搜档网
当前位置:搜档网 › 微积分学基本定理定积分计算(续)

微积分学基本定理定积分计算(续)

微积分学基本定理定积分计算(续)
微积分学基本定理定积分计算(续)

§5 微积分学基本定理?定积分计算(续)

教学目的:熟练掌握微积分学基本定理及定积分的换元与分部积分法。 重点难点:重点为微积分基本定理,难点为泰勒公式的积分型余项。 教学方法:讲练结合。

本节要在定积分形式下证明连续函数必定存在原函数. 一 变限积分与原函数的存在性

设f 在[]b a ,上可积,根据定积分的性质4,对任何[]b a x ,∈,f 在[]x a ,上也可积.于是,由 ()(),dt t f x x

a

?=

Φ[]b a x ,∈ (1)

定义了一个以积分上限为自变量的函数,称为变上限的定积分.类似可定义变下限的定积分: ()(),dt t f x b

x

?=

ψ[]b a x ,∈. (2)

Φ与ψ统称为变限积分.注意,在变限积分(1)与(2)中,不可再把积分变量x 写成

()dx x f x

a

?,以免与积分上、下限的x 相混淆.

变限积分所定义的函数有着重要的性质.由于()(),dt t f dt t f b

x

b

x

??

-=因此下面只讨论变

上限积分的情形.

定理9.9 若f 在[]b a ,上可积,则由(1)式所定义的函数Φ在[]b a ,上连续. 证 对[]b a ,上任一确定的点x ,只要[]b a x x ,∈?+,按定义式(1)有 ()()().dt t f dt t f dt t f x

x x

x a

x

x a

?

??

?+?+=-=

因f 在[]b a ,上有界,可设()[]b a t M t f ,,∈≤.于是,当0>?x 时有 ()();x M dt t f dt t f x

x x

x

x x

?≤≤=

?Φ?

?

?+?+

当0

=?Φ→?x

即证得Φ在点x 连续.由x 的任意性,Φ在[]b a ,上处处连续. 口

定理9.10 (原函数存在定理) 若f 在[]b a ,上连续,则由(1)式所定义的函数Φ在

[]b a ,上处处可导,且()()()[].,,b a x x f dt t f dx d x x

a

∈==

Φ'? (3) 证 对[]b a ,上任一确定的x ,当0≠?x 且[]b a x x ,∈?+时,按定义式(1)和积分第一中值定理,有

()().

10,1≤≤?+=?=??Φ??+θθx x f dt t f x

x x

x x 由于f 在点x 连续,故有 ()()().lim lim

0x f x x f x x x x =?+=??Φ

=Φ'→?→?θ

由x 在[]b a ,上的任意性,证得Φ是f 在[]b a ,上的一个原函数. 口

本定理沟通了导数和定积分这两个从表面看去似不相干的概念之间的内在联系;同时也证明了“连续函数必有原函数”这一基本结论,并以积分形式给出了f 的一个原函数.正因为定理9.10的重要作用而被誉为微积分学基本定理.

此外,又因f 的任意两个原函数只能相差一个常数,所以当f 为连续函数时,它的任一原函数F 必满足 ()().C dt t f x F x

a

+=

?

若在此式中令a x =,得到()a F C =,从而有

()).()(a F x F dt t f x

a

-=?再令b x =,有

()).()(a F x F dt t f b

a

-=?

这是牛顿-莱布尼茨公式的又一证明.

定理9.11 (积分第二中值定理) 设函数f 在[]b a ,上可积. (ⅰ)若函数g 在[]b a ,上减,且()0≥x g ,则存在 []b a ,∈ξ,使

()()()()dx x f a g dx x g x f a

b a

??=ξ

(ⅱ)若函数g 在[]b a ,上增,且()0≥x g ,则存在 []b a ,∈η,使

()()()()dx x f b g dx x g x f b

b

a

??

推论 设函数f 在[]b a ,上可积, 若函数g 为单调函数,则存在[]b a ,∈ξ,使

()()=?

dx x g x f b

a

()()()()dx x f b g x f a g b

a

??+ξ

ξ

积分第二中值定理以及它的推论是今后建立反常积分收敛判别法的工具.

二 换元积分法与分部积分法

定理9.12 (定积分换元积分法) 若函数f 在[]b a ,上连续,?在[]βα,上连续可微,且满足 ()()()[]βα???,,,,∈≤≤==t b t a b b a a ,

则有定积分换元公式:

()()()()dt t t f dx x f b a

??β

α'=?? (9)

证 由于(9)式两边的被积函数都是连续函数,因此它们的原函数都存在.设F 是f 在

[]b a ,上的一个原函数,由复合函数微分法

()()()()()()()()t t f t t F t F dt

d

?????'=''= 可见()()t F ?是()()()t t f ??'的一个原函数.根据牛顿一莱布尼茨公式,证得

()()()()()()()a F F dt t t f ?β???β

α-='?

()()()dx x f a F b F b

a

?=

-=

从以上证明看到,在用换元法计算定积分时,一旦得到了用新变量表示的原函数后,不必作变量还原,而只要用新的积分限代人并求其差值就可以了.这就是定积分换元积分法与不定积分换元积分法的区别,这一区别的原因在于不定积分所求的是被积函数的原函数,理应保留与原来相同的自变量;而定积分的计算结果是一个确定的数,如果(9)式一边的定积分计算出来了,那么另一边的定积分自然也求得了.

注 如果在定理9.12的条件中只假定f 为可积函数,但还要求?是单调的,那么(9)式仍然成立.(本节习题第14题)

例 计算

.11

2dx x ?

-

解 令t x sin =,当t 由0变到

2π时,x 由0增到1,故取[].2,0,??

?

???=πβα应用公式(9),并注意到在第一象限中0cos ≥t ,则有

tdt tdt t dx x ???

=-=-20

220

2

1

2

cos cos sin 11π

π

()2

202sin 21212cos 121π

π

??? ??+=+=?t t dt t

.4

π=

例2 计算

?

20

2.cos sin π

tdt t

解 逆向使用公式(9),令,sin ,cos tdt dx t x -==当t 由0变到2

π

时,x 由1减到0,则有

.3

1

cos sin 10220

0122??

?==-=dx x dx x tdt t π

例3

计算().11ln 1

02dx x x J ?++=

解 令t x tan =,当t 从0变到4π时,x 从0增到1.于是由公式(9)及2

1x dx dt +=得到

()dt t

t

t dt t J ??

+=+=

40

4

cos sin cos ln

tan 1ln π

π

dt t

t ???? ??-=40cos 4cos 2ln

π

π

.cos ln 4cos ln 2ln 40

4040dt t dt t dt ???-??

?

??-+=π

πππ

对最末第二个定积分作变换t u -=

4

π

,有

dt t ????

??-404cos ln π

π()??=-=40

04

,cos ln cos ln π

πudu du u

它与上面第三个定积分相消.故得

.2ln 8

2ln 40

π

π

=

=

?

dt J

事实上,例3中的被积函数的原函数虽然存在,但难以用初等函数来表示,因此无法直接使用牛顿一莱布尼茨公式.可是像上面那样,利用定积分的性质和换元公式(9),消去了其中无法求出原函数的部分,最终得出这个定积分的值.

换元积分法还可用来证明一些特殊的积分性质,如本节习题中的第5,6,7等题. 定理9.13 (定积分分部积分法)若()()x v x u ,为[]b a ,上的连续可微函数,则有定积分分部积分公式:

()()()()()().dx x v x u x v x u dx x v x u b

a

b

a b

a

??

'-=' (10)

证 因为uv 是v u v u '+'在[]b a ,上的一个原函数,所以有

()()dx x v x u b

a

'?

+()()dx x v x u b a

?'()()()()[]dx x v x u x v x u b

a

?'+'=

=()()b

a x v x u . 移项后即为(10)式.

为方便起见,公式(10)允许写成

()()=?x dv x u b a

=()()b

a

x v x u ()().x du x v b

a

?- (01')

例4 计算

.ln 1

2xdx x e

?

()

??? ??-==

???

dx x x x x xd xdx x e e e e

12

13131

2ln 3

1ln 31ln ()

.129131313133+=???? ?

?-=e x e e

例5 计算

dx x n

?

2

sin π和.,2,1,cos 20

=?n xdx n π

解 当2≥n 时,用分部积分求得

()??

---+-==

20

2220

1

20

cos sin 1cos sin

sin π

π

π

xdx x n x

x xdx J n n n n

()

()xdx n xdx n n n ?

?---=-20

20

2

sin 1sin

1ππ

()().112n n J n J n ---=-

移项整理后得到递推公式:.2,1

2≥-=

-n J n

n J n n 由于

,1sin ,2

201200=?==

?=xdx J dx J π

π

π

重复应用递推式(11)便得

()()()()??

?????

+=?--?+=?-=?--?-=

+.!!12!

!21321222122,

2!!2!!122

212232212122m m m m m m J m m m m m m J m m ππ ()12 令t x -=

2

π

,可得

.sin 2cos cos 200

2

20xdx dt t xdx n n

n

π

πππ?=???

??-?-=?

因而这两个定积分是等值的.

由例5结论(12)可导出著名的沃利斯(Wallis)公式:

()().121!!12!!2lim 22

+???

????-=∞→m m m m π

()13 事实上,由

,sin 2cos sin 122002

1220xdx dt t xdx m n n -+?=??? ??-?

π

π

π 把(12)代人,得到

()()()()()(),!

!12!!222!!2!!12!!12!!2--

由此又得()()()().21

!!12!!22121!!12!!22

2m m B m m m m m m A =??????-<<+??????+=π

因为()()()(),02

211221!!12!!22

∞→→?<+?

?????-=-

所以().0lim =-∞

→m m m A B 而

,2

m m m A B A -<-π

故得2

lim π

=

→m m A (即()13式).

三 泰勒公式的积分型余项

若在[]b a ,上()x u 、()x v 有1+n 阶连续导函数,则有

()()

()()()()()()() +'-=?-+x v x u x v x u dx x v

x u n n n b a 11[ ()()()()()

()()()dx x v x u x v x u n b

a

n b a n n

111]1++?-+-+

().,2,1 =n ()14 这是推广的分部积分公式,读者不难用数学归纳法加以证明.下面应用公式()14 导出泰勒公式的积分型余项.

设函数f 在点0x 的某邻域()0x U 内有1+n 阶连续导函数.令∈x ()0x U ,

()()n

t x t u -=,()()t f t v =,[]x x t ,0∈(或[]0,,x x )

.利用(14)式得 ()()

()()()()()()() +-+-=-?--+t f t x n t f t x dt t f

t x n n n n

n n

x x 11

1[0

()()dt t f t f n x

x x

x ??++0]!00

()()()() +-'+-=000[!!x x x f x f n x f n

()()()]!

00n n x x n x f -+

()x R n n !=,

其中()x R n 即为泰勒公式的n 阶余项.由此求得

()()

()()dt t x t f n x R n n x x n -?=

+10!

1, ()15

这就是泰勒公式的积分型余项. 由于()

()t f

n 1+连续,()n t x -在[][]()00,,x x x x 或上保持同号,因此由

推广的积分第一中值定理,可将()15式写作

()()

()()dt t x f n x R n x x n n -?=

+0

1!

()()()()1

01!

11++-+=

n n x x f n ξ,

其中()10,00≤≤-+=θθξx x x .这就是以前所熟悉的拉格朗日型余项. 如果直接用积分第一中值定理于(15),则得

()()

()()()01!

1x x x f

n x R n n n --=

+ξξ, ()10,00≤≤-+=θθξx x x .

由于

()()()[]()0000x x x x x x x x x n n ----=--θξ

()()1

01+--=n n x x θ

因此又可进一步把()x R n 改写为

()x R n ()

()()()(),1!

110001++---+=n n n x x x x x f

n θθ .10≤≤θ (16)

特别当00=x 时,又有 ()x R n ()

()().10,1!

111≤≤-=

++θθθn n n x x f

n (17) 公式(16)、(17)称为泰勒公式的柯西型余项.各种形式的泰勒公式余项,将在第十四章里显示它们的功用.

作业:2,3,4(1),(6)(9)

1-定积分与微积分基本定理(理)含答案版

定积分与微积分基本定理(理) 基础巩固强化 1.求曲线y =x 2与y =x 所围成图形的面积,其中正确的是( ) A .S =?? ?0 1(x 2-x )d x B .S =?? ?0 1 (x -x 2)d x C .S =?? ?0 1 (y 2-y )d y D .S =??? 1 (y - y )d y [答案] B [分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解析] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x ≥x 2,故函数y =x 2与y =x 所围成图 形的面积S =?? ?0 1 (x -x 2)d x . 2.如图,阴影部分面积等于( ) A .2 3 B .2-3 [答案] C [解析] 图中阴影部分面积为

S =??? -3 1 (3-x 2 -2x )d x =(3x -1 3x 3-x 2)|1 -3=32 3. 4-x 2d x =( ) A .4π B .2π C .π [答案] C [解析] 令y =4-x 2,则x 2+y 2=4(y ≥0),由定积分的几何意义知所求积分为图中阴影部分的面积, ∴S =1 4×π×22=π. 4.已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的速度曲线分别为v 甲和v 乙(如图所示).那么对于图中给定的t 0和t 1,下列判断中一定正确的是( ) A .在t 1时刻,甲车在乙车前面 B .在t 1时刻,甲车在乙车后面 C .在t 0时刻,两车的位置相同 D .t 0时刻后,乙车在甲车前面 [答案] A [解析] 判断甲、乙两车谁在前,谁在后的问题,实际上是判断在t 0,t 1时刻,甲、乙两车行驶路程的大小问题.根据定积分的几何意义知:车在某段时间内行驶的路程就是该时间段内速度函数的定积

留数定理在定积分计算中的应用论(参考模板)

留数定理在定积分计算中的应用 引言 在微积分或数学分析中,不少积分( 包括普通定积分与反常积分) 的计算用微积分教材里的知识很难解决或几乎是无能为力. 如果我们能结合其他数学分支的理论方法来讨论解决这类问题,会达到化难为易、化繁为简的效果.本文主要利用复变函数中的留数定理,将实积分转换为复积分的方法,讨论了几类定积分的计算,首先我们来给出留数的定义及留数定理. 1留数定义及留数定理 1.1 留数的定义 设函数()f z 以有限点a 为孤立点,即()f z 在点a 的某个去心邻域0z a R

证明:以k a 为心,充分小的正数k ρ为半径画圆周:k k z a ρΓ?=(1,2,k =…,n )使这些圆周及内部均含于D ,并且彼此相互隔离,利用复周线的柯西定理得 ()()1k n k C f z dz f z dz =Γ=∑??, 由留数的定义,有 ()()2Re k k z a f z dz i s f z π=Γ=?. 特别地,由定义得 ()2Re k k z a f z dz i s π=Γ=?, 代入(1)式得 ()()1 2Re k n z a k C f z dz i s f z π===∑?. 2.留数定理在定积分中的应用 利用留数计算定积分活反常积分没有普遍的实用通法,我们只考虑几种特殊类型的积分. 2.1形如 ()20 cos ,sin f x x dx π ?型的积分 ()cos ,sin f x x 表示cos ,sin x x 的有理函数,且在[]0,2π上连续,解决此类积分要注意两点,一:积分上下限之差为2π,这样当作定积分时x 从0到2π,对应的复变函数积分正好沿闭曲线绕行一周.二:被积函数是以正弦和余弦函数为自变量。满足这两点之后,我们可以设ix z e =,则dz izdx =, 21sin 22ix ix e e z x i iz ---==,21 cos 22ix ix e e z x z -++== 得 ()22210 11cos ,sin ,22z z z dz f x x dx f z iz iz π =??--= ????? ()1 2Re k n z z k i s f z π===∑.

定积分的方法总结

定积分的方法总结 定积分是新课标的新增内容,其中定积分的计算是重点考查的考点之一,下面例析定积分计算的几种常用方法. 一、定义法 例1、求 s i n b a x d x ? , (b a <) 解:因为函数s i n x 在],[b a 上连续,所以函数sin x 在],[b a 上可积,采用特殊的 方法作积分和.取h = n a b -,将],[b a 等分成n 个小区间, 分点坐标依次为 ?=+<<+<+

定积分及微积分基本定理练习题及答案

1.4定积分与微积分基本定理练习题及答案 1.(2011·一中月考)求曲线y =x2与y =x 所围成图形的面积,其中正确的是( ) A .S =??01(x2-x)dx B .S =??01(x -x2)dx C .S =??01(y2-y)dy D .S =??01(y -y)dy [答案] B [分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解读] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x ≥x2,故函数y =x2与y =x 所围成图形的面积S =??0 1(x -x2)dx. 2.(2010·日照模考)a =??02xdx ,b =??02exdx ,c =??02sinxdx ,则a 、b 、c 的大小关系是 ( ) A .a2,c =??02sinxdx =- cosx|02=1-cos2∈(1,2), ∴c

七大积分总结

七大积分总结 一. 定积分 1. 定积分的定义:设函数f(x)在[a,b]上有界,在区间[a,b]中任意插入n -1个分点: a=x 0

? ??==b a b a b a du u f dt t f dx x f )()()(。 (2) 定义中区间的分法与ξi 的取法是任意的。 (3) 定义中涉及的极限过程中要求λ→0,表示对区间[a,b]无限细分的过程,随λ →0必有n →∞,反之n →∞并不能保证λ→0,定积分的实质是求某种特殊合式的极限: 例:∑?=∞→=n i n n i f dx x f 1 1 0n 1 )()(lim (此特殊合式在计算中可以作为公式使用) 2. 定积分的存在定理 定理一 若函数f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。 定理二 若函数f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间上可积。 3. 定积分的几何意义 对于定义在区间[a,b]上连续函数f(x),当f(x)≥0时,定积分 ? b a dx x f )(在几何上表示由曲线y=f(x),x=a,x=b 及x 轴所围成的曲边梯形的面积;当f(x) 小于0时,围成的曲边梯形位于x 轴下方,定积分?b a dx x f )(在几何意义上表示曲边梯形面积的负值。若f(x)在区间上既取得正值又取得负值时,定积分的几何意义是:它是介于x 轴,曲线y=f(x),x=a,x=b 之间的各部分曲边梯形的代数和。 4.定积分的性质 线性性质(性质一、性质二)

最新定积分及应用61887

定积分及应用61887

仅供学习与交流,如有侵权请联系网站删除 谢谢24 第六章 定积分及其应用 习题6-1 1、利用定积分的定义计算下列定积分: (1) ?-2 1 xdx ; 解:①令]2,1[)(-∈=C x x f ,因此]2,1[)(-∈R x f , ②取?为]2,1[-的n 等分,此时有 ]31,)1(31[],[1n i n i x x i i i +--+-==?-,n x i 3=?=?,.,,2,1n i = ③取i i i n i x ?∈+-==31ξ,于是 )3(33)31()(],[11 1∑∑∑===+-=+-=?=?n i n i n i i i i n n n n n i x f S ξξ 2 )1(932++-=n n n , ④2 3293]2)1(93[lim ],[lim 20||||2 1 =+-=++-=?=∞→→?-?n n n S xdx n ξ. (2) ?1 0 dx e x . 解:①令]1,0[)(C e x f x ∈=,因此]1,0[)(R x f ∈, ②取?为]1,0[的n 等分,此时有 ],1[],[1n i n i x x i i i -==?-, n x i 1=?=?,.,,2,1n i =

仅供学习与交流,如有侵权请联系网站删除 谢谢24 ③取i i i n i x ?∈==ξ,于是 ∑∑∑ =====?=?n i n i n i n i n i i i e n n e x f S 11111)(],[ξξ, ④n n n n i n i n x e e e n e n S dx e 11 10||||1 0 1 11lim )1(lim ],[lim --==?=∞→=∞→→?∑?ξ 11lim )1(1 1 lim )1(01-=--=--=→∞→e e t e e n e t t n n . 2、利用定积分的几何意义,说明下列等式: (1)121 0 =?xdx ; 解:因x y 2=,1=x 及0=y 围成的三角形的面积为1, 因此由定积分的几何意义知121 0 =?xdx . (2)411 0 2π=-?dx x ; 解:因圆形122=+y x 的面积为π,那么122=+y x ,0=x 及0=y 围 成的是圆形在第一象限的部分,其面积当然为4 π,因此由定积分的几何意义知 4 11 0 2π=-?dx x . (3)0sin =?-π πxdx ;

7.微积分基本定理练习题

7、微积分基本定理 一、选择题 1.??0 1(x 2 +2x )d x 等于( ) A.13 B.23 C .1 D.43 2.∫2π π(sin x -cos x )d x 等于( ) A .-3 B .-2 C .-1 D .0 3.自由落体的速率v =gt ,则落体从t =0到t =t 0所走的路程为( ) A.13gt 20 B .gt 2 0 C.12gt 20 D.16gt 20 4.曲线y =cos x ? ????0≤x ≤3π2与坐标轴所围图形的面积是( ) A .4 B .2 C.5 2 D .3 5.如图,阴影部分的面积是( ) A .2 3 B .2- 3 C.323 D.35 3 6.??0 3|x 2-4|d x =( ) A.213 B.223 C.233 D.25 3 7.??241 x d x 等于( ) A .-2ln2 B .2ln2 C .-ln2 D .ln2 8.若??1a ? ?? ??2x +1x d x =3+ln2,则a 等于( ) A .6 B .4 C .3 D .2 9.(2010·山东理,7)由曲线y =x 2 ,y =x 3 围成的封闭图形面积为( ) A.112 B.14 C.13 D.7 12 10.设f (x )=??? ?? x 2 0≤x <12-x 1

11.从如图所示的长方形区域内任取一个点M (x ,y ),则点M 取自阴影部分的概率为________. 12.一物体沿直线以v =1+t m/s 的速度运动,该物体运动开始后10s 内所经过的路程是________. 13.求曲线y =sin x 与直线x =-π2,x =5 4π,y =0所围图形的面积为________. 14.若a =??02x 2 d x ,b =??02x 3 d x ,c =??0 2sin x d x ,则a 、b 、c 大小关系是________. 三、解答题 15.求下列定积分: ①??0 2(3x 2+4x 3 )d x ; ② sin 2 x 2 d x . 17.求直线y =2x +3与抛物线y =x 2 所围成的图形的面积. 18.(1)已知f (a )=??0 1(2ax 2 -a 2 x )d x ,求f (a )的最大值; (2)已知f (x )=ax 2 +bx +c (a ≠0),且f (-1)=2,f ′(0)=0,??0 1f (x )d x =-2,求a ,b ,c 的值. DBCDCCDDAC 11. 13 12. 23(1132-1) 13.4-2 2 [解析] 所求面积为 =1+2+? ?? ?? 1-22=4-22. 14.[答案] c

定积分总结

定积分讲义总结 内容一 定积分概念 一般地,设函数()f x 在区间[,]a b 上连续,用分点0121i i n a x x x x x x b -=<<<<<<<=L L 将区间[,]a b 等分成n 个小区间,每个小区间长度为x ?(b a x n -?= ),在每个小区间[]1,i i x x -上取一点()1,2,,i i n ξ=L ,作和式:1 1 ()()n n n i i i i b a S f x f n ξξ==-=?=∑∑ 如果x ?无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分。记为:()b a S f x dx = ? 其中()f x 成为被积函数,x 叫做积分变量,[,]a b 为积分区间,b 积分上限,a 积分下限。 说明:(1)定积分 ()b a f x dx ? 是一个常数,即n S 无限趋近的常数S (n →+∞时)称为()b a f x dx ?,而不是n S . (2)用定义求定积分的一般方法是:①分割:n 等分区间[],a b ;②近似代替:取点[]1,i i i x x ξ-∈;③求和: 1()n i i b a f n ξ=-∑;④取极限:()1()lim n b i a n i b a f x dx f n ξ→∞=-=∑? 例1.弹簧在拉伸的过程中,力与伸长量成正比,即力()F x kx =(k 为常数,x 是伸长量),求弹簧从平衡位置拉长b 所作的功. 分析:利用“以不变代变”的思想,采用分割、近似代替、求和、取极限的方法求解. 解: 将物体用常力F 沿力的方向移动距离x ,则所作的功为W F x =?. 1.分割 在区间[]0,b 上等间隔地插入1n -个点,将区间[]0,1等分成n 个小区间: 0,b n ??????,2,b b n n ?? ????,…,()1,n b b n -?????? 记第i 个区间为()1,(1,2,,)i b i b i n n n -???=? ? ??L ,其长度为()1i b i b b x n n n -??=-= 把在分段0, b n ? ???? ?,2,b b n n ?? ????,…,()1,n b b n -?????? 上所作的功分别记作:1W ?,2W ?,…,n W ? (2)近似代替 有条件知:()()11i i b i b b W F x k n n n --???=??=?? ? ?? (1,2,,)i n =L (3)求和 ()1 1 1n n n i i i i b b W W k n n ==-=?=??∑∑ =()()22222 110121122n n kb kb kb n n n n -?? ++++-==-?? ?? ??? L

定积分的性质与计算方法

定积分的性质与计算方法 摘要: 定积分是微积分学中的一个重要组成部分,其计算方法和技巧非常 丰富。本文主要给出定积分的定义及讨论定积分的性质和计算方法,并通过一些很有代表性的例题说明了其计算方法在简化定积分计算中的强大功能。 关键词:定积分 性质 计算方法 定积分的定义 设函数f(x) 在区间[a,b]上连续,将区间[a,b]分成n 个子区间[x 0,x 1], (x 1,x 2], (x 2,x 3], …, (x n-1,x n ],其中x 0=a ,x n =b 。可知各区间的长度依次是:△x 1=x 1-x 0, △x 2=x 2-x 1, …, △x n =x n -x n-1。在每个子区间(x i-1,x i ]中任取一点i ξ(1,2,...,n ),作和式1()n i i f x ι=ξ?∑。设λ=max{△x 1, △x 2, …, △x n }(即λ是 最大的区间长度),则当λ→0时,该和式无限接近于某个常数,这个常数叫做函数f(x) 在区间[a,b]的定积分,记为: ()b a f x dx ?。 其中:a 叫做积分下限,b 叫做积分上限,区间[a, b]叫做积分区间,函数f(x)叫做被积函数,x 叫做积分变量,f(x)dx 叫做被积表达式,∫ 叫做积分号。 对于定积分,有这样一个重要问题:函数()f x 在[a,b]上满足怎样的条件, ()f x 在[a,b]上一定可积?下面给出两个充分条件: 定理1: 设()f x 在区间[a,b]上连续,则()f x 在[a,b]上可积。 定理2: 设()f x 在区间[a,b]上有界,且只有有限个间断点,则 ()f x 在[a,b]上可积。 例:利用定义计算定积分1 20x dx ?. 解:因为被积函数2()f x x =在积分区间[0,1]上连续,而连续函数是可积的,所以积分与区间[0,1]的分法及点i ξ的取法无关。因此,为了 便于计算,不妨把区间[0,1]分成n 等份,分点为i i x n = ,1,2,,1i n =?-;这样,

§定积分的应用习题与答案

第六章 定积分的应用 (A ) 1、求由下列各曲线所围成的图形的面积 1)221x y = 与822=+y x (两部分都要计算) 2)x y 1= 与直线x y =及2=x 3)x e y =,x e y -=与直线1=x 4)θρcos 2a = 5)t a x 3cos =,t a y 3sin = 1、求由摆线()t t a x sin -=,()t a y cos 1-=的一拱()π20≤≤t 与横轴所围成的图形的 面积

2、求对数螺线θρae =()πθπ≤≤-及射线πθ=所围成的图形的面积 3、求由曲线x y sin =和它在2π =x 处的切线以及直线π=x 所围成的图形的面积和它绕 x 轴旋转而成的旋转体的体积 4、由3x y =,2=x ,0=y 所围成的图形,分别绕x 轴及y 轴旋转,计算所得两旋转体 的体积 5、计算底面是半径为R 的圆,而垂直于底面上一条固定直径的所有截面都是等边三角形 的立体体积 6、计算曲线()x y -= 33 3上对应于31≤≤x 的一段弧的长度 7、计算星形线t a x 3cos =,t a y 3sin =的全长

8、由实验知道,弹簧在拉伸过程中,需要的力→F (单位:N )与伸长量S (单位:cm ) 成正比,即:kS =→F (k 是比例常数),如果把弹簧原长拉伸6cm , 计算所作的功 9、一物体按规律3ct x =作直线运动,介质的阻力与速度的平方成正比,计算物体由0 =x 移到a x =时,克服介质阻力所作的功 10、 设一锥形储水池,深15m ,口径20m ,盛满水,将水吸尽,问要作多少功? 11、 有一等腰梯形闸门,它的两条底边各长10cm 和6cm ,高为20cm ,较长的底边 与水面相齐,计算闸门的一侧所受的水压力 12、 设有一长度为λ,线密度为u 的均匀的直棒,在与棒的一端垂直距离为a 单位处 有一质量为m 的质点M ,试求这细棒对质点M 的引力 (B) 1、设由抛物线()022>=p px y 与直线p y x 2 3=+ 所围成的平面图形为D 1) 求D 的面积S ;2)将D 绕y 轴旋转一周所得旋转体的体积

定积分与微积分基本定理

教学过程

一、课堂导入 问题:什么是定积分?定积分与微积分基本定理是什么? 二、复习预习 1.被积函数若含有绝对值号,应先去绝对值号,再分段积分.

2.若积分式子中有几个不同的参数,则必须先分清谁是被积变量. 3.定积分式子中隐含的条件是积分上限大于积分下限. 4.定积分的几何意义是曲边梯形的面积,但要注意:面积非负,而定积分的结果可以为负. 5.将要求面积的图形进行科学而准确的划分,可使面积的求解变得简捷. 三、知识讲解 考点1 定积分的概念 设函数y=f(x)定义在区间[a,b]上用分点a=x0

在每个小区间内任取一点ξi,作和式I n=∑n-1 i=0 f(ξi)Δx i.当λ→0时,如果和式的极限存在,把和式I n的极限叫做函数f(x) 在区间[a,b]上的定积分,记作?b a f(x)d x,即?b a f(x)d x=lim λ→0∑n-1 i=0 f(ξi)Δx i,其中f(x)叫做被积函数,f(x)d x叫做被积式,a 为积分下限,b为积分上限.

(1)?b a kf(x)d x=k?b a f(x)d x (k为常数). (2)?b a[f(x)±g(x)]d x=?b a f(x)d x±?b a g(x)d x. (3)?b a f(x)d x=?c a f(x)d x+?b c f(x)d x (a

专升本高等数学 第五章定积分及其应用

第五章 定积分 【考试要求】 1.理解定积分的概念和几何意义,了解可积的条件. 2.掌握定积分的基本性质. 3.理解变上限的定积分是变上限的函数,掌握变上限定积分求导数的方法. 4.掌握牛顿——莱布尼茨公式. 5.掌握定积分的换元积分法与分部积分法. 6.理解无穷区间广义积分的概念,掌握其计算方法. 7.掌握直角坐标系下用定积分计算平面图形的面积. 【考试内容】 一、定积分的相关概念 1.定积分的定义 设函数 ()f x 在[,]a b 上有界,在[,]a b 中任意插入若干个分点 0121n n a x x x x x b -=<<<<<=, 把区间[,]a b 分成n 个小区间01[,]x x ,12[,]x x ,,1[,]n n x x -, 各个小区间的长度依次为1 10x x x ?=-,221x x x ?=-,,1n n n x x x -?=-.在 每个小区间1[,]i i x x -上任取一点i ξ (1i i i x x ξ-≤≤) ,作函数值()i f ξ与小区间长度i x ?的乘积()i i f x ξ? (1,2, ,i n =),并作出和1 ()n i i i S f x ξ==?∑. 记 12max{,,,}n x x x λ=???,如果不论对[,]a b 怎样划分,也不论在小区间 1[,]i i x x -上点i ξ怎样选取,只要当0λ→时,和S 总趋于确定的极限I ,那么称这个极 限I 为函数 ()f x 在区间[,]a b 上的定积分(简称积分),记作 ()b a f x dx ?,即

1 ()lim ()n b i i a i f x dx I f x λξ→===?∑? , 其中 ()f x 叫做被积函数,()f x dx 叫做被积表达式,x 叫做积分变量,a 叫做积分下限, b 叫做积分上限,[,]a b 叫做积分区间. 说明:定积分的值只与被积函数及积分区间有关,而与积分变量的记法无关,也就是说 ()()()b b b a a a f x dx f t dt f u du ==? ??. 2.定积分存在的充分条件(可积的条件) (1)设 ()f x 在区间[,]a b 上连续,则()f x 在[,]a b 上可积. (2)设 ()f x 在区间[,]a b 上有界,且只有有限个间断点,则()f x 在区间[,]a b 上可积. 说明:由以上两个充分条件可知,函数()f x 在区间[,]a b 上连续,则()f x 在[,]a b 上 一定可积;若 ()f x 在[,]a b 上可积,则()f x 在区间[,]a b 上不一定连续,故函数() f x 在区间[,]a b 上连续是 ()f x 在[,]a b 上可积的充分非必要条件. 3.定积分的几何意义 在区间[,]a b 上函数 ()0f x ≥时,定积分()b a f x dx ?在几何上表示由曲线 ()y f x =、两条直线x a =、x b =与x 轴所围成的曲边梯形的面积. 在区间[,]a b 上 ()0f x ≤时,由曲线()y f x =、两条直线x a =、x b =与x 轴 所围成的曲边梯形位于x 轴的下方,定积分()b a f x dx ? 在几何上表示上述曲边梯形面积的 负值. 在区间[,]a b 上 ()f x 既取得正值又取得负值时,函数()f x 的图形某些部分在x 轴 的上方,而其他部分在x 轴的下方,此时定积分 ()b a f x dx ? 表示x 轴上方图形的面积减去 x 轴下方面积所得之差. 二、定积分的性质

定积分计算的总结论文

定积分计算的总结论文公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

定积分计算的总结 闫佳丽 摘 要:本文主要考虑定积分的计算,对一些常用的方法和技巧进行了归纳和总结.在定积分的计算中,常用的计算方法有四种:(1)定义法、(2)牛顿—莱布尼茨公式、(3)定积分的分部积分法、(4)定积分的换元积分法. 关键词:定义、牛顿—莱布尼茨公式、分部积分、换元. 1前言 17世纪后期,出现了一个崭新的数学分支—数学分析.它在数学领域中占据着主导地位.这种新数学思想的特点是非常成功地运用了无限过程的运算即极限运算.而其中的微分和积分这两个过程,则构成系统微积分的核心.并奠定了全部分析学的基础.而定积分是微积分学中的一个重要组成部分. 2正文 那么,究竟什么是定积分呢我们给定积分下一个定义:设函数()f x 在[],a b 有定义,任给[],a b 一个分法T 和一组{}k ξξ=,有积分和 1 (,)()n k k k T f x σξξ==?∑,若当()0l T →时,积分和(,)T σξ存在有限极限, 设()0()0 1 lim (,)lim ()n k k l T l T k T f x I σξξ→→==?=∑,且数I 与分法T 无关,也与k ξ在[]1,k k x x -的取法无关,即{}0,0,:(),k T l T εδδξξ?>?>?

定积分与微分基本定理

定积分与微积分基本定理 一、目标与策略 明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数! 学习目标: ● 了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念、几何意义. ● 直观了解微积分基本定理的含义,并能用定理计算简单的定积分. ● 应用定积分解决平面图形的面积、变速直线运动的路程和变力作功等问题,在解决问题的过程中体验定积分的价值. 重点难点: ● 重点:正确计算定积分,利用定积分求面积. ● 难点:定积分的概念,将实际问题化归为定积分问题. 学习策略: ● 运用“以直代曲”、“以不变代变”的思想方法,理解定积分的概念. ● 求定积分主要是要找到被积函数的原函数,也就是说,要找到一个函数,它的导函数等于被积函数. ● 求导运算与求原函数运算互为逆运算. 二、学习与应用 常见基本函数的导数公式 (1)()f x C =(C 为常数),则'()f x = (2)()n f x x =(n 为有理数),则'()f x = (3)()sin f x x =,则'()f x = (4)()cos f x x =,则'()f x = (5)()x f x e =,则'()f x = (6)()x f x a =,则'()f x = “凡事预则立,不预则废”。科学地预习才能使我们上课听讲更有目的性和针对 知识回顾——复习 学习新知识之前,看看你的知识贮备过关了吗?

(7)()ln f x x =,则'()f x = (8)()log a f x x =,则'()f x = 函数四则运算求导法则 设 ()f x ,()g x 均可导 (1)和差的导数:[()()]'f x g x ±= (2)积的导数:[()()]'f x g x ?= (3)商的导数:()[]'() f x g x = (()0g x ≠) 知识点一:定积分的概念 如果函数)(x f 在区间[,]a b 上连续,用分点b x x x x x a n n =<

高数 定积分的应用

第六章定积分的应用 教学目的 1、理解元素法的基本思想; 2、掌握用定积分表达和计算一些几何量(平面图形的面积、平面曲线的弧长、 旋转体的体积及侧面积、平行截面面积为已知的立体体积)。 3、掌握用定积分表达和计算一些物理量(变力做功、引力、压力和函数的平均 值等)。 教学重点: 1、计算平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面 面积为已知的立体体积。 2、计算变力所做的功、引力、压力和函数的平均值等。 教学难点: 1、截面面积为已知的立体体积。 2、引力。 §6.1 定积分的元素法 回忆曲边梯形的面积: 设y=f (x)≥0 (x∈[a,b]).如果说积分, ?=b a dx x f A) ( 是以[a,b]为底的曲边梯形的面积,则积分上限函数 ?=x a dt t f x A)( ) ( 就是以[a,x]为底的曲边梯形的面积.而微分dA(x)=f (x)dx表示点x处以dx为宽的小曲边梯形面积的近似值?A≈f (x)dx, f (x)dx称为曲边梯形的面积元素. 以[a,b]为底的曲边梯形的面积A就是以面积元素f(x)dx为被积表达式,以

[a , b ]为积分区间的定积分: ?=b a dx x f A )( . 一般情况下, 为求某一量U , 先将此量分布在某一区间[a , b ]上, 分布在[a , x ]上的量用函数U (x )表示, 再求这一量的元素dU (x ), 设dU (x )=u (x )dx , 然后以u (x )dx 为被积表达式, 以[a , b ]为积分区间求定积分即得 ?=b a dx x f U )(. 用这一方法求一量的值的方法称为微元法(或元素法). §6. 2 定积分在几何上的应用 一、平面图形的面积 1.直角坐标情形 设平面图形由上下两条曲线y =f 上(x )与y =f 下(x )及左右两条直线x =a 与x =b 所围成, 则面积元素为[f 上(x )- f 下(x )]dx , 于是平面图形的面积为 dx x f x f S b a ?-=)]()([下上. 类似地, 由左右两条曲线x =?左(y )与x =?右(y )及上下两条直线y =d 与y =c 所围成设平面图形的面积为 ?-=d c dy y y S )]()([左右??. 例1 计算抛物线y 2=x 、y =x 2所围成的图形的面积.

微积分基本定理 教案

微积分基本定理 一:教学目标 知识与技能目标 通过实例,直观了解微积分基本定理的内容,会用牛顿-莱布尼兹公式求简单的定积分 过程与方法 通过实例探求微分与定积分间的关系,体会微积分基本定理的重要意义 情感态度与价值观 通过微积分基本定理的学习,体会事物间的相互转化、对立统一的辩证关系,培养学生辩证唯物主义观点,提高理性思维能力。 二:教学重难点 重点:通过探究变速直线运动物体的速度与位移的关系,使学生直观了解微积分基 本定理的含义,并能正确运用基本定理计算简单的定积分。 难点:了解微积分基本定理的含义 三:教学过程: 1、知识链接: 定积分的概念: 用定义计算的步骤: 2、合作探究: ⑴导数与积分的关系; 我们讲过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。有没有计算定积分的更直接方法,也是比较一般的方法呢? 下面以变速直线运动中位置函数与速度函数之间的联系为例: 设一物体沿直线作变速运动,在时刻t 时物体所在位置为S(t),速度为v(t)(()v t o ≥), 则物体在时间间隔12[,]T T 内经过的路程可用速度函数表示为2 1()T T v t dt ?。 另一方面,这段路程还可以通过位置函数S (t )在12[,]T T 上的增量12()()S T S T -来表达,即 2 1()T T v t dt ?=12()()S T S T - 而()()S t v t '=。 说出你的发现 ⑵ 微积分基本定理 对于一般函数()f x ,设()()F x f x '=,是否也有 ()()()b a f x dx F b F a =-?? 若上式成立,我们就找到了用()f x 的原函数(即满足()()F x f x '=)的数值差

定积分应用方法总结(经典题型归纳).docx

精品文档 定积分复习重点 定积分的考查频率不是很高,本讲复习主要掌握定积分的概念和几何意义,使 用微积分基本定理计算定积分,使用定积分求曲边图形的面积和解决一些简单的物 理问题等. 1. 定积分的运算性质 (1) b b kf (x)dx k f (x)dx(k 为常数 ). a a (2) b b f 1 ( x)dx b 2 ( x)dx. [ f 1 ( x) f 2 ( x)]dx f a a a b c b 其中 a

相关主题