搜档网
当前位置:搜档网 › 初中数学中考计算题

初中数学中考计算题

初中数学中考计算题
初中数学中考计算题

初中数学中考计算题

一.解答题(共30小题)

1.计算题:

①;

②解方程:.

2.计算:+(π﹣2013)0.

3.计算:|1﹣|﹣2cos30°+(﹣)0×(﹣1)2013.

4.计算:﹣.

5.计算:.6..

7.计算:.

8.计算:.

9.计算:.

10.计算:.

11.计算:.

12..13.计算:.14.计算:﹣(π﹣3.14)0+|﹣3|+(﹣1)2013+tan45°.

15.计算:.16.计算或化简:

(1)计算2﹣1﹣tan60°+(π﹣2013)0+|﹣|.

(2)(a﹣2)2+4(a﹣1)﹣(a+2)(a﹣2)

17.计算:

(1)(﹣1)2013﹣|﹣7|+×0+()﹣1;

(2).

18.计算:.

19.(1)

(2)解方程:.

20.计算:

(1)tan45°+sin230°﹣cos30°?tan60°+cos245°;

(2).21.(1)|﹣3|+16÷(﹣2)3+(2013﹣)0﹣tan60°

(2)解方程:=﹣.

22.(1)计算:.

(2)求不等式组的整数解.

23.(1)计算:

(2)先化简,再求值:(﹣)÷,其中x=+1.24.(1)计算:tan30°

(2)解方程:.

25.计算:

(1)

(2)先化简,再求值:÷+,其中x=2+1.26.(1)计算:;

(2)解方程:.

27.计算:.28.计算:.

29.计算:(1+)2013﹣2(1+)2012﹣4(1+)2011.

30.计算:.

2013年6月朱鹏的初中数学组卷

参考答案与试题解析

一.解答题(共30小题)

1.计算题:

①;

②解方程:.

考点:解分式方程;实数的运算;零指数幂;特殊角的三角函数值.

专题:计算题.

分析:①根据零指数幂、特殊角的三角函数值、绝对值求出每一部分的值,再代入求出即可;

②方程两边都乘以2x﹣1得出2﹣5=2x﹣1,求出方程的解,再进行检验即可.

解答:①解:原式=﹣1﹣+1﹣,

=﹣2;

②解:方程两边都乘以2x﹣1得:

2﹣5=2x﹣1,

解这个方程得:2x=﹣2,

x=﹣1,

检验:把x=﹣1代入2x﹣1≠0,

即x=﹣1是原方程的解.

点评:本题考查了解分式方程,零指数幂,绝对值,特殊角的三角函数值等知识点的应用,①小题是一道比较容易出错的题目,解②小题的关键是把分式方程转化成整式方程,同时要注意:解分式方程一定要进行检验.

2.计算:+(π﹣2013)0.

考点:实数的运算;零指数幂.

专题:计算题.

分析:根据零指数幂的意义得到原式=1﹣2+1﹣+1,然后合并即可.

解答:解:原式=1﹣2+1﹣+1

=1﹣.

点评:本题考查了实数的运算:先进行乘方或开方运算,再进行加减运算,然后进行加减运算.也考查了零指数幂.

3.计算:|1﹣|﹣2cos30°+(﹣)0×(﹣1)2013.

考点:实数的运算;零指数幂;特殊角的三角函数值.

分析:根据绝对值的概念、特殊三角函数值、零指数幂、乘方的意义计算即可.

解答:

解:原式=﹣1﹣2×+1×(﹣1)

=﹣1﹣﹣1

=﹣2.

点评:本题考查了实数运算,解题的关键是注意掌握有关运算法则.

4.计算:﹣.

考点:有理数的混合运算.

专题:计算题.

分析:先进行乘方运算和去绝对值得到原式=﹣8+3.14﹣1+9,然后进行加减运算.

解答:解:原式=﹣8+3.14﹣1+9

=3.14.

点评:本题考查了有理数的混合运算:先算乘方,再算乘除,然后进行加减运算;有括号先算括号.

5.计算:.

考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.

专题:计算题.

分析:

根据负整数指数幂、零指数幂以及特殊角的三角函数值得到原式=×(﹣1)﹣1×4,然后进行乘法运算后合并即可.

解答:

解:原式=×(﹣1)﹣1×4

=1﹣﹣4

=﹣3﹣.

点评:本题考查了实数的运算:先算乘方或开方,再算乘除,然后进行加减运算;有括号先算括号.也考查了负整数指数幂、零指数幂以及特殊角的三角函数值.

6..

考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.

分析:分别进行二次根式的化简、负整数指数幂、零指数幂、然后代入特殊角的三角函数值,最后合并即可得出答案.

解答:

解:原式=4﹣2×﹣1+3

=3.

点评:本题考查了实数的运算,涉及了二次根式的化简、负整数指数幂、零指数幂的运算,解答本题的关键是熟练掌握各部分的运算法则.

7.计算:.

考点:实数的运算;零指数幂;负整数指数幂.

专题:计算题.

分析:

根据负整数指数幂、零指数幂的意义和二次根式的乘法得到原式=4+1﹣4﹣,然后化简后合并即可.解答:解:原式=4+1﹣4﹣

=4+1﹣4﹣2

=﹣1.

点评:本题考查了实数的运算:先算乘方或开方,再算乘除,然后进行加减运算;有括号先算括号.也考查了负整数指数幂和零指数幂.

8.计算:.

考点:实数的运算;零指数幂;负整数指数幂.

分析:分别进行二次根式的化简、零指数幂及负整数指数幂的运算,然后合并即可得出答案.

解答:解:原式=2﹣9+1﹣5=﹣11.

点评:本题考查了实数的运算,涉及了二次根式的化简、零指数幂及负整数指数幂,属于基础题,掌握各部分的运算法则是关键.

9.计算:.

考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.

分析:分别进行负整数指数幂、零指数幂、特殊角的三角函数值、绝对值的化简等运算,然后按照实数的运算法则计算即可.

解答:

解:原式=2﹣1+2×﹣2=1﹣.

点评:本题考查了实数的运算,涉及了负整数指数幂、零指数幂、特殊角的三角函数值、绝对值的化简等知识,属于基础题.

10.计算:.

考点:实数的运算;零指数幂;特殊角的三角函数值.

分析:分别进行零指数幂、绝对值的运算,然后代入特殊角的三角函数值,继而合并可得出答案.

解答:

解:原式=1+2﹣+3×﹣×

=3﹣+﹣1

=2.

点评:本题考查了实数的运算,涉及了零指数幂、绝对值的运算,注意熟练掌握一些特殊角的三角函数值.11.计算:.

考点:二次根式的混合运算;特殊角的三角函数值.

分析:首先计算乘方开方运算,代入特殊角的三角函数值,然后合并同类二次根式即可求解.

解答:

解:原式=﹣1﹣×+(﹣1)

=﹣1﹣+﹣1

=﹣2.

点评:本题考查了二次根式的化简、特殊角的三角函数值,正确理解根式的意义,对二次根式进行化简是关键.

12..

考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.

专题:计算题.

分析:原式第一项利用立方根的定义化简,第二项利用负数的绝对值等于它的相反数计算,第三项利用零指数幂法则计算,第四项利用负指数幂法则计算,第五项利用﹣1的奇次幂为﹣1计算,最后一项利用特殊角的三角函数值化简,即可得到结果.

解答:

解:原式=3﹣4+1﹣8﹣1+=﹣.

点评:此题考查了实数的运算,涉及的知识有:零指数幂、负指数幂,绝对值,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.

13.计算:.

考点:实数的运算;零指数幂;负整数指数幂.

专题:计算题.

分析:零指数幂以及负整数指数幂得到原式=4﹣1×1﹣3﹣2,再计算乘法运算,然后进行加减运算.

解答:解:原式=4﹣1×1﹣3﹣2

=4﹣1﹣3﹣2

=﹣2.

点评:本题考查了实数的运算:先算乘方或开方,再算乘除,然后进行加减运算;有括号先算括号.也考查了零指数幂以及负整数指数幂.

14.计算:﹣(π﹣3.14)0+|﹣3|+(﹣1)2013+tan45°.

考点:实数的运算;零指数幂;特殊角的三角函数值.

专题:计算题.

分析:本题涉及零指数幂、乘方、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.

解答:解:原式=3﹣1+3﹣1+1

=5.

点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是掌握零指数幂、乘方、特殊角的三角函数值、二次根式化简考点的运算.

15.计算:.

考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.

专题:计算题.

分析:

根据负整数指数幂、零指数幂和cos30°=得到原式=﹣2×﹣1+2013,再进行乘法运算,然后合并同类二次根式即可.

解答:

解:原式=﹣2×﹣1+2013

=﹣﹣1+2013

=2012.

点评:本题考查了实数的运算:先进行乘方或开方运算,再进行乘除运算,然后进行加减运算.也考查了负整数指数幂、零指数幂以及特殊角的三角函数值.

16.计算或化简:

(1)计算2﹣1﹣tan60°+(π﹣2013)0+|﹣|.

(2)(a﹣2)2+4(a﹣1)﹣(a+2)(a﹣2)

考点:整式的混合运算;实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.

分析:(1)首先带入特殊角的三角函数值,计算乘方,去掉绝对值符号,然后进行加减运算即可;

(2)首先利用乘法公式计算多项式的乘法,然后合并同类项即可求解.

解答:

解:(1)原式=﹣×+1+

=﹣3+1+

=﹣1;

(2)原式=(a2﹣4a+4)+4a﹣4﹣(a2﹣4)

=a2﹣4a+4+4a﹣4﹣a2+4

=8.

点评:本题考查了整式的混合运算,以及乘法公式,理解运算顺序是关键.

17.计算:

(1)(﹣1)2013﹣|﹣7|+×0+()﹣1;

(2).

考点:实数的运算;零指数幂;负整数指数幂.

专题:计算题.

分析:(1)根据零指数幂的意义和进行开方运算得到原式=﹣1﹣7+3×1+5,再进行乘法运算,然后进行加减运算;

(2)先进行乘方和开方运算得到原式=2﹣﹣2+2﹣,然后进行加减运算.

解答:解:(1)原式=﹣1﹣7+3×1+5

=﹣1﹣7+3+5

=﹣8+8

=0;

(2)原式=2﹣﹣2+2﹣

=﹣.

点评:本题考查实数的运算:先算乘方或开方,再算乘除,然后进行加减运算;有括号先算括号.也考查了零指数幂与负整数指数幂.

18.计算:.

考点:实数的运算;零指数幂.

专题:计算题.

分析:原式第一项利用立方根的定义化简,第二项利用二次根式的化简公式化简,第三项利用零指数幂法则计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.

解答:解:原式=﹣3+3﹣1﹣(4﹣π)=π﹣5.

点评:此题考查了实数的运算,涉及的知识有:立方根定义,零指数幂,二次根式的化简,以及绝对值的代数意义,熟练掌握运算法则是解本题的关键.

19.(1)

(2)解方程:.

考点:解分式方程;实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.

分析:(1)由有理数的乘方运算、负指数幂、零指数幂以及绝对值的性质,即可将原式化简,然后求解即可求得答案;

(2)首先观察方程可得最简公分母是:(x﹣1)(x+1),然后两边同时乘最简公分母可把分式方程化为整式方程来解答,注意分式方程需检验.

解答:

解:(1)原式=﹣1×4+1+|1﹣2×|

=﹣4+1+﹣1

=﹣4;

(2)方程两边同乘以(x﹣1)(x+1),得:

2(x+1)=3(x﹣1),

解得:x=5,

检验:把x=5代入(x﹣1)(x+1)=24≠0,即x=﹣1是原方程的解.

故原方程的解为:x=5.

点评:此题考查了实数的混合运算与分式方程额解法.此题比较简单,注意掌握有理数的乘方运算、负指数幂、零指数幂以及绝对值的性质,注意分式方程需检验.

20.计算:

(1)tan45°+sin230°﹣cos30°?tan60°+cos245°;

(2).

考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.

专题:计算题.

分析:(1)先根据特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可;

(2)根据实数混合运算的法则先算乘方,再算乘法,最后算加减即可.

解答:

解:(1)原式=1+()2﹣×+()2=1+﹣+

=;

(2)原式=8﹣3﹣×1﹣1﹣4

=8﹣3﹣﹣1﹣4

=﹣.

点评:本题考查的是实数的运算,在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.

21.(1)|﹣3|+16÷(﹣2)3+(2013﹣)0﹣tan60°

(2)解方程:=﹣.

考点:解分式方程;实数的运算;零指数幂;特殊角的三角函数值.

专题:计算题.

分析:(1)原式第一项利用负数的绝对值等于它的相反数计算,第二项先计算乘方运算,再计算除法运算,第三项利用零指数幂法则计算,最后一项利用特殊角的三角函数值化简,即可得到结果;

(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.

解答:解:(1)原式=3﹣2+1﹣3

=﹣1;

(2)去分母得:3(5x﹣4)=2(2x+5)﹣6(x﹣2),

去括号得:17x=34,

解得:x=2,

经检验x=2是增根,原分式方程无解.

点评:此题考查了解分式方程,以及实数的运算,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.

22.(1)计算:.

(2)求不等式组的整数解.

考点:一元一次不等式组的整数解;实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.

专题:计算题.

分析:(1)分别进行负整数指数幂、零指数幂及绝对值的运算,然后代入特殊角的三角函数值即可.(2)解出两不等式的解,继而确定不等式组的解集,也可得出不等式组的整数解.

解答:

解:(1)原式==﹣1.

(2),

解不等式①,得x≥1,

解不等式②,得x<3,

故原不等式组的解集为:1≤x<3,

它的所有整数解为:1、2.

点评:本题考查了不等式组的整数解及实数的运算,注意掌握不等式组解集的求解办法,负整数指数幂及零指数幂的运算法则是关键.

23.(1)计算:

(2)先化简,再求值:(﹣)÷,其中x=+1.

考点:分式的化简求值;实数的运算;零指数幂;特殊角的三角函数值.

专题:计算题.

分析:(1)原式第一项利用负数的绝对值等于它的相反数计算,第二项利用特殊角的三角函数值化简,第三项利用立方根的定义化简,最后一项利用零指数幂法则计算,即可得到结果;

(2)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,将x的值代入计算即可求出值.

解答:

解:(1)原式=3+×﹣2﹣1=1;

(2)原式=?=?=x+2,

当x=+1时,原式=+3.

点评:此题考查了分式的化简求值,以及实数的运算,分式的加减运算关键是通分,通分的关键是找最简公分母;

分式的乘除运算关键是约分,约分的关键是找公因式.

24.(1)计算:tan30°

(2)解方程:.

考点:解分式方程;实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.

专题:计算题.

分析:(1)原式第一项利用绝对值的代数意义化简,第二项利用零指数幂法则计算,第三项利用负指数幂法则计算,最后一项利用特殊角的三角函数值化简,即可得到结果;

(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.

解答:

解:(1)原式=2﹣+1﹣(﹣3)+3×=2﹣+1+3+=6;

(2)去分母得:1=x﹣1﹣3(x﹣2),

去括号得:1=x﹣1﹣3x+6,

解得:x=2,

经检验x=2是增根,原分式方程无解.

点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.

25.计算:

(1)

(2)先化简,再求值:÷+,其中x=2+1.

考点:分式的化简求值;实数的运算;零指数幂;负整数指数幂.

分析:(1)根据乘方、绝对值的定义、二次根式的化简、零指数幂、负整数指数幂的法则计算即可;

(2)先把分子分母因式分解,然后计算除法,最后计算加法,化简后把x的值代入计算即可.

解答:解:(1)原式=﹣1﹣7+3×1+5=0;

(2)原式=×+=+=,

当x=2+1时,原式==.

点评:本题考查了实数运算,分式的化简求值,解题的关键是掌握有关运算法则,以及注意通分和约分.

26.(1)计算:;

(2)解方程:.

考点:解分式方程;实数的运算;零指数幂;特殊角的三角函数值.

专题:计算题.

分析:(1)原式第一项利用特殊角的三角函数值化简,第二项利用零指数幂法则计算,最后一项利用绝对值的代数意义化简,计算即可得到结果;

(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:

解:(1)原式=2×+1+2﹣=3;

(2)去分母得:2﹣5=2x﹣1,

解得:x=﹣1,

经检验x=﹣1是分式方程的解.

点评:此题考查了解分式方程,以及实数的运算,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.

27.计算:.

考点:实数的运算;零指数幂;负整数指数幂.

分析:分别进行负整数指数幂、零指数幂、绝对值、乘方以及二次根式化简等运算,然后按照实数的运算法则计算即可.

解答:解:原式=3﹣1+4+1﹣2

=5.

点评:本题考查了实数的运算,涉及了负整数指数幂、零指数幂、绝对值、乘方以及二次根式化简等知识,属于基础题.

28.计算:.

考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.

专题:计算题.

分析:分别根据0指数幂、负整数指数幂的运算法则,绝对值的性质及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可.

解答:解:原式=1+2﹣(2﹣)﹣1

=.

点评:本题考查的是实数的运算,熟知0指数幂、负整数指数幂的运算法则,绝对值的性质及特殊角的三角函数值是解答此题的关键.

29.计算:(1+)2013﹣2(1+)2012﹣4(1+)2011.

考点:二次根式的混合运算.

专题:计算题.

分析:先利用提公因式的方法提出(1+)2011,得到原式=(1+)2011[(1+)2﹣2(1+)﹣4],然后计算中括号,再进行乘法运算.

解答:解:原式=(1+)2011[(1+)2﹣2(1+)﹣4]

=(1+)2011[1+2+5﹣2﹣2﹣4]

=(1+)2011×0

=0.

点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.

30.计算:.

考点:幂的乘方与积的乘方;零指数幂;负整数指数幂.

分析:根据负整数指数幂、零指数幂、幂的乘方与积的乘方等知识点进行作答.

解答:解:原式=﹣8+1﹣1

=﹣8.

点评:本题考查了负整数指数幂、零指数幂、幂的乘方与积的乘方,熟练掌握运算性质和法则是解题的关键.

初中数学中考计算题

初中数学中考计算题

一.解答题(共30小题) 1.计算题: ①; ②解方程:. 2.计算:+(π﹣2013)0. 3.计算:|1﹣|﹣2cos30°+(﹣)0×(﹣1)2013. 4.计算:﹣. 5.计算:.6.. 7.计算:. 8.计算:. 9.计算:. 10.计算:. 11.计算:. 12..13.计算:.14.计算:﹣(π﹣3.14)0+|﹣3|+(﹣1)2013+tan45°. 15.计算:.16.计算或化简: (1)计算2﹣1﹣tan60°+(π﹣2013)0+|﹣|. (2)(a﹣2)2+4(a﹣1)﹣(a+2)(a﹣2) 17.计算: (1)(﹣1)2013﹣|﹣7|+×0+()﹣1; (2). 18.计算:.

19.(1) (2)解方程:. 20.计算: (1)tan45°+sin230°﹣cos30°?tan60°+cos245°; (2).21.(1)|﹣3|+16÷(﹣2)3+(2013﹣)0﹣tan60° (2)解方程:=﹣. 22.(1)计算:. (2)求不等式组的整数解. 23.(1)计算: (2)先化简,再求值:(﹣)÷,其中x=+1.24.(1)计算:tan30° (2)解方程:. 25.计算: (1) (2)先化简,再求值:÷+,其中x=2+1.26.(1)计算:; (2)解方程:. 27.计算:.28.计算:. 29.计算:(1+)2013﹣2(1+)2012﹣4(1+)2011. 30.计算:.

2013年6月朱鹏的初中数学组卷 参考答案与试题解析 一.解答题(共30小题) 1.计算题: ①; ②解方程:. 考点:解分式方程;实数的运算;零指数幂;特殊角的三角函数值. 专题:计算题. 分析:①根据零指数幂、特殊角的三角函数值、绝对值求出每一部分的值,再代入求出即可; ②方程两边都乘以2x﹣1得出2﹣5=2x﹣1,求出方程的解,再进行检验即可. 解答:①解:原式=﹣1﹣+1﹣, =﹣2; ②解:方程两边都乘以2x﹣1得: 2﹣5=2x﹣1, 解这个方程得:2x=﹣2, x=﹣1, 检验:把x=﹣1代入2x﹣1≠0, 即x=﹣1是原方程的解. 点评:本题考查了解分式方程,零指数幂,绝对值,特殊角的三角函数值等知识点的应用,①小题是一道比较容易出错的题目,解②小题的关键是把分式方程转化成整式方程,同时要注意:解分式方程一定要进行检验. 2.计算:+(π﹣2013)0. 考点:实数的运算;零指数幂. 专题:计算题. 分析:根据零指数幂的意义得到原式=1﹣2+1﹣+1,然后合并即可. 解答:解:原式=1﹣2+1﹣+1 =1﹣. 点评:本题考查了实数的运算:先进行乘方或开方运算,再进行加减运算,然后进行加减运算.也考查了零指数幂. 3.计算:|1﹣|﹣2cos30°+(﹣)0×(﹣1)2013. 考点:实数的运算;零指数幂;特殊角的三角函数值. 分析:根据绝对值的概念、特殊三角函数值、零指数幂、乘方的意义计算即可. 解答: 解:原式=﹣1﹣2×+1×(﹣1) =﹣1﹣﹣1

初中数学经典题精选

. 数学试题一、选择题 1、若一次函数y=kx+1与两坐标轴围成的三角形面 积为3,则k为(C) A 、1 B 、- 1 C 1 D 1 66 、±、± 6 3 1 1 =3, 2m 3mn 2n 的值是(B) 2、若 n m 2mn n m 3 7 A、1.5 B 、5 C 、-2 D、-5 3、判断下列真命题有(C) ①任意两个全等三角形可拼成平行四边形②两条对角线垂直且相等的四边形是正方形③四边形ABCD,AB=BC=CD,∠A=90°, 那么它是正方形④在同一平面内,两条线段不相交就会平行⑤有一条对角线平分一个内角的平行四边形是菱形 A、②③ B 、①②④C、①⑤D、②③④ 4、如图,矩形ABCD中,已知AB=5,AD=12,P是AD上的动点,PE⊥AC于E,PF⊥BD于F,则PE+PF= (B)6024 55 A、5B 、13 C、5 D 、12 5、在直角坐标系中,已知两点A(-8,3)、B(-4,5)以及动点C(0,n)、D(m,0),则当四边形ABCD的周长最小时,比值 m 为n () 2 3 3 3 A、-3 B、-2 C、-4 D、4 二、填空 题 6、当x= |x| 3x 2 1 2 时,与 x 互为倒数。9、已知x- 3x+1=0 ,求(x-x)= x 3 7、一个人要翻过两座山到另外一个村庄,途中的道路不是上山就是下山,已知他上山的速度为v,下山的速度为v′,单程 的路程为s.则这个人往返这个村庄的平均速度为 8、将点A(4,0)绕着原点O顺时针方向旋转30°角到对应点A,则点A的坐标是 9、菱形ABCD的一条对角线长为6,边AB的长是方程(X-3)(X-4)=0 的解,则菱形ABCD的周长为 10、△ABC中,∠A=90°,AB=AC,BD是△ABC的中线,△CDB内以CD为边的等腰直角三角形周长是 11.如图,边长为6的菱形ABCD中,∠DAB=60°,AE=AB,F是AC?上一动点,EF+BF的最小值为 12、如图,边长为3的正方形ABCD顺时针旋转30°,得上图,交DE于D’,阴影部分面积是

(完整版)初中数学二次函数专题经典练习题(附答案)

二次函数总复习经典练习题 1.抛物线y=-3x2+2x-1 的图象与坐标轴的交点情况是( ) (A) 没有交点.(B) 只有一个交点. (C) 有且只有两个交点.(D) 有且只有三个交点. 2.已知直线y=x 与二次函数y=ax2-2x- 1 图象的一个交点的横坐标为1,则 a 的值为( ) (A)2 .(B)1 .(C)3 .(D)4 . 3.二次函数y=x2-4x+3的图象交x轴于A、B两点,交y 轴于点C,则△ ABC的面积为( ) (A)6 .(B)4 .(C)3 .(D)1 . 2 4.函数y=ax 2+bx+ c 中,若a> 0,b< 0,c<0,则这个函数图象与x 轴的交点情况是( ) (A) 没有交点. (B) 有两个交点,都在x 轴的正半轴. (C) 有两个交点,都在x 轴的负半轴. (D) 一个在x 轴的正半轴,另一个在x 轴的负半轴. 5.已知(2 ,5) 、(4 ,5)是抛物线y=ax2+bx+c 上的两点,则这个抛物线的对称轴方程是( ) a (A) x= .(B) x=2.(C) x=4.(D) x=3. b 6.已知函数y=ax2+bx+ c 的图象如图 1 所示,那么能正确反映函数y=ax+ b 图象的只可能是( ) 7.二次函数y=2x2-4x+5 的最小值是_____ . 2 8.某二次函数的图象与x轴交于点( -1,0) ,(4 ,0) ,且它的形状与y=-x2形状相同.则这个二次函数的解析式为_____ . 9.若函数y=-x2+4 的函数值y> 0,则自变量x 的取值范围是______ . 10.某品牌电饭锅成本价为70 元,销售商对其销量与定价的关系进行了调查,结果如下:

2017中考数学计算题专项训练

2014年中考数学计算题专项训练 一、集训一(代数计算) 1. 计算: (1)30 82 145+-Sin (2) (3)2×(-5)+23-3÷1 2 (4)22+(-1)4+(5-2)0-|-3|; (6)?+-+-30sin 2)2(20 (8)()()0 2 2161-+-- (9)( 3 )0 - ( 12 )-2 + tan45° (10)()()0332011422 ---+÷- 2.计算:345tan 3231211 0-?-??? ? ??+??? ??-- 3.计算:( ) () () ??-+-+-+ ?? ? ??-30tan 3312120122010311001 2 4.计算:()( ) 11 2230sin 4260cos 18-+ ?-÷?--- 5.计算:12010 0(60)(1) |2(301) cos tan -÷-+-

二、集训二(分式化简) 注意:此类要求的题目,如果没有化简,直接代入求值一分不得! 考点:①分式的加减乘除运算 ②因式分解 ③二次根式的简单计算 1. . 2。 2 1 422 ---x x x 3.(a+b )2 +b (a ﹣b ). 4. 11()a a a a --÷ 5.2 11 1x x x -??+÷ ??? 6、化简求值 (1)????1+ 1 x -2÷ x 2 -2x +1 x 2-4,其中x =-5. (2)(a ﹣1+)÷(a 2 +1),其中a= ﹣1. (3)2121(1)1a a a a ++-?+,其中a (4))2 5 2(423--+÷--a a a a , 1-=a (5))1 2(1a a a a a --÷-,并任选一个你喜欢的数a 代入求值.

推荐--初中数学经典易错题集锦及答案

数学错题集

一、选择题 1、A、B是数轴上原点两旁的点,则它们表示的两个有理数是-----------------------------() A、互为相反数 B、绝对值相等 C、是符号不同的数 D、都是负数 2、有理数a、b在数轴上的位置如图所示,则化简|a-b|-|a+b|的结果是--------------------() A、2a B、2b C、2a-2b D、2a+b 3、轮船顺流航行时m千米/小时,逆流航行时(m-6)千米/小时,则水流速度-----------------() A、2千米/小时 B、3千米/小时 C、6千米/小时 D、不能确定 4、方程2x+3y=20的正整数解有---------------------------------------------------------() A、1个 B、3个 C、4个 D、无数个 5、下列说法错误的是-------------------------------------------------------------------()a b

A. 两点确定一条直线 B 、线段是直线的一部分 C 、一条直线是一个平角 D 、把线段向两边延长即是直线 6.函数y=(m 2-1)x 2-(3m-1)x+2的图象与x 轴的交点情况是---------------------------------- ( ) A.当m ≠3时,有一个交点 B 、1±≠m 时,有两个交 C 、当1±=m 时,有一个交点 D 、不论m 为何值,均无交点 7.如果两圆的半径分别为R 和r (R>r ),圆心距为d ,且(d-r)2=R 2,则两圆的位置关系是---------( ) A 、内切 B 、外切 C 、内切或外切 D 、不能确定 8、在数轴上表示有理数a 、b 、c 的小点分别是A 、B 、C 且b

中考数学计算题训练及答案

1.计算:22+|﹣1|﹣ . 2计算:( 3 )0 - ( 12 )-2 + tan45° 3.计算:2×(-5)+23-3÷12 . 4. 计算:22+(-1)4+(5-2)0-|-3|; 5.计算:3082145+- Sin 6.计算:?+-+-30sin 2)2(20. 7.计算 , 8.计算:a(a-3)+(2-a)(2+a) 9.计算: 10. 计算:()()0332011422 ---+÷-

11.解方程x 2﹣4x+1=0. 12.解分式方程 2322-=+x x 13.解方程:3x = 2x -1 . 14.已知|a ﹣1|+ =0,求方裎+bx=1的解. 15.解方程:x 2+4x -2=0 16.解方程:x x -1 - 3 1- x = 2. 17.(2011.苏州)解不等式:3﹣2(x ﹣1)<1. 18.解不等式组:???2x +3<9-x ,2x -5>3x . 19.解不等式组()()() ?? ?+≥--+-14615362x x x x 20.解不等式组?????<+>+.22 1,12x x 答案 1.解: 原式=4+1﹣3=2 2.解:原式=1-4+1=-2. 3.解:原式=-10+8-6=-8 4.解:原式=4+1+1-3=3。

5.解:原式=222222=+-. 6. 解:原式=2+1+2×2 1=3+1=4. 7. 解:原式=1+2﹣+2×=1+2﹣+=3. 8.解: ()()()22a a 32a 2a a 3a 4a =43a -+-+=-+-- 9. 解:原式=5+4-1=8 10. 解:原式=31122 -- =0. 11. 解:(1)移项得,x 2﹣4x=﹣1, 配方得,x 2﹣4x+4=﹣1+4,(x ﹣2)2=3,由此可得x ﹣2=± ,x 1=2+,x 2=2﹣; (2)a=1,b=﹣4,c=1.b 2﹣4ac=(﹣4)2﹣4×1×1=12>0. x==2±, x 1=2+,x 2=2﹣. 12.解:x=-10 13.解:x=3 14. 解:∵|a﹣1|+ =0,∴a﹣1=0,a=1;b+2=0,b=﹣2. ∴﹣2x=1,得2x 2+x ﹣1=0,解得x 1=﹣1,x 2=. 经检验:x 1=﹣1,x 2=是原方程的解.∴原方程的解为:x 1=﹣1,x 2=. 15.解: 2x - 16. 解:去分母,得 x +3=2(x -1) . 解之,得x =5. 经检验,x =5是原方程的解. 17. 解:3﹣2x+2<1,得:﹣2x <﹣4,∴x>2. 18.解:x <-5 19.解:15≥x 20. 解:不等式①的解集为x >-1;不等式②的解集为x +1<4 x <3 故原不等式组的解集为-1<x <3.

初中数学经典几何题及答案

4e d c 经典难题(一) 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二) 3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、 CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . A P C D B A F G C E B O D D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 A N F E C D M B

P C G F B Q A D E 经典难题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) 2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题: 设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形 CBFG ,点P 是EF 的中点. 求证:点P 到边AB 的距离等于AB 的一半.(初二) 经典难题(三) 1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .(初二) · A D H E M C B O · G A O D B E C Q P N M · O Q P B D E C N M · A A F D E C B

中考数学计算题专项训练(全)

2 + 3 8 3.计算:2×(-5)+23-3÷1 9. 计算:( 3 )0 - ( )-2 + tan45° 2 - (-2011)0 + 4 ÷ (-2 )3 中考专项训练——计算题 集训一(计算) 1. 计算: Sin 450 - 1 2.计算: 2 . 4.计算:22+(-1)4+( 5-2)0-|-3|; 5.计算:22+|﹣1|﹣ . 8.计算:(1) (- 1)2 - 16 + (- 2)0 (2)a(a-3)+(2-a)(2+a) 1 2 10. 计算: - 3 6.计算: - 2 + (-2) 0 + 2sin 30? . 集训二(分式化简) 7.计算 , 1. (2011.南京)计算 .

x 2 - 4 - 9.(2011.徐州)化简: (a - ) ÷ a - 1 10.(2011.扬州)化简 1 + x ? ÷ x ( 2. (2011.常州)化简: 2 x 1 x - 2 7. (2011.泰州)化简 . 3.(2011.淮安)化简:(a+b )2+b (a ﹣b ). 8.(2011.无锡)a(a-3)+(2-a)(2+a) 4. (2011.南通)先化简,再求值:(4ab 3-8a 2b 2)÷4ab +(2a +b )(2a -b ),其中 a =2,b =1. 1 a a ; 5. (2011.苏州)先化简,再求值: a ﹣1+ )÷(a 2+1),其中 a= ﹣ 1. 6.(2011.宿迁)已知实数 a 、b 满足 ab =1,a +b =2,求代数式 a 2b +ab 2 的值. ? ? 1 ? x 2 - 1 ? 集训三(解方程) 1. (2011?南京)解方程 x 2﹣4x+1=0.

中考数学计算题集锦

中考计算题集锦 一、计算题 1.计算:102010 )51()5(97)1(-+-?+---π 2. 1021 ()2)(2)3 --- 3.计算:22 +|﹣1|﹣错误!未找到引用源。 4. 计算:2×(-5)+23-3÷12 5.计算:22+(-1)4+ (5-2)0-|-3|; 6.计算:a(a-3)+(2-a)(2+a) 7.计算:错误!未找到引用源。 8.. 计算:()()0332011422 ---+÷- 9、计算:1021 ()2)(2)3--- 10. )]4 1()52 [()3(-÷-÷- 11.74)431()1651()56(?-÷-?- 12. )3 15141(601+-÷

13.5145203- + 14.7531 31234+- 二、中考分式化简与求值 1、 .2 5 624322+-+-÷+-a a a a a 选一个使原代数式有意义的数带入求值. 2、先化简22(1)11 a a a a a -+÷+-,再从1,-1a 的值代入求值。 3、先化简,再求值:222 11()x y x y x y x y +÷ -+-,其中1,1x y == 4、先化简,再求值: a -2a 2 -4 +1 a +2 ,其中a =3.

5、先化简,再求值:)11(x -÷1 1 22 2-+-x x x ,其中x =2. 6、先化简,再求值:(x – 1x )÷ x +1 x ,其中x = 2+1. 7、先化简,再求值:11 1222122 2-++++÷--x x x x x x ,其中12+=x . 8、先化简,再求值:a a a a a -+-÷--2 244)111(,其中1-=a 9、先化简,再求值:2 4)2122(+-÷+--x x x x ,其中34 +-=x .

初中数学经典易错题集锦及答案

初中数学经典易错题集锦 一、选择题 1、A 、B 是数轴上原点两旁的点,则它们表示的两个有理数是 -----------------------------( ) A 、互为相反数 B 、绝对值相等 C 、是符号不同的数 D 、都是负数 2、有理数a 、b 在数轴上的位置如图所示,则化简|a-b|-|a+b|的结果是--------------------( ) A 、2a B 、2b C 、2a-2b D 、2a+b 3、轮船顺流航行时m 千米/小时,逆流航行时(m-6)千米/小时,则水流速度-----------------( ) A 、2千米/小时 B 、3千米/小时 C 、6千米/小时 D 、不能确定 4、方程2x+3y=20的正整数解有---------------------------------------------------------( ) A 、1个 B 、3个 C 、4个 D 、无数个 5、下列说法错误的是-------------------------------------------------------------------( ) A. 两点确定一条直线 B 、线段是直线的一部分 C 、一条直线是一个平角 D 、把线段向两边延长即是直线 6.函数y=(m 2-1)x 2 -(3m-1)x+2的图象与x 轴的交点情况是---------------------------------- ( ) A.当m ≠3时,有一个交点 B 、1±≠m 时,有两个交 C 、当1±=m 时,有一个交点 D 、不论m 为何值,均无交点 7.如果两圆的半径分别为R 和r (R>r ),圆心距为d ,且(d-r)2=R 2 ,则两圆的位置关系是---------( ) A 、内切 B 、外切 C 、内切或外切 D 、不能确定 8、在数轴上表示有理数a 、b 、c 的小点分别是A 、B 、C 且b

2018中考数学计算题专项训练

2018年中考数学计算题专项训练 一、选择填空 1.下列运算错误的是( ) A . B . C . D . 2.下列计算正确的是( ) A . ﹣|﹣3|=﹣3 B . 30=0 C . 3﹣1=﹣3 D . =±3 3.下列各式化简结果为无理数的是( ) A . B . C . D . 4.已知分式的值为零,那么x 的值是 _________ 5.函数y=1-x 3 x +中自变量x 的取值范围是 _________ 二、代数计算 1. 30821 45+-Sin 2 . 3.计算2×(-5)+23-3÷1 2 4. -22+(-1)4+(5-2)0-|-3|; 5. ( 3 )0 - ( 12 )-2 + tan45° 6计算:3 45tan 32 31211 0-?-???? ??+??? ??-- 7. ()()()??-+-+-+??? ??-30tan 331212012201031100102 8. 计算:()()0112230sin 4260cos 18-+?-÷?--- 90238(2452005)(tan 602)3---?-+?-

10.计算:120100(60)(1)|28|(301)21 cos tan -÷-+--?-- 三、分式化简求值(注意:此类要求的题目,如果没有化简,直接代入求值一分不得!) 1. ()()()()a -b a 2-b -a b a -b a 2++,其中a 、b 是方程01-x 2x 2=+的两根。 2、 3. 11()a a a a --÷ 4.2111x x x -??+÷ ??? 5、化简求值 (1)??? ?1+ 1 x -2÷ x2-2x +1 x2-4,其中x =-5. (2)2121(1)1a a a a ++-?+,其中a 2 (3))2-a -2-5(4-2-3a a a ÷, 1-=a (4) )12(1a a a a a --÷-,并任选一个你喜欢的数a 代入求值.

2018年中考数学计算题专项训练

2018年中考数学计算题专项训练 一、集训一(代数计算) 1. 计算: (1)30821 45+-Sin (2)错误!未找到引用源。 (3)2×(-5)+23-3÷12 (4)22+(-1)4+(5-2)0-|-3|; (6)?+-+-30sin 2)2(20 (8)()()0 22161-+-- (9)( 3 )0 - ( 12 )-2 + tan45° (10)()()0332011422 ---+÷- 2.计算:345tan 32312110-?-??? ? ??+??? ??-- 3.计算:()() ()??-+-+-+??? ??-30tan 331212012201031100102 4.计算:() ()0112230sin 4260cos 18-+?-÷?--- 5.计算:120100(60)(1) |28|(301) cos tan -÷-+-- 二、集训二(分式化简) 1. . 2。 2 1422---x x x 、 3. (a+b )2 +b (a ﹣b ). 4. 11()a a a a --÷ 5.2111x x x -??+÷ ??? 6、化简求值 (1)??? ?1+ 1 x -2÷ x 2-2x +1 x 2-4,其中x =-5. (2)(a ﹣1+错误!未找到引用源。)÷(a 2+1),其中a=错误!未找到引用源。﹣1. (3)2121(1)1a a a a ++-?+,其中a -1. (4))2 52(423--+÷--a a a a , 1-=a (5))12(1a a a a a --÷-,并任选一个你喜欢的数a 代入求值. (6)22121111x x x x x -??+÷ ?+--??然后选取一个使原式有意义的x 的值代入求值

初中数学计算题道

初中数学计算题(200道) (-1.5)×(-9)-12÷(-4) 56÷(-7)-2÷5+0.4 3.57×29÷(-4) 5.6÷(-2.8)-(-50)÷2 [9.6+(-7.3)]×[(-5)-(-7)] 12.3÷[5.6+(-1.2)] (-75.6)÷(1/4+1/5) 9.5×(-9.5)÷1/2 95.77÷(-2)+(-34.6) (-51.88)÷2-(-5)×24 1.25*(-3)+70*(-5)+5*(-3)+25 9999*3+101*11*(101-92) (23/4-3/4)*(3*6+2) 3/7 × 49/9 - 4/3 8/9 × 15/36 + 1/27 12× 5/6 –2/9 ×3 8× 5/4 + 1/4 6÷ 3/8 –3/8 ÷6 4/7 × 5/9 + 3/7 × 5/9 5/2 -( 3/2 + 4/5 ) 7/8 + ( 1/8 + 1/9 ) 9 × 5/6 + 5/6 3/4 × 8/9 - 1/3 7 × 5/49 + 3/14

6 ×( 1/2 + 2/3 ) 8 × 4/5 + 8 × 11/5 31 × 5/6 – 5/6 9/7 - ( 2/7 – 10/21 ) 5/9 × 18 –14 × 2/7 4/5 × 25/16 + 2/3 × 3/4 14 × 8/7 –5/6 × 12/15 17/32 –3/4 × 9/24 3 × 2/9 + 1/3 5/7 × 3/25 + 3/7 3/14 × 2/3 + 1/6 1/5 × 2/3 + 5/6 9/22 + 1/11 ÷ 1/2 5/3 × 11/5 + 4/3 45 × 2/3 + 1/3 × 15 7/19 + 12/19 × 5/6 1/4 + 3/4 ÷ 2/3 8/7 × 21/16 + 1/2 101 × 1/5 –1/5 × 21 50+160÷40 120-144÷18+35 347+45×2-4160÷52 37×(58+37)÷(64-9×5)95÷(64-45) 178-145÷5×6+42

(易错题精选)最新初中数学—分式的经典测试题及答案解析

一、选择题 1. 计算222x y x y y x +--的结果是( ) A .1 B .﹣1 C .2x y + D .x y + 2.“清明”期间,几名同学包租一辆面包车前往“宜兴竹海”游玩,面包车的租价为600元,出发时,又增加了4名学生,结果每个同学比原来少分担25元车费,设原来参加游玩的同学为x 人,则可得方程( ) A . B . C . D . 3.分式 的值为0,则x 的值为 A .4 B .-4 C . D .任意实数 4.若分式的值为零,则x 的值为( ) A .0 B .﹣2 C .2 D .﹣2或2 5.下列各式从左到右的变形正确的是 ( ) A .22 0.220.33a a a a a a --=-- B .11x x x y x y +--=-- C .116321623a a a a --=++ D .22 b a a b a b -=-+ 6.如图,在长方形ABCD 中无重叠放入面积分别为16cm 2和12cm 2的两张正方形纸片,则图中空白部分的面积为( ) A .﹣12+8 B .16﹣8 C .8﹣4 D .4﹣2 7.若分式 211x x -+的值为零,则x 的值为( ) A .0 B .1 C .1- D .±1 8.下列各式变形正确的是( ) A . B .

C . D . 9.下列各式12x y +,52a b a b --,2235 a b -,3m ,37xy 中,分式共有( )个. A .2 B .3 C .4 D .5 10.如果把分式 22a b ab +中的a 和b 都扩大了2倍,那么分式的值( ) A .扩大2倍 B .不变 C .缩小2倍 D .缩小4倍 11.在式子31x - 、2xy π 、2334 a b c 、2x x 中,分式的个数是( ) A .1个 B .2个 C .3个 D .4个 12.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x 千米/时,则可列方程( ) A . B . C . D . 13.将分式 3ab a b -中的a 、b 都扩大到3倍,则分式的值 ( ) A .不变 B .扩大3倍 C .扩大9倍 D .扩大6倍 14.已知:a=()﹣3,b=(﹣2)2,c=(π﹣2015)0,则a ,b ,c 大小关系是( ) A .b <a <c B .b <c <a C .c <b <a D .a <c <b 15.有个花园占地面积约为 800000平方米,若按比例尺 1 : 2000缩小后,其面积大约相当 于( ) A .一个篮球场的面积 B .一张乒乓球台台面的面积 C .《钱江晚报》一个版面的面积 D .《数学》课本封面的面积 16.在式子x y 3,πa ,13+x ,3 1+x ,a a 2 中,分式有 A .1个 B .2个 C .3个 D .4个 17.在同一段路上,某人上坡速度为a ,下坡速度为b ,则该人来回一趟的平均速度是( ). A .a B .b C .2a b + D .2ab a b +

(完整)初中数学计算题专项练习.doc

计算题:第一部分 (1) (-x)2·(-x)3 (3) x 2m+1 m ·x· x (5) 3 4 ×39 (7) (-y+x) ·-(yx) (9) (-y4)3 + (y3)4 3 4 2 4 4 2 (11) a ·a a +(a) +(-2a ) (13) 3 (- 1 ) 14 7 9 20162015 (15) (-8)× 0.125 (17) (-3xy4)3 242 3 (19) (-x y)÷(-xy) 0-2 (21)(7 × 8) × 10 (23) [( -2)-3-8-1×(-1)-2] × (-π2)0 (25) 0 ( 1 -1 1 1 ()- )| 6 - π --3×+ | - (26) 5 6 2 0 2017 1 (π- 2016)(-- 1)- | -2 | ( ) 4 2 3 (2) 10 × 10×10 3 2 (4)a · (b+1)·a (b+1) (6)(x -2y)2· (2y-x)5 3 4 (8)(a+2b) · (2b+a) (10)(xy 2)2 3 2 3 3 3 + (5x) 2 7 (12) 2(x ) ·x- (3x ) ·x 2 6 4 5 6 ×(-4) 4 (14) (-2 )×0.25 ×( ) 5 12 202 201 201 (16) 0.5 ×2 ×(-1) (18) (-x)2m+2÷(-x)2 10 2 ÷ 3 (20) (xy) ÷(-xy) (xy) (22) 0.5-1 + |1-2|+ (2-1)3 (24) x20÷ [(-x2)3]2-x2·(-x)3÷(-x2)2 2

中考数学计算题训练

中考数学计算题专项训练 一、训练一(代数计算) 1. 计算: (1)30821 45+-Sin (2) (3)2×(-5)+23-3÷12 (4)22+(-1)4+(5-2)0-|-3|; (6)?+-+-30sin 2)2(20 (8)()()0 22161-+-- 2.计算:345tan 32312110-?-??? ? ??+??? ??-- 3.计算:()() ()??-+-+-+??? ??-30tan 331212012201031100102 4.计算:() ()0 112230sin 4260cos 18-+?-÷?--- 5.计算:120100(60)(1)|28|(301)21 cos tan -÷-+--?-- 二、训练二(分式化简) 注意:此类要求的题目,如果没有化简,直接代入求值一分不得! 考点:①分式的加减乘除运算 ②因式分解 ③二次根式的简单计算 1. . 2。 2 1422---x x x 3.(a+b )2 +b (a ﹣b ). 4. 11()a a a a --÷ 5.2111x x x -??+÷ ??? 6、化简求值 (1)????1+ 1 x -2÷ x 2 -2x +1 x 2-4,其中x =-5. (2)2121(1)1a a a a ++-?+,其中a 2-1. (3) )2 52(423--+÷--a a a a , 1-=a (4))12(1a a a a a --÷-,并任选一个你喜欢的数a 代入求值.

(5)22121111x x x x x -??+÷ ?+--??然后选取一个使原式有意义的x 的值代入求值 7、先化简:再求值:????1-1a -1÷a 2-4a +4a 2-a ,其中a =2+ 2 . 8、先化简,再求值:a -1a +2·a 2+2a a 2-2a +1÷1a 2-1 ,其中a 为整数且-3<a <2. 9、先化简,再求值:222211y xy x x y x y x ++÷??? ? ??++-,其中1=x ,2-=y . 10、先化简,再求值: 222112( )2442x x x x x x -÷--+-,其中2x =(tan45°-cos30°) 三、训练三(求解方程) 1. 解方程x 2﹣4x+1=0. 2。解分式方程 2322-=+x x 3解方程:3x = 2x -1 . 4.解方程:x 2+4x -2=0 5。解方程:x x -1 - 31- x = 2. 四、训练四(解不等式) 1.解不等式组,并写出不等式组的整数解. 2.解不等式组?????<+>+.22 1,12x x 3. 解不等式组? ????x +23 <1,2(1-x )≤5,并把解集在数轴上表示出来。 4. 解不等式组31311212 3x x x x +<-??++?+??≤,并写出整数解. 五、训练五(综合演练) 1、(1)计算: |2-|o 2o 12sin30(3)(tan 45)-+--+; (2)先化简,再求值: 6)6()3)(3(2+---+a a a a ,其中12-=a . 2、解方程: 0322=--x x 3、解不等式组1(4)223(1) 5. x x x ?+?,

初一100道数学计算题及答案

=9000-8.8 =8991.2 1.24 X 8.3+8.3 X 1.76 =8.3X( 1.24+1.76) =8.3X 3=24.9 9999X1001 =9999X( 1000+1 ) =9999X 1000+9999 X 1 =10008999 14.8 X 6.3-6.3 X 6.5+ 8.3 X 3.7 =(14.8-6.5)X 6.3 + 8.3X 3.7 =8.3X 6.3+8.3 X 3.7 8.3 X( 6.3+ 3.7) =8.3X 10 =83 1.24+0.78+8.76 =(1.24+8.76) +0.78 =10+0.78 =10.78 933-157-43 =933- (157+43) =933-200 =733 9048 - 268 =(2600+2600+2600+1248)- 26 =2600 - 26+2600 - 26+2600 - 26+1248 - 269 =100+100+100+48 =348 2881 - 43 =(1290+1591)- 434 =1290-43+1591 -

=30+37 3.2 X 42.3 X 3.75-12.5 X 0.423 X 16 =3.2X 42.3 X 3.75-1.25X 42.3 X 1.6 =42.3 X (3.2 X 3.75-1.25 X 1.6) =42.3 X (4 X 0.8 X 3.75-1.25 X 4 X 0.4) =42.3X (4 X 0.4 X 2X 3.75-1.25 X 4X 0.4) =42.3 X (4x0.4x7.5-1.25x4x0.4) =42.3 X [4 X 0.4 X (7.5-1.25)] =42.3 X [4 X 0.4 X 6.25] =42.3 X (4 X 2.5) =4237 1.8+18- 1.5-0.5 X 0.3 =1.8+12-0.15 =13.8-0.15 =13.65 6.5 X 8+3.5X 8-47 =52+28-47 =80-47 (80-9.8) X 5 分之2-1.32 =70.2X2/5-1.32 =28.08-1.32 =21 33.02 —( 148.4 —90.85)- 2.5 =33.02- 57.55 - 2.5 =33.02—23.02 =10 (1 - 1 —1)- 5.1 =(1 —1)- 5.1 =0- 5.1 =0 18.1 +( 3—0.299 - 0.23)X 1 =18.1 + 1.7 X 1 =18.1 + 1.7 =19.8 [-18]+29+[-52]+60= 19 [-3]+[-2]+[-1]+0+1+2= -3

初中数学经典几何题及答案

经典难题(一) 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二) 3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、 CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 经典难题(二) A P C D B A F G C E B O D D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 A N F E C D B

P C G F B Q A D E 1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) 2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题: 设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形 CBFG ,点P 是EF 的中点. 求证:点P 到边AB 的距离等于AB 的一半.(初二) 经典难题(三) 1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .(初二) · A D H E M C B O · G A O D B E C Q P N M · O Q P B D E C N M · A A F D E C B

相关主题