搜档网
当前位置:搜档网 › 表B.2.2 乙类建筑热工性能直接判定表

表B.2.2 乙类建筑热工性能直接判定表

表B.2.2  乙类建筑热工性能直接判定表
表B.2.2  乙类建筑热工性能直接判定表

表B.2.2 乙类建筑热工性能直接判定表

围护结构保温材料选用及热工性能指标

附录围护结构保温材料选用及热工性能指标 附录A 屋面保温材料选用及热工性能参数 A.0.1屋面保温材料主要性能指标应符合表A.0.1的要求 表A.0.1屋面保温材料的主要性能指标 A.0.2正置式屋面的保温材料、厚度及热工性能按表A.0.2-1、表A.0.2-2确定

A.0.3倒置式屋面的保温材料、厚度及热工性能按表A.0.3-1、表A.0.3-2确定 注:倒置式屋面保温层的设计厚度按计算厚度增加25%;

A.0.4倒置式屋面采用B1级保温材料时,应按住宅单元设置防火隔断墙,防火隔断墙为厚度不小于100 mm 的不燃烧体,应从屋面板砌至高出屋面完成面不小于250mm ;防火隔断墙可利用住宅单元分隔墙延伸至屋面以上,高度不小于250mm ;防火隔断墙之间的屋顶面积不应大于300㎡,当屋面面积大于300㎡时,应增设一道防火隔断墙;防火隔断墙的泛水构造应符合屋面防水技术规范要求。 图A.0.4 屋面防火隔断墙示意图

附录B 外墙保温材料选用及热工性能参数 B.0.1 保温材料主要性能指标应符合表B.0.1的要求 表B.0.1外墙内保温材料的主要性能指标 能参数取自上海市地方标准《保温装饰复合板墙体保温系统应用技术规程》DG/TJ08-2122-2013表B.0.5 B.0.2全装修房外墙内保温的装饰面层由装修设计确定,内保温的构造组成应符合表B.0.2的规定, 2、保温材料采用硬泡聚氨酯时,应采用板材或硬泡聚氨酯龙骨固定内保温系统 3、岩棉、硬泡聚氨酯龙骨固定内保温系统的基本构造详见《外墙内保温工程技术规程》JGJ/T261-2011表6.6.1,并应符合《外墙内保温工程技术规程》JGJ/T261-2011第6.6节的规定。

建筑物理热工参数和日照实验

建筑物理实验报告 班级: 姓名: 学号: 指导教师: 建筑物理实验室 2012年11月

实验日期:2012年10月29日小组成员:xx、xx、xx、xx、xx 学生成绩: 实验题目(一):建筑热工参数测定实验 实验目的: 1、了解热工参数测试仪器的工作原理; 2、掌握温度、湿度、风速的测试方法,达到独立操作水平; 3、利用仪器测量建筑墙体内外表面温度场分布,检验保温设计效果; 4、测定建筑室内外地面温度场分布; 可通过对室外环境的观测,针对住宅小区或校园内地形、地貌、生物生活对气候的影响,进而研究在这个区域内的建筑如何应用有力的气候因素和避免不利的气候影响 实验内容: 1.测定建筑室内外热工参数 2.测定建筑墙体内外表面温度,检验保温效果。 3.测定建筑室内外地面温度场分布。 4.测定住宅小区或校园内建筑环境气候。 实验测试表格及简单说明: 日期:2012年10月29日 地点:吉林建筑工程学院实验楼 天气:雪 建筑周围环境描述:该建筑为弧形平面,建筑四周有绿化,位置处在校园圆形建筑群之中。建筑材质说明:该建筑室外墙面为深咖色贴砖,室内墙面为白色墙面。室外地面为灰色面砖铺路砖,室内地面为浅色光滑地砖。

空气温湿度及风速数据表表面温度数据表 地点 室外地面与墙距离外墙距地高 0 0.5 1 1.5 0 0.5 1 1.5 +-+-+-+-+-+-+-+- 表面温度3.7 2.8 5.0 2.7 4.7 2.6 4.3 2.4 3.7 2.8 3.6 3.3 3.4 2.9 3.0 2.7 3.6 2.9 4.9 2.5 4.6 2.8 4.5 2.3 3.6 2.9 3.4 3.1 3.6 2.8 2.9 2.8 3.7 3.0 4.9 2.8 4.8 2.7 4.4 2.4 3.7 2.8 3.3 2.9 3.7 2.7 2.9 3.0 备注+:阳面 -:阴面单位:米 表面温度数据表 地点 教室地面与墙距离教室墙面距地高 0 0.5 1 1.5 0 0.5 1 1.5 +-+-+-+-+-+-+-+- 表面温度15.7 8.4 16.4 8.9 16.2 9.0 15.9 9.1 15.7 8.4 16.0 9.1 16.4 10.3 16.8 10.1 14.9 8.7 17.3 8.7 16.7 9.5 15.8 9.5 15.9 8.7 16.1 9.3 16.7 10.0 16.7 10.1 15.5 9.0 16.9 8.6 16.4 9.3 15.8 9.4 16.1 9.1 15.8 9.3 16.8 10.2 16.6 10.2 备注+:阳面 -:阴面单位:米 地点室外阳面室外阴面一廊二廊三廊四廊阳面教室阴面教室气温9.3 5.8 11.6 15.9 15.6 16.4 16.4 15.7 湿度36.8 47.4 32.2 28.5 27.1 33.1 45.5 33.6 风速0.35 0.44 0.32 0.26 0.07 0.06 0.03 0.05 备注一、二、三、四廊分别为一、二、三、四层的廊道

华中科技大学建筑物理建筑热工学实验室内热环境参数对比试验

建筑与城市规划学院实验报告 实验项目:室内热环境参数对比试验

一.实验目的 建筑物室外的各种气候因素通过建筑物的围护结构、外门窗及各类开口,直接影响室内的气候条件。为获得良好的室内热环境,必须了解当地各主要气候因素的概况及变化规律,并以此作为建筑设计的依据。 一个地区的气候状况是许多因素综合作用的结果。对室内热环境参数,需要测试的项目有空气温度,湿度,风速及风力等。我们知道影响室内热环境的主要因素是室外气候状况,但对于同一幢楼房中不同的楼层,不同的朝向,同一套间内不同朝向的房间,在相同的室内气候条件下,尤其是在室外恶劣气候条件下,其室内热环境参数由于所处的位置不同而有较大的差异。 对此我们是有感性认识的。这次实验将这种差异量化,从这些差异值寻找经济实用的解决方法,掌握测量方法和注意事项。 二.测试时间与地点 2011年6月19日(十一周周六十二周周日),华中科技大学紫菘公寓12栋601室,寝室窗户朝南而开。测试正中距地面1.5米高的位置(气温为城市近郊气象台离地面1.5米高处空气的温度)。其他测点若干个,就沿房间纵,横轴每2m一个设置若干个测点。(为了便于说明问题,附设一个加测点,即外墙内表面距离窗台下300mm处布置一测点,测量外墙内表面温度。) 测试选择时间在6月19日(本应该选择夏天中最炎热的一天或冬天最寒冷的一天,但根据实际情况选择了这个时间测量),测量时间为正午12点到第二天正午12点,一共24个小时,每隔半小时测量一次并记录数据。

三.测量仪器 温湿度自记仪,温度自记仪,黑球温度计,电子微风仪 四.测点布置 测点布置在房间正中距地面1.5米高的位置(图示B点)。其他测点若干个,沿房间纵,横轴每2m一个设置若干个测点(图示C点)。应画出被测房间的平面图,剖面图,标明基本尺寸及测点位置,并说

散热器热工性能实验报告 (1)

实验二 散热器性能实验 班级: 姓名: 学号: 一、实验目的 1、通过实验了解散热器热工性能测定方法及低温水散热器热工实验装置的结构。 2、测定散热器的散热量Q ,计算分析散热器的散热量与热媒流量G 和温差T 的关系。 二、 实验装置 1.水位指示管 2.左散热器 3. 左转子流量计 4. 水泵开关及加热开关组 5. 温度压差巡检仪 6.温度控制仪表 7. 右转子流量计 8. 上水调节阀 9.右散热器 10. 压差传感器 11.温度测点T1、T2、T3、T4 图1散热器性能实验装置示意图 三、实验原理 本实验的实验原理是在稳定的条件下测定出散热器的散热量: Q=GC P (t g -t h ) [kJ/h] 式中:G ——热媒流量, kg/h ; C P ——水的比热, kJ/Kg.℃; t g 、t h ——供回水温度, ℃。 散热片共两组:一组散热面积为:1m 2 二组散热面积为:0.975 m 2 上式计算所得散热量除以3.6即可换算成[W]。 低位水箱内的水由循环水泵打入高位水箱,被电加热器加热,并由温控器控制其温度在某一固定温度波动范围,由管道通过转子流量计流入散热器中,经其传热将一部分热量散入房间,降低温度后的回水流入低位水箱。流量计计量出流经每个散热器在温度为t g 时的体积流量。循环泵打入高位水箱的水量大于散热器回路所需的流量时,多余的水量经溢流管流回低位水箱。

四、实验步骤 1、测量散热器面积。 2、系统充水,注意充水的同时要排除系统内的空气。 3、打开总开关,启动循环水泵,使水正常循环。 4、将温控器调到所需温度(热媒温度)。打开电加热器开关,加热系统循环水。 5、根据散热量的大小调节每个流量计入口处的阀门,使之流量、温差达到一个相对稳定的值,如不稳定则须找出原因,系统内有气应及时排除,否则实验结果不准确。 6、系统稳定后进行记录并开始测定: 当确认散热器供、回水温度和流量基本稳定后,即可进行测定。散热器供回水温度 t g 与t h 及室内温度t均采用pt100.1热电阻作传感器,配数显巡检测试仪直接测量, 流量用转子流量计测量。温度和流量均为每10分钟测读一次。 G t =L/1000=L·10-3 m3/h 式中:L——转子流量计读值; l/h; G t ——温度为t g 时水的体积流量;m3/h G=G t ·ρ t (kg/h) 式中:G——热媒流量,(kg/h); ρt——温度为t g时的水的密度,(kg/ m3)。 7、改变工况进行实验: a、改变供回水温度,保持水量不变。 b、改变流量,保持散热器平均温度不变。 即保持 2h g p t t t + =恒定8、求散热器的传热系数K 根据Q=KA(t p -t ) 其中:Q——为散热器的散热量,W K——散热器的传热系数,W/m2.℃ A ——散热器的面积,一种为0.975 m2,另一种为1 m2 t p ——供回水平均温度,℃ t ——室内温度,℃ 9、实验测定完毕: a、关闭电加热器; b、停止运行循环水泵; c、检查水、电等有无异常现象,整理测试仪器。 五、注意事项 1、测温点应加入少量机油,以保持温度稳定; 2、上水箱内的电热管应淹没在水面下时,才能打开,本实验台有自控装置;但亦应经常检查。

(完整版)建筑热工学习题(有答案)-15

《建筑物理》补充习题(建筑热工学) 6. 把下列材料的导热系数从低到高顺序排列, n 、水泥膨胀珍珠岩 哪一组是正确的(B ) ?1、钢筋混凝土; (A) n 、v 、i 、w 、川 (B) v 、n 、 川、W 、I (C) i 、w 、川、n 、v (D) v 、n 、 W 、川、I 7.人感觉最适宜的相对湿度应为( ) (A) 30~70 % (B) 50~60% (C) 40~70% (D) 40~50% 8.下列陈述哪些是不正确的( ) A.铝箔的反射率大、黑度小 B.玻璃是透明体 C.浅色物体的吸收率不一定小于深颜色物体的吸收率 D.光滑平整物体的反射率大于粗糙凹凸物体的反射率 9.白色物体表面与黑色物体表面对于长波热辐射的吸收能力( )。 A.白色物体表面比黑色物体表面弱 B.白色物体表面比黑色物体表面强 C.相差极大 D.相差极小 10.在稳定传热状态下当材料厚度为 面积的导热量,称为( )。 1m 两表面的温差为 1 C 时,在一小时内通过 1m 2截 A. 热流密度 B.热流强度 C.传热量 D.导热系数 11. 下面列出的传热实例,( )不属于基本传热方式。 C. 人体表面接受外来的太阳辐射 D.热空气和冷空气通过 1. 太阳辐射的可见光,其波长范围是( A . 0.28~3.0 (B) 0.38~ 0.76 2. 下列的叙述,() )微米。 (C) 0.5~1.0 不是属于太阳的短波辐射。 (A)天空和云层的散射 (C)水面、玻璃对太阳辐射的反射 3. 避免或减弱热岛现象的措施,描述错误是( (A)在城市中增加水面设置 (C)采用方形、圆形城市面积的设计 4. 对于影响室外气温的主要因素的叙述中, (A)空气温度取决于地球表面温度 (C)室外气温与空气气流状况有关 5. 在热量的传递过程中, 量传递称为( )。 (A)辐射 (B)对流 (D) 0.5~2.0 (B)混凝土对太阳辐射的反射 (D)建筑物之间通常传递的辐射能 )。 (B)扩大绿化面积 (D)多采用带形城市设计 ()是不正确的。 (B)室外气温与太阳辐射照度有关 (D)室外气温与地面覆盖情况及地形无关 物体温度不同部分相邻分子发生碰撞和自由电子迁移所引起的能 (C)导热 (D)传热 ;川、平板玻璃;W 、重沙浆砌筑粘土砖砌体;V 、胶合板 A. 热量从砖墙的内表面传递到外表面 B. 热空气流过墙面将热量传递给墙面

第一章建筑热工学基本知识习题

第一章建筑热工学基本知识习题 自己收集整理的 错误在所难免 仅供参考交流 如有错误 请指正!谢谢 第一篇建筑热工学 第一章建筑热工学基本知识 习题 1-1、构成室内热环境的四项气候要素是什么?简述各个要素在冬(或夏)季 在居室内 是怎样影响人体热舒适感的 答:(1)室内空气温度:居住建筑冬季采暖设计温度为18℃ 托幼建筑采暖设计温度为20℃ 办公建筑夏季空调设计温度为24℃等 这些都是根据人体舒适度而定的要求

(2)空气湿度:根据卫生工作者的研究 对室内热环境而言 正常的湿度范围是30-60% 冬季 相对湿度较高的房间易出现结露现象 (3)气流速度:当室内温度相同 气流速度不同时 人们热感觉也不相同 如气流速度为0和3m/s时 3m/s的气流速度使人更感觉舒适 (4)环境辐射温度:人体与环境都有不断发生辐射换热的现象 1-2、为什么说 即使人们富裕了 也不应该把房子搞成完全的"人工空间"? 答:我们所生活的室外环境是一个不断变化的环境 它要求人有袍强的适应能力 而一个相对稳定而又级其舒适的室内环境 会导致人的生理功能的降低 使人逐渐丧失适应环境的能力

从而危害人的健康 1-3、传热与导热(热传导)有什么区别?本书所说的对流换热与单纯在流体内部的对流传热有什么不同? 答:导热是指同一物体内部或相接触的两物体之间由于分子热运动 热量由高温向低温处转换的现象 纯粹的导热现象只发生在密实的固体当中 围护结构的传热要经过三个过程:表面吸热、结构本身传热、表面放热严格地说 每一传热过程部是三种基本传热方式的综合过程 本书所说的对流换热即包括由空气流动所引起的对流传热过程 同时也包括空气分子间和接触的空气、空气分子与壁面分子之间的导热过程 对流换热是对流与导热的综合过程 而对流传热只发生在流体之中 它是因温度不同的各部分流体之间发生相对运动 互相掺合而传递热能的 1-4、表面的颜色、光滑程度

建筑热工学_习题(有答案)_15

《建筑物理》补充习题(建筑热工学) 1.太阳辐射的可见光,其波长围是()微米。 A.0.28~3.0 (B) 0.38~ 0.76 (C) 0.5~1.0 (D) 0.5~2.0 2.下列的叙述,()不是属于太阳的短波辐射。 (A) 天空和云层的散射(B) 混凝土对太阳辐射的反射 (C) 水面、玻璃对太阳辐射的反射(D) 建筑物之间通常传递的辐射能 3.避免或减弱热岛现象的措施,描述错误是()。 (A) 在城市中增加水面设置(B) 扩大绿化面积 (C) 采用方形、圆形城市面积的设计(D) 多采用带形城市设计 4.对于影响室外气温的主要因素的叙述中,()是不正确的。 (A) 空气温度取决于地球表面温度(B) 室外气温与太阳辐射照度有关 (C) 室外气温与空气气流状况有关(D) 室外气温与地面覆盖情况及地形无关 5.在热量的传递过程中,物体温度不同部分相邻分子发生碰撞和自由电子迁移所引起的能 量传递称为()。 (A) 辐射(B) 对流(C) 导热(D) 传热 6.把下列材料的导热系数从低到高顺序排列,哪一组是正确的(B )?Ⅰ、钢筋混凝土; Ⅱ、水泥膨胀珍珠岩;Ⅲ、平板玻璃;Ⅳ、重沙浆砌筑粘土砖砌体;Ⅴ、胶合板(A)Ⅱ、Ⅴ、Ⅰ、Ⅳ、Ⅲ(B)Ⅴ、Ⅱ、Ⅲ、Ⅳ、Ⅰ (C)Ⅰ、Ⅳ、Ⅲ、Ⅱ、Ⅴ(D)Ⅴ、Ⅱ、Ⅳ、Ⅲ、Ⅰ 7.人感觉最适宜的相对湿度应为() (A) 30~70 % (B) 50~60% (C) 40~70% (D) 40~50% 8.下列述哪些是不正确的() A.铝箔的反射率大、黑度小 B.玻璃是透明体 C.浅色物体的吸收率不一定小于深颜色物体的吸收率 D.光滑平整物体的反射率大于粗糙凹凸物体的反射率 9.白色物体表面与黑色物体表面对于长波热辐射的吸收能力()。 A.白色物体表面比黑色物体表面弱 B.白色物体表面比黑色物体表面强 C.相差极大 D.相差极小 10.在稳定传热状态下当材料厚度为1m两表面的温差为1℃时,在一小时通过1m2截面 积的导热量,称为()。 A.热流密度 B.热流强度 C.传热量 D.导热系数 11.下面列出的传热实例,()不属于基本传热方式。 A.热量从砖墙的表面传递到外表面 B.热空气流过墙面将热量传递给墙面

建筑热工设计计算公式及参数

附录一建筑热工设计计算公式及参数 (一)热阻的计算 1.单一材料层的热阻应按下式计算: 式中R——材料层的热阻,㎡·K/W; δ——材料层的厚度,m; λc——材料的计算导热系数,W/(m·K),按附录三附表3.1及表注的规定采用。 2.多层围护结构的热阻应按下列公式计算: R=R1+R2+……+Rn(1.2) 式中R1、R2……Rn——各材料层的热阻,㎡·K/W。 3.由两种以上材料组成的、两向非均质围护结构(包括各种形式的空心砌块,以及填充保温材料的墙体等,但不包括多孔粘土空心砖), 其平均热阻应按下式计算: (1.3) 式中——平均热阻,㎡·K/W; Fo——与热流方向垂直的总传热面积,㎡; Fi——按平行于热流方向划分的各个传热面积,㎡;(参见图3.1); Roi——各个传热面上的总热阻,㎡·K/W Ri——内表面换热阻,通常取0.11㎡·K/W; Re——外表面换热阻,通常取0.04㎡·K/W; φ——修正系数,按本附录附表1.1采用。

图3.1 计算图式 修正系数φ值附 表1.1 /λ1 注:(1)当围护结构由两种材料组成时,λ2应取较小值,λ1应取较大值,然后求得两者的比值。 (2)当围护结构由三种材料组成,或有两种厚度不同的空气间层时,φ值可按比值 /λ1确定。 (3)当围护结构中存在圆孔时,应先将圆孔折算成同面积的方孔,然后再按上述规定计算。 4.围护结构总热阻应按下式计算: Ro=Ri+R+Re(1.4) 式中Ro——围护结构总热阻,㎡·K/W; Ri——内表面换热阻,㎡·K/W;按本附录附表1.2采用; Re——外表面换热阻,㎡·K/W,按本附录附表1.3采用; r——围护结构热阻,㎡·K/W。 内表面换热系数αi及内表面换热阻Ri值附表1.2

民用建筑热工设计

民用建筑热工设计 主要符号 Ate——室外计算温度波幅 Ati——室内计算温度波幅 Aθi——内表面温度波幅 α——导温系数,导热系数和蓄热系数的修正系数B——地面吸热指数 b——材料层的热渗透系数 c——比热容 D——热惰性指标 Ddi——采暖期度日数 F——传热面积 H——蒸汽渗透阻 I——太阳辐射照度 K——传热系数 Pe——室外空气水蒸气分压力 Pi——室内空气水蒸气分压力 R——热阻

Ro——传热阻 Ro.min——最小传热阻 Ro.E——经济传热阻 Re——外表面换热阻 Ri——内表面换热阻 S——材料蓄热系数 te——室外计算温度 ti——室内计算温度 td——露点温度 tw——采暖室外计算温度 tsa——室外综合温度 [Δt]——室内空气与内表面之间的允许温差Ye——外表面蓄热系数 Yi——内表面蓄热系数 Z——采暖期天数 αe——外表面换热系数 αi——内表面换热系数 θ——表面温度,内部温度

θi.max——内表面最高温度 μ——材料蒸汽渗透系数 νo——衰减倍数 νi——室内空气到内表面的衰减倍数 ξ0——延迟时间 ξi——室内空气到内表面的延迟时间 ρ——太阳辐射吸收系数 ρ0——材料干密度 φ——空气相对湿度 ω——材料湿度或含水率 [Δω]——保温材料重量湿度允许增量 λ——材料导热系数 第一章总则 第1.0.1条为使民用建筑热工设计与地区气候相适应,保证室内基本的热环境要求,符合国家节约能源的方针,提高投资效益,制订本规范。 第1.0.2条本规范适用于新建、扩速和改建的民用建筑热工设计。 本规范不适用于地下建筑、室内温湿度有特殊要求和特殊用途的建筑,以及简易的临时性建筑。 第1.0.3条建筑热工设计,除应符合本规范要求外,尚应符合国家现行的有关标准、规范的要求。

建筑物理实验报告

建筑物理实验报告 班级:建筑112 姓名:刘伟 学号: 01111218 指导教师:周洪涛 建筑物理实验室 2014年10月15日 小组成员:张思俣;郭祉良;李照南;刘伟;王可为;

第三篇建筑热工实验 一、实验一建筑热工参数测定实验 二、实验目的 1、了解热工参数测试仪器的工作原理; 2、掌握温度、湿度、风速的测试方法,达到独立操作水平; 3、利用仪器测量建筑墙体内外表面温度场分布,检验保温设计效果; 4、测定建筑室内外地面温度场分布; 5、可通过对室外环境的观测,针对住宅小区或校园内地形、地貌、生物生活对气候 的影响,进而研究在这个区域内的建筑如何应用有力的气候因素和避免不利的气 候影响。 三、实验仪器概述 I.WNY —150 数字温度仪 ●用途:用于对各种气体、液体和固体的温度测量。 ●特点:采用先进的半导体材料为感温元件,体积小,灵敏度高,稳定性好。温度值 数字显示,清晰易读,测温范围:-50℃~150℃,分辨力:0.1℃。 ●测试方法及注意事项: 1.取下电池盖将6F22,9V叠层电池装入电池仓。 2.按ON键接通电源,显示屏应有数字显示。 3.插上传感器,显示屏应显示被测温度的数值。 4.显示屏左上方显示LOBAT时,应更换电池。 5.仪器长期不用时,应将电池取出,以免损坏仪表。 II.EY3-2A型电子微风仪 ●用途:本产品是集成电子化的精密仪器,适用于工厂企业通风空调,环境污染监测, 空气动力学试验,土木建筑,农林气象观测及其它科研等部门的风速测量,用途十分广泛。 ●特点: 1.测量范围宽,微风速灵敏度高,最小分度值为0.01m/s。 2.高精度,高稳定度,使用时可连续测量,不须频繁校准 3.仪器热敏感部件,最高工作温度低于200℃,使用安全可靠,在环境温度为 -10℃~40℃内可自动温度补偿。 4.电源电压适用范围宽:4.5V~10V功耗低。 ●主要技术参数: 1.测量范围:0.05~1m/s 1~30m/s(A型) 2.准确度:≤±2﹪F.S。 3.工作环境条件:温度-10℃~+40℃相对湿度≤85%RH。 4.电源:R14型(2#)电池4节 ●工作原理:本仪器根据加热物体在气流中被冷却,其工作温度为风速函数这一原理设 计。仪器由风速探头及测量指示仪表两部分组成。 ●测试方法及注意事项:

《民用建筑热工设计规范》

民用建筑热工设计规范 Code for thermal design of civil building 自2017年4月1日起实施 GB 50176-2016 规范的主要技术内容是:1.总则;2.术语和符号;3.热工计算基本参数和方法;4.建筑热工设计原则;5.围护结构保温设计;6.围护结构隔热设计;7.围护结构防潮设计;8.自然通风设计;9.建筑遮阳设计。 规范修订的主要技术内容是:1.细化了热工设计分区;2.细分了保温、隔热设计要求;3.修改了热桥、隔热计算方法;4.增加了透光围护结构、自然通风、遮阳设计的内容;5.补充了热工设计计算参数。 1 总则 1.0.1 为使民用建筑热工设计与地区气候相适应,保证室内基本的热环境要求,符合国家节能减排的方针,制定本规范。 1.0.2 本规范适用于新建、扩建和改建民用建筑的热工设计。本规范不适用于室内温湿度有特殊要求和特殊用途的建筑,以及简易的临时性建筑。 1.0.3 民用建筑的热工设计,除应符合本规范的规定外,尚应符合国家现行有关标准的规定。 2 术语和符号 2.1 术语 2.1.1 建筑热工 building thermal engineering 研究建筑室外气候通过建筑围护结构对室内热环境的影响、室内外热湿作用对围护结构的影响,通过建筑设计改善室内热环境方法的学科。 2.1.2 围护结构 building envelope

分隔建筑室内与室外,以及建筑内部使用空间的建筑部件。 2.1.3 热桥 thermal bridge 围护结构中热流强度显著增大的部位。 2.1.4 围护结构单元 building envelope unit 围护结构的典型组成部分,由围护结构平壁及其周边梁、柱等节点共同组成。 2.1.5 导热系数 thermal conductivity,heat conduction coeffi-cient 在稳态条件和单位温差作用下,通过单位厚度、单位面积匀质材料的热流量。 2.1.6 蓄热系数 coefficient of heat accumulation 当某一足够厚度的匀质材料层一侧受到谐波热作用时,通过表面的热流波幅与表面温度波幅的比值。 2.1.7 热阻 thermal resistance 表征围护结构本身或其中某层材料阻抗传热能力的物理量。 2.1.8 传热阻 heat transfer resistance 表征围护结构本身加上两侧空气边界层作为一个整体的阻抗传热能力的物理量。 2.1.9 传热系数 heat transfer coefficient 在稳态条件下,围护结构两侧空气为单位温差时,单位时间内通过单位

建筑物理实验报告.

建筑物理实验报告[建筑热工、建筑光学和建筑声学实验] XXX XXXX XXXXXXX

建筑物理实验报告 第一部分建筑热工学实验 (一)温度、相对湿度 1、实验原理: 通过实验了解室外热环境参数测定的基本内容;初步掌握常用仪器的性能和使用方法;明确各项测量的目的;进一步感受和了解室外气象参数对建筑热环境的影响。 2、实验设备:TESTO 175H1温湿度计 3、实验方法:` (1)在测定前10min左右,把湿球温度计感应端的纱布用洁净水润湿。 (2)若为手动通风干湿球温度计,用钥匙上紧上部的发条,并把它悬挂于测点。待3~4min,当温度计数值稳定后,即可分别读取干、湿球温度计的指示值。读数时,视平线应与温度计水银面平齐。先读小数,后读整数。 (3)根据干湿球温度计的读数,获得测点空气温度。 (4)根据干、湿球温度计读数值查表,即可得到被测点空气的相对湿度。

4、实验结论和分析 室内温湿度 仪器:TESTO 175H1 位置湿度(%)温度(℃) 暖气上方A 24.5 17.5 桌面上方B 25.6 17.0 南边靠墙柜子C 25.5 16.8 室内门口处D 25.1 16.5 5.对测量结果进行思考和分析 根据测量的数据可以看出,室内各处的温度及湿度较为平均。暖气上方的区域温度较高而导致相对湿度较低。桌子由于靠近暖气,所以温度较高。柜子由于距离暖气较远,温度相对较低,较为接近室内的平均气温。门口处由于通风较好,温度较低,湿度相对较高。

(二)室内风向、风速 1、实验原理:QDF型热球式电风速计的头部有一直径约0.8mm的玻璃球,球内绕有镍镉丝线圈和两个串联的热电偶。热电偶的两端连接在支柱上并直接暴露于气流中。当一定大小的电流通过镍镉丝线圈时,玻璃球的温度升高,其升高的程度和气流速度有关。当流速大时,玻璃球温度升高的程度小;反之,则升高的程度大。温度升高的程度反映在热电偶产生的热电势,经校正后用气流速度在电表上表示出来,就可用它直接来测量气流速度。 2、实验设备:TESTO 425 3、实验方法: (1)把仪器杆放直,测点朝上,滑套向下压紧,保证测头在零风速下校准仪器。 (2)把校正开关置于“满度”位置,慢慢调整“满度调节”旋钮,使电表指针在满刻度的位置。再把校正开关置于“零位”的位置,用“粗调”、“细调”两个旋钮,使电表指针在零点的位置。 (3)轻轻拉动滑套,使侧头露出相当长度,让侧头上的红点对准迎风面,待指针较稳定时,即可从电表上读出风速的大小。若指针摇摆不定,可读取中间示值。 (4)风向可采用放烟或悬挂丝的方法测定。

现场热工性能

现场热工性能检测作业指导书 一、适用范围 二、检测依据:《民用建筑节能工程现场热工性能检测标准》DGJ32/ 23-2006 三、仪器设备: 1)温度传感器 2)热流传感器(热流计) 3)二次仪表(数据采集器) 4)天空辐射表 5)红外摄像仪 四、检测规则 1抽样及抽样比例 1)同一居住小区围护结构保温措施及建筑平面布局基本相同的建筑物作为一个样本随机抽样。抽样比例不低于样本比数的10%,至少一幢;不同结构体系建筑,不同保温措施的建筑物应分别抽样检测。公共建筑应逐幢抽样检测。 2)抽样建筑应在顶层与标准层进行至少2处墙体、屋面的热阻检测,至少一组窗气密性检测。 2资料要求 抽样检测的工程,检测前提供以下资料 1)工程设计文件 2)施工图节能审查批准书、工程项目中使用新墙材的说明书及相关检测报告。 3)其他相关资料 3试验方法 热流计法 1)构件表面温度传感器及安装 (1)表面温度宜用热敏电阻、热电偶等温度传感器;检测仪表应符合附录A的规定 (2)屋顶、墙体、楼板内外表面温度测点各不得少于三个;表面温度测点应选在构件有代表性位置。测点不应靠近热桥、有裂缝和有空气渗漏 的部位,不应受加热、制冷装置和风扇的直接影响。 (3)温度传感器应在被测围护结构两侧表面安装。内表面温度传感器应靠近热流计安装,外表面温度传感器宜在与热流计相对应的位置安装。(4)表面温度传感器连同0.1 M长引线应与被测表面紧密接触,应采取有效措施使传感器表面的辐射系数与被测构件表面的辐射系数基本相 同。 2)热流计安装 (1)热流计及其标定应符合现行行业标准《建筑用热流计》JG/T3016检测仪表应符合附录A的规定。 (2)测试

热工性能计算书

建筑门窗热工性能计算书 -泗泾颐景园铝合金门窗工程 参考资料: 《民用建筑节能设计标准(采暖居住建筑部分)》JGJ26-95 《夏热冬冷地区居住建筑节能设计标准》JGJ134-2001 《民用建筑热工设计规范》GB50176-93 《公共建筑节能设计标准》GB50189-2005 《公共建筑节能设计标准》DBJ 01-621-2005 《居住建筑节能设计标准》DBJ 01-602-2004 《BKCADPM集成系统(BKCADPM2006版)》 一、基本计算参数: 本计算为门窗的热工性能计算。 1.门窗计算单元的有关参数 总宽: W=1800mm 总高: H=1800mm 门窗的总面积: A t=W×H=3.24 m2 门窗玻璃总面积: A g=2.61 m2 门窗框总面积: A f=0.63 m2 玻璃区域周长: lψ= 13 m 二、门窗的传热系数计算: 1.门窗框的传热系数U f 框的传热系数U f: 可以通过输入数据,用二维有限单元法进行数字计算,得到窗框的传热系数。在没有详 细的计算结果可以应用时,可以应用按以下方法得到窗框的传热系数。

本系统中给出的所有的数值全部是窗垂直安装的情况。传热系数的数值包括了外框面积的影响。计算传热系数的数值时取内表面换热系数h in =8.0 W/m 2·K 和外表面换热系数h out =23 W/m 2·K 。 (1) 塑料窗框: 表E.0.2-1 带有金属钢衬的塑料窗框的传热系数 (2) 木窗框 木窗框的U f 值是在水气含量在12%的情况下获得,窗框厚度d f 的定义见图E.0.2-2。U f 的数值可以从图E.0.2-1中选取。 图E.0.2-1:木窗框以及金属-木窗框的热传递与窗框厚度d f 的关系 窗框材料 窗框种类 U f (W/m 2·K) 聚胺脂 带有金属加强筋 净厚度≥5mm 2.8 PVC 腔体截面 从室内到室外为两腔结构 2.2 从室内到室外为三腔结构 2.0

凤铝断桥铝门窗热工性能计算书

凤铝断桥铝门窗热工性能计算书 I、设计依据: 《民用建筑节能设计标准(采暖居住建筑部分)》JGJ26-95 《夏热冬冷地区居住建筑节能设计标准》JGJ134-2001 《夏热冬暖地区居住建筑节能设计标准》JGJ75-2003 《民用建筑热功设计规范》GB50176-93 《公共建筑节能设计标准》GB50189-2005 《建筑玻璃应用技术规程》JGJ113-2009 《建筑门窗玻璃幕墙热工计算规程》JGJ/T151-2008 相关计算和定义均按照ISO10077-1和ISO10077-2的方法进行计算和定义 II、计算基本条件: 1、设计或评价建筑门窗、玻璃幕墙定型产品的热工参数时,所采用的环境边界条件应统一采用本标准规定的计算条件。 2、计算实际工程所用的建筑门窗和玻璃幕墙热工性能所采用的边界条件应符合相应的建筑设计或节能设计标准。 3、各种情况下都应选用下列光谱: S(λ):标准太阳辐射光谱函数(ISO 9845-1) D(λ):标准光源光谱函数(CIE D65,ISO 10526) R(λ):视见函数(ISO/CIE 10527)。 4、冬季计算标准条件应为: 室内环境温度:T in=20℃ 室外环境温度:T out=-20℃ 室内对流换热系数:h c,in=3.6 W/m2.K 室外对流换热系数:h c,out=16 W/m2.K 室外平均辐射温度:T rm=T out

太阳辐射照度:I s=300 W/m2 5、夏季计算标准条件应为: 室内环境温度:T in=25℃ 室外环境温度:T out=30℃ 室内对流换热系数:h c,in=2.5 W/m2.K 室外对流换热系数:h c,out=16 W/m2.K 室外平均辐射温度:T rm=T out 太阳辐射照度:I s=500 W/m2 6、计算传热系数应采用冬季计算标准条件,并取I s= 0 W/m2.计算门窗的传热系数时,门窗周边框的室外对流换热系数h c,out应取 8 W/m2.K,周边框附近玻璃边缘(65mm内)的室外对流换热系数h c,out应取 12 W/m2.K 7、计算遮阳系数、太阳能总透射比应采用夏季计算标准条件. 8、抗结露性能计算的标准边界条件应为: 室内环境温度:T in=20℃ 室外环境温度:T out=0℃ -10℃ -20℃ 室内相对湿度:RH=30%、60% 室外对流换热系数:h c,out=20 W/m2.K 9、计算框的太阳能总透射比g f应使用下列边界条件 q in=α* I s q in:通过框传向室内的净热流(W/m2) α:框表面太阳辐射吸收系数 I s:太阳辐射照度(I s=500W/m2) 10、《公共建筑节能设计标准》GB50189-2005有关规定: (1)各城市的建筑气候分区应按表4.2.1确定。

民用建筑热工设计规范GB50176_93

民用建筑热工设计规(GB50176-93)

第3.2.7条围护结构中的热桥部位应进行保温验算,并采取保温措施。 第3.2.8条严寒地区居住建筑的底层地面,在其周边一定围应采取保温措施。 第3.2.9条围护结构的构造设计应考虑防潮要求。 3.3 夏季防热设计要求 第3.3.1条建筑物的夏季防热应采取自然通风、窗户遮阳、围护结构隔热和环境绿化等综合性措施。 第3.3.2条建筑物的总体布置,单体的平、剖面设计和门窗的设置,应有利于自然通风,并尽量避免主要房间受东、西向的日晒。 第3.3.3条建筑物的向阳面,特别是东、西向窗户,应采取有效的遮阳措施。在建筑设计中,宜结合外廊、阳台、挑檐等处理方法达到遮阳目的。 第3.3.4条屋顶和东、西向外墙的表面温度,应满足隔热设计标准的要求。 第3.3.5条为防止潮霉季节湿空气在地面冷凝泛潮,居室、托幼园所等场所的地面下部宜采取保温措施或架空做法,地面面层宜采用微孔吸湿材料。 3.4 空调建筑热工设计要求 第3.4.1条空调建筑或空调房间应尽量避免东、西朝向和东、西向窗户。 第3.4.2条空调房间应集中布置、上下对齐。温湿度要求相近的空调房间宜相邻布置。 第3.4.3条空调房间应避免布置在有两面相邻外墙的转角处和有伸缩缝处。 第3.4.4条空调房间应避免布置在顶层;当必须布置在顶层时,屋顶应有良好的隔热措施。 第3.4.5条在满足使用要求的前提下,空调房间的净高宜降低。 第3.4.6条空调建筑的外表面积宜减少,外表面宜采用浅色饰面。 第3.4.7条建筑物外部窗户当采用单层窗时,窗墙面积比不宜超过0.30;当采用双层窗或单框双层玻璃窗时,窗墙面积比不宜超过0.40。 第3.4.8条向阳面,特别是东、西向窗户,应采取热反射玻璃、反射涂膜、各种固定式和活动式遮阳等有效的遮阳措施。 第3.4.9条建筑物外部窗户的气密性等级不应低于现行国家标准《建筑外窗空气渗透性能分级及其检测方法》GB7107规定的Ⅲ级水平。 第3.4.10条建筑物外部窗户的部分窗扇应能开启。当有频繁开启的外门时,应设置门斗或空气幕等防渗透措施。 第3.4.11条围护结构的传热系数应符合现行国家标准《采暖通风与空气调节设计规》GBJ19规定的要求。

室内外热环境参数测定实验指导书

【实验名称】室内外热环境测试 【实验性质】综合性实验 【实验任务】测试不同类型建筑、不同建筑空间的热环境,对室外气象因素对室内热环境的影响进行分析,并根据分析结果针对建筑热工设计提出结论性意见。 【实验目的】 通过实验,使学生了解室内外热环境参数测定的基本内容,初步掌握仪器仪表的性能和使用方法,进一步感受和了解室外气象因素对建筑热环境的影响。 【实验内容】 建筑室内外热环境参数的测定主要分为室内热环境测定和室外热环境测定两部分。其中:室内热环境参数的测量主要包括2个方面的内容: ■温度的测定 ■空气相对湿度的测定 室外热环境参数的测试同样主要包括2个方面的内容: ■温度的测定 ■空气相对湿度的测定 ■风环境的测定 【实验仪器设备】 1、室内热环境的测定主要使用TESTO174H温湿度记录仪。 2、室外热环境参数的测定主要使用温湿度记录仪及8910便携气象站。 【实验方法和步骤】 1、室内热环境参数的测定 (1)将记录仪与计算机连接,设置记录仪时间及存储间隔等信息; (2)选择测点,注意避免测点受到日照等因素的影响; (3)选择完整时间段对选定测点和室外温湿度进行测试; (4)上传数据,进行数据整理和处理; (5)结合测点房间的特点(建筑形式、外环境、布局、朝向、围护结构等等)对实测数据的差异进行分析,提出建筑热工设计的改进型意见及设计原则; 测点A 位于建艺馆地下一层综合实验室西侧,有西向外墙外窗,有采暖; 测点B位于建艺馆地下一层综合实验室西侧,无外墙外窗,有采暖,暖气配置较少; 测点C 位于建艺馆地下一层综合实验室构造展室,无外墙外窗,无采暖;

【数据整理】 根据提供的数据图表选择所研究的时间段(周期10个小时),将对应的时刻、数据参数填入表格。 【分析】 根据数据结果分析同样外扰作用下不同室内环境的原因。 【结论及建议】 根据分析结果,归纳建筑热环境影响因素及其影响机理,提出通过建筑设计和设备等多种措施改善室内热环境的建议。

《民用建筑热工设计规范》GB50176-2016

-- 民用建筑热工设计规范 Code for thermal design of civil building 月1日起实施自2017年4 GB 50176-2016.热工计算基本参数.术语和符号;3.总 则;规范的主要技术内容是:12.围护结构隔热设计;.围护结构保温设计;6和方法;4.建筑热工设计原则;5 9.建筑遮阳设计。7.围护结构防潮设计;8.自然通风设计;.细分了保温、隔.细化了热工设计分区;2 规范修订的主要技术内容是:1.增加了透光围护结构、自然通.修改了热桥、隔热计算方法;4热设计要求;3 .补充了热工设计计算参数。风、遮阳设计的内容;5 则1 总 保证室内基本的热环境要求,为使民用建筑热工设计与地区气候相适应,.0.1 1 符合国家节能减排的方针,制定本规范。 本规范适用于新建、扩建和改建民用建筑的热工设计。本规范不适用于2 .0.1 室内温湿度有特殊要求和特殊用途的建筑,以及简易的临时性建筑。 民用建筑的热工设计,除应符合本规范的规定外,尚应符合国家现行有3 .0.1 关标准的规定。 2 术语和符号 语1 术 2. building thermal engineering 建筑热工.1 .21室内外热湿研究建筑室外气候通过建筑围护结构对室内热环境的影响、 作用对围护结构的影响,通过建筑设计改善室内热环境方法的学科。 building envelope 2 围护结构.21.分隔建筑室内与室外,以及建筑内部使用空间的建筑部件。 thermal bridge 热桥..13 2 围护结构中热流强度显著增大的部位。 building envelope unit 围护结构单元.4 2.1柱等节点共同围护结构的典型组成部分,由围护结构平壁及其周边梁、 组成。 heat conduction coeffi-cient thermal conductivity,5 2.1.导热系数单位面积匀质材料的热在稳态条件和单位温差作用下,通过单位厚度、 流量。 --- -- coefficient of heat accumulation

建筑热工参数测定实验

实验题目:建筑热工参数测定实验 实验步骤: 1. 运用电子微风仪,将电子微风仪放置在室外阳面开阔地迎风测量并读数,将电子微风仪放置在 室外阴面开阔地迎风测量并读数;在走廊选择四个点,确定无其它干扰后读数;将电子微风仪 分别放置在室内阴阳面教室内测量并读数。 2. 运用温湿度计,将温湿度计分别放置在室内阴阳面教室,室外阴阳面空地以及走廊的四个测量点 进行测量,待其稳定后读数。 3. 运用数字温度仪,分别在室内阴阳面教室内距离墙脚0m、0.5m、1m、1.5m处测量,待其稳定后 读数;分别在室内阴阳面教室内与墙脚有0m、0.5m、1m、1.5m高差处测量,待其稳定后读数。 分别在室外阴阳面距离墙脚0m、0.5m、1m、1.5m处测量,待其稳定后读数;分别在室外阴阳面教室内与墙脚有0m、0.5m、1m、1.5m高差处测量,待其稳定后读数。 实验测试表格及简单说明: 表一:空气温湿度及风速数据表

实验结果分析及结论: 结果分析: 1.温度: 室内温度明显高于室外,室外阳面温度高于室外阴面温度,阳面教室温度高于阴面教室温度层数越高,温度越高,阳面教室温度最高。 建筑物室内外阳面与阴面的表面温度相比,无论是墙面还是地面的表面温度,阳面的表面温度都要远高于阴面的表面温度。 室外地面表面温度随距墙距离的变化而变化;墙面温度随距地距离的变化而变化。 由于受到天气与地面材质的不同影响,室外墙面和地面温度随距离不同而产生不同变化 室内外墙面表面温度随高度的增高普遍呈增高趋势。外墙面受其他因素影响有轻微波动。 2.湿度 室内外湿度变化较大,室内湿度明显高于室外湿度,而室内不同地点的湿度变化则不大,在一定的范围内浮动。室内外湿度变化受到多方面因素影响,例如阴阳面、周边的绿化情况等不同,在不同地点测出的湿度数据统计结果处于上下波动的状态。大体上室内外各地方的湿度变化不明显,在一定的范围内浮动,阳面的湿度相对于阴面较小 3.风速 室外风速远大于室内,阳面的风速达到1.6m/s,远大于阴面。 由室内外风速表中数据的变化可知,室外风速远大于室内风速。建筑物内部由于通风条件的不同风速也有明显变化。 结论: 通过实验以及分析,我们可以得出土木教学馆的墙地面保温效果较为一般,室内外温差相差1℃左右,墙体保温效果不太明显,不及地面保温效果,阴阳面温差较大,阴面教室比较阴冷,但湿度相对室外仍然比较可观舒适。

相关主题