搜档网
当前位置:搜档网 › 特高压交直流输电系统综述

特高压交直流输电系统综述

特高压交直流输电系统综述
特高压交直流输电系统综述

特高压交直流输电系统综述

摘要:综述了特高压直流输电与特高压交流输电的应用现状 ,对二者的优缺点进行了比较研究 ,并预测了这两种输电技术在我国的发展前景。

关键词:特高压直流,特高压交流,输电,可靠性,稳定性,发展前景。

我国电网的特点是能源资源与经济发展地理分布极不均衡,必须发展长距离、大容量电能传输技术 ,采用新的或更高一级电压等级 ,实现西南水电东送和华北火电南送。目前国内外的研究集中在特高压直流(UHVDC)和特高压交流(UHV) 输电技术。

1 特高压交直流输电系统的应用概况

特高压直流输电技术的发展起源于20世纪60年代。1966年瑞典Chalmers大学开始研究±750kV导线。之后前苏联、巴西等国家也先后开展了特高压直流输电研究工作,其中巴西伊泰普水电站的直流送出工程是目前世界上电压等级最高的直流工程(±600 kV)。国际电气与电子工程师协会(IEEE)和国际大电网会议(Cigre)均在20世纪80年代末得出结论:根据已有技术和运行经验,±800kV是合适的直流输电电压等级。我国通过对特高压直流输电的电压等级进行多方研究论证并进行了技术攻关,考虑到对直流输电技术的研发水平和直流设备的研制能力,认为确定一个特高压直流输电水平是有必要的,并将±800 kV确定为中国特高压直流输电的标称电压。

特高压交流输电技术的研究始于60年代后半期,前苏联从80年代开始建设西伯利亚—哈萨克斯坦—乌拉尔1 150 kV输电工程,输送容量为5 000 MW,全长2 500 km,从1985年起已有900 km线路按1 150 kV设计电压运行。1988年日本开始建设福岛和柏崎—东京1 000 kV 400余km线路。意大利也保持了几十km的无载线路作特高压输电研究。美国AEP 则在765 kV的基础上研究1 500 kV特高压输电技术。

但是,80年代中期以后世界经济发展减缓,美国和其他一些国家都推迟或暂时放弃特高压交流输电技术,只有前苏联的1 150 kV工程投运,日本的特高压输电线路降压至500 kV 运行。

2 特高压交直流输电系统优缺点比较

2.1 特高压直流输电方面

经济方面优点:

(1)线路造价低。对于架空输电线,交流用三根导线,而直流一般用两根,采用大地或海水作回路时只要一根,能节省大量的线路建设费用。对于电缆,由于绝缘介质的直流强度远高于交流强度,如通常的油浸纸电缆,直流的允许工作电压约为交流的3倍,直流电缆的投资少得多。

(2)年电能损失小。直流架空输电线只用两根,导线电阻损耗比交流输电小;没有感抗和容抗的无功损耗;没有集肤效应,导线的截面利用充分。另外,直流架空线路的“空间电荷效应”使其电晕损耗和无线电干扰都比交流线路小。

所以,直流架空输电线路在线路建设初投资和年运行费用上均较交流经济。

技术方面:

(1)不存在系统稳定问题,可实现电网的非同期互联,而交流电力系统中所有的同步发电机都保持同步运行。由此可见,在一定输电电压下,交流输电容许输送功率和距离受到网络结构和参数的限制,还须采取提高稳定性的措施,增加了费用。而用直流输电系统连接两个交流系统,由于直流线路没有电抗,不存在上述稳定问题。因此,直流输电的输送容量和距离不受同步运行稳定性的限制.还可连接两个不同频率的系统,实现非同期联网,提高

系统的稳定性。

(2)限制短路电流。如用交流输电线连接两个交流系统,短路容量增大,甚至需要更换断路器或增设限流装置。然而用直流输电线路连接两个交流系统,直流系统的“定电流控制’,将快速把短路电流限制在额定功率附近,短路容量不因互联而增大。

(3)调节快速,运行可靠。直流输电通过可控硅换流器能快速调整有功功率,实现“潮流翻转”(功率流动方向的改变),在正常时能保证稳定输出,在事故情况下,可实现健全系统对故障系统的紧急支援,也能实现振荡阻尼和次同步振荡的抑制。在交直流线路并列运行时,如果交流线路发生短路,可短暂增大直流输送功率以减少发电机转子加速,提高系统的可靠性。

(4)没有电容充电电流。直流线路稳态时无电容电流,沿线电压分布平稳,无空、轻载时交流长线受端及中部发生电压异常升高的现象,也不需要并联电抗补偿。

(5)节省线路走廊。按同电压500 kV考虑,一条直流输电线路的走廊~40 m,一条交流线路走廊~50 m,而前者输送容量约为后者2倍,即直流传输效率约为交流2倍。

然而 ,下列因素限制了直流输电的应用范围:

(1)换流装置较昂贵。这是限制直流输电应用的最主要原因。在输送相同容量时,直流线路单位长度的造价比交流低;而直流输电两端换流设备造价比交流变电站贵很多。这就引起了所谓的“等价距离”问题。

(2)消耗无功功率多。一般每端换流站消耗无功功率约为输送功率的40%~60%,需要无功补偿。

(3)产生谐波影响。换流器在交流和直流侧都产生谐波电压和谐波电流,使电容器和发电机过热、换流器的控制不稳定,对通信系统产生干扰。

(4)就技术和设备而言,直流波形无过零点,灭弧困难。目前缺乏直流开关而是通过闭锁换流器的控制脉冲信号实现开关功能。若多条直流线路汇集一个地区,一次故障也可能造成多个逆变站闭锁,而且在多端供电方式中无法单独地切断事故线路而需切断全部线路,从而会对系统造成重大冲击。

(5)从运行维护来说,直流线路积污速度快、污闪电压低,污秽问题较交流线路更为严重。与西方发达国家相比,目前我国大气环境相对较差,这使直流线路的清扫及防污闪更为困难。设备故障及污秽严重等原因使直流线路的污闪率明显高于交流线路。

(6)不能用变压器来改变电压等级。直流输电主要用于长距离大容量输电、交流系统之间异步互联和海底电缆送电等。与直流输电比较,现有的交流500kV输电(经济输送容量为1 000 kW,输送距离为300~500 km)已不能满足需要,只有提高电压等级,采用特高压输电方式,才能获得较高的经济效益。

2.2 特高压交流输电方面

主要优点:

(1)提高传输容量和传输距离。随着电网区域的扩大,电能的传输容量和传输距离也不断增大。所需电网电压等级越高,紧凑型输电的效果越好。

(2)提高电能传输的经济性.输电电压越高输送单位容量的价格越低。

(3)节省线路走廊和变电站占地面积。一般来说,一回1150 kV输电线路可代替6回500 kV线路。采用特高压输电提高了走廊利用率。

(4)减少线路的功率损耗, 就我国而言, 电压每提高1 % , 每年就相当于新增加500万kW 的电力, 500 kV输电比1200 kV的线损大5倍以上。

(5)有利于连网,简化网络结构,减少故障率。

特高压输电的主要缺点是系统的稳定性和可靠性问题不易解决。自1965-1984年世界上共发生了6次交流大电网瓦解事故,其中4次发生在美国,2次在欧洲。这些严重的大电网

瓦解事故说明采用交流互联的大电网存在着安全稳定、事故连锁反应及大面积停电等难以解决的问题。特别是在特高压线路出现初期,不能形成主网架,线路负载能力较低,电源的集中送出带来了较大的稳定性问题。下级电网不能解环运行,导致不能有效降低受端电网短路电流,这些都威胁着电网的安全运行。另外,特高压交流输电对环境影响较大。

由于交流特高压和高压直流各有优缺点,都能用于长距离大容量输电线路和大区电网间的互联线路,两者各有优缺点。输电线路的建设主要考虑的是经济性,而互联线路则要将系统的稳定性放在第一位。随着技术的发展,双方的优缺点还可能互相转化。两种输电技术将在很长一段时间里并存且有激烈的竞争。

3 特高压交、直流输电的可靠性研究

特高压输变电工程的可靠性,指的是输变电工程本身因素及所处的大气环境因素引发的故障概率,对输电能力的影响及其经济损失。它是系统安全运行的重要指标。无论是交流还是直流,都应建立相应可靠性模型,构筑可靠性指标体系,建立完善的安全运行制度,并分析影响系统可靠性的关键元件,采取必要措施提高特高压输电的可靠性。

考虑交流输变电工程各个设备统计的故障概率、维修概率和N-1准则,特高压交流工程可靠性的主要指标有年平均中断输电的概率(次/年)和平均中断输电持续时间(h/次)。

为了反映直流系统的系统设计、设备制造、工程建设及运行等各个环节的水平,特高压直流工程的可靠性指标主要由以下五种组成:强迫能量不可用率、计划能量不可用率、换流器强迫停运率、单极强迫停运率、双极强迫停运率。其中,能量不可用率EU表示在统计时间内,由于计划停运、非计划停运或降额运行造成的直流输电系统的输送能量能力的降低,包括强迫能量不可用率和计划能量不可用率。

相对于特高压交流发输电系统,特高压直流系统多了换流器等直流一次设备,换流器在交流和直流侧都产生谐波电压和谐波电流,不利于电网系统的稳定控制;同时根据我国现役+500kV直流工程故障原因分析表明,由直流控制和保护导致的系统强迫停运的几率较高。而特高压直流系统的二次设备运行控制更加复杂,系统的设备故障率可能更高。总体上说,整个特高压直流输电系统的可靠性不如特高压交流输电系统。

4 特高压交、直流输电的稳定性研究

现代电网具有大机组、高参数、超高压等特点,安全稳定问题突出,在国内外均有稳定破坏导致大面积停电事故。

特高压交流输电方式用于近距离大容量输电,可以满足受端电网内大容量电厂输电的需要。将大容量电厂接入1000kV特高压电网,并由特高压电网向地区负荷供电,可以实现对受端系统的电压支持,提高全网的稳定水平,以接受更多的由远方电源送来的电力。但特高压交流输电也存在安全稳定隐患,由于特高压交流线路输送的功率大,当以单回线向受端电网输电的线路超过受端系统负荷功率的10%~15%,会因线路故障跳闸而危及受端电网安全运行。同时,当一个大电厂通过多回特高压大容量输电线路送至同一地区,一旦发生多重故障造成同一走廊上多回特高压输电线路同时跳闸,会给区域电网安全运行带来严重影响。因此,某一地区若有多条特高压线路馈入送电,这些输电线路不应该由个别大电厂集中送出,最好由数个不同的大电厂分多条特高压输电线路从不同地方送入。这样,一旦出现某回特高压线路故障停电,不至于对整个系统造成致命影响,从结构上保证电网安全稳定运行。

同样,特高压直流输电方式用于远距离大容量输电,也会出现稳定问题。首先,由于特高压直流输电电压等级高,每kW设备造价和每km线路的造价很高,可能出现长时间内单回线运行的状况,而输电容量又非常大。如建设的±800kV云广直流输电工程,送电容量约占2010年南方电网西电东送容量的l/4,约占云南电网用电负荷的1/3、约占外送电力的2/3。当电源或者线路发生故障时,将对受端电网的安全稳定运行产生严重影响。同时,当多条特高压直流输电线路的受端落点电气距离很近,形成多馈入直流输电系统的时候,一次

故障可能引起多个逆变站同时或相继发生换相失败,甚至导致直流功率传输的中断,给整个多馈入直流输电系统带来巨大冲击。研究表明,在特高压直流多馈入的受端电网,多条直流同时与交流系统相互作用,系统暂态、中期和长期的功角和电压稳定问题可能非常严重,应该引起高度重视。对于多馈入直流输电系统,交流系统或直流系统的故障都有可能成为引发系统不稳定的因素,甚至可能导致整个系统的崩溃。因此,考虑到交直流系统之间存在复杂的相互作用,必须采取相应的针对性措施以保证多馈入直流输电系统安全稳定。

利用特高压交流实现大区同步互联,也存在一些稳定问题:在小干扰情况下可能发生静态稳定破坏甚至诱发低频振荡;在遭受大干扰时可能导致暂态稳定破坏;当一个电网发生事故时,往往采取联络线解开的方式,以保证邻网的安全,这样会扩大事故电网的事故范围。而利用特高压直流实现大区非同步互联,输送容量不受输电距离和网络结构、参数的限制;在事故情况下,可以充分发挥直流线路快速调节的作用,对事故电网进行功率输送。

因此,无论特高压交流还是特高压直流输电,单回甚至多回线路跳闸,都会对受端电网稳定产生影响。而特高压输电应用于大区电网互联,采用特高压交流联网方式稳定问题较大,此时采用特高压直流联网方式具有更好的技术性能。

5 特高压交直流输电系统我国的发展前景

2020年前,直流输电应用于以长距离大容量输电为目的的大区电网互联。

根据我国电网的远景规划,在北方火电基地建成之前,我国将形成北部、中部、南方三大联合电力系统。三峡水电站计划将于2009年建成,装机容量18.2 GW,向华东输送容量~8 GW,输送距离1 100 km。目前初步确定的电压等级方案为500 kV交流加500 kV直流的交、直流混合方案。这一方案使电站的出线回路偏多,电压等级偏低。

从国外电力系统发展的历史来看,一座或数座大型电站接入系统,会促使系统出现更高一级电压等级。我国西北刘家峡电站的接入系统开始形成了西北330 kV电网;葛洲坝水电站建成,使我国华中地区形成了500 kV电网。在国外,加拿大为邱吉瀑布水电站群建设了735 kV电网;俄罗斯为核电站送电建设了750 kV电网。我国三峡水电站的建成以及今后发展特大型水、火基地,都极有可能需要建立特高压输电网。

但是,在现阶段,特高压输电技术储备不足,没有成套成熟的技术;而直流输电在可控性、隔离故障及运行管理等方面占有许多优势,特别是采用直流联网时两网之间的波动互不干扰,稳定性很高。因此,在未来20年,直流输电将作为长距离大容量输电的主要方式和500 kV交流网架的强化措施,以便在无更高一级交流电压输电线路时形成大区电网互联。

科学领域的新成就将扩展直流输电技术的用途。一些新的发电方式,比如磁流体、电气体、燃料电池和太阳电池等产生的电能都是以直流方式送出并经逆变器交换后送入交流电力系统,远海中的海洋能发电厂需用海底直流电缆将电能送到大陆。另外,新型电池和超导等新的储能系统和交流电力系统连接时都需要有关直流输电的技术。

总之,随着直流输电技术的日益成熟、输电设备(主要是换流器)价格的下降和换流站可用率的提高,它在电力系统必将得到更多的应用。

到2050年,交流特高压电网将作为全国联网的主网架。继三峡水电站之后即将开发西南水电基地,金沙江上、中、下游段13个梯级电站共装机67.38 GW,澜沧江中下游14个梯级共28.9 GW,雅砻江11个梯级共24.30 GW,大渡河17个梯级共17.72 GW,将大容量外送~60 GW。

在火电发展方面,煤炭能源输送方式有[4]:运煤发电和就地发、输电。运煤发电方式存在许多弊端,比如环境污染严重,大量占用城市土地资源,对交通运输有一定压力等。而就地发电方式将解决上述弊端,即建设坑口电站,以远距离大容量输电的方式,将能源输送到负荷中心。到2050年,“三西”火电基地将向东北、华北、华东、华中输电。

尽管到目前为止全国联网网架结构尚不明朗,但随着金沙江梯级电站和北方火电基地的

建成,以直流输电形成全国直流联网几乎不可能。因全国联网必是多端网络,采用特高压交流输电线路,形成以三峡电网为中心的全国电网互联的格局,这是全局,特殊情况下局部可用直流联网或背靠背直流联网。

6 总结

我国特高压电网将由1000kV级交流输电系统和+800kV级直流系统组成。前者主要定位于近距离大容量输电和更高一级电压等级的网架建设;后者主要定位于送受关系明确的远距离大容量输电以及部分大区、省网之间的互联。两者相辅相成,互为补充。特高压直流系统的系统设备复杂、二次设备故障率高以及换流器在交、直流侧会产生谐波影响系统的稳定控制,总体上来说,整个特高压直流输电系统的可靠性不如特高压交流输电系统。而在实现大区联网时,采用特高压直流方式更具优势。

所以,研究特高压交直流输电是十分必要的。为此我们在自己探索发展特高压输电技术的同时也应积极引进和吸收国外的成果 ,研制成套高压直流输电设备 ,早日实现国产化。建设工业性的特高压实验线路 ,与国外专家及各制造厂家共同研究适合中国特点的特高压输电成套设备。

参考文献

[1] RL.Cresap,W.A.Mittelstadt,D.N.Scott,,C.W.Taylor,operating Experience With Modulation of the Pacific

HVDC Intertia IEEE Trans- ,Pas-97,1053~1059,1976.

[2] P.Sarma Maruvada.Corona Performance of High—voltage Transmission Lines.Research Studies Press

LTD.,2000.

[3] Chamia M.HVDC:a major option for electricity networks[J].IEEE Power Review,2000,20(2):14-16。

[4] 刘振亚.特高压电网[M].北京:中国经济出版社,2005。

[5] 朱鸣海.能源?全国联合电网?特高压输电[J].高电压技术,2000,26(2):28—30。

[6] 黄道春,魏远航,钟连宏等.我国发展特高压直流输电中一些问题的探讨[J].电网技术,2007,31(8):

6—12。

[7] 李兴源编著,高压直流输电系统,科学出版社,2010年02月。

[8] 周静,马为民,石岩,韩伟.+_800kV直流输电系统的可靠性及其提高措施[J].电网技术,2007,31(3):

7.12。

[9] 刘振亚主编,,特高压直流输电技术研究成果专辑(2008年),中国电力出版社,2009年09月。

[10] 万启发.浅谈我国交流特高压输电前景[J].高电压技术,1999,25(2):30-34。

[11] 赵畹君主编,高压直流输电工程技术,中国电力出版社,2004年08月。

我国特高压直流输电技术的现状及发展

我国特高压直流输电技术的现状及发展 (华北电力大学,北京市) 【摘要】直流输电是目前世界上电力大国解决高电压、大容量、远距离送电和电网互联的一个重要手段。本文主要介绍了特高压直流输电技术的特点,特高压直流输电技术所要解决的问题,特高压直流输电技术的在我国发展的必要性以及发展前景。 【关键词】特高压直流输电,特点,问题,必要性,发展前景 0.引言 特高压电网是指由特高压骨干网架、超高压、高压输电网、配电网及高压直流输电系统共同构成的分层、分区,结构清晰的大电网。其中,国家电网特高压骨干网架是指由1000kV级交流输电网和±600kV级以上直流输电系统构成的电网。 特高压直流输电技术起源于20 世纪60 年代,瑞典Chalmers 大学1966 年开始研究±750kV 导线。1966 年后前苏联、巴西等国家也先后开展了特高压直流输电研究工作,20 世纪80 年代曾一度形成了特高压输电技术的研究热潮。国际电气与电子工程师协会(IEEE)和国际大电网会议(Cigre)均在80 年代末得出结论:根据已有技术和运行经验,±800kV 是合适的直流输电电压等级,2002 年Cigre又重申了这一观点。随着国民经济的增长,中国用电需求不断增加,中国的自然条件以及能源和负荷中心的分布特点使得超远距离、超大容量的电力传输成为必然,为减少输电线路的损耗和节约宝贵的土地资源,需要一种经济高效的输电方式。特高压直流输电技术恰好迎合了这一要求。 1.特高压直流输电的技术特点 1.1特高压直流输电系统 特高压直流输电的系统组成形式与超高压直流输电相同,但单桥个数、输送容量、电气一次设备的容量及绝缘水平等相差很大。换流站主接线的典型方式为每极2组12脉动换流单元串联,也可用每极2组12脉动换流单元并联。特高压直流输电采用对称双极结构,即每12脉动换流器的额定电压均为400kV,这样的接线方式使运行灵活性可靠性大为提高。特高压直流输电的运行方式有:双极运行方式、双极混合电压运行方式、单击运行方式和单极半压运行方式等。换流阀采用二重阀,空气绝缘,水冷却;控制角为整流器触发角15°;逆变器熄弧角17°。换流变压器形式为单相双绕组,油浸式;短路阻抗16%-18%;有载调压开关共29档,每档1.25%。换流站平面布置为高、低压阀厅及其换流变压器采用面对面布置方式,高压阀厅布置在两侧,低压阀厅布置在中间。 1.2 特高压直流输电技术的主要特点 (1)特高压直流输电系统中间不落点,可点对点、大功率、远距离直接将电力送往负荷中心。在送受关系明确的情况下,采用特高压直流输电,实现交直流并联输电或非同步联网,电网结构比较松散、清晰。 (2)特高压直流输电可以减少或避免大量过网潮流,按照送受两端运行方式变化而改变潮流。特高压直流输电系统的潮流方向和大小均能方便地进行控制。 (3)特高压直流输电的电压高、输送容量大、线路走廊窄,适合大功率、远距离输电。 (4)在交直流并联输电的情况下,利用直流有功功率调制,可以有效抑制与其并列的交流线路的功率振荡,包括区域性低频振荡,明显提高交流的暂态、动态稳定性能。 (5)大功率直流输电,当发生直流系统闭锁时,两端交流系统将承受大的功率冲击。 1.3 与超高压直流输电比较 和±600千伏级及600千伏以下超高压

特高压输电工程简介

特高压输电工程简介 ABSTRACT: Transporting electrical power with ultra-high voltage has been very popular these days, but most people in the society do not know much about it. In this essay, we will have a short cover about ultra-high voltage technology and focus on the necessity and importance of ultra-high voltage for China to develop this technology, some difficulties in this process, and finally some sample projects in destruction. KEY WORDS:ultra-high voltage, electrical power 摘要:特高压输电,作为近年来国家重点发展的示范项目,已经引起了越来越多的关注和讨论,社会中的绝大部分群体对这一新兴概念并不十分了解,本文对我国特高压输电工程进行一个简单的介绍和讨论,重点介绍我国现阶段特高压输电的必要性和重要性、期间面临的一些反对意见和应对措施、我国现阶段对特高压工程的研究进展情况,以及目前已建成的或在建的特高压示范工程规划。 关键词:特高压,电力系统 目前我国常用的电压等级有:220V、380V、6kV、10kV、35kV、110kV、220kV、330kV、500kV。交流220kV及以下的称为高压(HV),330kV到750kV为超高压(EHV),交流1000kV及以上为特高压(UHV),通常把1000KV到1150kV这一级电压称为百万伏级特高压。对于直流输电,±600kV及以下的为高压直流(HVDC),±600kV以上为特高压直流(UHVDC)。 对于我国发展特高压输电的必要性和重要性,主要有以下几个方面: (1)电力快速发展的需要 改革开放30 年以来,我国用电总量快速增长。1978 年,全社会用电量为2498 亿千瓦时,到2007 年达到32565 亿千瓦时,是1978 年的13 倍,年均增长9.45%。改革开放之初,我国逐步扭转了单纯发展重化工业的思路,轻工业得以快速发展,用电增速呈现先降后升的态势,“六五”、“七五”期间年均增长分别达到6.52%、8.62%,其间,在经济体制改革的带动下,我国用电增速曾连续6 年(1982~1987 年)逐年上升,是改革开放以来最长的增速上升周期。1990 年以来,在小平南巡讲话带动下,我国经济掀起了新的一轮发展高潮。“八五”期间,全社会用电增长明显加快,年均增长10.05%。“九五”期间,受经济结构调整和亚洲金融危机影响,用电增速明显放缓,年均增长6.44%,尤其是1998 年,增速仅为2.8%,为改革开放以来的最低水平。进入“十五”以来,受积极的财政货币政策和扩大内需政策拉动,我国经济驶入快速增长轨道,经济结构出现重型化,用电需求持续高速增长,年均增长12.96%,尤其是2003 年、2004 年达到了改革开放以来用电增长高峰,增速分别为15.3%和15.46%。“十一五”前两年,我国用电继续保持快速增长势头,增速均高于14%。 由此可以看出,随着工业化和城镇化的不断推动和发展,我国用电量逐年增加,在工业化和全面建设小康社会的带动下,预计我国到2020 年全社会用电量将达到6.5~7.5 万亿千瓦时,年均增速将达到5.5%~6.6%;人均用电量达到4500~5200千瓦时,相当于日本上世纪80 年代的水平。所以,要求现有的电力系统增大发电容量,满足用电需求。 (2)我国资源和电力负荷分布不均衡 受经济增长,尤其是工业生产增长的强劲拉动,我国电力需求实现高速增长,但是,我国用电增长地区分布不均。总体来看我国东部沿海经济发达地区用电强劲增长,西部地区高耗能产业分布较多的省区用电增长幅度也较大,中部地区增长较慢,我国电力系统的负荷也呈现出结构性变化。但是,我国的资源分布却呈现出相反的情况,水能、煤炭等电力资源主要分布在中西部地区,远离东部的集中用电区域,这同

高压直流输电与特高压交流输电的优缺点比较

高压直流输电与特高压交流输电的优缺点比较 从经济方面考虑,直流输电有如下优点: (1) 线路造价低。对于架空输电线,交流用三根导线,而直流一般用两根采用大地或海水作回路时只要一根,能节省大量的线路建设费用。对于电缆,由于绝缘介质的直流强度远高于交流强度,如通常的油浸纸电缆,直流的允许工作电压约为交流的3倍,直流电缆的投资少得多。 (2) 年电能损失小。直流架空输电线只用两根,导线电阻损耗比交流输电小;没有感抗和容抗的无功损耗;没有集肤效应,导线的截面利用充分。另外,直流架空线路的“空间电荷效应”使其电晕损耗和无线电干扰都比交流线路小。 所以,直流架空输电线路在线路建设初投资和年运行费用上均较交流经济。 直流输电在技术方面有如下优点: (1) 不存在系统稳定问题,可实现电网的非同期互联,而交流电力系统中所有的同步发电机都保持同步运行。直流输电的输送容量和距离不受同步运行稳定性的限制,还可连接两个不同频率的系统,实现非同期联网,提高系统的稳定性。 (2) 限制短路电流。如用交流输电线连接两个交流系统,短路容量增大,甚至需要更换断路器或增设限流装置。然而用直流输电线路连接两个交流系统,直流系统的“定电流控制”将快速把短路电流限制在额定功率附近,短路容量不因互联而增大。 (3) 调节快速,运行可靠。直流输电通过可控硅换流器能快速调整有功功率,实现“潮流翻转”(功率流动方向的改变),在正常时能保证稳定输出,在事故情况下,可实现健全系统对故障系统的紧急支援,也能实现振荡阻尼和次同步振荡的抑制。在交直流线路并列运行时,如果交流线路发生短路,可短暂增大直流输送功率以减少发电机转子加速,提高系统的可靠性。 (4) 没有电容充电电流。直流线路稳态时无电容电流,沿线电压分布平稳,无空、轻载时交流长线受端及中部发生电压异常升高的现象,也不需要并联电抗补偿。 (5) 节省线路走廊。按同电压500 kV考虑,一条直流输电线路的走廊~40 m,一条交流线路走廊~50 m,而前者输送容量约为后者2倍,即直流传输效率约为交流2倍。 下列因素限制了直流输电的应用范围: (1) 换流装置较昂贵。这是限制直流输电应用的最主要原因。在输送相同容量时,直流线路单位长度的造价比交流低;而直流输电两端换流设备造价比交流变电站贵很多。这就引起了所谓的“等价距离”问题。 (2) 消耗无功功率多。一般每端换流站消耗无功功率约为输送功率的40%~60%,需要无功补偿。 (3) 产生谐波影响。换流器在交流和直流侧都产生谐波电压和谐波电流,使电容器和发电机过热、换流器的控制不稳定,对通信系统产生干扰。 (4) 缺乏直流开关。直流无波形过零点,灭弧比较困难。目前把换流器的控制脉冲信号闭锁,能起到部分开关功能的作用,但在多端供电式,就不能单独切断事故线路,而要切断整个线路。 (5) 不能用变压器来改变电压等级。 直流输电主要用于长距离大容量输电、交流系统之间异步互联和海底电缆送电等。与直流输电比较,现有的交流500 kV输电(经济输送容量为1 000 kW、输送距离为300~500 km)已不能满足需要,只有提高电压等级,采用特高压输电方式,才能获得较高的经济效益。

浅谈高压直流输电对交流电网继电保护影响

浅谈高压直流输电对交流电网继电保护影响 摘要:目前在交流电网的继电保护工作中尚且存在许多不足之处,需要工作人 员引起注意并且加以解决,比如直流输电的交流母线通过多条线路和多落点接入 交流电网,对含有直流馈入的电网做仿真分析,在直流馈入点附近采用受影响小 的继电保护装置等等,这些都是可取的措施。 关键词:高压直流;输电;交流电网;继电保护;分析 1导言 近年来我国尤其是沿海经济发达地区用电需求增长很大,但是我国能源丰富地 区大都在西部,这种能源和负荷分布不平衡的局面促使我国实行“西电东送”工程,因此,大力开发西南水电,采用特高压直流将电能输送到沿海经济发达地区势在必行。 2直流偏磁成因 对于特高压直流输电来讲,较之于常规高压直流输电有所区别,而且运行方 式也非常的复杂,即便是一个双极特高压直流输电系统其运行方式也可能达到二 十多种。当电极不对称以大地作为回路运行过程中,直流电流就会以大地作为一 部分构成一个回路,如此强大的电流会在接地极址位置形成相对比较恒定的电流场,进而对接地极与周围交流系统产生巨大的影响。实践中可以看到,距离接地 极址越近,则直流电场就越大,反之亦然。 2高压直流输电线路继电保护的整体情况和存在问题 2.1高压直流输电线路继电保护的整体情况 从新中国成立以来,以换流技术为基础的交流电网继电保护技术就开始有了 进步,尤其是在高压直流输电上取得了更可喜的发展成果。在当前情况下,用作 长距离高能量电能传输的更多的是依靠半控型器件晶闸管的电流源换流器高压直 流输电(CSCHVDC);而由全控型器件构成的电压源换流器高压直流输电(VSC-HVDC)则偏向于受端弱系统。与此相对应的,高压直流输电线路的电网构造从之前的两端系统拓展成多段的体系;电网的线路也发生了改变,从之前单纯的海底 电缆形式转变成架空线路和电缆共存的形式;此外,高压直流输电在运输的地域 宽度、功率大小、电压高低等方面都展现了更突出的优势。目前的直流输电电网 继电保护工作在开展时,主要依靠ABB和SIEMENS公司,分为几种不同的保护方式。 2.2高压直流输电线路继电保护的现存问题 从保护效果的形成机制看,目前的直流输电继电保护工作成效不高,主要是 因为设计理念不先进、方案可实施性不强,主保护工作不力是因为系统的灵敏性弱、故障处理不到位、整体规划不强、采样率要求太高和对干扰的抵抗程度低等等。而后备保护工作不到位,则是因为保护的时效性不强、低电压保护缺少根据 等等原因。就交流电网的保护配置方面看,直流输电的保护类型太过单调,不够 可靠,一旦发生故障不能及时处理。 3交流电网的现状 自从第一个交流发电站成立以来,交流电网凭借以下的优势迅速的发展并被 广泛的使用。一是利用建立在电磁感应原理基础上的交流发电机可以很经济方便 地把机械能(水流能、风能)、化学能等其他形式的能转化为电能;交流电源和 交流变电站与同功率的直流电源和直流换流站相比,造价大为低廉。二是交流电 可以方便地通过变压器升压和降压,这给配送电能带来极大的方便。随着技术的 不断深入,交流电网出现了一些问题,主要有以下几方面:一是交流输电不能做

特高压直流输电技术研究

特高压直流输电技术研究 发表时间:2017-07-04T11:23:41.107Z 来源:《电力设备》2017年第7期作者:杨帅 [导读] 摘要:文章首先介绍了特高压直流输电原理,接着分析了特高压直流输电技术的特点,特高压直流输电技术的优点、交直流特高压技术的应用,未来需要解决的难点等。通过分析能够看出,当前特高压直流输电技术在中国具有广阔的应用前景。 (国网河北省电力公司检修分公司河北省石家庄 050000) 摘要:文章首先介绍了特高压直流输电原理,接着分析了特高压直流输电技术的特点,特高压直流输电技术的优点、交直流特高压技术的应用,未来需要解决的难点等。通过分析能够看出,当前特高压直流输电技术在中国具有广阔的应用前景。 关键词:特高压;直流输电;应用 引言 随着国民经济的持续快速发展,我国电力工业呈现加速发展态势,近几年发展更加迅猛。按照在建规模和合理开工计划,全国装机容量 2010 年达到 9.5 亿千瓦,2020 年达到 14.7 亿千瓦;用电量 2010 年达到 4.5 万亿千瓦时,2020 年达到 7.4 万亿千瓦时。电力需求和电源建设空间巨大,电网面临持续增加输送能力的艰巨任务。同时我国资源分布不均匀,全国四分之三的可开发水资源在西南地区,三分之二的煤炭资源分布在西北地区,而经济发达的东部地区集中了三分之二的用电负荷。大容量、远距离输电成为我国电网发展的必然趋势。 同时,特高压输电具有明显的经济效益。特高压输电线路可减少铁塔用材三分之一,节约导线二分之一,节省包括变电所在内的电网造价约 10%-15%。特高压线路输电走廊仅为同等输送能力的 500k V 线路所需走廊的四分之一,这对人口稠密、土地宝贵或走廊困难的国家和地区带来重大的经济社会效益。 1特高压直流输电原理 高压直流输电的电压等级概念与交流输电不一样。对于交流输电来说,一般将 220k V 及以下的电压等级称为高压,330 ~ 750k V 的称为超高压 ,1000k V 及以上的称为特高压。直流输电把 ±500k V 和 ±660k V 称为超高压;±800k V 及以上电压等级称为特高压。 直流输电工程是以直流电的方式实现电能传输的工程。直流电必须经过换流(整流和逆变)实现直流电变交流电,然后与交流系统连接。 两端直流输电系统可分为单极系统(正极和负极)、双极系统(正、负两极)和背靠背直流系统(无直流输电系统)三种类型。 2特高压直流输电优点 我国目前发展的特高压输电技术包括特高压交流输电技术和特高压直流输电技术。一般特高压交流输电技术用于近距离的组网和电力输送,直流输电技术用来进行远距离、大规模的电力输送,两者在以后的电网发展中都扮演重要角色。本文对其中的特高压直流输电技术进行简要分析,其优点主要包括以下几个方面。 在直流输电的每极导线的绝缘水平和截面积与交流输电线路的每相导线相同的情况下,输电容量相同时直流输电所需的线路走廊只需交流输电所需线路走廊的2/3,在土地资源越来越紧张的今天,特高压直流输电线路可以节省线路走廊的优点显得更加突出。 在输送功率相同的情况下,直流输电的线路损耗只有交流输电的2/3,长久以往可以节约大量的能源;同时直流输电可以以大地为回路,只需要一根导线,而交流输电需要3根导线,在输电线路建设方面特高压直流输电电缆的投资要低很多。 交流输电网络互联时需要考虑两个电网之间的周期和相位,而直流输电不存在系统稳定性问题,相比交流输电网络,能简单有效地解决电网之间的联结问题。 长距离输电时,采用直流输电比交流输电更容易实现,如800kv的特高压直流输电距离最远可达2500km。 3特高压直流技术存在的不足 (1)直流输电换流站比交流变电所结构复杂、造价高、运行费用高,换流站造价比同等规模交流变电所要高出数倍。(2)为降低换流器运行时在交流侧和直流侧产生的一系列谐波,需在两侧需分别装设交流滤波器和直流滤波器,使得换电站的占地面积、造价和运行费用均大幅度提高。(3)直流断路器没有电流过零点可利用,灭弧问题难以解决。(4)由于直流电的静电吸附作用,使直流输电线路和换电站设备的污秽问题比交流输电严重,给外绝缘问题带来困难。 4特高压直流输电技术的应用分析 4.1拓扑结构 在近些年来,特高压直流输电的拓扑结构主要有多端直流和公用接地极两种,其中,多端直流是通过连接多个换流站来共同组成直流系统,在电压源换流器发展背景下,出现了混合型多端直流和极联式多端直流,前者是将合理分配同一极换流器组的位置,电源端与用户端都是分散分布。公用接地极是通过几个工程公用接地极的方式,来降低工程整体造价成本,提升接地极利用水平,提高工程经济效益、社会效益;但也存在接地电流容易过大、检修较为复杂等不足。 4.2换流技术 在特高压直流输电的换流技术方面,主要有电容换相直流输电技术和柔性直流输电技术两种,其中,电容换相直流输电技术是通过将换相电容器串接到直流换流器与换流变压器中,利用串联电容来对换流器无功消耗进行补偿,减少换流站的向设备,能够有效降低换相失

特高压直流输电的现状与展望

特高压直流输电的现状与展望 摘要:特高压直流输电大多用于长距离输电,例如海底电缆、大型发电站输电等,在我国,其是指通过1000kV级交流电网和±600kV级以上直流电网要求构成 的电网系统。放眼现在,直流输电在电力传输中的地位与日俱增,尤其在结合计 算机等技术后,特高压直流输电系统的整体调控更加可靠。本文将通过分析我国 特高压直流输电的现状,以及探究今后发展的展望,讨论特高压直流输电如何在 个别恶劣环境中进行应用的问题。 关键词:特高压;直流输电;现状;展望 1 特高压直流输电的现状 1.1 发展速度快 从上世纪六十年代开始,由于部分发达国家需要向部分地区进行远距离、大 容量输电的需求,开始了对特高压直流输电的研究。从开始阶段的不到一千公里,五十万千伏直流输电电压,输电功率六百万千瓦,到如今的上千公里,八十万千 伏直流输电电压,其中的发展速度无疑是飞快的。除此之外,由于现代科技更为 发达,再加上可以通过计算机进行实时地检测,特高压直流输电系统在调节方面 的优化,可谓是跨越了一大步。此外,相较于以往的电线,光纤的使用也使得特 高压直流输电在传输过程中的安全性得以提高,大大提高了其输电效率。并且, 特高压直流输电的应用范围也大大扩增,不再局限于几个发达国家。 1.2 效率更高 在远距离大容量输电方面,相较于交流输电,或者是超高压输电方式,特高 压直流输电通常会是更好的选择,其在经济投资、能源损耗以及工程规模方面都 要优于交流输电和超高压输电。例如,在特高压和超高压两种方式之间,面对相 同的输电工程,姑且定为10GW的输送功率,2千米的输送距离,超高压输电需 要240亿元的投资,在输电过程中有将近1.15GW的损耗,其工程规模为135米,而特高压输电只需要200亿元的投资,在输电过程中只有1GW的损耗,工程规 模也只有120米;而相等电压等级情况下的交流输电方式,需要315亿元的投资,在输电过程中更是有1.7GW的线损,工程规模也远远大于前面两种方案。所以, 在远距离大容量电力输送过程中,特高压直流输电的输电效率更好。 1.3 我国特高压直流输电现状 我国从上世纪八十年代才开始尝试建设超高压直流输电工程,即葛洲坝直流 输电工程,虽然开始较晚,但发展十分迅速。经过这些年的技术积累,我国现已 具备建设特高压直流输电工程的技术,并于2010年,完全通过我国自主研发, 成功建造了在当时而言,技术领先全球、输电能力最大的±800kV的向家坝特高压 直流输电工程。在今后3~5年中,我国还将在其他地区建设特高压直流输电工程,预计将会达到二十个左右。 2 特高压直流输电的特点 2.1 技术性能更加稳定 直流输电技术基本不存在系统稳定的问题,可以实现电网的非同期互联。简 单来说,就是指直流输电在连接连两个交流系统时,可以在非同步时期运行,在 效果方面,通过交变直,直变交,将两个直流系统隔离,使得两边能够独立运行。除此之外,在运行期间,如果线路发生短路,直流输电能够及时地进行调节,恢 复时间也很短,例如直流输电单极故障的恢复时间一般不超过0.4秒,除此之外,还可以抑制振荡阻尼和次同步振荡的影响。

高压直流输电优缺点

浅谈特高压直流输电 将电能从大型火力、水力等发电厂输送到远方负荷中心地区时会遇到远距离输电问题。要实现远距离的大功率传输,需采用超高压或特高压输电技术。在特高压输电技术中有交流和直流两种方案,可根据技术经济条件和自身特点加以选择。特高压交流输电是目前国内外最基本的远距离输电方式,而特高压直流输电不存在同步稳定性问题,是大区域电网互联的理想方式。下面我将结合自己所学知识与查阅的资料对特高压直流输电进行概括的阐述。 直流输电是指将送端系统的正弦交流电在送端换流站升压整流后通过直流线路传输到受端换流站,受端换流站将直流逆变成正弦的工频交流电后降压和受端系统相连。而对于换流站,它的核心元件是换流器,,由1 个或数个换流单元串联而成,电路均采用三相换流桥,材料多采用可控硅阀。它的基本工作原理是,控制调节装置通过控制桥阀的触发时刻,可改变触发相位,进而调节直流电压瞬时值、电阻上的直流电流、直流输送功率。同时,相同的触发脉冲控制每个桥阀的所有可控硅元件。当三相电源为对称正弦波的情况下,线电压由负到正的过零点时,脉冲触发桥阀,同时阀两端电压变正,阀立即开通。6 个脉冲发生器分别完成对单桥换流器的6 个桥阀的触发,恰好交流正弦波电源经过1 个周期,线电压又达到下一个过零点进行第二个触发周期。一般,工程上为了获得脉波更小的直流输电电压,通常采用12脉的双桥换流器。 与交流输电相比,直流输电技术具有以下特点:输电功率大小、方向可以快速控制调节;直流输电系统的接入不会增加原有系统的短路容量;利用直流调制可以提高系统的稳定水平;直流的一个极发生故障,另一个极可以继续运行,且可以利用其过负荷能力减少单极故障下的树洞功率损失;另外直流架空线路走廊宽度约为相同电压等级交流输线路走廊宽度的一半。而对于特高压直流输电,它不但具有常规直流输电的特点,而且还能够很好的解决我国一些现存的问题: 1、我国一次能源分布很不均衡, 水利资源2/ 3分布在西南地区, 煤矿资源2/ 3 分布在陕西、山西及内蒙古西部。而电力需求又相对集中在经济发展较好较快的东部、中部和南部区域。能源产地和需求地区之间的距离为1 000~ 2 500 km。因此我国要大力发展西电东送, 实现南北互供, 全国联网。特高压直流输电在远距离输电方面较为经济, 而且控制保护灵活快速, 是实现南北互供的较好途径。 2、我国东部、中部、南部地区是我国经济发达地区, 用电需求大, 用电负荷有着较高的增长率。特高压直流输电能够实现大容量输电, 规划的特高压直流输电工程的送电容量高

±800KV+特高压直流输电系统全电压启动过电压研究(已看)

±800KV特高压直流输电系统全电压启动过电压研究 黄源辉,王钢,李海锋,汪隆君 (华南理工大学电力学院,广东广州510640) 摘要:全电压启动过电压是直流输电中直流侧最严重的过电压情况。本文以PSCAD/EMTDC为工具,以正在建设的云广±800kV特高压直流输电系统参数为依据,建立全电压启动过电压仿真计算模型。对各种全电压启动情况进行了仿真计算,讨论了各种因素对全电压启动的影响,并与±500KV HVDC系统的全电压启动过电压作了比较,获得了一些具有实用价值的结论。 关键词:±800KV;特高压直流输电;全电压启动;过电压 0引言 为满足未来持续增长的电力需求,实现更大范围的资源优化配置,中国南方电网公司和国家电网公司提出了加快建设特高压电网的战略方针[1]。随着输电系统电压等级的升高,绝缘费用在整个系统建设投资中所占比重越来越大。对于±800KV特高压直流输电系统,确定直流线路和换流站设备的绝缘水平成为建设时遇到的基本问题之一。在种类繁多的直流系统内部过电压中,全电压误启动多因为的过电压是其中最严重和最重要的一种。它的幅值最大,造成的危害最大,在选择直流设备绝缘水平和制订过电压保护方案时往往以此为条件[2]。因此,对特高压直流系统的全电压启动过电压进行研究和分析具有很大的实际意义。 为降低启动过程的过电压及减小启动时对两端交流系统的冲击,直流输电的正常启动应严格按照一定的顺序进行[3]。正常情况下,在回路完好、交直流开关设备全部投入且交流滤波器投入适量等条件满足后(α≥90°),先解锁逆变器,后解锁整流器,按照逆变侧定电压调节或定息弧角调节规律的要求,由调节器逐步升高直流电压至额定值,即所谓的“软启动”。然而由于某些原因(如控制系统异常),两端解锁过程紊乱,逆变侧换流器尚未解锁而整流侧却全部解锁,此时若以较小的触发角启动,全电压突然对直流线路充电,由此直流侧会产生非常严重的过电压。 1云广直流系统简介 南方电网正在建设的云南-广东特高压直流系统双极输送功率5000MW,电压等级为±800kV,直流线路长度约1438km,导线截面为6×630mm2,两极线路同杆并架。送端楚雄换流站通过2回500kV 线路与云南主网的昆西北变电站相连,西部的小湾水电站(装机容量4200MW,计划2009年9月首台机组投产,2011年全部建成)和西北部的金安桥水电站(总装机2400MW,计划2009年12月首台机组投产,2011年全部建成)均以2回500kV线路接入楚雄换流站。受端穗东换流站位于广东省增城东部,500kV交流出线6回,分别以2回500kV线路接入增城、横沥和水乡站[4]。楚雄换流站接入系统如图1所示。 图1 楚雄换流站接入系统 云南-广东特高压直流系统交流母线额定电压为525kV,整流侧无功补偿总容量为3000MV Ar,逆变侧无功补偿总容量为3040MV Ar。平波电抗器电感值为300mH,平波电抗器按极母线和中性母线平衡布置,各为150mH。直流滤波器采用12/24双调谐方式。避雷器使用金属氧化物模型。每极换流单元采用2个12脉动换流器串联组成。 2云广直流系统模型 本文以PSCAD/EMTDC为工具,以南方电网建设中的云南-广东±800kV特高压直流系统参数为依据,建立了全电压启动过电压仿真计算模型。换流站内的单极配置如图1所示。

特高压直流输电技术现状及在我国的应用前景

特高压直流输电技术现状及在我国的应用前景 发表时间:2018-11-17T14:55:25.480Z 来源:《基层建设》2018年第28期作者:朱振伟李天轩 [导读] 摘要:通过总结特高压直流输电的特点和国外特高压直流输电的研究结论,在分析我国西部水电和煤炭资源集中分布以及东部沿海工业发达地区对电能需求日益增加等情况的基础上,指出在开发我国西部水电和“三西”(山西、陕西、内蒙古西部)煤电资源时采用特高压直流输电技术实现远距离大容量输电的应用前景。 国网江苏省电力有限公司宿迁供电分公司江苏宿迁 223800 摘要:通过总结特高压直流输电的特点和国外特高压直流输电的研究结论,在分析我国西部水电和煤炭资源集中分布以及东部沿海工业发达地区对电能需求日益增加等情况的基础上,指出在开发我国西部水电和“三西”(山西、陕西、内蒙古西部)煤电资源时采用特高压直流输电技术实现远距离大容量输电的应用前景。 关键词:特高压;直流输电;技术现状;应用前景 1 引言 特高压直流输电技术起源于20 世纪60年代,瑞典Chalmers大学1966年开始研究±750kV导线。1966年后前苏联、巴西等国家也先后开展了特高压直流输电研究工作,20世纪80年代曾一度形成了特高压输电技术的研究热潮。国际电气与电子工程师协会(IEEE)和国际大电网会议(Cigre)均在80 年代末得出结论:根据已有技术和运行经验,±800kV是合适的直流输电电压等级,2002 年 Cigre又重申了这一观点。随着国民经济的增长,中国用电需求不断增加,中国的自然条件以及能源和负荷中心的分布特点使得超远距离、超大容量的电力传输成为必然,为减少输电线路的损耗和节约宝贵的土地资源,需要一种经济高效的输电方式。特高压直流输电技术恰好迎合了这一要求。 2 特高压直流输电现状 20 世纪 80 年代前苏联曾动工建设长距离直流输电工程,输送距离为2400km,电压等级为±750kV,输电容量为 6GW。该工程将哈萨克斯坦的埃基巴斯图兹的煤炭资源转换成电力送往前苏联欧洲中部的塔姆包夫斯克,设计为双极大地回线方式,每极由两个 12 脉动桥并联组成,各由 3×320Mvar Y/Y 和 3×320Mvar Y/Δ单相双绕组换流变压器供电;但由于 80 年代末到90年代前苏联政局动荡,加上其晶闸管技术不够成熟,该工程最终没有投入运行。由巴西和巴拉圭两国共同开发的伊泰普工程采用了±600kV 直流和 765kV 交流的超高压输电技术,第一期工程已于 1984 年完成,1990 年竣工,运行正常。 3 特高压直流输电技术的特点及适用范围 特高压直流输电无需复杂的系统设计,基本可以采用±500kV 和±600kV 直流输电系统类似的设计方法,需要考虑的关键问题是外部绝缘和套管的设计等问题。特高压直流输电的输送容量大,输电距离长,输电能力主要受导线最高允许温度的限制。交流线路的无功补偿对远距离大容量输电系统至关重要;而直流输电线路本身不需要无功补偿,在换流站利用站内的交流滤波器和并联电容器即可向换流器提供所需的无功功率。一般来讲,对于远距离大容量输电直流方案优于交流方案,特高压方案优于超高压方案。表 1 为输送功率为 10GW 输送距离为 2000km 时交、直流以及不同电压等级直流的投资及线路走廊占用情况比较。 表1 10GW 电力输送 2000km 的交、直流输电方案 由表 1 可见,特高压直流输电适用于远距离大容量的电力输送。 4 我国能源和负荷的分布特点 水能资源和煤炭作为我国发电能源供应的两大支柱,今后的开发多集中在西南、西北和晋陕蒙地区,并逐渐向西部和北部地区转移,而东部沿海地区和中南地区的国民经济的持续快速发展导致能源产地与能源消费地区之间的距离越来越大,使得我国能源配置的距离、特点和方式都发生了巨大变化,并决定了能源和电力跨区域大规模流动的必然性。 (1)水电东送规模 三峡水电站(包括地下电站)的总装机容量为22.4GW,“十二五”初期将全部建成投产。综合分析一次能源平衡、输电距离及资源使用效率等因素,可知金沙江下游水电站主送华中、华东电网是合理的。 (2)煤电基地的电力外送规模 各煤电基地的电力外送规模有望得到较大发展。现已建成和规划采用 500kV 交流和±500kV 直流跨区送电的坑口电站的电力外送规模总计15GW。2020 年煤电外送将新增 84GW,主要送往华中东部四省、华东地区和华北京津冀鲁四省市以及广东地区。 (3)东部电力市场空间 华中东部四省。按低负荷水平预测,2020 年需电量将为 600TWh,负荷将为 110GW,装机容量缺额将为 138GW。扣除本地水电和必要的气电以外,2020 年之前尚有 47GW 的市场空间,其中2010~2020 年约为 32GW。华北的京津冀鲁。按低负荷水平预测,2020年需电量将为 840TWh,负荷将为 140GW,装机容量缺额将为 168GW。扣除本地核电、蓄能电站以外,2020 年之前尚有 90GW 的市场空间,其中2010~2020 年约为 45GW。初步测算,到 2020 年水电跨区送电规模总计约 70GW,煤电外送约 84GW,而东部受电地区的市场空间约为 127GW;而能源与负荷的距离大多数超过了 1000km,采用特高压直流输电技术比较合适。 5 特高压直流输电的初步发展规划 2020 年前后西部水电的大部分电力通过直流特高压通道向华中和华东地区输送,其中金沙江一期溪洛渡和向家坝水电站、二期乌东德和白鹤滩水电站向华东、华中地区送电,锦屏水电站向华东地区送电,宁夏和关中煤电基地向华东地区送电、呼伦贝尔盟的煤电基地向京津地区送电大约需要 9 条输电容量为 6GW 的±800kV 级特高压直流输电线路。根据 10 年发展规划,特高压直流输电工程的建设进度如

三大特高压直流输电线路背景资料

三大特高压直流输电线路背景资料 一、特高压直流线路基本情况 ±800kV复奉直流线路四川段起于复龙换流站,止于377#塔位,投运时间2009年12月,长度187.275km,铁塔378基,途径四川省宜宾市宜宾县、高县、长宁县、翠屏区、江安县、泸州市纳溪区、江阳区、合江县共8个区县,在合江县出境进入重庆境内。线路全部处于公司供区,途径地市公司供电所35个。接地极线路79公里,铁塔189基。±800kV 复奉线输送容量6400MW。 ±800kV锦苏直流线路四川段起于锦屏换流站,止于987#塔位,投运时间2012年12月,长度484.034km,铁塔988基,自复龙换流站起与复奉线同一通道走线,途径四川省凉山州西昌市、普格县、昭觉县、美姑县、雷波县、云南省昭通市绥江县、水富县、宜宾市屏山县、宜宾县、高县、长宁县、翠屏区、江安县、泸州市纳溪区、江阳区、合江县共16个区县,在合江县出境进入重庆境内。线路处于公司供区长度268.297公里、铁塔563基,途径地市公司供电所44个;另有0036#-0344#、0474#-0493#区段(长度153.268公里、铁塔320基)处于地方电力供区,0494#-0598#区段(长度62.469公里、铁塔105基)处于南方电网供区。接地极线路74公里,铁塔207基。±800kV锦苏线输送容量7200MW。

±800kV宾金直流线路工程四川段起于宜宾换流站,止于365#塔位,试运行时间2014年03月,长度182.703km,铁塔366基,途径四川省宜宾市宜宾县、珙县、兴文县、泸州市叙永县、古蔺县共5个区县,在古蔺县出境进入贵州境内。线路全部处于公司供区,途径地市公司供电所22个。接地极线路101公里,铁塔292基。±800kV宾金线输送容量8000MW。 线路名称线路长度 (km) 杆塔数量投运时间 途径区县数 量 途径属地公 司供电所 ±800kV 复奉直流 187.275 378 2009.12 8 35 复龙换流站 接地极线路 79.106 189 ±800kV 锦苏直流 484.034 988 2012.12 16 44 锦屏换流站 接地极线路 74.147 207 ±800kV 宾金直流 182.703 366 2014.03(试 运行)5 22 宜宾换流站 接地极线路 101.174 292

特高压直流输电线路基本情况介绍

特高压直流输电线路基本情况介绍 问:直流输电线路有哪些基本类型? 答:就其基本结构而言,直流输电线路可分为架空线路、电缆线路以及架空——电缆混合线路三种类型。直流架空线路因其结构简单、线路造价低、走廊利用率高、运行损耗小、维护便利以及满足大容量、长距离输电要求的特点,在电网建设中得到越来越多运用。因此直流输电线路通常采用直流架空线路,只有在架空线线路受到限制的场合才考虑采用电缆线路。 问:建设特高压直流输电线路需要研究哪些关键技术问题? 答:直流架空线路与交流架空线路相比,在机械结构的设计和计算方面,并没有显著差别。但在电气方面,则具有许多不同的特点,需要进行专门研究。对于特高压直流输电线路的建设,尤其需要重视以下三个方面的研究: 1. 电晕效应。直流输电线路在正常运行情况下允许导线发生一定程度的电晕放电,由此将会产生电晕损失、电场效应、无线电干扰和可听噪声等,导致直流输电的运行损耗和环境影响。特高压工程由于电压高,如果设计不当,其电晕效应可能会比超高压工程的更大。通过对特高压直流电晕特性的研究,合理选择导线型式和绝缘子串、金具组装型式,降低电晕效应,减少运行损耗和对环境的影响。 2. 绝缘配合。直流输电工程的绝缘配合对工程的投资和运行水平有极大影响。由于直流输电的“静电吸尘效应”,绝缘子的积污和污闪特性与交流的有很大不同,由此引起的污秽放电比交流的更为严重,合理选择直流线路的绝缘配合对于提高运行水平非常重要。由于特高压直流输电在世界上尚属首例,国内外现有的试验数据和研究成果十分有限,因此有必要对特高压直流输电的绝缘配合问题进行深入的研究。 3. 电磁环境影响。采用特高压直流输电,对于实现更大范围的资源优化配置,提高输电走廊的利用率和保护环境,无疑具有十分重要的意义。但与超高压工程相比,特高压直流输电工程具有电压高、导线大、铁塔高、单回线路走廊宽等特点,其电磁环境与±500千伏直流线路的有一定差别,由此带来的环境影响必然受到社会各界的关注。同时,特高压直流工程的电磁环境与导线型式、架线高度等密切相关。因此,认真研究特高压直流输电的电磁

高压直流输电

高压直流输电 一、高压直流输电系统(HVDC)概述 众所周知,电的发展首先是从直流开始的,但很快就被交流电所取代,并且在相当长的一段时间内,在发电、输电和用电各个领域,都是交流电一统天下的格局。 HVDC技术是从20世纪50年代开始得到应用的。经过半个世纪的发展,HVDC技术的应用取得了长足的进步。据不完全统计,目前包括在建工程在内,世界上己有近百个HVDC 工程,遍布5大洲20多个国家。其中,瑞典在1954年建成投运的哥特兰(Gotland)岛HVDC 工程(20MW,100kV,90km海底电缆)是世界上第一个商业化的HVDC工程,由阿西亚公司(ASEA,今ABB集团)完成;拥有最高电压(±600kV)和最大输送容量(2 x 3150MW)的HVDC工程为巴西伊泰普(Itaipu)工程;输送距离最长(1700km)的HVDC 工程为南非英加——沙巴(1nga2Shaba)工程;电流最大的HVDC工程在我国:如三常、三广和贵广HVDC工程,额定直流电流均为3000A。HVDC的发达地区在欧洲和北美,ABB和西门子等公司拥有最先进的HVDC技术,美国是HVDC工程最多的国家。 HVDC在我国是从20世纪80年代末开始应用的,起步虽然较晚,但发展很快。目前包括在建工程在内,总输送容量已达18000MW以上,总输送距离超过7000km,该两项指标均已成为世界第一。我国第一个HVDC工程是浙江舟山HVDC工程(为工业试验性工程),葛沪HVDC工程是我国第一个远距离大容量HVDC工程,三常HVDC工程是我国第一个输送容量最大(3000MW)的HVDC工程,灵宝(河南省灵宝县)背靠背HVDC工程是我国第一个背靠背HVDC工程。我国已投运的HVDC工程见表1。 表1我国已投运的HVDC工程 另外,2010年前后建成投运的HVDC工程有四川德阳——陕西宝鸡(1800 MW、±500 kV,550km)、宁夏银南——天津东(3000MW、±500kV,1200km)等;至2020年前后,还计划建设云南昆明——广东增城、金沙江水电基地一华中和华东HVDC工程以及东北——华北、华北——华中、华中——南方背靠背HVDC工程等十几个HVDC工程。 我国关于直流输电技术的研究工作,50年代就开始起步。目前,我国己经有多条直流线路投入运行,这些直流输电工程的投运标志着我国的直流输电技术有了显著的提高和发展。随着三峡工程的兴建和贯彻中央“西电东送”的发展战我国将陆续兴建一批超高压、大容量、远距离直流输电工程和交直流并联输电工程。此外,在这些新建工程中还将采用直流输电的新技术。随着我国直流输电技术的日益完善,输电设备价格的下降和可靠性的提高,以及运行管理经验的不断积累,直流输电必将得到更快的发展和大量的应用标志着我国的直

浅谈特高压直流输电对系统安全稳定的影响

浅谈特高压直流输电对系统安全稳定的影响 发表时间:2018-05-14T16:18:59.507Z 来源:《电力设备》2017年第34期作者:王晓晴 [导读] 摘要:特高压直流输电系统能够将大容量的电进行远距离的输送,对我国能源流动有着至关重要的作用。 (国网江苏省电力公司检修分公司江苏南京 211100) 摘要:特高压直流输电系统能够将大容量的电进行远距离的输送,对我国能源流动有着至关重要的作用。随着我国科学技术的进步,特高压直流输电的技术和设备也在不断更新发展。为解决输送过程中的诸多安全问题,本文就特高压直流输电对系统安全稳定的影响进行探究,首先对特高压直流输电对系统的影响因素进行分析,然后分析特高压直流输电对系统影响的实例,从而促进特高压直流输电技术水平的提升。 关键词:特高压;直流输电;互联系统 引言:特高压直流输电系统不仅具有大容量和远距离的输电能力,而且调节灵活、功能损耗低,因此受到社会的广泛关注。我国现阶段已经有大批特高压直流输电工程处于投产运行的状态,为社会的正常运行作出巨大的贡献。特高压直流输电系统的应用虽然带来诸多正面的影响,但是为电力系统的安全稳定也带来新的挑战。在此背景下,探究特高压直流输电对系统安全稳定的影响是很有必要的。 一、特高压直流输电对系统安全稳定的影响 (一)对静态电压稳定性的影响 特高压直流输电在输电过程中会经过直流系统换流站,在换流站会消耗较大的无功功率,这些被消耗的无功功率大约占有功功率的40%到60%。由于特高压直流输电对无功功率有较大的需求量,因此一旦系统运行不稳定,就会使电力系统中无功功率的平衡性遭到破坏,从而使整个系统的安全稳定受到威胁。另外,特高压直流输电的电容量较大,一旦遇到限额运行的情况,就会使交流输电线发生过载现象,这就会导致交流电网电压值的稳定受到影响。在这种情况下,如果交流电网中的无功功率无法保持平衡,就会严重影响到系统的安全稳定。 (二)对电网输电能力的影响 可用输电能力是由北美电力可靠性委员会提出的一想电力指标,主要用于衡量电网在安全运行的基础上可以输送的最大电量。特高压直流输电在传输电力的过程中会同时将其中的大容量功率进行传输,如果遇到限额运行的情况时,特高压直流输电系统中的大量功率就会在交流输电线中发生转移,不停地变换输电通道。在这一过程中,直流输电线很有可能发生过载现象,使直流输电线达到标准限定的最大输电额度,这就会使交流电网的电压值变得不稳定。假如直流系统发生限额运行的情况下出现输电线路停止运行的现象,就会使交流电网中直流输电线过载和负荷的问题更加严重,很可能导致大量的有功功率无法及时传送出去,从而导致电网发生大范围的停电情况。在这种情况下,除非交流电网对短缺的功率进行补充,否则只能切除部分才能保证电网的安全稳定。 二、对互联系统安全稳定产生影响的实例分析 (一)特高压直流单极闭锁 以金沙江一期为例,当发生特高压直流单极闭锁的故障时,系统并没有受到该故障的明显影响,因此仍然呈现出较稳定的状态,这表示特高压直流单极闭锁的故障发生的情况下,系统对该故障的承受力明显强于其他故障发生,因此不需要采用必要的手段来维护系统的稳定。当发生特高压直流单极闭锁的故障时,交流通道中的直流功率会发生转移,因此不会因为故障而产生直流线路超载的现象,变压器的数值也不会发生明显的变化。特高压直流单极闭锁故障后的交流通道的电压可以稳定在正常水平。金沙江一期和锦屏在特高压直流输电的情况下任意两回发生特高压直流单极闭锁的故障时,在切除送端机组的情况下,系统都能够保持稳定状态。 (二)特高压直流双极闭锁 以向家坝-南汇特高压直流发生直流双极闭锁的故障为例,当特高压直流双极闭锁的现象发生时,华东电网的电力瞬间发生巨大的损失。为了保障系统的运行稳定,必须进行电站机组切除或者功率转移。在特高压直流发生双极闭锁的故障后,系统首先陷入不稳定的振荡状态,随之逐渐变得平衡。在这一过程中,南汇的换流站电压值呈下降的趋势,一部分电力通过交流特高压通道被传送到华东地区,这导致直流输电线产生过载现象,功率的损耗也随之增加,使各个交流特高压站的电压下降。从各个断面来看,金沙江一期的电力分三回 500KV交流电路转送到四川电网,导致川渝断面、渝鄂断面、华东受入断面、上海受入断面的电力有了不同程度的增加。从电力运营的概念上来说,系统有功电力的增加是由发电机引起的,但是从实际情况来看,发电机的运行并没有发生明显的变化,因此不能断电是发电机造成系统有功电力的增加[1]。 (三)交流三相故障 交流三相故障发生在换流站附近,分别以两种形式体现,一种是逆变站附近的交流三相故障,另一种是整流站附近的交流三相故障。逆变站镀金的交流三相故障已上海白鹤换流站为例,南汇、南桥和白鹤换流站同时发生故障时,只要切除故障就能使这三个换流站的运行恢复正常,直流功率也会恢复到正常情况。当其中有一个换流站发生三相短路的故障时,就会导致三个换流站同时发生换相失败,只要切除故障就能使这三个换流站的运行恢复正常,直流功率也会恢复到正常情况。总的来说,当交流三项故障发生时,只要切除故障就能保障换流站的运行恢复正常,直流功率也会恢复到正常情况。整流站镀金的交流三相故障发生时,换流站之间的电气距离较劲,因此对系统的稳定性没有明显的影响,同样切除故障就可以时直流功率恢复正常。 (四)跳双回线故障 当跳双回线发生故障时要根据换流站的具体情况进行具体分析。例如在溪洛渡左-凤仪换流站发生跳双回线故障时,需要将溪洛渡左的机组切除1到2台;当好溪洛渡右-罗场换流站发生跳双回线故障时,需要将溪洛渡右的机组切除1到2台,在这两种情况下,只有切除机组才能使系统保持稳定状态。档案金沙江送端的其他交流线路发生跳双回线故障时,系统的稳定性不会受到明显的影响,因此不需要采用任何防护措施。在逆变站附近的交流线路发生跳双回线故障时,也要根据换流站的具体情况进行具体分析。例如苏南换流站-车坊、石牌-斗山换流站发生跳双回线故障时,需要对直流输送功率进行降低,并且切除二期的部分机组,只有这样才能保障系统的安全稳定,除了这两种情况以外,其他交流线路在发生跳双回线的故障时都不会对系统造成明显的影响,因此不需要采取相应的防护措施[2]。 (五)单极长期停运 以金沙江一期为例,当金沙江一期发生单极长期停运的情况时,会对交流电网的传送能力带来较大的挑战,这主要是因为交流电网传

相关主题