搜档网
当前位置:搜档网 > 七年级数学上册期末试卷(培优篇)(Word版 含解析)

七年级数学上册期末试卷(培优篇)(Word版 含解析)

七年级数学上册期末试卷(培优篇)(Word版含解析)

一、初一数学上学期期末试卷解答题压轴题精选(难)

1.如图①②所示,将两个相同三角板的两个直角顶点O重合在一起,像图①②那样放置.

七年级数学上册期末试卷(培优篇)(Word版 含解析)

(1)若∠BOC=60°,如图①,猜想∠AOD的度数;

(2)若∠BOC=70°,如图②,猜想∠AOD的度数;

(3)猜想∠AOD和∠BOC的关系,并写出理由.

【答案】(1)解:因为,,所以

,又因为,所以

七年级数学上册期末试卷(培优篇)(Word版 含解析)

(2)解:因为,,,,所以

七年级数学上册期末试卷(培优篇)(Word版 含解析)

七年级数学上册期末试卷(培优篇)(Word版 含解析)

七年级数学上册期末试卷(培优篇)(Word版 含解析)

(3)解:由(1)知,由(2)知

七年级数学上册期末试卷(培优篇)(Word版 含解析)

,故由(1),(2)可猜想:

【解析】【分析】(1)由题意可得∠BOC+∠AOC=,则∠AOC=-∠BOC,由角的构成可得∠AOD=+∠AOC即可求解;

(2)由图知,∠COD+∠BOC+∠AOB+∠AOD=,把∠COD、∠BOC、∠AOB代入计算即可求解;

(3)由(1)和(2)中求得的∠AOD和∠BOC的值即可计算求解。

2.如图,已知MN∥PQ,B在MN上,C在PQ上,A在B的左侧,D在C的右侧,DE平分∠ADC,BE平分∠ABC,直线DE,BE交于点E,∠CBN=120°.

七年级数学上册期末试卷(培优篇)(Word版 含解析)

(1)若∠ADQ=110°,求∠BED的度数;

(2)将线段AD沿DC方向平移,使得点D在点C的左侧,其他条件不变,若∠ADQ=n°,求∠BED的度数(用含n的代数式表示)

【答案】(1)解:如图1中,延长DE交MN于H.

七年级数学上册期末试卷(培优篇)(Word版 含解析)

∵∠ADQ=110°,ED平分∠ADP,

∴∠PDH= ∠PDA=35°,

∵PQ∥MN,

∴∠EHB=∠PDH=35°,

∵∠CBN=120°,EB平分∠ABC,

∴∠EBH= ∠ABC=30°,

∴∠BED=∠EHB+∠EBH=65°

(2)解:有3种情形,如图2中,当点E在直线MN与直线PQ之间时.延长DE交MN 于H.

七年级数学上册期末试卷(培优篇)(Word版 含解析)

∵PQ∥MN,

∴∠QDH=∠DHA= n,

∴∠BED=∠EHB+∠EBH=180°﹣( n)°+30°=210°﹣( n)°,

当点E在直线MN的下方时,如图3中,设DE交MN于H.

七年级数学上册期末试卷(培优篇)(Word版 含解析)

∵∠HBA=∠ABP=30°,∠ADH=∠CDH=( n)°,

又∵∠DHB=∠HBE+∠HEB,

∴∠BED=( n)°﹣30°,

当点E在PQ上方时,如图4中,设PQ交BE于H.同法可得∠BED=30°﹣( n)°.

七年级数学上册期末试卷(培优篇)(Word版 含解析)

综上所述,∠BED=210°﹣( n)°或( n)°﹣30°或30°﹣( n)°

【解析】【分析】(1)延长DE交MN于H.利用平行线的性质和角平分线的定义可得∠BED=∠EHB+∠EBH,即可解决问题;

(2)分3种情形讨论:点E在直线MN与直线PQ之间,点E在直线MN的下方,点E 在PQ上方,再根据平行线的性质可解决问题.

3.如图,在△ABC中,∠BAC=90°,BE平分∠ABC,AM⊥BC于点M,交BE于点G,AD 平分∠MAC,交BC于点D,交BE于点F.

七年级数学上册期末试卷(培优篇)(Word版 含解析)

(1)判断直线BE与线段AD之间的关系,并说明理由;

(2)若∠C=30°,图中是否存在等边三角形?若存在,请写出来并证明;若不存在,请说明理由.

【答案】(1)解:BE垂直平分AD,理由:

∵AM⊥BC,

∴∠ABC+∠5=90°,

∵∠BAC=90°,

∴∠ABC+∠C=90°,

∴∠5=∠C;

∵AD平分∠MAC,

∴∠3=∠4,

∵∠BAD=∠5+∠3,∠ADB=∠C+∠4,∠5=∠C,

∴∠BAD=∠ADB,

∴△BAD是等腰三角形,

又∵∠1=∠2,

∴BE垂直平分AD

(2)解:△ABD、△GAE是等边三角形.理由:

∵∠5=∠C=30°,AM⊥BC,

∴∠ABD=60°,

∵∠BAC=90°,

∴∠CAM=60°,

∵AD平分∠CAM,

∴∠4= ∠CAM=30°,

∴∠ADB=∠4+∠C=60°,

∴∠BAD=60°,

∴∠ABD=∠BDA=∠BAD,

∴△ABD是等边三角形;

∵在Rt△BGM中,∠BGM=60°=∠AGE,

在Rt△ACM中,∠CAM=60°,

∴∠AEG=∠AGE=∠GAE,

∴△AEG是等边三角形.

【解析】【分析】(1)根据余角的性质即可得到∠5=∠C;由AD平分∠MAC,得到∠3=∠4,根据三角形的外角的性质得到∠BAD=∠ADB,推出△BAD是等腰三角形,于是得到结论.(2)根据∠5=∠C=30°,AM⊥BC,可得∠ABD=60°,∠CAM=60°,进而得到∠ADB=∠4+∠C=60°,∠BAD=60°,依据∠ABD=∠BDA=∠BAD,可得△ABD是等边三角形;根据∠AEG=∠AGE=∠GAE,即可得到△AEG是等边三角形.

4.如图,已知∠AOB=α°,∠COD在∠AOB内部且∠COD=β°.

七年级数学上册期末试卷(培优篇)(Word版 含解析)

(1)①若α,β满足|α-2β|+(β-60)2=0,则①α=________;

②试通过计算说明∠AOD与∠COB有何特殊关系________;

(2)在(1)的条件下,如果作OE平分∠BOC,请求出∠AOC与∠DOE的数量关系;

(3)若α°,β°互补,作∠AOC,∠DOB的平分线OM,ON,试判断OM与ON的位置关系,并说明理由.

【答案】(1)120°;解:∵∠AOB=α°=120°,∠COD=β°=60°,

∴∠AOD=∠AOB-∠DOB=120°-∠DOB,∠COB=∠COB+∠DOB=60°+∠DOB,∴∠AOD+∠COB=180°,即∠AOD与∠COB互补

(2)解:设∠AOC=θ,则∠BOC=120°-θ.

∵OE平分∠BOC,∴∠COE= ∠BOC= (120°-θ)=60°- θ,

∴∠DOE=∠COD-∠COE=60°-60°+ θ= θ= ∠AOC;

七年级数学上册期末试卷(培优篇)(Word版 含解析)

(3)解:OM⊥ON.理由如下:

∵OM,ON分别平分∠AOC,∠DOB,

七年级数学上册期末试卷(培优篇)(Word版 含解析)

∴∠COM= ∠AOC,

∴∠DON= ∠BOD,

∴∠MON=∠COM+∠COD+∠DON

= ∠AOC+ ∠BOD+∠COD

= (∠AOC+∠BOD)+∠COD

= (∠AOB-∠COD)+∠COD

= (∠AOB+∠COD)

= (α°+β°)

∵α°,β°互补,

∴α°+β°=180°,

∴∠MON=90°,

∴OM⊥ON

【解析】【解答】(1)①由题意得:α-2β=0,β=60°,解得:α=120°;

【分析】(1)①由绝对值和偶次方的非负性可得α-2β=0,β-60°=0,解方程可求得α和β的度数;

②由①可知α和β的度数分别为:β=60°,α=120°;即所以∠AOB+∠COD=α+β=180°;而由图中角的构成可得∠AOD=∠AOB-∠BOD;∠COB=∠COD+∠BOD,所以∠∠AOD+∠COB=∠AOB-∠BOD+∠COD+∠BOD=∠AOB+∠COD=180°;

(2)由角平分线的定义可得∠COE=∠BOE= ∠BOC,由图中角的构成可得∠DOE=∠COD-∠EOC,代入整理结合(1)中求得的度数即可得解;

(3)由角平分线的定义可得∠COM= ∠AOC,∠DON= ∠BOD,由图中角的构成和已知条件可求得∠MON=90°;由垂线的定义即可判断OM⊥ON。

5.如图,∠AOB是平角,OD是∠AOC的角平分线,∠COE=∠BOE.

七年级数学上册期末试卷(培优篇)(Word版 含解析)

(1)若∠AOC= 50 ,则∠DOE=________ ;

(2)若∠AOC= 50 ,则图中与∠COD互补的角为________;

(3)当∠AOC的大小发生改变时,∠DOE的大小是否发生改变?为什么?

【答案】(1)

(2)∠BOD

(3)解:不发生改变,

设∠AOC=2x .

∵OD是∠AOC的平分线,

∴∠AOD =∠COD=x,

∴∠BOC=180 ?2x,

∵∠COE=∠BOE,

∴∠COE==90 +x,

∴∠DOE=90 +x ?x=90

【解析】【解答】(1)解:∵∠AOC=50 ,

∴∠BOC=180 130 ,

∵OD是∠AOC的角平分线,

∴∠AOD=∠COD=25 ,

∴∠COE=∠BOE= ,

∴∠DOE=115 ;

故答案为:90

( 2 )解:由(1)知∠AOD=∠COD=25 ,

∴∠BOD=155 ,

∴图中与∠COD互补的角为∠BOD;

故答案为:∠BOD

【分析】(1)由∠AOC=50 ,得到∠AOD=∠COD=25 ,∠BOC=130 ,求得∠COE=∠BOE=115 .即可求出∠DOE;(2)由(1)得∠AOD=∠COD=25 ,则∠BOD=155 ,即可得到答案;(3)设∠AOC=2x,则∠AOD =∠COD =x,得到∠COE=90 +x,即可得到∠DOE=90 .

6.如图,是一条射线,、分别是和的平分线.

七年级数学上册期末试卷(培优篇)(Word版 含解析)

(1)如图①,当时,则的度数为________;

(2)如图②,当射线在内绕点旋转时,、、三角之间有怎样的数量关系?并说明理由;

(3)当射线在外如图③所示位置时,(2)中三个角:、、

之间数量关系的结论是否还成立?给出结论并说明理由;

(4)当射线在外如图④所示位置时,、、之间数量关系是________.

【答案】(1)

(2)解:∠DOE=∠DOC+∠EOC=∠AOC+∠BOC=∠BOE+∠DOA

(3)解:当射线OC在∠AOB的外部时(1)中的结论不成立.理由是:

∵OD、OE分别是∠AOC、∠BOC的角平分线

∴∠COD=∠AOC,

∠EOC=∠BOC,

∠DOE=∠COD?∠EOC=∠AOC? ∠BOC=∠AOD?∠BOE

(4);

【解析】【解答】(1)解:当射线OC在∠AOB的内部时,

∵OD,OE分别为∠AOC,∠BOC的角平分线,

∴∠DOC=∠AOC,∠EOC=∠BOC,

∴∠DOE=∠DOC+∠EOC=(∠AOC+∠BOC)=∠AOB,

若∠AOB=80°,则∠DOE的度数为40°.

故答案为:40;(4)∵OD,OE分别为∠AOC,∠BOC的角平分线,

∴∠DOC=∠AOD,∠EOC=∠BOE,

∴∠DOE=∠DOC+∠EOC=∠BOE+∠DOA.

故∠BOE、∠EOD、∠DOA之间数量关系是∠DOE=∠BOE+∠DOA.

故答案为:∠DOE=∠BOE+∠DOA.

【分析】(1)(2)根据角平分线定义得出∠DOC=∠AOC,∠EOC=∠BOC,求出∠DOE=(∠AOC+∠BOC)= AOB,即可得出答案;(3)根据角平分线定义得出

∠DOC=∠AOC,∠EOC=∠BOC,求出∠DOE=(∠AOC?∠BOC)=∠AOB,即可得出答案;(4)根据角平分线定义即可求解.

7.如图1,已知∠MON=140°,∠AOC与∠BOC互余,OC平分∠MOB,

七年级数学上册期末试卷(培优篇)(Word版 含解析)

(1)在图1中,若∠AOC=40°,则∠BOC=________°,∠NOB=________°.

(2)在图1中,设∠AOC=α,∠NOB=β,请探究α与β之间的数量关系(必须写出推理

的主要过程,但每一步后面不必写出理由);

(3)在已知条件不变的前提下,当∠AOB绕着点O顺时针转动到如图2的位置,此时α与β之间的数量关系是否还成立?若成立,请说明理由;若不成立,请直接写出此时α与β之间的数量关系.

【答案】(1)50;40

(2)解:β=2α-40°,理由是:

如图1,∵∠AOC=α,

∴∠BOC=90°-α,

∵OC平分∠MOB,

∴∠MOB=2∠BOC=2(90°-α)=180°-2α,

又∵∠MON=∠BOM+∠BON,

∴140°=180°-2α+β,即β=2α-40°

(3)解:不成立,此时此时α与β之间的数量关系为:2α+β=40°,

理由是:如图2,

七年级数学上册期末试卷(培优篇)(Word版 含解析)

∵∠AOC=α,∠NOB=β,

∴∠BOC=90°-α,

∵OC平分∠MOB,

∴∠MOB=2∠BOC=2(90°-α)=180°-2α,

∵∠BOM=∠MON+∠BON,

∴180°-2α=140°+β,即2α+β=40°,

答:不成立,此时此时α与β之间的数量关系为:2α+β=40.

【解析】【解答】(1)如图1,

七年级数学上册期末试卷(培优篇)(Word版 含解析)

∵∠AOC与∠BOC互余,

∴∠AOC+∠BOC=90°,

∵∠AOC=40°,

∴∠BOC=50°,

∵OC平分∠MOB,

∴∠MOC=∠BOC=50°,

∴∠BOM=100°,

∵∠MON=40°,

∴∠BON=∠MON-∠BOM=140°-100°=40°,

【分析】(1)先根据余角的定义计算∠BOC=50°,再由角平分线的定义计算∠BOM=100°,根据角的差可得∠BON的度数;(2)同理先计算∠MOB=2∠BOC=2(90°-α)=180°-2α,再根据∠BON=∠MON-∠BOM列等式即可;(3)同理可得∠MOB=180°-2α,再根据∠BON+∠MON=∠BOM列等式即可.

8.如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.

七年级数学上册期末试卷(培优篇)(Word版 含解析)

(1)试判断直线AB与直线CD的位置关系,并说明理由;

(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;

(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.

【答案】(1)解:AB∥CD.理由如下:

如图1,

∵∠1与∠2互补,

∴∠1+∠2=180°.

又∵∠1=∠AEF,∠2=∠CFE,

∴∠AEF+∠CFE=180°,

∴AB∥CD;

七年级数学上册期末试卷(培优篇)(Word版 含解析)

(2)证明:如图2,由(1)知,AB∥CD,

∴∠BEF+∠EFD=180°.

又∵∠BEF与∠EFD的角平分线交于点P,

∴∠FEP+∠EFP= (∠BEF+∠EFD)=90°,

∴∠EPF=90°,

即EG⊥PF.

∵GH⊥EG,

∴PF∥G H;

七年级数学上册期末试卷(培优篇)(Word版 含解析)

(3)解:∠HPQ的大小不发生变化,理由如下:如图3,∵∠1=∠2,

∴∠3=2∠2.

又∵GH⊥EG,

∴∠4=90°-∠3=90°-2∠2.

∴∠EPK=180°-∠4=90°+2∠2.

∵PQ平分∠EPK,

∴∠QPK= ∠EPK=45°+∠2.

∴∠HPQ=∠QPK-∠2=45°,

∴∠HPQ的大小不发生变化,一直是45°.

七年级数学上册期末试卷(培优篇)(Word版 含解析)

【解析】【分析】(1)利用对顶角相等、等量代换可以推知同旁内角∠AEF、∠CFE互补,所以易证AB∥CD;

(2)利用(1)中平行线的性质推知°;然后根据角平分线的性质、三角形内角和定理证得∠EPF=90°,即EG⊥PF,故结合已知条件GH⊥EG,易证PF∥GH;

(3)利用三角形外角定理、三角形内角和定理求得∠4=90°-∠3=90°-2∠2;然后由邻补角

的定义、角平分线的定义推知∠QPK= ∠EPK=45°+∠2;最后根据图形中的角与角间的和差关系求得∠HPQ的大小不变,是定值45°.

9.已知BM、CN分别是△的两个外角的角平分线,、分别是和的角平分线,如图①;、分别是和的三等分线(即,),如图②;依此画图,、分别是和的n等分线(即,),,且为整数.

七年级数学上册期末试卷(培优篇)(Word版 含解析)

七年级数学上册期末试卷(培优篇)(Word版 含解析)

图①图②

(1)若,求的度数;

(2)设,请用和n的代数式表示的大小,并写出表示的过程;

(3)当时,请直接写出 + 与的数量关系.

【答案】(1)解:,

七年级数学上册期末试卷(培优篇)(Word版 含解析)

∵、分别是和的角平分线,

(2)解:在△中, + ,

七年级数学上册期末试卷(培优篇)(Word版 含解析)

七年级数学上册期末试卷(培优篇)(Word版 含解析)

七年级数学上册期末试卷(培优篇)(Word版 含解析)

(3)解:

【解析】【分析】(1)先根据三角形内角和定理求出,根据角平分线

求出,再根据三角形内角和定理求出即可;(2)先根据三角形内角和定理求出 + ,根据n等分线求出,再根据三角形内角和定理得出,代入求出即可.

(3)本题以三角形为载体,主要考查了三角形的一个外角等于与它不相邻的两个内角的和的性质、角平分线的性质、三角形的内角和是的性质,熟记性质然灵活运用有关性质来分析、推理、解答是解题的关键.

10.探究题

学习完平行线的性质与判定之后,我们发现借助构造平行线的方法可以帮我们解决许多问题。

(1)小明遇到了下面的问题:如图1,l1∥l2,点P在l1、l2内部,探究∠A,∠APB,∠B 的关系.小明过点P作l1的平行线,可证∠APB,∠A,∠B之间的数量关系是:∠APB=________.

七年级数学上册期末试卷(培优篇)(Word版 含解析)

(2)如图2,若AC∥BD,点P在AB、CD外部,∠A,∠B,∠APB的数量关系是否发生变化?请你补全下面的证明过程.

七年级数学上册期末试卷(培优篇)(Word版 含解析)

过点P作PE∥AC.

∴∠A=________

∵AC∥BD

∴________∥________

∴∠B=________

∵∠BPA=∠BPE-∠EPA

∴________.

(3)随着以后的学习你还会发现平行线的许多用途.试构造平行线解决以下问题:

已知:如图3,三角形ABC,求证:∠A+∠B+∠C=180°.

七年级数学上册期末试卷(培优篇)(Word版 含解析)

【答案】(1)∠APB=∠A+∠B

(2)∠1;PE;BD;∠EPB;∠APB=∠B -∠1

(3)证明:过点A作MN∥BC

七年级数学上册期末试卷(培优篇)(Word版 含解析)

∴∠B= ∠1

∠C= ∠2

∵∠BAC+∠1+∠2=180°

∴∠BAC+∠B+∠C=180°

【解析】【解答】解:(1)如图:

七年级数学上册期末试卷(培优篇)(Word版 含解析)

由平行线的性质可得:∠1=∠A, ∠2=∠B,

∴∠1+∠2=∠A+∠B

即APB=∠A+∠B

⑵解:过点P作PE∥AC.

七年级数学上册期末试卷(培优篇)(Word版 含解析)

∴∠A=∠1

∵AC∥BD

∴ PE ∥ BD

∴∠B=∠EPB

∵∠APB=∠BPE-∠EPA

∴∠APB=∠B -∠1

【分析】根据图形做出平行辅助线,探究角度关系。此类做辅助线的方法变式多,是考试热点问题。

11.如图,在△ABC中,CD是AB边上的高,CE是∠ACB的平分线.

七年级数学上册期末试卷(培优篇)(Word版 含解析)

(1)若∠A=40°,∠B=76°,求∠DCE的度数;

(2)若∠A=α,∠B=β,求∠DCE的度数(用含α,β的式子表示);

(3)当线段CD沿DA方向平移时,平移后的线段与线段CE交于G点,与AB交于H点,若∠A=α,∠B=β,求∠HGE与α、β的数量关系.

【答案】(1)解:∵∠A=40°,∠B=76°,

∴∠ACB=64°.

∵CE是∠ACB的平分线,

∴∠ECB ∠ACB=32°.

∵CD是AB边上的高,

∴∠BDC=90°,

∴∠BCD=90°﹣∠B=14°,

∴∠DCE=∠ECB﹣∠BCD=32°﹣14°=18°;

(2)解:∵∠A=α,∠B=β,

∴∠ACB=180°﹣α﹣β.

∵CE是∠ACB的平分线,

∴∠ECB ∠ACB (180°﹣α﹣β).

∵CD是AB边上的高,

∴∠BDC=90°,

∴∠BCD=90°﹣∠B=90°﹣β,

∴∠DCE=∠ECB﹣∠BCD β α;

(3)解:如图所示.

七年级数学上册期末试卷(培优篇)(Word版 含解析)

∵∠A=α,∠B=β,

∴∠ACB=180°﹣α﹣β.

∵CE是∠ACB的平分线,

∴∠ECB ∠ACB (180°﹣α﹣β).

∵CD是AB边上的高,

∴∠BDC=90°,

∴∠BCD=90°﹣∠B=90°﹣β,

∴∠DCE=∠ECB﹣∠BCD β α,

由平移可得:GH∥CD,

∴∠HGE=∠DCE β α.

【解析】【分析】(1)根据三角形的内角和得到∠ACB的度数,根据角平分线的定义得到∠ECB的度数,根据余角的定义得到∠BCD=90°-∠B,于是得到结论;(2)根据角平分线

的定义得到∠ACB=180°-α-β,根据角平分线的定义得到∠ECB= ∠ACB= (180°-α-β),根据余角的定义得到∠BCD=90°-∠B=90°-β,于是得到结论;(3)运用(2)中的方法,得到

∠DCE=∠ECB-∠BCD= β- α,再根据平行线的性质,即可得出结论.

12.在△ABC中,∠A=60°,BD,CE是△ABC的两条角平分线,且BD,CE交于点F,如图所示,用等式表示BE,BC,CD这三条线段之间的数量关系,并证明你的结论;

晓东通过观察,实验,提出猜想:BE+CD=BC,他发现先在BC上截取BM,使BM=BE,连接FM,再利用三角形全等的判定和性质证明CM=CD即可.

七年级数学上册期末试卷(培优篇)(Word版 含解析)

(1)下面是小东证明该猜想的部分思路,请补充完整;

①在BC上截取BM,使BM=BE,连接FM,则可以证明△BEF与________全等,判定它们全等的依据是________;

②由∠A=60°,BD,CE是△ABC的两条角平分线,可以得出∠EFB=________°;

(2)请直接利用①,②已得到的结论,完成证明猜想BE+CD=BC的过程.

【答案】(1)△BMF;SAS;60

(2)证明:由①知,∠BFE=60°,

∴∠CFD=∠BFE=60°

∵△BEF≌△BMF,

∴∠BFE=∠BFM=60°,

∴∠CFM=∠BFC-∠BFM=120°-60°=60°,

∴∠CFM=∠CFD=60°,

∵CE是∠ACB的平分线,

∴∠FCM=∠FCD,

在△FCM和△FCD中,,

∴△FCM≌△FCD(ASA),

∴CM=CD,

∴BC=CM+BM=CD+BE,

∴BE+CD=BC.

【解析】【解答】解:(1)解:①在BC上取一点M,使BM=BE,连接FM,如图所示:

七年级数学上册期末试卷(培优篇)(Word版 含解析)

∵BD、CE是△ABC的两条角平分线,

∴∠FBE=∠FBM= ∠ABC,

在△BEF和△BMF中,,

∴△BEF≌△BMF(SAS),

故答案为:△BMF,SAS;

②∵BD、CE是△ABC的两条角平分线,

∴∠FBC+FCB= (∠ABC+∠ACB),

在△ABC中,∠A+∠ABC+∠ACB=180°,

∵∠A=60°,

∴∠ABC+∠ACB=180°-∠A=180°-60°=120°,

∴∠BFC=180°-(∠FBC+∠FCB)=180°- (∠ABC+∠ACB)=180°- ×120°=120°,

∴∠EFB=60°,

故答案为:60;

【分析】(1)①由BD,CE是△ABC的两条角平分线知∠FBE=∠FBC= ∠ABC,结合BE=BM,BF=BF,依据“SAS”即可证得△BEF≌△BMF;②利用三角形内角和求出∠ABC+∠ACB=120°,进而得出∠FBC+∠FCB=60°,得出∠BFC=120°,即可得出结论;(2)

利用角平分线得出∠EBF=∠MBF,进而得出△BEF≌△BMF,求出∠BFM,即可判断出∠CFM=∠CFD,即可判断出△FCM≌△FCD,即可得出结论.

13.如图1,在△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于点A1,

七年级数学上册期末试卷(培优篇)(Word版 含解析)

(1)分别计算:当∠A分别为700、800时,求∠A1的度数.

(2)根据(1)中的计算结果,写出∠A与∠A1之间的数量关系________.

(3)∠A1BC的角平分线与∠A1CD的角平分线交于点A2,∠A2BC的角平分线与∠A2CD的角平分线交于点A3,如此继续下去可得A4,…,∠A n,请写出∠A5与∠A的数量关系________.

(4)如图2,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E 滑动时,有下面两个结论:①∠Q+∠A1的值为定值;②∠D-∠A1的值为定值.

其中有且只有一个是正确,请写出正确结论,并求出其值.

【答案】(1)解:∵A1C、A1B分别是∠ACD、∠ABC的角平分线

∴∠A1BC= ∠ABC,∠A1CD= ∠ACD

由三角形的外角性质知:∠A=∠ACD-∠ABC,∠A1=∠A1CD-∠A1BC,即:

∠A1= (∠ACD-∠ABC)= ∠A;

当∠A=70°时,∠A1=35°;当∠A=80°,∠A1=40°

(2)∠A=2∠A1

(3)∠A5= ∠A

(4)解:△ABC中,由三角形的外角性质知:∠BAC=∠AEC+∠ACE=2(∠QEC+∠QCE);即:2∠A1=2(180°-∠Q),

化简得:∠A1+∠Q=180°

故①的结论是正确,且这个定值为180°

【解析】【解答】解:(2)由(1)可知∠A1== ∠A

即∠A=2∠A1(3)同(1)可求得:

∠A2= ∠A1= ∠A,

∠A3= ∠A2= ∠A,

下载文档原格式(Word原格式,共23页)
相关文档
  • 七年级数学上册培优

  • 七年级上册数学培优

  • 七年级上册数学培优题

  • 七年级数学培优题

  • 七年级数学培优试卷