搜档网
当前位置:搜档网 › 浅谈如何构建物理模型

浅谈如何构建物理模型

浅谈如何构建物理模型
浅谈如何构建物理模型

浅谈如何构建物理模型

【摘要】高中学生普遍感觉高中物理难学:听听还懂,解决实际问题就困难。关键在于他们还是习惯于初中的那种形象思维方式,只会记概念、规律的静态结论,而不重视得出结论的发展过程;只会照葫画瓢,模仿性地解决一些简单的物理问题,而不善于通过观察分析,提炼出现实情景的物理模型,尔后纳入到相关的知识体系中去加以处理,最后得到问题的解决。所以,物理教师在完成教学任务的过程中,一定要重视对学生建模意识的培养,只有这样,才使学生在解决物理问题时能清晰地构建出情景条件的物理模型,迅速找到解决问题的方法,从而达到培养学生灵活思变、创造性思维的能力。本文着重从三个方面阐述如何建构物理模型:一、加强基础训练,积累实战经验、二、注重情境变换,拓展思维空间、三、精心整合归类,构建物理模型,目的在于教会学生一种思考问题的方式。

【关键词】夯实基础;情境变换;整合归类

众所周知,理想模型的建构是研究物理的一种重要手段和方法,大物理学家如伽利略、牛顿、爱因斯坦等,他们都是善于建构物理模型的人。物理模型是根据研究的问题和内容在一定条件下对研究客体的抽象,从多维的具体图像中,抓住最具有本质特征的图像,建立起一个易于研究的、能从主要方面反映研究客体的新图像,物理教学的主要任务就是要教会学生这种思考问题的方式,并尝试用所学知识来分析和解决实际问题。新课程改革把课程目标定位于满足学生发展与

浅谈物理学中的抽象和概括

浅谈物理学中的抽象和概括 浅谈物理学中得抽象和概括 1 咨询题得提出 抽象和概括是一种抽象思维方法.许多物理咨询题得提出、物理概念得产生、物理规律得建立、物理理论得形成基本上抽象和概括得结果.由此可见,抽象和概括在物理学得形成进展、完善过程中起着举足轻重得作用.本文从抽象和概括得概念、作用和局限性等几方面做了详细得阐述. 2 抽象和概括得概念 抽象和概括是物理学中抽象思维能力得一种,“物理抽象是在观看、实验得基础上,通过物理概念、物理推断和物理推理得形式,对已获得得物理事实进行加工处理而形成得对物理对象、物理现象、物理过程得本质和规律得认识.”[1]所谓概括,确实是在抽象得基础上,把所有反映物理事物本质得属性结合为一个整体,形成关于物理事物整体得和一般得认识,进而把这种一般得认识推广到同类事物,把握同类事物得共同性和一般性. 抽象性与概括性得统一,是物理抽象思维得一个重要特点,只有通过抽象和概括,才能简化物理对象,形成理想化得过程;在实验和理论分析得基础上得出定量得物理规律. 3 抽象和概括在物理学中得作用 物理学中通过表面现象,揭示内在本质,从而把实际得物质模型化,把复杂得物理咨询题简单化,把具体得物理咨询题理想化,这种简化得过程从思维学得角度上来讲,确实是抽象思维得过程. 31 提炼物理模型论文联盟 “物理模型是依照研究咨询题和内容在一定条件下,对研究客体得抽象,物理模型是物理学中重要得抽象方法之一,它关于差不多规律和差不多理论得建立起着不可替代得作用.WcOm在物理学中,物理模型要紧分三种类型:“客体模型、条件模型和过程模型”.客体模型是客观存在得实际物体通过简化、抽象建立起得物理模型.例如在研究力学中物体得运动时得质点模型.电学中得点电荷、光学中得点光源、弹簧振子、刚体等等,基本上客体模型.条件模型是客观物体在运动变化过程中,对制约物体运动得条件进行取舍,抓住决定条件,忽略次要条件,如此建立起来得理想化条件确实是条件模型.如在平面上运动得物体,若摩擦力f与合力f相比非常小,那个平面称为光滑平面,“光滑平面”确实是条件模型.另外在物理学中得细绳、轻质细杆、稳定电源等等基本上条件模型.过程模型是在一定条件下对具体得运动过程及限制这些过程得条件进行抽象,形成“过程模型”.例如研究地面附近自由落体运动,下落得物体视为“质点”,从静止开始下落得过程中,忽略空气得阻力、浮力、风力、风向等作用,只受到恒定得重力作用,质点在如此理想化条件下运动得过程确实是“自由落体运动”.这确实是一个理想化得过程模型.在热学中,准静态过程也是一个理想化得过程模型.在物理学中理想化条件下得过程模型非常多,如匀速直线运动、简谐振动等等. 在物理学中,正是从实际物体、物理过程、条件中抽象和概括出这些物理模型,才使人们对物质世界得认识不断深化,不断想真理逼近,推动着物理学得进展,从某种意义上讲,各种理想物理模型得建立,正是物理学向深度和广度进展得重要标志之一. 32 总结物理概念、定律 物理概念、定律是物理学得理论基础,只有通过抽象和概括,才能形成物理概念,简化物理对象,形成理想化得过程,在实验和理论分析得基础上,得出定量得物理定律.例如:力得概念是通过抽象和概括一类事物得共同本质属性形成得,如:人推车,马拉犁,即力是物体对物体得作用.简谐振动得规律则是在研究单摆和弹簧振子这些理想模型得运动时概括出来得.可见,物理学中得许多概念、定律是通过抽象思维得加工,在实验得基础上概括出来得. 33 用抽象和概括得方法学习物理学

物理模型在中学物理教学中的作用和意义

学号20095040104 学院物理电子工程学院 专业物理学 年级2009级 姓名杨超 论文题目物理模型在中学物理教学中的作用和意义 指导教师刘慧职称高级实验师

2013年05月01日

目录 摘要 (1) Abstract (1) 引言 (1) 1物理模型的概念 (2) 2物理模型的种类 (2) 2.1 理想化物理模型和探索性物理模型 (2) 2.2 对象模型、过程模型和理论模型 (2) 3物理模型在中学教育中的作用 (5) 3.1 物理模型可以培养学生正确的科学思维方法 (5) 3.2 物理模型具有教师传播知识和学生获取知识的桥梁作用 (5) 3.3 物理模型具有软化教学过程的作用 (6) 4物理模型在中学物理教学中的意义 (6) 4.1 物理模型能够促进学生适应新一轮课程改革 (6) 4.2 物理模型能够促进知识迁移创新学习 (6) 4.3 物理模型能够满足高考改革的需求 (6) 5培养学生构建物理模型的能力 (6) 5.1 引导学生主动掌握建立物理模型的方法 (6) 5.2 模式化构建模型步骤 (7) 5.3 充分利用教学资源降低构建模型的难度 (7) 5.4 重视思维程序训练 (7) 结束语 (8) 参考文献 (8)

物理模型在中学物理教学中的作用和意义 学生姓名:杨超学号:20095040104 学院:物理电子工程学院专业:物理学 指导教师:刘慧职称:高级实验师 摘要:在我国的传统物理教学中,教师比较注重知识的传授,教学活动的开展都是围绕如何有效地传授物理知识。在这样的环境下,学生的知识掌握比较牢固,但随着教育改革的深入,对学生解决实际问题和探索性问题能力的要求越来越高,传统的教育模式已经无法满足学生能力提高的需要。针对这一现象,本论文提出应该重视物理模型在中学物理教学中的作用和意义。本文主要介绍了物理模型的概念、分类以及在中学物理教学中的作用和意义,最后还介绍了培养学生构建物理模型能力的方法。 关键词:物理模型;作用和意义;模型构建 Roles and significances of physical models in middle school teaching Abstract:Traditional physical education in our country pays more attention to imparting knowledge, so the whole teaching process was just around how to teach effectively. In this situation, the students could master the knowledge well. However, as the education reform further, the demand ever higher in solving practical or exploratory problems. Traditional education has been unable to meet the students’ needs of improving the ability. Aiming at this phenomenon, This essay presents that it’s necessary to think highly of the roles and significances of physical models in middle school teaching. This essay mainly introduces the physical models’concept and classification, the roles and significances of physical models are also highlighted. At last, it introduces the ways to improve the students’ ability of constructing physical models. Key words:physical models;roles and significances;models constructing 引言 物理学的研究对象遍及整个物质世界,大到天体,小至基本粒子,无奇不有,无所不在。面对具体复杂的物体,研究它们形形色色的运动,如果不采取科学思维方法,人

略论物理模型的建构及其教学策略

略论物理模型的建构及其教学策略 摘要:准确说来物理模型可分为5种类型,但不同类型的物理模型有着共同的特征;教师在教学中传授给学生建模的方法应当有一套自己的策略。 关键词:物理模型分类特征建模方法教学策略物理学所涉及的研究问题往往十分复杂,为了便于分析研究这些复杂问题而建立的一种高度抽象的理想客体叫做物理模型。物理模型是对物理原型的一种近似反映,它突出地反映了物理原型的某一主要特征,完全地忽略了其它方面的特征。可以说,全部物理学的原理、定律都是对一定的物理模型行为的描述。正是不断进化的物理模型把人们的认识一步一步地引向物质世界的真理。 1 物理模型的分类 物理模型的类型有多种,一般可以分为:①理想化的物体模型:如质点、单摆、弹簧振子、理想气体、点电荷、理想变压器、点光源、薄透镜等,这些物理模型都是在物理原型的基础上突出主要因素、忽略次要因素而形成的,这样一来就能使物理问题的求解变得简单容易。②理想化的过程模型:如力学中的匀速直线运动、平抛运动、弹性碰撞、简谐运动,热学中的气体等温(压)变化,电磁学中的恒定电流、等幅振荡等,它们都是一些实际过程的理想化处理,但是又能很好地与实际情况相似。通过认识简单的过程,进而认识复杂的过程、求解复杂的问题。③理想化的条件模型:当研究带电粒子在电场中运动时,因粒子所受的重力远小于电场力,可以忽略重力的作用,使问题得到简化;力学中的光滑平面、轻质杆,热学中的绝热容器,电学中的匀强电场、匀强磁场等,都是把物体所处的条件理想化。④科学假说模型:以一定的经验材料和已知的事实为根据,以已有的科学理论和技术方法为指导,对未知的自然事物或现象所作出的推测性解释。如玻尔根据氢原子光谱的规律提出的氢原子理论模型,爱因斯坦为了解释光电效应规律提出的光量子假说等。⑤科学理论模型:如万有引力定律、理想气体状态方程等物理规律,既能解释过去且能预测将来,均属于此模型。 2 物理模型的特征 首先,物理模型是科学性和假设性的统一。物理模型不仅反映了物理原型的直观形象,反映了物理原型的主要特征,而且要以实验事实和科学知识为依据,经过抽象与概括、分析与综合、归纳与推理等一系列严密的逻辑论证,所以建立的物理模型虽然有假设的成分但是仍然具有一定的科学性。其次,物理模型是抽象性和形象性的统一。物理模型的建构过程是突出主要因素忽略次要因素,变复杂为简单,完成由具体到抽象、由现象到本质的一个形象思维和抽象思维相结合的过程,物理模型是形象性与抽象性的统一体。另一方面,由于物理模型是抽象思维的结果,所以它还具有一定的假设性,它正确与否要接受来自实践的检验。最后,物理模型是条件性和发展性的统一。物理模型只在一定的条件下、一定的场合中才能适用,它只是一种近似,因此一定要注意具体问题具体分析。物理模型是在不断发展完善的,随着人们对事物的本质的认识不断深入,物理模型也相应地由初级向高级发展并不断完善。 3 建构物理模型的方法 教学物理模型的意义和目的,不在于只让学生熟悉某种模型的概念,更重要的是让学生在掌握模型概念的基础上,能够应用模型去解决实际问题。实际问题一般都是出题者根据自己头脑中的一个理想化物理模型,结合某些问题情境和物

浅谈构建物理模型在解题中的作用

浅谈构建物理模型在解题中的作用 大多数学生进入高中学习以后,感到物理是一门比较难学的科目,解题时往往感到无从下手,这是由于物理的基本概念和规律建立的基础是理想化过程模型和理想化实体模型,因此在解答物理问题时应首先创设物理情景,构建物理模型。 物理概念和规律具有高度的抽象性和客观性,而物理习题由于是描述一些理想物体的基本运动或基本状态,所以物理习题具有理想性、具体性和形象性。为了沟通概念规律与习题的联系,解题中就应创设具有这种联系的“图景”,通过物理图景,构建物理模型,这样可以使物理过程变得更为形象和清晰,对启发学生思维,正确理解物理概念,分析物理问题起到良好的辅助作用。同时使学生形成科学的思维方法和掌握科学的研究方法。 模型最能反映现象和事物的本质,建立模型就是找出、抓住现象和事物的本质和主要矛盾,抽象出物理本质,研究和解决事物的主要矛盾,这样,解决问题时就会取得事半功倍的效果。 为了便于研究物理问题和对物理现象进行客观描述,现就以下几个方面作出分析: 一、简化确定“研究对象”是建立正确物理模型的基础 “研究对象”是参与所研究的物理对象的客体。由于实际参与的客体众多,影响因素复杂,因此在建立物理模型时,首先要对客体进行简化,抓住其主要特征,舍弃其次要因素,因此,要建立正确的物理模型,首先应具有将实际的物理问题简化成理想模型的能力。 对于多个物理客体参与的物理问题,我们要认真分析各个“研究对象”

之间的相互联系,从现状和所求结果入手,找出关键的客体,作为研究对象,它们是物理模型中的“主角”。 比如,对一列水平横波的研究。如果研究质点的振动,可选取某个质点(如振源)为研究对象;要研究波的周期性,可选取水平距离是波长整数倍的两个质点来研究;要研究质点的振动与波动的关系,就要选取某个质点和波动的形态为对象,就可得到这样一幅简单、清晰的物理图景:质点在竖直方向作简谐振动,波在水平方向作匀速运动,质点的振动方向决定了波的传播方向,在质点完成一次全振动的时间内,波恰好向前移动了一个波长。 下面举例说明物理模型在解题中的实际应用。 例一、(见图1)劲度度系数为k 的弹簧一端固定于 墙壁,另一端连着质量为M 的物体,物体静止于光滑水 平面的O 点上,现有一质量为m 的子弹以水平速度v 0 射进且留在物体中,试问最少需要多少时间物体又到达O 点?物体的最大位移是多少? 解:开始时取子弹和物体组成的系统为研究对象,忽略子弹的转动,认为子弹射进物体的过程为平动,从而建立质点系统模型。因为从子弹开始射进物体到停留在物体中这一过程时间极短,弹簧的形变微小到可以忽略,所以可认为在此过程中,沿水平方向系统所受合力为零,系统的变化为完全非弹性碰撞,从而可建立完全非弹性碰撞过程模型。系统动量守恒,故有: (m+M)v=mv 0 由此可得系统的初速度:v=mv 0/(m+M) 又系统获得速度v 的过程短暂,它们的位移微小到可以忽略,故可以认为系统虽已具有速度v 但还处在平衡位置O 点处.此后,选取子弹、物体和

最新高中物理模型解题法的构建

浅谈高中物理的模型构建 思维定势是人们在思维活动中所倾向的特定的思维模式。它是指人们按照某种固定的思路和模式去考虑问题,表现为思维的倾向性和专注性。它有消极的一面,消极的思维定势是指人将头脑中已有的、习惯了的思维模式生搬硬套到新的物理情景中去,不善于变换认识的角度和改变解决问题的方式。但是它也有积极的一面,积极的思维定势有利于物理概念的形成和对物理规律的理解。构建物理模型一定程度上可以说是利用了思维定势积极的一面。 物理学科的研究对象是自然界物质的结构和最普遍的运动形式,对于那些纷繁复杂事物的研究,首先就需要抓住其主要的特征,而舍去那些次要的因素,形成一种经过抽象概括了的理想化的“模型”,这种以模型概括复杂事物的方法,是对复杂事物的合理的简化。如运动员的跳水问题是一个“竖直上抛”运动的物理模型;人体心脏收缩使血液在血管中流动可简化为一个“做功”的模型等等。物理模型是同类通性问题的本质体现和核心归整。 高中物理模型可以分为三类,即实物模型、过程模型、试题模型。接下来分别详细阐述: 一、实体模型 它是用来代替由具体物质组成的,代表研究对象的实体系统。这一类模型在中学物理中最为常见,如力学中有质点、刚体、杠杆、轻质弹簧、单摆、弹簧振子;热学中有弹性球分子模型、理想气体、黑体;电学中有点电荷、试验电荷、理想导体、绝缘体、理想电表、纯电阻、无限长螺线管;光学中的薄透镜、光的波粒二象性模型、原子物理中原子的核式结构模型等。 这种模型教材中较常见,是研究问题时,抓住事物的主要因素,忽略次要因素建立起来的实物模型,对理解的概念起着不可估量的作用。 例1、如图所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上,②中弹簧的左端受大小也为F 的拉力作用,③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动,④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动.若认为弹簧的质量都为零,以l1、l2、l3、l4依次表示四个弹簧的伸长量,则有:()

建立理想模型法

建立理想模型法 Document number【980KGB-6898YT-769T8CB-246UT-18GG08】

初中物理建立理想模型法简介 王台中学王建国 百度+自己的总结,请有选择地参考。 把复杂问题简单化,摒弃次要条件,抓住主要因素,只考虑起决定作用的主要因素,对实际问题进行理想化处理,构建理想化的物理模型,这是一种重要的物理思想。在此基础上,有时为了更加形象地描述所要研究的物理现象、物理问题,还需要引入一些虚拟的内容,借此来形象、直观地表述物理情景。 题型分为两类 一、理想模型是从无到有建立的,例子如下 ※光线、磁感线都是虚拟假定出来的,但它们却直观、形象地表述物理情境与事实,方便地解决问题。通过磁感线研究磁场的分布,通过光线研究光的传播路径和方向。(光的性质波动性、粒子性、沿直线传播)(磁场的性质:对处于其中的磁体、电流、运动电荷有力的作用) ※电路图。(电路的一些性质:电流按照从电源正极流出通过外部电路流回负极、流过用电器会做功、电流有大小、导线有粗细、) ※匀速直线运动,就是一种理想模型。在生活实际中严格的匀速直线运动是无法找到的,但有很多的运动情形都近似于匀速直线运动,按匀速直线运动来处理,大大简化了难题,得到的结果又具有极高的精度,在允许的误差范围内与实际相吻合。(运动物体方向和快慢随时间发生变化) ※杠杆也是一种理想模型,杠杆在实际使用时,由于受力的作用,都会引起或大或小的形变,可忽略不计,因此,我们就把杠杆理相化,认为它无形变。(物体有形状,硬棒,能绕固定点转动) ※原子核式结构模型 ※力的示意图或力的图示 二、把实际物体看作已建立的实体模型 ※斜拉索式大桥看作是杠杆模型。(抓住的主要因素:硬、能绕固定点转动。) ※汛期,江河中的水有时会透过大坝下的底层从坝外的地面冒出来,形成“管涌”,“管涌”的物理模型是连通器。(抓住的主要因素:上部开口,底部连通) ※水面看作镜面(抓住的主要因素:表面光滑) 考题往往问抓住了什么主要因素,忽略了什么次要因素,该如何回答呢? 答:主要因素就是该模型的定义,次要因素自己想。 你可以把问题改一改,就可以看出主、次要因素,例如改成:哪些物体还可以看作某某模型这些物体的共同特征就是主要因素,不同特征就是次要因素。 某高人对高中物理的基本理想化模型分类

浅谈物理模型在教学中的作用

谈物理教学中的物理模型构建 安徽省天城中学黄飞(231480) 【摘要】物理模型教学中将最基础最典型的物理知识、物理问题介绍给学生,并通过建立物理模型,将研究方法也展示给学生,引导学生思考、感悟以至升华。培养能力是落实课改的措施,知识是能力的载体。这就需要我们在教学中注意对学生进行物理模型的总结归纳。 【关键词】物理模型物理模型教学科学性策略性理想化 物理是高中理科中学生普遍感觉到比较难的一门学科。物理课堂教学既是科学又是艺术,有其自身的科学性和策略性。高中物理学习,主要是学生个体智力活动的过程与教师课堂教学的高效结合的过程。学习物理,模型的建立非常重要,不管是那方面的物理学,最重要的是建立物理模型。特别是力学与运动学,遇到一个物理问题我们首先要将它联想到一个相关的物理模型。将复杂的;抽象的问题化为简单的;直观的问题。 下面是高中物理教学中经常用到的几种物理模型 (1)研究对象的理想化模型 例如:质点物理模型,它忽略了物体的形状、大小、转动等性能,突出它所处的位置和质量的特性,用一有质量的点来代替。如当物体本身的大小在所研究的问题中可以忽略或对研究问题没有影响,能当作质点来处理;质点的概念是一种科学的抽象,是理想化模型。这种抽象正是抓住问题的实质,只要我们在教学过程中注意培养学生抓住主要矛盾,忽略次要矛盾,逐步建立这种物理模型。以后遇到类似质点的客观实体比如:刚体、点电荷、点光源、理想气体、匀强电磁场等物理模型,学生就会自己分析学习了。 (2)物理状态和物理过程的理想化模型 例如:运动学中的匀速直线运动、自由落体运动;动力学中的完全弹性碰撞;电学中的稳恒电流, (3)理想化实验物理模型 在实验的基础上,抓住主要矛盾,忽略次要矛盾,根据逻辑推理法则,对过程进一步分析、推理,找出其规律。例如,伽利略的理想实验为牛顿第一定律的产生奠定了基础。 (4)研究对象的条件的模型 当研究动量守恒定律时,当系统的内力远大于外力时,系统的动量守恒;当研究带电粒子在电场中运动时,因粒子所受的重力远小于电场力,可以舍去重力的作用,使问题得到简化。力学中的光滑面;电学中的匀强电场、匀强磁场等等,都是把物体所处的条件理想化了。 培养学生建立和正确使用物理模型不仅有利于学生将复杂问题简单化、明了化,使抽象的物理问题更直观、具体、形象、鲜明,突出了事物间的主要矛盾;而且对学生的思维发展、解题能力的提高起着重要的作用。可以把以有物理模型的知识和将来探索的新知识相类比,起到模型的迁移,到达事半功倍的效果。 1.动能转换内能类型 例1.如图所示,倾角为θ 轨相连,连接处是光滑的圆弧。水平导轨上 存在有磁感强度为B的竖直向上的磁场。同 时水平导轨上有质量为m、电阻为R的导体 棒b。一根与b完全一样的导轨a自斜面高为h处开始下滑,运动过程中,a、b始终不

浅谈物理模型的作用及其建立

浅谈物理模型的作用及其 建立 Last revision on 21 December 2020

浅谈“物理模型”的作用及其建立 布鲁纳的发现法学习理论认为:“认识是一个过程,而不是一种产品”。探究式学习法是学习物理的一种重要的认知方法;它以学生的需要为出发点,以问题为载体,从学科领域或现实社会生话中选择和确定研究主题,创设类似于科学的情境,通过学生自主、独立地发现问题、实验探究、操作、调查、信息搜集与处理、表达与交流等探索活动,获得知识技能,发展情感与态度,培养探索精神和创新能力的学习方式。在这探究式学习的过程中,最难的一点在于如何创设科学的物理情境;这个科学物理情境的创建过程就是“物理模型”的建立过程。所以说要想学好中学物理,就要学会对生活中的现象多观察,多思考,并能从中学会如何建立“物理模型”。 一、什么是“物理模型” 自然界中任何事物与其他许多事物都有这千丝万缕的联系,并处在不断的变化当中。面对复杂多边的问题,人们在着手研究时,总是遵循这样一条重要的法则,即从简到繁,从易到难,循序渐进,逐次深入;基于这样一种思维,人们创建了“物理模型”,物理模型是指:物理学所分析的、研究的问题往往很复杂,为了便于着手分析与研究,物理学中常采用“简化”的方法,对实际问题进行科学抽象处理,用一种能反应原物本质的理想物理(过程)或遐想结构,去描述实际的事物(过程),这种理想物质(过程)或假象结构称之为“物理模型”。 物理模型的建立是人们认识和把握自然的一个典范,是前人的一种创举。 二、物理模型的种类和特点 1、中学中常见物理模型的种类 (1)研究对象理想化模型,例如:质点、刚体、理想气体、恒压电源等; (2)运动变化过程中理想化模型,如:“自由落体运动”、“简谐运动”、“热平衡方

浅谈物理模型的学习及理解

浅谈物理模型的学习及理解 我们知道,建立物理模型是物理学研究问题的基本方法之一。对于任意一个实际物体,因其自身的形状、体积、组成的均匀性等多方面的情况,使其在一个实际环境中的物理表现就不具有多少规律性,而物理学的分析问题的基本方法,如受力分析等,对此当然既不能定量描述,甚至也不能定性地分析。这是我们每个学习了基本物理学知识的人必然都形成的观念。 那么,我们如何学习和理解物理模型呢?我想物理模型的建立是为了突出问题的实质,从而进一步建立理论,能在实验室中进行有针对性的验证或探索等。从中,我们进一步能体会物理模型(或说概念)本身的重要性。但需要过分地基于模型本身进行“深挖”和无休止地讨论吗?我感到这种问题是不能确定性地回答的,套用物理学的一个出发点,即具体问题应具体分析。 1.一些“定势”的影响 我们新课标人教版教材物理1中(现已经删除)有一习题,大致内容是:高速飞行的子弹射穿一个吊着的苹果,在射穿苹果的短暂过程中,问子弹能被看成是“质点”吗?答案是不能。有老师指出,在穿透苹果的短暂时间内,子弹整体作平动,即子弹上各点的运动情况相同,因此,子弹可看成质点。 我本人写过一道题:物理学研究问题一般是通过建立物理模型进行的,质点就是一个物理模型。关于质点,以下说法正确的是 A.研究地球的自转时,把地球当作质点 B.研究火车通过隧道所用的时间时,把火车当作质点 C.研究宇宙飞船在轨道上的运动时,把飞船当作质点 D.研究跳水运动员的空中运动情况时,把运动员当作质点 有老师提出B答案也是正确的。 我们仔细思考上面的问题,其实所要表述的思想是明确的,我们都明白其中的物理问题,应该说这两题的考核目标达到了。当然,仅仅从一个题目求解的角度来看,老师的质疑也是合理的。如果我们把题目的要求改为“在以下各问题的分析处理中,所采取的方法合理的是?”的话,那么,无论是从概念上分析,还是从物理问题的阐述的层面上看,就都有意义了。 2.平面运动的研究 透过以下的介绍,有助于我们合理地理解、把握物理模型的建立和运用。

物理模型的构建步骤及使用注意点

龙源期刊网 https://www.sodocs.net/doc/004926336.html, 物理模型的构建步骤及使用注意点 作者:刘秋岳 来源:《中学物理·高中》2014年第05期 “物理模型”是高中物理知识教学与应用的载体,我们在实施教学的过程中,注重引导学生构建并运用物理模型,既培养了学生获知的方法,也提升了学生创造性思维能力.本文就物理 模型构建的策略及实践案例进行简单分析,并探讨在建立和使用物理模型时的注意点,望能有助于教学实践. 1 物理模型的构建步骤 1.1 分析物理对象原型 物理模型建立的过程是对实际的物理对象进行抽象概括的过程,对原型或实际问题做出准确的、科学的抽象,本身就是一种非常严密的思维.如,“质点”这是学生进入高中学到的第一个理想模型,在建立模型时,首先应引导学生弄清“将物体简化为质点的原因”,把握建立模型的“物理需要”,接着,引导学生思考“什么时候、什么样的物体可以简化为质点”,即将思维引向对物理原型中主、次因素的分析. 1.2 分析物理对象的主、次因素 物理模型就是抓实际对象的主要矛盾和主要特点,因此在建立模型时,应引导学生分析物理对象的主、次因素,考虑在什么时候可以忽略次要特点,将客观事物的本质规律凸显出来进行深入的研究.如,“质点”这个物理模型就是忽略了大小、形状对物体运动的影响而突出质量这一主要特点所建立起来的. 1.3 基于主要因素进行科学的抽象 分析了物理对象的主、次因素后,抓住物理对象的本质特征进行合理的抽象,建立能够解释和说明问题的物理模型,揭示一类事物的本质属性及其间的联系,实际物理问题往往是很复杂的,建立模型的目的就在于定量地描述物理规律,形成系统化的理论,逐渐逼近对实际问题更为全面、真实地理解. 1.4 实验验证 “实践是检验真理的唯一标准!”模型是经过物理思维进行分析和推理建立起来的,那么是否可用呢?是否简单、高效?这些都必须经过实验验证或由实践检验.例如,平抛运动模型, 运用“运动的分解”可以将平抛运动抽象为水平匀速、竖直自由落体的匀加速曲线运动,这样的抽象是否正确呢?可以借助于实验进行验证.

高中物理教学中物理模型建构能力的培养

作者:陈雪工作单位:江苏省如皋市第二中学 工作单位:邮编:226575 快递地址:江苏省如皋市第二中学 修改意见:1、具象是错了吗?还是就这样?2、2.2数学模型2.3理论模型是否可以举出具体的事例呢?如数学模型平行四边形定则的矢量运算,位移中的二次函数,物理图像中纵横坐标斜率的物理意义,粒子在复合场的极值法,最值法等等。2.3理论模型是否有些模糊呢?是假设法?麻烦您先这样改一下,明天再发给我看看。 高中物理教学模型建构能力的培养 摘要:高考物理改革不再是对物理定理生搬硬套,而是以高中物理知识为基础,结合生活中的实际案例不断创新。由于学生没有很好的掌握如何把物理问题构建成物理模型的方法,在日常的物理教学中,老师应当加强培养学生物理模型构建的思维,使之物理模型构建的能力不断提高。 关键词:物理教学改革模型建构能力培养 1、物理模型构建 物理学,是一门研究自然界广泛存在的各种最基本运动形态、物质结构和物质间相互作用的学科。由于自然界中存在的物质种类名目繁多,运动形态各异,在生活中遇到的物理现象,并不像书本中的例题一样简单、孤立,常常都是多种物理现象的并存。人们在研究自然界中各类物理现象时,一般都遵循“从简到繁、先易后难、循序渐进、逐次深入”的原则。 我们的学生在学习物理知识的同时,更要懂得物理学的研究方法。一般情况下,都是将研究对象的本质抽象地表现出来,把物体以及物体的运动过程构成一个物理模型。在物理教学中,老师常常要求学生在解决物理问题时,要在脑中想象出一个清晰的物理模型,要明白这个物理现象发生的过程等等。这就是通过对物理知识的认知来建立、利用物理模型解决物理问题的办法。在学习和解决物理问题时,要学会对物理定理、公式等进行科学的想象,对待问题要客观、具象,要懂得如何将一个复杂的物理问题转化几个简单、形象的问题进行解决,这样才能构建出一个正确的物理模型,才能更好的解决各种综合性的物理难题。

重点高中物理建模论文

重点高中物理建模论文

————————————————————————————————作者:————————————————————————————————日期:

运动模型的应用 内容摘要:中学物理教材中无论哪一部分的内容都是以物理模型为基础向学生传达物理知识的。物理模型是中学物理知识的载体,通过对其进行分析与讲解,是学生获得物理知识的一种基本方法,更是培养学生创造思维能力的重要途径。本文拟从习题教学中浅谈提高运动模型的建模能力。 关键词:运动模型、匀速圆周运动 学好物理,关键是学习物理思想和物理方法。常有高中学生说,物理听课易懂,做题难。难就难在对物理模型的应用上,也就是学生在解题过程中往往存在一些问题,读不懂题或做题过程思维混乱。这在很大程度上是由于学生不良解题习惯、建模能力差造成的。据对学生的调查,发现大多数学生的解题模式是: 一般来说,较为有效的解决物理问题的思维流程应该是通过审题先确定研究对象,对其进行抽象建立物理模型,再应用模型知识求解。此过程大致可以归纳为: 求解 读题 想公式

如果在解题过程中快速准确地建立起与题目相符合的物理模型是至关重要的。这个解题流程学生容易模仿,如果说正确识别或建立物理模型是正确解题的前提,那么在解决具有物理过程的物理习题时,学生头脑中对物理过程的一个清晰的图景则是解决此类物理问题的关键和保证。下面以力学中运动模型的应用为例。 一、 基本模型 1. 两种直线运动模型 匀速直线运动:00,v v t v x == 匀变速直线运动:at v v at t v x +=+=02210,(特例: 自由落体运动:gt v gt h ==,221 ) 2. 两种曲线运动模型 平抛运动: 水平方向为匀速直线运动 竖直方向为自由落体运动 匀速圆周运动:r T m r mw r mv ma F F n 22 22n 4π=====合(天体运动:物理解释 数学演算 数学抽象 科学抽象 一个具体的物理问题 物理模型 数学方程(物理问题的数学表达式) 方程的数学解 物理问题之解

物理模型的建构在初中生物教学中的应用

物理模型的建构在初中生物教学中的应用 物理模型的建构在初中生物教学中的应用 物理模型的建构在初中生物教学中的应用 2015-05-26 生物论文 物理模型的建构在初中生物教学中的应用 物理模型的建构在初中生物教学中的应用 吕国庆 (江苏省常州市新北区实验中学) 摘要:探讨在初中生物教学中常见的几种物理模型的建构。物理模型的设计非常有利于生物教学的有效开展,提高学生的学习效率,培养学生的各种技能和科学素养。 关键词:物理模型;创新;生物 人们认识客观世界的时候,直观化、形象化,更便于人们探索科学世界的客观规律。物理模型建构的研究旨在教学活动中建构学生的建模意识,物理模型建构的创新研究实质上是培养学生的创造性思维能力,因为建模活动本身就是一项创造性思维活动。能够培养学生的想象力,思维能力,假想、变换、构造等能力,这些能力正是创造性思维所具有的最基本的特征。“创新是一个民族的灵魂,是一个国家兴旺发达的不竭动力,创新的关键是人才,人才的成长靠教育。”要真

正培养学生的’创新能力,自觉地在学习过程中构建物理模型,只有这样,才能使学生分析和解决问题的能力得到有效提高,也只有这样才能真正提高学生的创新能力。 那什么是物理模型呢?物理模型就是以实物或图画形式直接表达认识事物的特征。根据相似原理,把真实事物制成相关模型,其状态变量和原事物基本相同,可以模拟客观事物的某些功能和性质。物理模型包括:实物模型、模拟模型、图画。通过下面以三个具体实例来阐述本人对物理模型的理解与探索。 一、模拟模型建构能将抽象化的知识活化为具体直观 主题举例:植物细胞的模型模拟建构。 材料的选择:一次性方型塑料盒,透明塑料袋,带壳核桃或熟鸡蛋,清水和有颜色的水,气球,不能水溶的绿色胶囊若干,长粒香大米若干粒。 设计方案:学生根据自己对植物细胞的结构和功能的理解,小组成员利用教师所提供的材料制作模型,小组成员展示模型并介绍,同时接受其他小组成员点评,并答疑。 具体实施过程:一次性塑料盒充当细胞壁,透明塑料袋可充当细胞膜,带壳核桃或熟鸡蛋可充当细胞核,清水可充当细胞质,气球可充当液泡,有颜色的水可充当细胞液。 评价:在班级内部交流小组制作模型,从科学性、技术性、正确性等方面进行评价。小组成员根据班内成员的评价完善自己的设计。 解释:模拟模型,就是根据系统或过程的特性,按一定规律,用实物材料模拟系统原型的方法。形象大于思维,七年级学生对细胞的认识较浅显,由于细胞很

物理(心得)之浅谈物理模型与建模能力的培养

物理论文之浅谈物理模型与建模能力的培养 现在高考的重要指导思想是从知识立意向能力立意的转变,着重考查学生对知识的理解、迁移、应用能力。命题已向联系实际、与现代科技相结合的方向发展,考查学生学以致用的能力素质。这就需要学生把实际问题转化成物理模型来寻求解决方法。那么在教学中重视物理模型的教学及建模能力的培养就显得尤为重要。 一、物理模型 所谓物理模型就是为了便于抓住本质,解决问题,把复杂的物理过程或研究对象(事物),取其枝干,弃其蔓叶后,进行高度的概括,归结为一些简单的模型便于研究。 物理模型的特点 典型性。物理模型是从一类物理问题中,抓住主要的本质问题,删除干扰和次要因素,集基础知识与基本规律于一体,具有代表性的结晶。 方法性。物理模型不只是知识的结晶,同时也是思维的结晶。掌握好物理模型,除了加深对物理概念的理解之外,还可以从物理模型的建立,理解物理知识深刻的内涵及外延,体会将物理知识应用于解决实际问题的思路和逻辑方法入手。

美学性。物理模型能简明扼要地揭示物理问题,体现了它的形式美。物理模型是知识与思维的产物,是知识与能力的完美结合,体现了它的和谐美。随着学习的深入,对同一模型会有不同层次的体会和感悟,会为它丰富的内涵所折服,体现它的内在美。 物理模型的分类 物理模型一般有三类:一类是把研究对象视为抽象的理想模型。这类模型有:质点、刚体、弹性体、理想气体、弹簧振子、单摆、点电荷、点光源、薄透镜、卢瑟福模型等,牛顿的质点模型、玻尔的原子模型、理想气体模型等均属“对象模型”。它的特点是将研究对象简化成某种物理模型,从而使问题简化、直观、形象;另一类是把物理过程抽象为理想模型。此类模型重要的有:匀速直线运动、完全弹性碰撞、等温变化、恒定电流等,物理过程总是在一定条件下发生,将条件理想化以便突出主要的物理现象与过程,这便是条件模型方法。例如“光滑”、“均匀”、“轻质”等也属条件模型;还有一种是将物理过程发生的条件抽象模型化。过程模型是将复杂的过程抽象为简单的物理模型的方法。例如我们已学过匀速圆周运动,匀速直线运动,自由落体运动,简谐运动等均属过程模型。利用过程模型可将一个复杂的物理过程抽象为一个我们熟知的问题加以解决。 二、物理模型教学的意义 物理模型教学是课程改革的需要。课改的一对矛盾是丰富的教

浅谈物理模型在物理教学中的作用

浅谈物理模型在物理教学中的作用 论文关键词:物理模型,物理教学,作用 一、物理模型在物理学中无处不在。 物理学中的各种基本概念,如物质、长度、时间等都是物理模型。因为它们都是以各自相应的现实原型为背景,加以抽象出来的最基本的物理概念。那些反映特定问题或特定具体事物结构的物理模型,如质点、点电荷、理想气体、理想变压器、匀变速直线运动,简谐运动等,是理想化的物理模型。那些用形象化的手段、采用示意图或制作出与实体相似的模拟,如用铁屑模拟磁感线、直流电机的构造示意图、发电机模型等,则是模拟式物理模型。那些由概念与概念推断出的各种结论及在实验基础上产生的物理规律,往往以字母的形式,通过数学的手段描述出来,如欧姆定律、牛顿第二定律、法拉第电磁感应定律等,可称之为数学化的物理模型。由此可见,物理模型在物理学中无处不在。从某种意义上讲,物理学也是一 门模型科学。 二、物理模型在物理教学中的作用 物理教学是物理教师引导学生建立物理模型,并学会应用物理模型解决物理问题的教学。可见物理模型在物理教学中的作用是非常重要的,笔者根据自己的教学经验认为,物理模型 在物理教学中有如下作用: 1、建立和正确使用物理模型可以提高学生理解和接受新知识的能力。例如,在教学运动学中建立“质点”模型,使学生对这一模型有充分的认识和足够的理解,为以后学习质点的运动、万有引力定律、物体的平动和转动,以及电学中的“点电荷”模型、光学中的“点光源” 模型等奠定了良好的基础。使学生学习这些新知识时容易理解和接受。 2、建立和正确使用物理模型有利于学生将复杂问题简单化、明了化,使抽象的物理问 题更直观、具体、形象、鲜明,突出了事物间的主要矛盾。 3、建立和正确使用物理模型对学生的思维发展、解题能力的提高起着重要的作用。可 以把复杂隐含的问题化繁为简、化难为易,起到事半功倍的效果。 4、建立和正确使用物理模型有利于减负增效。物理学的难教难学,让许多师生困惑、苦恼。究其原因,教师不善于帮助学生建立物理模型或建立物理模型的意识淡薄是重要原因。学生头脑中有形象化的实物模型和抽象化的诸多物理模型,并能灵活的提取、应用、置换、迁移物理模型,是学生学好物理的充要条件。学生对物理概念、规律的理解不深不透,说明学生头脑中的物理模型是含糊不清的。即便强行建立了概念、规律的物理模型,但在具体应用时又感到手足无措。在应试教育甚行,题海战术泛滥的氛围中,如何跳出题海,提高学习效率,笔者以为,正确理解物理概念和规律是前提。在遇到具体的习题时,要善于寻找模型解决实际问题,再在解决实际问题的基础上建立新的物理模型。 5、建立和正确使用物理模型有有利于培养学生的创造思维能力。因为建模活动本身就是一项创造性的思维活动。它可以培养学生的想像能力,直觉思维能力,猜测、转换、构造等能力,这些能力正是创造性思维所具有的最基本的特征。这也适应当前新课改的需要,也 是提高学生技能、适应现代化科技发展的需要。 总之,在物理教学中,物理老师要善于帮助学生建立物理模型,并使学生学会利用物理模型解决实际问题。只有这样,物理学才不再枯燥难学,而物理学丰富的内涵和独特的思维方法在物理模型的建立与应用的过程中必将被学生所理解与应用、信服与欣赏。所以,物理 教师一定要重视物理模型在教学中的重要价值。

浅谈物理概念教学汇总

浅谈物理概念教学 一、物理概念的特点 物理概念准确地反映了物理现象及过程的本质属性,它是在大量的观察、实验基础上,获得感性认识,通过分析比较、归纳综合,区别个别与一般、现象与本质,然后把这些物理现象的共同特征集中起来加以概括而建立的,是物理事实本质在人脑中的反映。任何一个物理概念的学习又会与其他概念相联系,概念之间的这种关联着的逻辑关系,是构成物理规律和公式的理论基础。物理概念不仅是物理基础理论知识的一个重要组成部分,也是学生通过逻辑推理方法,构建知识体系的基本元素,学生学习物理知识的过程,就是要不断地建立物理概念,弄清物理规律。如果概念不清,就不可能真正掌握物理基础知识,不可能有效构建物理模型,不可能形成清晰的思维过程。在解决物理问题时,常常表现出选择题选不全,计算题审题时,由于对某些概念理解不到位,导致挖掘不出有效信息、不能快速建立未知量与已知量之间的联系,解题效率低下。因此,在中学物理教学中,概念教学是一个重点,也是一个难点,搞好物理概念的教学,使学生的认识能力在形成概念的过程中得到充分发展,是物理教学的重要任务。 二、影响高中物理概念学习的主要因素 1、教材因素 初中物理教材与高中教材相比较,对知识和思维能力的要求都有一个较大的跨越,存在一个较大的台阶。高中物理教材所讲述的知识不仅要求采用观察、实验,更多的要求具备分析归纳和综合等抽象思维能力,要求能熟练的应用数学知识解决物理问题。对于多个研究对象、多个状态、多个过程的复杂的问题,从物理现象到构建物理模型,从物理模型到数学化的描述,建立一系列的方程,学生接受难度大。初中、高中物理教材对知识的表述也有很大差别。初中物理教材文字叙述比较浅显通俗,学生容易看懂和理解,而高中物理教材对物理概念和规律的表述严谨简捷。对物理问题的分析、推理、论述科学严密,学生不易读懂、阅读难度大。另外,高中教材与所需数学知识的衔接不当,也对学生的物理学习造成了困难。如学生尚未学到极限的概念,在学习瞬时速度时就难以理解;高一新生没有三角函数知识,就不能灵活处理力的合成与分解;没有函数图像的知识,用图像法研究各种问题就会比较困难。由于学科之间的横向联系的失调,也加大了高一物理学习难度,使高一学生成绩分化。2、学生因素 高中物理概念有些是从直观的实验直接得出的,有些概念则需要学生从已有的物理概念出发,或从建立的理想模型出发,通过观察、分析、归纳和推理建立起来。虽然高中学生具有一定的认知能力及逻辑思维能力,但由于他们物理基础知识有限,物理思维方法不足,个别高中学生由于在以往的学习过程中形成了被动接受知识的习惯,积极主动思考问题的能力较差,不善于将陌生、复杂、困难的问题转化为熟悉、简单、容易的问题,不善于将实际问题转化为物理问题,不善于根据具体问题灵活选择方法,学习物理概念时习惯于机械记忆,盲目练习,往往被个别表面现象所迷惑,形成一些片面的、肤浅的概念。主要表现在解决物理问题时对于隐含条件的分析,临界状的把握,多过程的衔接等分析不完整,顾此失彼,答案不全面,条理不清楚。如个别学生不理解加速度及电阻率的概念,造成“加速度大速度就大;电阻率大电阻一定大”的错误认识。 3、教师因素 教师在教学过程中,往往将大量的时间用于备课做题,缺乏分析研究学生的现有知识状况、接受知识的能力,对于学生的知识能力有时估计过高,自己常常觉得有些物理概念很简单,学生自己一看就懂,没有必要花费时间去探讨、挖掘物理概念的内涵和外延,造成学生在最初就没有真正理解有些概念,致使学生不易建立各个物理概念之间的联系。为了更有效

相关主题