搜档网
当前位置:搜档网 › 汽车动力转向系统匹配性能分析

汽车动力转向系统匹配性能分析

汽车动力转向系统匹配性能分析
汽车动力转向系统匹配性能分析

 万方数据

 万方数据

 万方数据

 万方数据

 万方数据

越野车转向系统的设计

毕业设计 题目:越野车转向系统设计与优化学生姓名: 学号: 专业: 年级: 指导老师: 完成日期:

目录 第一章电动转向系统的来源及发展趋势 (1) 第二章转向系统方案的分析 (3) 1.工作原理的分析 (3) 2. 转向系统机械部分工作条件 (3) 3.转向系统关键部件的分析 (4) 4.转向器的功用及类型 (5) 5.转向系统的结构类型 (5) 6.转向传动机构的功用和类型 (7) 第三章转向系统的主要性能参数 (8) 1. 转向系的效率 (8) 2. 转向系统传动比的组成 (8) 3. 转向系统的力传动比与角传动比的关系 (8) 4. 传动系统传动比的计算 (9) 5. 转向器的啮合特征 (10) 6. 转向盘的自由行程 (11) 第四章转向系统的设计与计算 (12) 1. 转向轮侧偏角的计算(以下图为例) (12) 2. 转向器参数的选取 (12) 3. 动力转向机构的设计 (12) 4. 转向梯形的计算和设计 (14)

第五章结论 (16) 谢辞 (17) 参考文献 (18) 附录 (19)

转向系统设计与优化 摘要 汽车在行驶过程中,需要按照驾驶员的意志经常改变行驶方向,即所谓汽车转向。用来改变或保持汽车行驶方向的机构称为汽车转向系统。汽车转向系统的功能就是按照驾驶员的意愿控制汽车的行驶方向。汽车转向系统对汽车的行驶安全是至关重要的。因此需要对转向系统进行优化,从而使汽车操作起来更加方便、安全。本次设计是EPS电动转向系统,即电动助力转向系统。该系统是由一个机械系统和一个电控的电动马达结合在一起而形成的一个动力转向系统。EPS系统主要是由扭矩传感器、电动机、电磁离合器、减速机构和电子控制单元等组成。驾驶员在操纵方向盘进行转向时,转矩传感器检测到转向盘的转向以及转矩的大小,将电压信号输送到电子控制单元,电子控制单元根据转矩传感器检测到的转距电压信号、转动方向和车速信号等,向电动机控制器发出指令,使电动机输出相应大小和方向的转向助力转矩,从而产生辅助动力。汽车不转向时,电子控制单元不向电动机控制器发出指令,电动机不工作。该系统由电动助力机直接提供转向助力,省去了液压动力转向系统所必需的动力转向油泵、软管、液压油、传送带和装于发动机上的皮带轮,既节省能量,又保护了环境。另外,还具有调整简单、装配灵活以及在多种状况下都能提供转向助力的特点。因此,电动助力转向系统是汽车转向系统的发展方向。 关键词:机械系统,扭矩传感器,电动机,电磁离合器,减速机构,电子控制单元。

混合动力汽车驱动系统的国内外研究现状

混合动力汽车驱动系统的国内外研究现状 姓名:学号:班级: 1.1混合动力汽车提出背景 1.1.1 21世纪汽车工业面临的挑战[1] 内燃机汽车经过120多年的发展和壮大,为人类文明做出了巨大贡献,创造了难以计算的直接或间接经济利益。但是,随着内燃机汽车保有量的急剧增长,人们越来越认识到传统的内燃机汽车对人类环境带来的危害。传统燃油汽车排放所造成的空气质量日益恶化和石油资源的渐趋匮乏,环境保护的迫切性和石油储量日见短缺的压力,迫使人们重新考虑未来汽车的动力问题。 目前,世界上各种汽车的保有量超过7亿辆,每年新生产的各种汽车约5000万辆,按平均每辆汽车的年消耗10~15桶石油制品计算,汽车的石油消耗量每年达到80~100亿桶,约占世界石油产量的一半以上.石油资源的开采每年达到几十亿吨,经过长时期的现代化大规模地开采,石油资源日渐枯竭,按科学家预测,地球上的石油资源如果按目前的消耗水平,石油资源仅仅可以维持60~100年.21世纪以来,石油价格的上涨已对世界经济的发展形成了巨大的威胁,人类将面临更加严峻的石油资源的危机和挑战。 内燃机汽车上产生动力的同时,会产生燃烧废气,包括二氧化碳二氧化碳 (CO 2)、一氧化碳(CO)、氮氧化合物(NO X )、碳氢化合物(HX)等有害气体,对大气环 境造成污染,对人体造成伤害。内燃机汽车的噪声主要是燃烧噪声、进气和排气过程装配能够气体的空气动力性噪声,这些噪声随汽车的行驶,飘逸在其经过的环境中,在大城市中,汽车所产生的噪声会引起人们的神经系统和心血管系统功能的紊乱。目前只是在每台汽车上装置降低噪声的处理系统,以降低噪声,达到国家规定的标准。噪声降低的处理一般会因消耗一部分发动机的能量而降低内燃机的效率。

汽车转向系统检测与维修要点

摘要: 本文阐述了汽车转向系统各个部分的作用、组成、主要构造、工作原理、及可能出现的故障,同时提出了对出现的故障进行维修的可行方案;采用了理论与实际相结合的方法,对每个问题都有良好的认识,对所学内容进行了良好的总结归纳,以此进一步熟悉掌握汽车转向系统的各方面知识,深化巩固所学知识,做到理论与实际相结合,在理论学习的前提下,用实际更好的理解所学内容。 关键词:转向;故障;诊断; 目录 摘要 (1) 关键词 (1) 一、绪论 (2) 1.1 什么是汽车转向系统 (2) 1.2 汽车转向系统概述 (2) 1.3 转向系统简介及工作原理 (3) 二、汽车转向系统的故障诊断 (7) 2.1 机械转向系故障诊断 (7) 三、对汽车转向系统的故障进行维修 (9) 3.1机械转向系的维修 (9) 3.2动力转向系的维修 (10) 四、结论 (14) 谢辞 (15) 参考文献 (16) 绪论:

转向系统:用来改变或保持汽车行驶方向的机构称为汽车转向系统(steering system)。汽车转向系统的功能就是按照驾驶员的意愿控制汽车的行驶方向。汽车转向系统对汽车的行驶安全至关重要,因此汽车转向系统的零件都称为保安件。 汽车转向系统分为两大类:机械转向系统和动力转向系统。 完全靠驾驶员手力操纵的转向系统称为机械转向系统。 借助动力来操纵的转向系统称为动力转向系统。动力转向系统又可分为液压动力转向系统和电动助力动力转向系统。 随着汽车工业的迅速发展,转向装置的结构也有很大变化。现代汽车转向装置的设计趋势主要向适应汽车高速行驶的需要、充分考虑安全性、轻便性、低成本、低油耗、大批量专业化生产发展。 通过本次毕业论文对转向系统进行进一步的了解,并且结合通过实习了解的知识对转向系统的可能出现的问题进行分析和解决方法,从而提高自身对转向系统的深入认识 一论述 1.1什么是汽车转向系统 用来改变或保持汽车行驶或倒退方向的一系列装置称为汽车转向系统(steering system)。汽车转向系统的功能就是按照驾驶员的意愿控制汽车的行驶方向。汽车转向系统对汽车的行驶安全至关重要,因此汽车转向系统的零件都称为保安件。汽车转向系统和制动系统都是汽车安全必须要重视的两个系统。 1.2汽车转向系统概述 汽车在行驶的过程中,需按驾驶员的意志改变其行驶方向。就轮式汽车而言,实现汽车转向的方法是, 驾驶员通过一套专设的机构,使汽车转向桥(一般是前桥)上的车轮(转向轮)相对于汽车纵横线偏转一定角度。这一套用来改变或恢复汽车行驶方向的专设机构,即称为汽车转向系统。

客车动力转向系统的设计布置及常见问题分析模板

客车动力转向系统的设计布置及常见 问题分析

上世纪80年代初期, 国内大部分客车都是在货车底盘上加装车身而来。由于货车底盘的前悬较短而且发动机前置, 造成车内空间利用率不高, 车内噪声较大。随着国民经济的发展, 中国高速公路也在飞速发展, 人们对出行及旅行的舒适性、安全性要求越来越高, 交通密度的增加和车速的提高对客车的转向性能都提出了更高的要求。客车转向系统设计的好坏直接影响着客车的驾驶稳定性、安全性和操纵灵活性。下面简要介绍客车动力转向系统的设计布置及常见问题的分析。 1、客车动力转向系统的设计要点 1.1 客车动力转向的设计要求 (1)转向轮转角和驾驶员转动方向盘的转角应保持一定的比例关系。 (2)动力转向系统失灵时, 仍能用机械系统操纵车轮转向。 (3)减轻驾驶员作用在转向盘上的手力, 同时还应有路感, 并随转向阻力的增加而增大。 (4)方向盘应能平稳回位, 保证汽车的直线行驶能力。 (5)转向系统应能在车辆转弯时灵活平稳地将扭力传到前轮。 (6)不允许路面不平引起的振动造成方向盘回跳或方向失控。

1.2 动力转向器的选择 动力转向系统由于具有转向操纵灵活、轻便, 能吸收路面对前轮产生的冲击, 设计时转向器结构形式的选择也灵活多样等优点, 因此, 已在各国的汽车制造中普遍采用。中国大客车一般采用的是整体式-液压动力转向器, 其工作原理如图1所示。液压式动力转向以液体的压力作动力来完成转向加力。其特点是油液工作压力可达6-10MPa, 甚至更高, 因此结构紧凑, 动力缸尺寸小、重量轻; 因油液具有不可压缩性, 故灵敏度高; 油液的阻尼作用能够用来吸收路面冲击; 动力装置无需润滑。其缺点是结构复杂, 对加工精度和密封要求高等。动力转向器型号的选择须根据前桥负荷、整车的布置等因素来综合考虑。转向器选择的合适与否对整个转向系统起着至关重要的作用。 1.3 转向器及中间过渡臂的布置 转向器及中间过度臂的合理布置对于整车的行驶稳定性有非常重要的作用。每一种转向器对其安装都有要求, 在满足转向器安装要求的情况下, 应根据整车的前转向桥和前悬挂的特点, 保证转向拉杆和前悬挂的运动干涉在允许的范围内。这需要作运动校核图, 以确保不影响整车行驶稳定性的运动干涉。另外, 需根据前轮允许

电控动力转向系统(EHPS)介绍

电控动力转向系统(EHPS)介绍 汽车转向系统可按转向的能源不同分为机械转向系统和动力转向系统两类。机械转向系统是依靠驾驶员操纵转向盘的转向力来实现车轮转向;动力转向系统则是在驾驶员的控制下,借助于汽车发动机产生的液体压力或电动机驱动力来实现车轮转向,所以动力转向系统也称为转向动力放大装置。随着道路条件的不断改善,汽车速度的不断提高,对转向系统操纵的安全性与舒适性提出了更高的要求。动力转向系统由于具有使转向操纵灵活、轻便,设计汽车时对转向器结构形式的选择灵活性大,能吸收路面对前轮产生的冲击等优点,因此已在各国的汽车制造中普遍采用。但是,从易于驾驶和安全性方面考虑,理想的操纵状态是低速时转向始终应当轻快,而在高速时要有适当的手感并且运行平稳,因此,对于传统的液压动力转向器,其固定的放大倍率成为动力转向系统的主要缺点,往往是满足了低速转向轻便的要求便无法满足高速转向时要求的手感,或者满足了高速转向时有良好的手感但低速时又不免转向沉重。 人满意的程度。 向系统(液压式EPS

式电子控制动力转向系统(电动式EPS)。EHPS是在传统的液压动力转向系统的基础上增设了控制液体流量的电磁阀、车速传感器和电子控制单元等装置构成的,电子控制单元根据检测到的车速信号,控制电磁阀的开度,使转向动力放大倍率实现连续可调,从而满足高、低速时的转向助力要求。电动式EPS则是利用直流电动机作为动力源,电子控制单元根据转向参数和车速信号,控制电机输出扭矩。电动机的输出扭矩经由电磁离合器通过减速机构减速增扭后,加在汽车的转向机构上,使之得到一个与工况相适应的转向作用力。 EHPS从控制方式可以分为以下几种类型: 其中,第(1)种和第(2)种类型是EHPS发展初期的控制方式,主要的控制目标都是将系统中的动力泄荷掉一部分以实现高速时减小助力,但这样做的弊病就是浪费了动力,不利于车辆省油,而且,还有急转弯反应迟钝的缺点,需要安装特别装置才能解决,现在已很少采用。第(3)种油压反馈控制式现在使用的比较普遍,其根据车速传感器,控制反力室油压,改变压力油的输入、输出的增益幅度以控制操舵力。操舵力的变化量,按照控制的反馈压力,在油压反馈机构的容量范围内可任意给出,急转弯也没问题,但是其结构复杂,各部分的加工精度要求较高,价格也较高。第(4)种阀特性控制式是近几年开发的类型,是根据车速控制电磁阀,直接改变动力转向控

汽车转向系统故障诊断与维修-(汽车检测论文)

汽车转向系统故障诊断与维修-(汽车检测论文)

现代汽车检测与故障诊断简介: 汽车是一个复杂的技术和结构集成系统,其运行的载荷、路况和气候等工作条件复杂多变,运动的自然磨损和车辆振动等,会造成连接关系的变化。由于复杂多变的工作条件的影响,汽车的技术状态将随行驶里程的增加而恶化,其安全性、动力性、经济性和可靠性等将逐渐下降,排气污染和噪声加剧,故障发生率增加。汽车检测诊断技术对汽车的运行状态作出判断,及时发现故障,并采取相应对策,则可以提高汽车的使用可靠性,避免汽车恶性事故发生,保证交通安全,减少环境污染,改善汽车性能,提高维修效率实现“视情修理”,同时可充分发挥汽车的效能减少维修费用,获得更大的经济效益。因此,汽车检测诊断技术具有着重要的地位和作用。 一、汽车检测与故障诊断技术与方法 1. 人工深入诊断 人工深入诊断是指由诊断者利用仪器、仪表等诊断手段, 如发动机分析仪、扫描仪、万用表、示波器、频谱分析仪等通用或专用设备, 对汽车故障进行诊断, 这种诊断方法, 除能对汽车作出是否有故障和故障严重程度的判断外, 还 能对故障的性质、类别、原因及故障部位等作出判断。 2.自我诊断 现代汽车的电控系统, 都配备有自诊断功能, 电控系统的ECU 具有实时检测电 控系统故障的能力,当电控系统出现故障时, ECU 将储存相应的故障代码在ECU

的存储器中, 并起动故障保护功能, 确保汽车的运行能力、点亮立即维修指示灯, 提醒驾驶员ECU 已检测到故障, 应立即进行检查维修。自我诊断可利用诊断仪将ECU 贮存的各种信息提取出来, 进行比较和分析, 并以清晰的方式( 文字、曲线或图表) 显示出来, 诊断者可根据这些显示出来的信息, 准确快捷地判断故障的类型和发生的部位。 3.计算机辅助诊断技术 计算机辅助诊断是指一种建立在利用计算机分析功能基础上的多功能的自动化诊断系统。计算机还可通过配备的专用传感器接收诊断对象的其他机械系统的信号, 并配备有对这些信号进行自动分析诊断的软件,以实现状态信号的自动采集、特征提取、状态识别等, 并能以显示、打印、绘图等多种方式自动输出分析结果, 给出故障的性质、程度、类别、部位、原因及趋势的诊断与预报结果, 并可将大量故障信息贮存起来, 可随时通过人机对话查阅诊断对象的运行资料。 二.汽车转向系统检测与诊断 2.1传统转向系统:机械转向系统 2.1.1机械转向系统的组成 用司机体力为转向能源,所有传力件都是机械的。转向操纵机构:转向盘、转向轴、万向节(上、下)、转向传动轴。(采用万向传动装置有助于转向盘和转向器等部件和组件的通用化和系列化) 转向器:内设减速传动付,作用减速增扭。 转向传动机构:转向摇臂、转向主拉杆、转向节臂、转向节、转向梯形。

汽车转向系统常见故障及原因

汽车转向系统常见故障及原因 汽车转向系统常见的故障及原因有: 故障一、转向时有异响 转向时有异响一般是机械部分,例如主销与衬套损伤、立柱止推轴承损坏等造成。检查时可以左、右打方向,观察响声的部位进行拆检。 故障二、转向机漏油 转向机向外漏油不外乎是几个位置:转向机上盖、侧端盖和转向轴拐臂联接处。这三个部位都有密封圈,更换新的油封和密封圈就可解决。如果其它部位漏油就很可能是转向机壳体沙眼或裂痕。细小的裂痕和沙眼可以用乐泰290高渗透性密封胶来堵漏。 故障三、方向回位较困难 一般车辆都有转向自动回位的功能。液压助力的汽车,由于液压阻尼的作用,自动回位的功能有所减弱,但还应保持一定的自动回位的能力。如果回位时,也要象转向时那样施力,就说明回位功能有故障。这种故障一般都发生在转向机械部分。例如转向节主销与衬套缺油而烧损、转向横、直拉杆接头缺油而锈蚀、方向盘与转向机联接的操纵轴万向节缺油或别劲以及转向机的转向轴扇齿与活塞直齿啮合太紧等等,都会造成这种故障。 故障四、助力泵漏油 如果从助力泵后端盖漏油,显然是后端盖密封圈破损,这是比较容易发现的。实际中还有一种难于发现的故障,这就是转向油罐里的油不断减少(总需要补充),而发动机油底内的机油却不断增多或者表面上看起来发动机丝毫不烧机油。放出部分油底机油观察没有什么

异常现象,也嗅不出什么其它的异味,这种情况显然是助力泵驱动轴端的油封漏油所至。助力泵低压油腔的液压油由油封漏至发动机正时齿轮室,流人油底。液压油与机油混合无法分辩。 故障五、转向沉重 一般来讲引起方向重的原因有如下几种: (1)转向机故障 通过检查如果发现是转向机助力油压较低时,说明方向重的原因在转向机。此时应请专业厂家来进行修理。一般来讲转向机故障大部分是由于活塞、缸筒拉伤、或是活塞上密封圈损坏造成活塞两腔相通,使助力压力不能有效地建立。此外,活塞圆周面上的各种密封圈、转向螺杆上的密封圈破损,也会造成高压卸荷,而使助力压力降底。 (2)助力泵故障 通过试验判断助力泵的泵压达不到标准值时,显然方向沉重与此有关。首先应检查流量控制阀与阀座的啮合面、安全阀钢球是否封闭不严。如果是流量阀或安全阀泄漏,可通过研磨的方法修复。其次再检查安全阀的弹簧是否失效。这点可通过在弹簧后面加垫片的方法检查,如果在弹簧后面增加一垫片后,最大泵压有明显增加,说明弹簧失效。 如果这两个部位都无问题,则应拆卸解体助力泵,观察叶片泵的腔壁是否磨损和拉伤。因腔壁拉伤会使高、低压腔相通,从而造成压力建立不起来。一般拉伤的原因都是油脏所至。如果方向突然沉重,则应检查是否是泵轴断裂所致。 (3)缺油,系统有空气。如果助力系统缺油,造成系统内有空气,此时不仅转向沉重,而且在转向时还有噪音。此时按加油与放气的程序进行排气即可。

混合动力汽车动力系统综述

汽车新动力━━━HEV 综述 戴梦萍1 纪永秋2 (1.山东理工大学机械工程学院,255000;2.山东水利技术学院,255000) 摘要:介绍了混合动力电动汽车(HEV )的概念、HEV 动力总成的组成及型式,阐述了其基本工作原理和驱动模式。 关键词:混合动力电动汽车;串联;并联;混联;驱动模式 随着世界经济的持续增长和世界人口的增加、人民生活水平的提高,人均能源消耗将会高速增加,环境污染会变得更加严重。开发新的替代能源、提高热能转换效率和节约能源被认为是解决或缓解环境污染和保障能源供给的有效办法。汽车燃油发动机是消耗矿石能源和制造环境污染的大户,研发替代燃油发动机的新动力势所必然。替代燃油发动机汽车的方案也越来越多,例如氢能源汽车、燃料电池汽车、混合动力汽车等。但目前最有实用性价值并巳有商业化运转的模式,只有混合动力电动汽车。 根据国际机电委员会下属的电力机动车技术委员会的建议,混合动力电动汽车是指由两种和两种以上的储能器、能源或转换器作驱动能源,其中至少有一种能源提供电能的车辆称为混合动力电动汽车。本文介绍的仅是既有内燃机又有电动机驱动的混合动力电动汽车。混合动力电动汽车的关键是混合动力系统,它的性能直接关系到混合动力汽车整车性能。经过十多年的发展,混合动力系统总成已从原来发动机与电机离散结构向发动机、电机和变速器一体化结构发展,即集成化混合动力总成系统。 1 混合动力电动汽车的组成及种类成 1.1 混合动力总成按照驱动系统能量流和功率流的配置结构关系,可分为串联式(Series hybrid system )(两种)、并联式(Parallel hybrid system )和混联式()等三种。(如图1 (a( (a ) 减(变)速器 车轮 车轮 发动机 发电机 蓄电池 电动机 车轮 车轮 发动机 发电机 蓄电池 电动机 减(变)速器 (a) (b)

转向系主要性能参数及对汽车操纵稳定性的影响

第五章 汽车转向系设计 转向系是用来保持或者改变汽车行驶方向的机构,在汽车转向行驶时,保证各转向轮之间有协调的转角关系。 机械转向系依靠驾驶员的手力转动转向盘,经转向器和转向传动机构使转向轮偏转。有些汽车还装有防伤机构和转向减振器。采用动力转向的汽车还装有动力系统,并借助此系统来减轻驾驶员的手力。 对转向系提出的要求有: 1)汽车转弯行驶时,全部车轮应绕瞬时转向中心旋转,这项要求会加速轮胎磨损,并降低汽车的行驶稳定性。任何车轮不应有侧滑。不满足 2)汽车转向行驶后,在驾驶员松开转向盘的条件下,转向轮能自动返回到直线行驶位置,并稳定行驶。 3)汽车在任何行驶状态下,转向轮不得产生自振,转向盘没有摆动。 4)转向传动机构和悬架导向装置共同工作时,由于运动不协调使车轮产生的摆动应最小。 5)保证汽车有较高的机动性 6)操纵轻便。具有迅速和小转弯行驶能力。 7)转向轮碰撞到障碍物以后,传给转向盘的反冲力要尽可能小。 8)转向器和转向传动机构的球头处,有消除因磨损而产生间隙的调整机构。 9)在车祸中,当转向轴和转向盘由于车架或车身变形而共同后移时,转向系应有能使驾驶员免遭或减轻伤害的防伤装置。 10)进行运动校核,保证转向盘与转向轮转动方向一致。 正确设计转向梯形机构,可以使第一项要求得到保证。转向系中设置有转向减振器时,能够防止转向轮产生自振,同时又能使传到转向盘上的反冲力明显降低。为了使汽车具有良好的机动性能,必须使转向轮有尽可能大的转角,并要达到按前外轮车轮轨迹计算,其最小转弯半径能达到汽车轴距的2~2.5倍。通常用转向时驾驶员作用在转向盘上的切向力大小和转向盘转动圈数多少两项指标来评价操纵轻便性。没有装置动力转向的轿车,在行驶中转向,此力应为50~100N ;有动力转向时,此力在20~50N 。当货车从直线行驶状态,以 10km /h 速度在柏油或水泥的水平路段上转入沿半径为12m 的圆周行驶,且路面干燥,若转向系内没有装动力转向器,上述切向力不得超过250N ;有动力转向器时,不得超过120N 。轿车转向盘从中间位置转到每一端的圈数不得超过2.0圈,货车则要求不超过3.0圈。 近年来,电动、电控动力转向器已得到较快发展,不久的将来可以转入商品装车使用。电控动力转向可以实现在各种行驶条件下转动转向盘的力都轻便。 5.1转向系主要性能参数及对汽车操纵稳定性的影响 转向系的主要性能有转向系的效率、转向系的角传动比与力传动比、转向器传动副的传动间隙特性、转向系的刚度以及转向盘的总转动圈数。 5.1.1转向系的效率 转向系的效率0η由转向器的效率η和转向操纵及传动机构的效率' η决定,即 '0ηηη?= 转向器的效率η又有正效率+η和?η之分。转向摇臂轴输出的功率(21P P ?)与转向

QC T 306-1999汽车动力转向控制阀总成台架试验方法

QC T 306-1999汽车动力转向控制阀总成台架 试验方法 QC/T 306一1 999 汽车动力转向操纵阀总成 台架试验方法代替ZB T23 00 8一89 1主题内容与适用范畴 本标准规定了汽车常流式液压动力转向操纵阀(简称操纵阀)总成台架试验 方法。 本标准适用于单独的操纵阀总成,也适用于与有关部件装成一体的操纵阀, 例如操纵阀与动力缸一体的联阀式动力转向装置中的操纵阀,操纵阀与转向器一 体的半整体式动力转向装置中的操纵阀和操纵阀与转向器及动力缸一体的整体式 动力转向装置中的操纵阀。 2引用标准 JB 3784汽车液压转向加力装置及动力转向器总成台架试验方法。 3试验类别及项目 3.1可靠性试验 本标准规定操纵阀总成可靠性试验按JB 3784执行。 3.2性能试验 3.2.1动力转向操纵阀油压灵敏度特性试验。 3.2.2动力转向操纵阀操纵力特性试验。 3.2.3动力转向操纵阀泄漏试验。

3.2.4动力转向操纵阀压力降试验。 4试验设备及要求 4.1试验设备液压系统工作原理见图1。 4.2试验台液压源应满足动力转向最大工作油压及流量的要求。 4.3试验用油粘度为17~23mm2/s(50℃)。过滤精度不低于30μm。 5试验条件 5.1操纵阀进油口油温50±5℃。 5.2流量:除另有规定外,应为动力转向装用车辆发动机怠速时的油泵输出量。 5.3操作转向盘的角速度不得大于10°/s。 5.4每次试验前仪器调零。 5.5每项性能试验样品不得少于三个。 6试验仪器精度 6.1压力表精度为0.5级。 6.2流量测试外表误差小于0.5%。 6.3转角测试仪线性误差小于0.5%。 6.4扭矩测试仪线性误差小于0.5%。 7试验方法及试验结果处理 7.1一样要求 7.1.1将操纵阀阀芯置于中间位置。 7.1.2操纵阀的固定 关于单独操纵阀总成应将操纵阀阀体固定,关于联阀式动力转向装置应将动 力缸缸体及动力缸活塞杆固定,关于半整体及整体式动力转向装置应将转向器及 转向摇臂固定。 7.1.3油压的测量点 在操纵阀的进油口与回油口测量油压。

汽车转向电动机工作原理及转向系统概述

汽车转向电动机工作原理及转向系统概述 汽车上配置的转向系统,大致可以分为三类:(1)一种是机械式液压动力转向系统;(2)一种是电子液压助力转向系统;(3)另外一种电动助力转向系统。 一、电动助力转向系统(EPS) 1、英文全称是Electronic Power Steering,简称EPS,它利用电动机产生的动力协助驾车者进行动力转向。EPS的构成,不同的车尽管结构部件不一样,但大体是雷同。一般是由转矩(转向)传感器、电子控制单元、电动机、减速器、机械转向器、以及畜电池电源所构成。 2、主要工作原理:汽车在转向时,转矩(转向)传感器会“感觉”到转向盘的力矩和拟转动的方向,这些信号会通过数据总线发给电子控制单元,电控单元会根据传动力矩、拟转的方向等数据信号,向电动机控制器发出动作指令,从而电动机就会根据具体的需要输出相应大小的转动力矩,从而产生了助力转向。如果不转向,则本套系统就不工作,处于standby(休眠)状态等待调用。由于电动电动助力转向的工作特性,你会感觉到开这样的车,方向感更好,高速时更稳,俗话说方向不发飘。又由于它不转向时不工作,所以,也多少程度上节省了能源。一般高档轿车使用这样的助力转向系统的比较多。

由于电动助力转向系统只需电力不用液压,与机械式液压动力转向系统相比较省略了许多元件。没有液压系统所需要的油泵、油管、压力流量控制阀、储油罐等,零件数目少,布置方便,重量轻。 而且无“寄生损失”和液体泄漏损失。因此电动助力转向系统在各种行驶条件下均可节能80%左右,提高了汽车的运行性能。因此在近年得到迅速的推广,也是今后助力转向系统的发展方向。 有一些汽车冠以电动助力转向,其实不是真正意义上的纯电动的助力转向,它还需要液压系统,只不过由电动机供油。传统的液压动力转向系统的油泵由发动机驱动。 为保证汽车原地转向或者低速转向时的轻便性,油泵的排量是以发动机怠速时的流量来确定的。而汽车行驶中大部分时间处于高于怠速的速度和直线行驶状态,只能将油泵输出的油液大部分经控制阀回流到储油罐,造成很大的“寄生损失”。 为了减少此类损失采用了电动机驱动油泵,当汽车直线行驶时电动机低速运转,汽车转向时电动机高速运转,通过控制电动机的转速调节油泵的流量和压力,减少“寄生损失”。 二、机械式液压动力转向系统

汽车转向系统

一、课题来源 课题《某车型转向系统优化设计》来源于某整车开发项目。 二、国内外现状 在汽车上,转向系统是必不可少的最基本的系统之一。它也是决定汽车主动安全性的关键总成,如何设计汽车的转向特性,使汽车具有良好的操纵性能很重要。在汽车行驶中,转向运动是最基本的运动,我们通过方向盘来操纵和控制汽车的行驶方向,从而实现自己的行驶意图,转向系的作用是保证汽车在行驶中能适应道路情况改变行驶方向,或保持稳定的直线行驶。 汽车转向系统经历了纯机械式转向系统、液压助力转向系统、电动助力转向系统、线控转向系统4个基本发展阶段。 1. 纯机械式转向系统∶机械式的转向系统,由于采用纯粹的机械解决方案,为了产生足够大的转向扭矩需要使用大直径的转向盘,这样一来,占用驾驶室的空间很大,驾驶员负担较重,特别是重型汽车由于转向阻力较大,单纯靠驾驶员的转向力很难实现转向,这就大大限制了其使用范围。但因结构简单、工作可靠、造价低廉,目前在一部分转向操纵力不大、对操控性能要求不高的微型轿车、农用车上仍有使用。 2. 液压助力转向系统∶80年代后期,又出现了变减速比的液压动力转向系统。在接下来的数年内,动力转向系统的技术革新差不多都是基于液压转向系统,比较有代表性的是变流量泵液压动力转向系统(Variable Displacement Power Steering Pump)和电动液压助力转向(Electric Hydraulic Power Steering,简称EHPS)系统。变流量泵助力转向系统在汽车处于比较高的行驶速度或者不需要转向的情况下,泵的流量会相应地减少,从而有利于减少不必要的功耗。电动液压转向系统采用电动机驱动转向泵,由于电机的转速可调,可以即时关闭,所以也能够起到降低功耗的功效。液压助力转向系统使驾驶室变得宽敞,布置更方便,降低了转向操纵力,也使转向系统更为灵敏。由于该类转向系统技术成熟、能提供大的转向操纵助力,目前在部分乘用车、大部分商用车特别是重型车辆上广泛应用。

毕业论文设计转向系统设计

目录摘要2 第一章绪论3 1.1汽车转向系统概述3 1.2齿轮齿条式转向器概述9 1.3液压助力转向器概述10 1.4国内外发展情况12 1.5本课题研究的目的和意义12 1.6本文主要研究内容13 第二章汽车主要参数的选择14 2.1汽车主要尺寸的确定14 2.2汽车质量参数的确定16 2.3轮胎的选择17 第三章转向系设计概述18 3.1对转向系的要求18 3.2转向操纵机构18 3.3转向传动机构19 3.4转向器20 3.5转角及最小转弯半径20 第四章.转向系的主要性能参数22 4.1转向系的效率22 4.2传动比变化特性23 4.3转向器传动副的传动间隙△T25 4.4转向盘的总转动圈数26 第五章机械式转向器方案分析及设计26 5.1齿轮齿条式转向器26 5.2其他转向器28 5.3齿轮齿条式转向器布置和结构形式的选择29 5.4数据的确定29 5.5设计计算过程31 5.6齿轮轴的结构设计35 5.7轴承的选择35 5.8转向器的润滑方式和密封类型的选择35 5.动力转向机构设计36 5.1对动力转向机构的要求36 5.2动力转向机构布置方案36 5.3液压式动力转向机构的计算38 5.4动力转向的评价指标43

6. 转向传动机构设计45 6.1转向传动机构原理45 6.2转向传送机构的臂、杆与球销47 6.3转向横拉杆及其端部47 6.4杆件设计结果48 7.结论49 致谢49 摘要 本课题的题目是转向系的设计。以齿轮齿条转向器的设计为中心,一是汽车总体构架参数对汽车转向的影响;二是机械转向器的选择;三是齿轮和齿条的合理匹配,以满足转向器的正确传动比和强度要求;四是动力转向机构设计;五是梯形结构设计。因此本课题在考虑上述要求和因素的基础上研究利用转向盘的旋转带动传动机构的齿轮齿条转向轴转向,通过万向节带动转向齿轮轴旋转,转向齿轮轴与转向齿条啮合,从而促使转向齿条直线运动,实现转向。实现了转向器结构简单紧凑,轴向尺寸短,且零件数目少的优点又能增加助力,从而实现了汽车转向的稳定性和灵敏性。在本文中主要进行了转向器齿轮齿条的设计和对转向齿轮轴的校核,主要方法和理论采用汽车设计的经验参数和大学所学机械设计的课程内容进行设计,其结果满足强度要求,安全可靠。 关键词:转向系;机械型转向器;齿轮齿条;液压式助力转向器 Abstract The title of this topic is the design of steering system. Rack and pinion steering gear to the design as the center, one vehicle parameters on the overall framework of the impact of vehicle steering; Second, the choice of mechanical steering; third rack gear and a reasonable match to meet the correct steering gear ratio and strength requirements; Fourth, power steering mechanism design; Fifth, the structural design of trapezoidal. Therefore, taking into account the above issues and factors that require study, based on the steering wheel rotary drive transmission shaft of the steering rack and pinion steering, through the universal joint drive shaft rotation gear shift, steering rack and steering gear shaft meshing, thereby encouraging steering rack linear motion to achieve steering. Simple structure to achieve the steering tight, short axial dimension, and the number of parts can increase the advantages of less power in order to achieve the vehicle steering stability and sensitivity. In this article a major design steering rack and pinion steering gear shaft and the check, the main methods and theoretical experience in the use of automotive design parameters and the University of mechanical design school curriculum design and the results meet the strength

QC T 303-1999汽车动力转向油罐技术条件

中华人民共和国专业标准 QC/T 303—1999 汽车动力转向油罐技术条件代替ZB T23 005—87 本标准适用于汽车液压转向加力装置中的转向油罐。 1 总则 1.1 产品应符合本标准规定。并按照经规定程序批准的图样及技术文件制造。1.2 在产品的有关图样或技术上必须写明: a.代号; b.总容积V,l; c.最大允许贮油量V ,l; max ,l; d.最小允许贮油量V min ,l/min; e.最大允许通过流量Q max f.绝对过滤精度,μ 。 m 绝对过滤精度:能通过转向油罐滤芯的最大的球状颗粒的直径。 2 对产品的技术要求 2.1 产品的任何部位,不得有破损、缺陷等现象。 2.2 对滤芯的要求按国家有关标准中的规定。 2.3 将产品通进0.5MPa的压缩空气保持5min不得有漏气现象。 2.4 产品内部应保证清洁无残渣。 2.5 产品的进出油口应加堵塞,内外表面必须采取防锈措施。 3 试验方法 3.1 将油罐的出口堵塞,油罐进口接0.5MPa压缩空气,保压5分钟。观察漏气情况。 3.2 油罐中的滤芯的试验项目和试验方法按国家有关标准中的规定执行。 4 验收规则

4.1 产品经试验合格后方能出厂,出厂时应附有证明质量合格的文件。 4.2 抽验产品的方法和数量按GB2828—81《逐批检查计数抽样程序及抽样表》中的规定执行。 5 标志、包装、运输和保管 5.1 产品出厂时要标明制造厂名和商标。 5.2 产品包装应符合JB2759—80《机电产品包装通用技术条件》并附有合格证,合格证应包括以下内容: a.制造厂名和商标; b.产品名称和代号; c.制造厂质量管理部门的签章; d.制造日期或生产批号。 5.3 包装外表应标明: a.制造厂名或商标; b.产品名称及代号; c.收货单位及地址; d.包装数量、毛重、净重; e.制造日期或生产批号; f.标有“小心轻放”“勿近潮湿”等字样和标志。 5.4 产品应放在通风干燥的环境内,在正常保管情况下,自出厂期半年内,如 发现锈蚀和损坏,应由制造厂负责。 附加说明: 本标准由中国汽车技术研究中心提出。 本标准由重庆重型汽车研究所归口并负责起草。

电动助力转向系统阻尼特性分析及测试方法

第37卷第5期 2015-05(上 【99】 电动助力转向系统阻尼特性分析及测试方法 The analysis and test method of damping characteristics for electric power steering system李绍松 1,2, 牛加飞 2, 于志新 2, 李连京 2, 钟博浩 2 LI Shao-song1,2, NIU Jia-fei2, YU Zhi-xin2, LI Lian-jing2, ZHONG Bo-hao2 (1. 长春工业大学汽车工程研究院 , 长春 130012; 2. 长春工业大学机电工程学院 , 长春 130012 摘要:电动助力转向(Electric Power Steering,EPS在提供转向助力、减轻驾驶员操纵负担的同时,也能够提高汽车转向性能和驾驶舒适性,进而提高汽车的主动安全性。建立EPS系统仿真验证平台,分析阻尼补偿控制对汽车转向性能影响,结果表明阻尼补偿控制通过设定阻尼补偿控制系数,可改善EPS动态响应及回正性能。提出EPS系统阻尼特性测试方法,准确获得转向系统阻尼系数,为EPS阻尼补偿控制系数的设定提供参数依据。 关键词:电动助力转向;阻尼特性;阻尼补偿系数中图分类号:U461.6 文献标识 码 :A 文章编号:1009-0134(201505(上-0099-03Doi:10.3969/j.issn.1009- 0134.2015.05(上.28 收稿日期:2014-12-03 作者简介:李绍松 (1986 -, 男 , 讲师 , 博士 , 研究方向为汽车动力学仿真与控制。

混合动力装置

HEV(Hybrid-Electric Vehicle)—混合动力装置 定义 HEV(Hybrid-Electric Vehicle)—混合动力装置。混合动力就是指汽车使用汽油驱动和电力驱动两种驱动方式,优点在于车辆启动和停止时,只靠发电机带动,不达到一定速度,发动机就不工作,因此,便能使发动机一直保持在最佳工况状态,动力性好,排放量很低,而且电能的来源都是发动机,只需加油即可。 分类 混合动力汽车的关键是混合动力系统,它的性能直接关系到混合动力汽车整车性能。经过十多年的发展,混合动力系统总成已从原来发动机与电机离散结构向发动机电机和变速箱一体化结构发展,即集成化混合动力总成系统。混合动力总成以动力传输路线分类,可分为串联式、并联式和混联式等三种。 串联式动力:串联式动力由发动机、发电机和电动机三部分动力总成组成,它们之间用串联方式组成SHEV动力单元系统,发动机驱动发电机发电,电能通过控制器输送到电池或电动机,由电动机通过变速机构驱动汽车。小负荷时由电池驱动电动机驱动车轮,大负荷时由发动机带动发电机发电驱动电动机。当车辆处于启动、加速、爬坡工况况时,发动机、电动机组和电池组共同向电动机提供电能;当电动车处于低速、滑行、怠速的工况时,则由电池组驱动电动机,当电池组缺电时则由发动机-发电机组向电池组充电。串联式结构适用于城市内频繁起步和低速运行工况,可以将发动机调整在最佳工况点附近稳定运转,通过调整电池和电动机的输出来达到调整车速的目的。使发动机避免了怠速和低速运转的工况,从而提高了发动机的效率,减少了废气排放。但是它的缺点是能量几经转换,机械效率较低。 并联式动力:并联式装置的发动机和电动机共同驱动汽车,发动机与电动机分属两套系统,可以分别独立地向汽车传动系提供扭矩,在不同的路面上既可以共同驱动又可以单独驱动。当汽车加速爬坡时,电动机和发动机能够同时向传动机构提供动力,一旦汽车车速达到巡航速度,汽车将仅仅依靠发动机维持该速度。电动机既可以作电动机又可以作发电机使用,又称为电动-发电机组。由于没有单独的发电机,发动机可以直接通过传动机构驱动车轮,这种装置更接近传统的汽车驱动系统,机械效率损耗与普通汽车差不多,得到比较广泛的应用。 混联式动力:混联式装置包含了串联式和并联式的特点。动力系统包括发动机、发电机和电动机,根据助力装置不同,它又分为发动机为主和

转向系统特性参数对中心转向区车辆性能的影响

目次 转向系统特性参数对中心转向区车辆性能的影响(摘要链接) (2) 基于状态观测器的天燃气发动机控制策略研究(摘要链接) (3) 基于相似性科学的汽车动力传动系匹配研究(摘要链接) (4) 混合动力车用飞轮电池可行性分析及性能仿真(摘要链接) (5) 基于Matlab的半挂汽车列车侧倾稳定性分析(摘要链接) (6) 汽车空调系统异响引起的车内噪声研究与解决(摘要链接) (7) ABS最佳滑移率控制算法的增益修正研究(摘要链接) (8) 离合器膜片弹簧模糊稳健优化设计(摘要链接) (9) 越野车辆典型地形通过性建模与仿真(摘要链接) (10) 冷起动环境下汽车风窗玻璃除霜特性研究(摘要链接) (11) 基于Ramsis的微型汽车驾驶员舒适性分析(摘要链接) (12) 三元催化器封装国产化开发(摘要链接) (13) 节制杆式模拟汽车座椅强度试验装置研究(摘要链接) (14) 密封条隔声测试方法的介绍与比较(摘要链接) (15) 一种新型高效环保的汽车空调替代制冷剂(摘要链接) (16) 集成铸造缺陷的铝合金轮毂疲劳寿命预测(摘要链接) (17)

转向系统特性参数对中心转向区 车辆性能的影响 管欣1姬鹏1,2詹军1 (1 吉林大学汽车动态模拟国家重点实验室; 2 河北工程大学) 【摘要】在总结中心转向区性能评价标准的基础上,建立了较完善的转向系统模型,将其嵌入到整车模型中,研究了转向系统参数对中心转向区性能的影响。通过中心转向区转向试验与仿真分析数据可知,转向系统传动比、干摩擦、刚度等特性参数直接影响驾驶员的驾驶疲劳度、驾驶路感和车辆的转向灵敏性。 关键词:转向系统特性参数中心转向区性能 Effects of Steering System Characteristics Parameters on On-Center Performance Guan Xin1, Ji Peng1,2, Zhan Jun1 (1.State Key Laboratory of Automobile Dynamics Simulation, Jilin University;2. Hebei University of Engineering) 【Abstract】Based on the evaluation standards for on-center performance, the relatively perfect steering system model is built and imbedded into the complete vehicle model to study the effects of steering system parameters on the on-center performance. The steering tests and simulation results of on-center performance show that the characteristics parameters such as steering ratio, dry friction and stiffness etc.directly affect the driving fatigue, driving road sense and steering sensitivity. Key words:Steering System; Characteristics Parameters; On-center Performance

相关主题