,](0x -x )+ f[210x x x ,,](0x -x )(1x -x )+ …+ f[x, 0x ,…x n ](0x -x )…(x-x 1-n )+ f[x, 0x ,…x n ,x ]) (x 1n +ω= N n (x )+) (x n R 其中

N n (x )= f[0x ]+f[10x x ,](0x -x )+ f[210x x x ,,](0x -x )(1x -x )+ …+ f[x, 0x ,…x n ](0x -x )…(x-x 1-n ) (2) )(x n R = f(x)- N n (x )= f[x, 0x , (x) n ,x ]) (x 1n +ω (3) ) (x 1n +ω=(0x -x )…(x-x n ) Newton 插值的系数i α(i=0,1,2……n )可以用差商表示。一般有 f k =α[k 10x x x ??,] (k=0,1,2,……,n ) (4) 把(4)代入(1)得到满足插值条件N )() (i i n x f x =(i=0,1,2,……n )的n 次Newton 插值多项式 N n (x )=f (0x )+f[10x x ,](1x -x )+f[210x x x ,,](1x -x )(2x -x )+……+f[n 10x x x ??,](1x -x )(2x -x )…(1-n x -x ). 其中插值余项为: ) ()! () ()()()(x 1n f x N -x f x R 1n 1 n n +++==ωξ ξ介于k 10x x x ??,之间。 三、程序设计 function [y,A,C,L]=newdscg(X,Y,x,M) % y 为对应x 的值,A 为差商表,C 为多项式系数,L 为多项式 % X 为给定节点,Y 为节点值,x 为待求节点 n=length(X); m=length(x); % n 为X 的长度 for t=1:m

基于MATLAB的数字模拟仿真..

基于MATLAB的数字模拟仿真 摘要:本文阐述了计算机模拟仿真在解决实际问题时的重要性,并较为系统的介绍了使用计算机仿真的原理及方法。对于计算机模拟仿真的三大类方法:蒙特卡罗法、连续系统模拟和离散事件系统模拟,在本文中均给出了与之对应的实例及基于MATLAB模拟仿真的相关程序,并通过实例深入的分析了计算机模拟解决实际问题的优势及不足。 关键词:计算机模拟;仿真原理;数学模型;蒙特卡罗法;连续系统模拟;离散事件系统模拟 在实际问题中,我们通常会面对一些带随机因素的复杂系统,用分析方法建模常常需要作许多简化假设,这样进行处理过后的模型与我们面临的实际问题可能相差很远,以致求解得到答案根本无法应用,这时,计算机模拟几乎成为唯一的选择。本文通过对计算机模拟仿真进行系统地介绍,寻求利用模拟仿真来解决问题的一般方法,并深入探讨了这些方法的长处和不足。我们定义一些具有特定的功能、相互之间以一定的规律联系的对象所组成的总体为一个系统,模拟就是利用物理的、数学的模型以系统为问题解决对象,来类比、模仿现实系统及其演变过程,以寻求过程规律的一种方法。模拟的基本思想是建立一个实验的模型,这个模型包含所研究系统的主要特点,这样做的目的就是通过对这个实验模型的运行,获得所要研究系统的必要信息。另外,系统的运行离不开算法,仿真算法是将系统模型转换成仿真模型的一类算法,在数字仿真模型中起核心和关键作用。 1、所谓计算机仿真 计算机仿真是利用计算机对一个实际系统的结构和行为进行动态演示,以评价或预测该系统的行为效果。它是解决较复杂的实际问题的一条有效途径。针对一个确定的系统,根据运行的相似原理,利用计算机来逼真模仿研究对象(研究对象可以是真实的系统,也可以是设想中的系统),计算机仿真是将研究对象进行数学描述,建模编程,且在计算机中运行实现。 对比于物理模拟通常花费较大、周期较长,且在物理模型上改变系统结构和系数都较困难的诸多缺陷,计算机模拟不怕破坏、易修改、可重用,有更强的系统适应能力。但是计算机模拟也有缺陷,比如受限于系统建模技术,即系统数学模型不易建立、程序调试复杂等。 计算机仿真可以用于研制产品或设计系统的全过程中,包括方案论证、技术指标确定、设计分析、生产制造、试验测试、维护训练、故障处理等各个阶段。 2、计算机仿真的目的 对于一个系统,是否选择进行计算机模拟的问题,基于判断计算机模拟与非计算机模拟方法孰优孰劣的问题。归纳以下运用计算机模拟的情况: (1)在一个实际系统还没有建立起来之前,要对系统的行为或结果进行分析研究时,计算机仿真是一种行之有效的方法。 (2)在有些真实系统上做实验会影响系统的正常运行,这时进行计算机模拟就是为了避免给实际系统带来不必要的损失。如在生产中任意改变工艺参数可能会导致废品,在经济活动中随意将一个决策付诸行动可能会引起经济混乱。 (3)当人是系统的一部分时,他的行为往往会影响实验的效果,这时运用系统进行仿真研究,就是为了排除人的主观因素的影响。

函数的插值方法及matlab程序

6.1 插值问题及其误差 6.1.2 与插值有关的MATLAB 函数 (一) POLY2SYM函数 调用格式一:poly2sym (C) 调用格式二:f1=poly2sym(C,'V') 或f2=poly2sym(C, sym ('V') ), (二) POLYVAL函数 调用格式:Y = polyval(P,X) (三) POLY函数 调用格式:Y = poly (V) (四) CONV函数 调用格式:C =conv (A, B) 例 6.1.2求三个一次多项式、和的积.它们的零点分别依次为0.4,0.8,1.2. 解我们可以用两种MATLAB程序求之. 方法1如输入MATLAB程序 >> X1=[0.4,0.8,1.2]; l1=poly(X1), L1=poly2sym (l1) 运行后输出结果为 l1 = 1.0000 - 2.4000 1.7600 -0.3840 L1 = x^3-12/5*x^2+44/25*x-48/125 方法2如输入MATLAB程序 >> P1=poly(0.4);P2=poly(0.8);P3=poly(1.2); C =conv (conv (P1, P2), P3) , L1=poly2sym (C) 运行后输出的结果与方法1相同. (五) DECONV 函数 调用格式:[Q,R] =deconv (B,A) (六) roots(poly(1:n))命令 调用格式:roots(poly(1:n)) (七) det(a*eye(size (A)) - A)命令 调用格式:b=det(a*ey e(size (A)) - A) 6.2 拉格朗日(Lagrange)插值及其MATLAB程序 6.2.1 线性插值及其MATLAB程序 例 6.2.1 已知函数在上具有二阶连续导数,,且满足条件 .求线性插值多项式和函数值,并估计其误差. 解输入程序 >> X=[1,3];Y=[1,2]; l01= poly(X(2))/( X(1)- X(2)), l11= poly(X(1))/( X(2)- X(1)), l0=poly2sym (l01),l1=poly2sym (l11), P = l01* Y(1)+ l11* Y(2), L=poly2sym (P),x=1.5; Y = polyval(P,x) 运行后输出基函数l0和l1及其插值多项式的系数向量P(略)、插值多项式L和插值Y为l0 = l1 = L = Y = -1/2*x+3/2 1/2*x-1/2 1/2*x+1/2 1.2500 输入程序 >> M=5;R1=M*abs((x-X(1))* (x-X(2)))/2

随机信号matlab仿真

电子科技大学通信与信息工程学院 标准实验报告 实验名称:随机数的产生及统计特性分析

电 子 科 技 大 学 实 验 报 告 学生姓名:吴振国 学 号:2011019190006 指导教师:周宁 实验室名称:通信系统实验室 实验项目名称: 随机数的产生及统计特性分析 【实验内容】 1、编写MATLAB 程序,产生正态分布或均匀分布或二项分布或泊松分布或你感 兴趣的分布的随机数,完成以下工作: (1)、测量该序列的均值,方差,并与理论值进行比较,测量其误差大小, 改变序列长度观察结果变化; (2)、分析其直方图、概率密度函数及分布函数,并与理论分布进行比较; (3)、计算其相关函数,检验是否满足 Rx(0)=mu^2+sigma2,观察均值mu 为0和不为0时的图形变化; (4)、 用变换法产生正态分布随机数,或用逆变换法产生其他分布随机数, (5)、重新完成以上内容,并与matlab 函数产生的随机数的结果进行比较。 2、已知随机信号: 仿真M 个样本,估计其自相关函数和样本的功率谱(用自相关法和周期图 法),并利用样本估计序列X (n )的功率谱。 【实验原理】 本实验采用matlab 实验方法进行实验,相关采样方法,作图方法等均在matlab 的学习中有过使用!下面不作具体介绍! 【实验程序】 1.程序1: clear; sigma=1; mu=1; N=100; X=normrnd(sigma,1,1,N); average=sigma; variable=sigma^2; 1212()cos(80)4cos(200)(),,~[0,2],()~(0,1)X n t t N t U N t N πφπφφφπ=++++白噪声

实验一 Matlab基本操作及运算

实验一Matlab基本操作及运算 一、实验目的: 1.熟悉MATLAB基本操作 2.掌握矩阵、变量、表达式的各种基本运算 二、实验基本知识: 1.熟悉MATLAB环境 熟悉MATLAB桌面和命令窗口、命令历史窗口、帮助信息浏览器、工作空间浏览器文件和搜索路径浏览器。 2.掌握MATLAB常用命令 3.MATLAB变量与运算符 变量命名规则如下: (1)变量名可以由英语字母、数字和下划线组成 (2)变量名应以英文字母开头 (3)长度不大于31个 (4)区分大小写 MATLAB中设置了一些特殊的变量与常量,列于下表。 MATLAB运算符,通过下面几个表来说明MATLAB的各种常用运算符

表2 MATLAB算术运算符 表3 MATLAB关系运算符 表4 MATLAB逻辑运算符 表5 MATLAB特殊运算

4. MATLAB的一维、二维数组的访问 表6 子数组访问与赋值常用的相关指令格式 5. MATLAB的基本运算 表7 两种运算指令形式和实质内涵的异同表 6.MATLAB的常用函数

表8 标准数组生成函数 表9 数组操作函数 7.多项式运算 poly——产生特征多项式系数向量 roots——求多项式的根 p=poly2str(c,‘x’)—(将特征多项式系数向量c转换为以习惯方式显示是多项式)conv, convs——多项式乘运算 deconv——多项式除运算 polyder(p)——求p的微分 polyder(a, b)——求多项式a,b乘积的微分 [p,q]=polyder(p1,p2)——求解多项式p1/p2微分的有理分式 poly(p,A)——按数组运算规则求多项式p在自变量A的值 polym(p,A)——按矩阵运算规则求多项式p在自变量A的值

相关主题