搜档网
当前位置:搜档网 › 三角函数图像之解析

三角函数图像之解析

三角函数图像之解析
三角函数图像之解析

三角函数解之分析

考纲要求:

(1)求参数的顺序问题:理论上,三个参数均可以通过特殊点的代入进行求解,但由于,A ω与函数性质联系非常紧密,所用通常先抓住波峰波谷以确定A 的值,再根据对称轴对称中心的距离确定T ,进而求出ω,最后再通过代入一个特殊点,并根据?的范围确定?。

(2)求?时特殊点的选取:往往优先选择最值点,因为最值点往往计算出的?值唯一,不会出现多解的情况。如果代入其它点(比如零点),有时要面临结果取舍的问题。 基础知识回顾:

在有关三角函数的解答题中,凡涉及到()()sin f x A x ω?=+的性质时,往往表达式不直接给出,而是需要利用已知条件化简或求得,,A ω?得到,本讲主要介绍求解()sin y A x ω?=+解析式的一些技巧和方法

1.“五点法”作图

“五点法”作图的五点是在一个周期内的最高点、最低点及与x 轴相交的三个点,作图的一般步骤为:

(1)定点:如下表所示.

(2)作图:在坐标系中描出这五个关键点,用平滑的曲线顺次连接得到y =Asin (ωx +φ)在一个周期内的图象.

(3)扩展:将所得图象,按周期向两侧扩展可得y =Asin (ωx +φ)在R 上的图象. 2.函数y =sin x 的图象经变换得到y =Asin (ωx +φ)的图象的两种途径

3.函数y =Asin (ωx +φ)的物理意义

当函数y =Asin (ωx +φ)(A >0,ω>0),x ∈[)0,+∞表示一个振动量时,A 叫做振幅,T =2π

ω

叫做

周期,f =1

T

叫做频率,ωx +φ叫做相位,φ叫做初相.

应用举例:

类型一、确定三角函数的解析式和振幅、初相、相位

【例1】 【山东省乐陵市第一中学2019届高三一轮复习检测试题】函数

的部分图象如图所示,则将

的图象向右平移个单位后,得

到的图象的解析式为

A . 2x

B .

2x

C .

D .

【答案】D

将的图象向右平移个单位后,得到的图象对应的解析式为

故选D.

【点睛】

已知f(x)=A sin(ωx+φ)(A>0,ω>0)的部分图象求其解析式时,A比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法:

(1)五点法,由即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x0,则令ωx0+φ=0(或ωx0+φ=π),即可求出φ;

(2)代入法,利用一些已知点(最高点、最低点或零点)坐标代入解析式,再结合图形解出ω和φ,若对A,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.

【例2】【辽宁省葫芦岛市2018年普通高中高三第二次模拟考试】已知函数

的图象如图所示,则下列说法正确的是()

A.函数的周期为

B.函数为奇函数

C.函数在上单调递增

D.函数的图象关于点对称

【答案】B

类型二、函数解析式的综合问题

【例3】【河南省安阳35中2018届高三核心押题卷一】要得到函数的图像,只需将函数的图像()

A.向左平移个周期 B.向右平移个周期

C.向左平移个周期 D.向右平移个周期

三角函数的图像和性质(第一课时)

【课题】5.6三角函数的图像和性质(第一课时) 【教学目标】 知识目标: (1) 理解正弦函数的图像和性质; (2) 理解用“五点法”画正弦函数的简图的方法; (3) 了解余弦函数的图像和性质. 能力目标: (1) 认识周期现象,以正弦函数、余弦函数为载体,理解周期函数; (2) 会用“五点法”作出正弦函数、余弦函数的简图; (3) 通过对照学习研究,使学生体验类比的方法,从而培养数学思维能力. 情感目标 培养学生的审美能力,作图能力,激发学习数学的兴趣,探究其他作图的方法. 【教学重点】 (1)正弦函数的图像及性质; 0,2π上的简图. (2)用“五点法”作出函数y=sin x在[] 【教学难点】 周期性的理解. 【教学设计】 (1)结合生活实例,认识周期现象,介绍周期函数; (2)利用诱导公式,认识正弦函数的周期; (3)利用“描点法”及“周期性”作出正弦函数图像; (4)观察图像认识有界函数,认识正弦函数的性质; (5)观察类比得到余弦函数的性质. 【教学备品】 课件,实物投影仪,三角板,常规教具. 【课时安排】 1课时.(45分钟) 【教学过程】 一、揭示课题 5.6三角函数的图像和性质 二、创设情景兴趣导入 1、问题 观察钟表,如果当前的时间是2点,那么时针走过12个小时后,显示的时间是多少呢?

再经过12个小时后,显示的时间是多少呢?L L . 2、解决 每间隔12小时,当前时间2点重复出现. 3、推广 类似这样的周期现象还有哪些? 三动脑思考 探索新知 概念 对于函数()y f x =,如果存在一个不为零的常数T ,当x 取定义域D 内的每一个值时,都有x T D +∈,并且等式()()f x T f x +=成立,那么,函数()y f x =叫做周期函数,常数T 叫做这个函数的一个周期. 由于正弦函数的定义域是实数集R ,对α∈R ,恒有2π()k k α+∈∈R Z ,并且 sin(2π)=sin ()k k αα+∈Z ,因此正弦函数是周期函数,并且 2π,4π, 6π,L 及2π-,4π-,L 都是它的周期. 通常把周期中最小的正数叫做最小正周期,简称周期,仍用T 表示.今后我们所研究的函数周期,都是指最小正周期.因此,正弦函数的周期是2π. 四、构建问题 探寻解决 说明 由周期性的定义可知,在长度为2π的区间(如[]0,2π,[]2,0-π,[]2,4ππ)上,正弦函数的图像相同,可以通过平移[]0,2π上的图像得到.因此,重点研究正弦函数在一个周期内,即在[]0,2π上的图像. 1、问题 用“描点法”作函数x y sin =在[]0,2π上的图像. 2、解决 把区间[]0,2π分成12等份,并且分别求得函数x y sin =在各分点及区间端点的函数值,列表如下:(见教材) 以表中的y x ,值为坐标,描出点(,)x y ,用光滑曲线依次联结各点,得到[]sin 0,2y x =π在上的图像.(见教材) 3、推广 将函数sin y x =在[]0,2π上的图像向左或向右平移2π,4π,L ,就得到sin ,y x =∞+∞在(-)上的图像,这个图像叫做正弦曲线.(见教材) 五、动脑思考 探索新知 1、概念 正弦曲线夹在两条直线1y =-和1y =之间,即对任意的角x ,都有sin 1x …成立,函数的这种性质叫做有界性. 一般地,设函数)(x f y =在区间),(b a 上有定义,如果存在一个正数M ,对任意的

三角函数公式及其图像

初等函数 1、基本初等函数及图形 基本初等函数为以下五类函数: (1) 幂函数μx y=,μ是常数; 1.当u为正整数时,函数的定义域为区间 ) , (+∞ -∞ ∈ x,他们的图形都经过原点,并当u>1时 在原点处与X轴相切。且u为奇数时,图形关于原点对称;u为偶数时图形关于Y轴对称; 2.当u为负整数时。函数的定义域为除去x=0的所有实数。 3.当u为正有理数m/n时,n为偶数时函数的定义域为(0, +∞),n为奇数时函数的定义域为(-∞+∞)。函数的图形均经过原点和(1 ,1). 如果m>n图形于x轴相切,如果m

(2) 指数函数 x a y = (a 是常数且01a a >≠,),),(+∞-∞∈x ; 1. 当a>1时函数为单调增,当a<1时函数为单调减. 2. 不论x 为何值,y 总是正的,图形在x 轴上方. 3. 当x=0时,y=1,所以他的图形通过(0,1)点.

(3) 对数函数 x y a log =(a 是常数且01a a >≠,),(0,)x ∈+∞; (4) 三角函数 正弦函数 x y sin =,),(+∞-∞∈x ,]1,1[-∈y , 余弦函数 x y cos =,),(+∞-∞∈x ,]1,1[-∈y , 1. 他的图形为于y 轴的右方.并通过点(1,0) 2. 当a>1时在区间(0,1),y 的值为负.图形位于x 的下方,在区 间(1, +∞),y 值为正,图形位于x 轴上方.在定义域是单调增函数.a<1在实用中很少用到/

三角函数图像与性质知识点总结

三角函数图像与性质知识 点总结 The Standardization Office was revised on the afternoon of December 13, 2020

函数图像与性质知识点总结 一、三角函数图象的性质 1.“五点法”描图 (1)y =sin x 的图象在[0,2π]上的五个关键点的坐标为 (0,0) ? ?? ?? ?π2,1 (π,0) ? ?? ??? 32π,-1 (2π,0) (2)y =cos x 的图象在[0,2π]上的五个关键点的坐标为 (0,1),? ?????π2,0,(π,-1),? ???? ? 3π2,0,(2π,1) 2.三角函数的图象和性质 函数 性质 y =sin x y =cos x y =tan x 定义域 R R {x |x ≠k π+π 2 ,k ∈Z} 图象 值域 [-1,1] [-1,1] R 对称性 对称轴: x =k π+ π2(k ∈Z); 对称轴: x =k π(k ∈Z) 对称中心: 对称中心:? ?? ?? ?k π2,0 (k ∈Z)

3.一般地对于函数(),如果存在一个非零的常数,使得当取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T 叫做这个函数的周期,把所有周期中存在的最小正数,叫做最小正周期(函数的周期一般指最小正周期) 4.求三角函数值域(最值)的方法: (1)利用sin x、cos x的有界性; 关于正、余弦函数的有界性 由于正余弦函数的值域都是[-1,1],因此对于?x∈R,恒有-1≤sin x≤1,-1≤cos x≤1,所以1叫做y=sin x,y=cos x的上确界,-1叫做y=sin x,y=cos x的下确界.

三角函数公式及图像

锐角三角函数公式 sin α=∠α的对边 / 斜边 cos α=∠α的邻边 / 斜边 tan α=∠α的对边/ ∠α的邻边 cot α=∠α的邻边/ ∠α的对边 倍角公式 Sin2A=2SinA?CosA Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2) (注:SinA^2 是sinA的平方 sin2(A)) 三倍角公式 sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推导 sin3a =sin(2a+a) =sin2acosa+cos2asina 辅助角公式 Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) tant=B/A Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B

降幂公式 sin^2(α)=(1-cos(2α))/2=versin(2α)/2 cos^2(α)=(1+cos(2α))/2=covers(2α)/2 tan^2(α)=(1-cos(2α))/(1+cos(2α)) 推导公式 tanα+cotα=2/sin2α tanα-cotα=-2cot2α 1+cos2α=2cos^2α 1-cos2α=2sin^2α 1+sinα=(sinα/2+cosα/2)^2 =2sina(1-sin²a)+(1-2sin²a)sina =3sina-4sin³a cos3a =cos(2a+a) =cos2acosa-sin2asina =(2cos²a-1)cosa-2(1-sin²a)cosa =4cos³a-3cosa sin3a=3sina-4sin³a =4sina(3/4-sin²a) =4sina[(√3/2)²-sin²a] =4sina(sin²60°-sin²a) =4sina(sin60°+sina)(sin60°-sina) =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]

求三角函数解析式的方法

求三角函数解析式常用的方法 三角函数是高中数学的一个重点,而三角函数图象与性质又是其中的难点,学生往往不知如何挖掘出有用的信息,去求A 、ω、φ。现就几道例题谈谈常用的求解方法。 1 利用五点法,逆求函数解析式 例1.右图所示的曲线是)sin(?ω+=x A y (0>A ,0>ω)图象的一部分,求这个函数的解析式. 解:由22y -≤≤,得A=2 已知第二个点(,2)12π和第五个点5(,0)6π 35346124T πππ=-= T π∴= 2ω= 把(,2)12π代入,2122ππφ?+=得3π?= 所以y=)3 2sin(2π+x 点评:由图像确定解析式,观察图像的特征,形助数寻找“五点法”中的整体点,从而确定初相?。 2 利用图像平移,选准变换过程切入求解 例2下列函数中,图象的一部分如右图所示的是 ( ) A .sin 6y x π??=+ ??? B.sin 26y x π??=- ?? ? C.cos 43y x π??=- ??? D.cos 26y x π??=- ?? ? 解:从图象看出,41T =1264πππ+=,所以函数的最小正周期为π,函数应为y=sin 2x 向左平移了6 π个单位,即sin 2()6y x π=+=sin(2)cos(2)cos(2)3236x x x ππππ+=-++=-,故选择答案D 。 点评:数形结合,由图像确定周期和初相位后,选准图像平移变换过程切入, 如本题y=sin 2x 向左平移了6 π个单位进行验证化简是求解的关键。对于利用图象的变换来求解函数的解析式,一定要清楚每一种变换对,,A ω?的影响,注重整体变量观念的应用。 3 特殊化赋值法求解

三角函数的平移及伸缩变换(含答案)

三角函数的平移及伸缩变换 一、单选题(共8道,每道12分) 1.将函数的图象上所有点的纵坐标不变,横坐标缩小到原来的,再把图象上各点向左平移个单位长度,则所得的图象的解析式是( ) A. B. C. D. 答案:C 解题思路: 试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 2.已知函数y=f(x)图象上每个点的纵坐标保持不变,横坐标伸长到原来的2倍,然后再将整 个图象沿x轴向左平移个单位,沿y轴向下平移1个单位,得到函数,则y =f(x)的表达式时( ) A. B. C. D.

答案:B 解题思路: 试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 3.已知函数,若f(x)的图象向左平移个单位所得的图象与f(x)的图象向右平移个单位所得的图象重合,则的最小值是( ) A.2 B.3 C.4 D.5 答案:C 解题思路:

试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 4.已知函数的最小正周期为,将的图象向左平移个单位长度,所得图象关于y轴对称,则的一个值是( ) A. B. C. D. 答案:D 解题思路:

试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 5.偶函数的图象向右平移个单位得到的图象关于原点对称,则的值可以是( ) A.1 B.2 C.3 D.4 答案:B 解题思路:

试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 6.已知函数的周期为π,若将其图象沿x轴向右平移a个单位(a >0),所得图象关于原点对称,则实数a的最小值是( ) A.π B. C. D. 答案:D

三角函数图像求解析式

: 已知sin()cos()y A x B y A x B ω?ω?=++=++或图像求解析式 1. 利用最值求A ,B . 当 A>0时 =最大值=A+B 最小值-A+B 当 A<0时 =最大值=-A+B 最小值A+B 2. 利用最高点、最低点、零点中的两个点的横坐标之差求出周期,再利用2|| T π ω= 求ω。 3. 利用五个特殊点求?,或代入y 轴上的点求?. 例1、如图,直线 2230x y +-=经过函数 si ()()n f x x ω?=+(0ω>,||?π<)图象的最高点 M 和最低点 N ,则( ) A 、2 π ω= ,4 π ω= B 、ωπ=, 0?= C 、2 π ω=,4 π ?=- D 、ωπ=, 2 π ?= 例2、 1.【2015新课标1】8、函数()cos()f x x ω?=+的部分图像如图 所示,则()f x 的单调递减区间为( ) (A )13(,),44k k k Z ππ- +∈ (B )13 (2,2),44k k k Z ππ-+∈ (C )13(,),44k k k Z -+∈ (D )13 (2,2),44 k k k Z -+∈ 2.(2016·全国卷2文)3函数y=Asin (ωx+φ)的部分图象如图所示,则 ( ) A.y=2sin π2x 6? ?- ??? B.y=2sin π2x 3?? - ?? ? C.y=2sin πx+6?? ?? ? D.y=2sin πx+3 ?? ?? ? 3.(2013 年高考大纲卷(文))若函数 ()()sin 0=y x ω?ωω=+>的部分图像如图,则 ( ) A .5 B .4 C .3 D .2 4. (2015·陕西高考理科·T3)如图,某港口一天6时到18时的水深变化曲线近似满足函数y=3sin(x+φ)+k,据此函数可知,这段时间水深(单位:m)的最大值为( ) A.5 B.6 C.8 D.10 5.已知函数 ()()() 2sin 0,f x x ω?ω?π=+><的部分图象如图所示, 已知点 ( A , ,06B π?? ? ??,若将它的图象向右平移6 π个单位长度,得到函数 () g x 的图象,则函数()g x 的图象的一条对称轴方程为 ( )

知识讲解 三角函数的性质及其应用 提高

三角函数的性质及其编稿:李霞审稿:孙永钊 【考纲要求】 1、了解函数sin()yAx????的物理意义;能画出sin()yAx????的图象,了解参数 A,?,?对函数图象变化的影响. 2、了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题. 【知识络】 【考点梳理】 考点一、函数sin()yAx????(0A?,0??)的图象的作法 1.五点作图法: 作sin()yAx????的简图时,常常用五点法,五点的取法是设tx????,由t取0、 2?、?、32?、2?来求相应的x值及对应的y值,再描点作图。 2.图象变换法: (1)振幅变换:把sinyx?的图象上各点的纵坐标伸长(A>1)或缩短(00)或向右(?<0)平行移动|?|个单位,得到sin()yAx???的图象; (3)周期变换:把sin()yAx???的图象上各点的横坐标缩短(ω>1)或伸长(0<ω<1)到原来的?1倍(纵坐标不变),可得到sin()yAx????的图象. (4)若要作sin()yAxb????,可将sin()yAx???的图象向上(0)b?或向下(0)b? 平移b个单位,可得到sin()yAxb????的图象.记忆方法仍为“左加右减,上正下负,纵伸(A>1)横缩(ω>1)”。 要点诠释: 由sinyx?的图象利用图象变换作函数sin()yAx????的图象时要特别注意:当周期

变换和相位 sin()yAx???? sin 图象的作法三角函的质其 图象的性 变换的先后顺序不同时,原图象沿x轴的伸缩量有区别. 考点二、sin()yAx????的解析式 1.sin()yAx????的解析式 sin()yAx????(0A?, 0??),[0,)x???表示一个振动量时,A叫做振幅,2T??? 叫做周期,12fT????叫做频率,x???叫做相位,0x?时的相位?称为初相. 2.根据图象求sin()yAx????的解析式 求法为待定系数法,突破口是找准五点法中的第一零点(,0)???. 求解步骤是先由图象求出A与T,再由2T???算出?,然后将第一零点代入0x????求出?. 要点诠释:若图象未标明第一零点,就只能找特殊点用待定系数法计算. 考点三、函数 sin()yAx????(0A?,0??)的性质 1. 定义域: xR?,值域:y∈[-A,A]. 2.周期性: 2T??? 3. 奇偶性:2k?????时为偶函数;k???时为奇函数,kZ?. 4.单调性:单调增区间 :[????????????22,22kk] , kZ? 单调减区间:[????????????232,22kk] , kZ? 5. 对称性:对称中心(????k,0),kZ?;对称轴

三角函数公式大全

三角函数 1. ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合): {} Z k k ∈+?=,360 |αββο ②终边在x 轴上的角的集合: {} Z k k ∈?=,180|οββ ③终边在y 轴上的角的集合:{ } Z k k ∈+?=,90180|ο οββ ④终边在坐标轴上的角的集合:{} Z k k ∈?=,90|οββ ⑤终边在y =x 轴上的角的集合:{} Z k k ∈+?=,45180|οοββ ⑥终边在x y -=轴上的角的集合:{} Z k k ∈-?=,45180|οοββ ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k ο360 ⑧若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+=οο180360k ⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k ο180 ⑩角α与角β的终边互相垂直,则角α与角β的关系:οο90360±+=βαk 2. 角度与弧度的互换关系:360°=2π 180°=π 1°= 1=°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. 、弧度与角度互换公式: 1rad =π 180°≈°=57°18ˊ. 1°=180 π≈(rad ) 3、弧长公式:r l ?=||α. 扇形面积公式:211||22 s lr r α==?扇形 4、三角函数:设α是一个任意角,在α 原点的)一点P (x,y )P 与原点的距离为r ,则 =αsin r x =αcos ; x y =αtan ; y x =αcot ; x r =αsec ;. αcsc 5、三角函数在各象限的符号:正切、余切 余弦、正割 正弦、余割 6、三角函数线 正弦线:MP; 余弦线:OM; 正切线: AT. SIN \COS 1、2、3、4表示第一、二、三、四象限一半所在区域

由三角函数图象求解析式

已知函数()f x =Acos(x ω?+)的图象如图所示,2 ()2 3 f π =- ,则(0)f =( ) (A )23- (B) 23 (C)- 12 (D) 1 2 2π 3,于是f(0)【解析】选B.由图象可得最小正周期为 =f(2π3),注意到2π3与π2关于7π12对称, 所以f(2π3 ) =-f(π2)=23. 如果函数()cos 2y x φ=3+的图像关于点43π?? ??? ,0中心对称,那么||?的最小值 为( ) (A ) 6π (B )4π (C )3π (D) 2 π 【解析】选A. 函数()cos 2y x φ=3+的图像关于点43π?? ??? ,0中心对称w.w.w.k.s.5.u.c.o.m 4232k ππφπ∴? +=+13()6k k Z πφπ∴=-∈由此易得min ||6 π φ=. 已知函数y=sin (ωx+?)(ω>0, -π≤?<π)的图像如图所示,则 ?=________________ 【解析】由图可知, ()544,,2,1255T x πωπ??? = ∴=+ ??? 把代入y=sin 有: 89,510ππ???? +∴= ??? 1=sin 已知函数()2sin()f x x ωφ=+的图像如图所示,则712 f π ?? = ??? 。

【解析】由图象知最小正周期T = 32(445ππ-)= 32π=ωπ2,故ω=3,又x =4 π时,f (x )=0,即2φπ +? 4 3sin()=0,可得4 π φ= ,所以,712f π ?? = ? ?? 2)41273sin(ππ+?=0。 )已知函数()sin(),f x A x x R ω?=+∈(其中0,0,02 A π ω?>><< )的图象与x 轴的 交点中,相邻两个交点之间的距离为2 π ,且图象上一个最低点为2(,2)3M π-. (Ⅰ)求()f x 的解析式; (Ⅱ)当[ ,]122 x ππ ∈,求()f x 的值域. 【解析】(1)由最低点为2(,2)3 M π -得A=2. 由x 轴上相邻的两个交点之间的距离为2π得2T =2 π ,即T π=,222T ππωπ=== 由点2(,2)3M π-在图像上得242sin(2)2,)133ππ ???+=-+=-即sin( 故42,32k k Z ππ?π+=-∈ 1126 k π?π∴=- 又(0, ),,()2sin(2)266f x x π ππ ??∈∴= =+故 (2)7[,],2[,]122636x x πππππ ∈∴+∈ 当26x π+=2π,即6x π=时,()f x 取得最大值2;当7266 x ππ+= 即2 x π =时,()f x 取得最小值-1,故()f x 的值域为[-1,2]把函数y =cos(3x +4 π )的图象适当变动就可以得到y =sin(-3x )的图象,这种变动可以是( ) A.向右平移 4π B.向左平移4 π

三角函数图像的综合运用

三角函数的图象与性质 一、基础知识: 1.三角函数的图象和性质 2.正弦函数y =sin x 当x =2k π+π2(k ∈Z ),取最大值1;当x =2k π-π 2(k ∈Z )时,取最小值-1. 3余弦函数y =cos x 当x =2k π(k ∈Z )时,取最大值1;当x =2k π+π(k ∈Z )时,取最小值-1. 4.y =sin x 、y =cos x 、y =tan x 的对称中心分别为(k π,0)(k ∈Z )、 ? ????k π+π 2,0(k ∈Z ) ? ?? ??k π2,0(k ∈Z ). 5.y =sin x 、y =cos x 的对称轴分别为 x =k π+π 2(k ∈Z )和_ x =k π(k ∈Z ),y =tan x 没有对称轴. 二、综合运用: 1、五点法绘y =A sin(ωx +φ)或y=A + 的图像: 依据:以 = + 为例; =0, =1, = , =-1, =0 在实际画图中,要分别令 + =0、 、 、 、 ,再求出x 与y 的值,确定对应的五点坐标。 例:“五点法”绘出y=2 图像。 例:“五点法”绘出y= ( )的图像,其中x 图像。 注:正切函数的图像采用三点两线的办法。 2、解有关三角函数的方程。 思路:在一个周期内,利用原始函数的图像求出对应的x 的值,然后使用整体替代的思路,解出方程中的x. 例1: - 例2: =- 例3:2 ( )=1 例4:︱ ( )︱= 例5︱ ( )︱= 注:在解有关三解函数的非常规方程时,需要使用数形结合的思想,用图像交点的个数来代表方程的解的个数。 例:分析方程 - =0的解的个数。(2个) 例:分析方程x- =0的解的个数。(1个)提示:利用三角函数线的性质, α 时, α α tan α。

五点法作图正弦函数

正弦函数图象 梁翠琼 一、教学目标: 1.知识与技能的掌握 (1)学会用列表、描点、连线的方法作出正弦函数的图象; (2)掌握五点法作正弦函数的简图; (3)掌握形如sin y k x b =+的函数图象简图的画法。 2.过程与方法的思考 (1)学会画图的一般步骤,培养动手能力; (2)会用“五点法”画正弦函数。 3.情感态度与价值观的培养 通过本节课的学习学会善于寻找,观察数学知识之间的内在联系.培养学生从特殊到一般与从一般到特殊的辩证思想方法。 二、重点和难点: 1.用列表、描点、连线的方法作出正弦函数的图象以及利用五点法画正弦函数的简图为本节课的教学重点; 2.用五点法画形如sin y k x b =+的函数图象简图。 三、学习过程 1. 情境导入 问题一:如何画一般函数的图象? 学生思考回答作图步骤:(Ⅰ)列表; (Ⅱ)描点 (Ⅲ)连线。 问题二:那我们能否通过描点法画正弦函数在[0,2]π内的图像, 教师与学生一起尝试描点法画图. 描点法在取函数值时,取得点越多,画出的函数图象就会越准确。 2.学导结合 (1)描点法画图: 列表------- 描点---- 连线 6 π 3 π2 π 3 2π6 5ππ 67π34π23π35π6 11ππ 20 2 12 30 1 2 1-2 3 - 2 12 30 2 1-23 -1-x y [] π2,0,sin ∈=x x y

(2)如何作正弦函数y =Sinx, x ∈R 的图象呢? 学生思考,老师点拨. 因为终边相同的角的三角函数值相同,所以 sin ,[2,2(1)),,0y x x k k k Z k ππ=∈+∈≠的图像,与函数 sin ,[0,2)y x x π=∈一致.于是我们 只要将sin ,[0,2)y x x π=∈的图像像左向右平行移动(每次2π个单位长度)就可以得到正弦函数y =Sinx ,x ∈R 的图象 (3)探究深化 ①“五点法”作简图: 教师提出问题:观察y=Sinx ,x ∈[0,2π]的图象,在作图连线过程中起关键作用的是哪几个点? 能否利用这些点作出正弦函数的简图? 引导学生得到五个关键点。 学生回答:关键五点:(0,0)、(2 π ,1)、(π,0)、 (32π ,-1)、(2π,0)。 教师总结:事实上,只要指出这五个点,y=Sinx ,x ∈[0,2π]的图象形状就基本定位了。因此在精确度要求不高时,我们就常先找出这五个关键点,然后用光滑的曲线将它们连结起来,就得到函数的简图,这种作图的方法称为“五点法”作图。 注:五个关键点中,重点应突出点的横坐标,纵坐标即相应函数值; 画简图时应掌握曲线的形状及弯曲的“方向”。

五点法画正弦交流电波形图

五点法画正弦交流电波 形图 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

“五点法”画正弦交流电波形图 叶和人(辽宁丹东市技师学院辽宁丹东118002) 摘要:已知解析式画波形图一般有两种,一是u-ωt波形图,二是u-t波形图。“五点法”画波形图的方法:一、由u=Umsinωt左右平移角得出波形图;二、由u=Umsinωt确定t值得出波形图。无论哪种方法,都要记住正弦曲线的基本形状,知道“五点”是哪五点,纵坐标总是0、Um、0、-Um、0不变。 关键词:正弦交流电“五点”坐标平移波形图 “五点法”画正弦曲线,学生在数学课中学习过,对其波形图形状已熟知。《电工基础》课教学中,要求学生掌握正弦交流电的三种表示法:解析式、波形图、相量图。教材中没有介绍具体画法,本文将介绍用“五点法”画正弦交流电波形图的方法。会画波形图将对学生在正弦交流电路的相关计算和今后正弦交流电路分析时有所帮助。 正弦交流电解析式的一般表达式为: i=Ims in(ωt+i) u=Umsin(ωt+u) e=Emsin(ωt+e) 在已知解析式的条件下,画波形图一般有两种,一是u-ωt波形图,二是u-t波形图,下面以正弦交流电压波形图为例讲解“五点法”画波形图的方法。 一、由u=Umsinωt左右平移角得出波形图 1、u-ωt波形图? (1)u=Umsinωt的波形图(初相位0) ①波形图的五点坐标为:(0、0)、(、Um)、(π、0)、(、-Um)、(2π、0)。 ②由五点画出波形图为: ? 上述五点坐标和波形图在数学课中已为学生所熟知。 (2)初相大于0,即u=Umsin(ωt+)的波形图 ①由u=Umsinωt波形图向左平移角,五点横坐标变为-、-、π-、-、2π-,即初相为0时横坐标均减去;纵坐标不变。 ②画出五点,描绘出波形图为: ?

三角函数的图像和性质题型归纳总结

三角函数的图像与性质题型归纳总结 题型归纳及思路提示 题型 1 已知函数解析式确定函数性质 【思路提示】一般所给函数为 y =A sin( ω x +φ)或y =A cos( ω x +φ),A>0,ω>0,要根 据 y = sin x ,y = cos x 的整体性质求解。 一、函数的奇偶性 例1 f (x )=sin (x )(0≤ < )是R 上的偶函数,则 等于( ) B . C . D . 42 A 充分不必要条件 B .必要不充分条 C .充要条件 变式 3.设f (x) sin( x ),其中 0,则 f (x)是偶函数的充要条件是( ) A. f (0) 1 B . f (0) 0 C . f '(0) 1 D . f '(0) 0 例2.设f (x) sin(2 x )(x R),则 f(x)是( ) 2 A. 最小正周期为 的奇函数 B . 最小正周期为 的偶函数 C .最小正周期为 的奇函数 D . 最小正周期为 的偶函数 22 结论: (1) 若y Asin( x )是奇函数,则 k (k Z); (2) 若 y Asin( x )是偶函数,则 k + (k 2 Z); (3) 若 y Acos(x )是奇函数,则 k 2(k Z); (4) 若 y Acos( x )是偶函数,则 k (k Z); (5) 若 y A tan(x )是奇函数,则 k 2 (k Z). 变式 1.已知 a R , 函数 f (x) sin x | a | 为奇函数, 则 a 等 于 B . 1 C . 1 D . 1 【评注】由 y sin x 是奇函数, y cosx 是偶函数可拓展得到关于三角函数奇偶性的重要 变式 2.设 R ,则 “ 0”是“f(x) cos(x )(x R)为偶函数 ” 的( ) D .无关条件

三角函数图象及应用

函数y =A sin(ωx +φ)的图象及应用 1.y =A sin(ωx +φ)的有关概念 y =A sin(ωx +φ)(A >0,ω>0),x ∈[0,+∞) 振幅 周期 频率 相位 初相 A T =2πω f =1T =ω2π ωx +φ φ 2.如下表所示. x 0-φ ω π2 -φω π-φ ω 3π2 -φω 2π-φ ω ωx +φ 0 π2 π 3π2 2π y =A sin(ωx +φ) A -A 3.函数 【思考辨析】 判断下面结论是否正确(请在括号中打“√”或“×”) (1)作函数y =sin(x -π6)在一个周期的图象时,确定的五点是(0,0),(π2,1),(π,0),(3π 2 ,-1),

(2π,0)这五个点.( × ) (2)将函数y =3sin 2x 的图象左移π4个单位长度后所得图象的解析式是y =3sin(2x +π 4).( × ) (3)函数y =sin(x -π4)的图象是由y =sin(x +π4)的图象向右移π 2个单位长度得到的.( √ ) (4)函数y =sin(-2x )的递减区间是(-3π4-k π,-π 4-k π),k ∈Z .( × ) (5)函数f (x )=sin 2x 的最小正周期和最小值分别为π,0.( √ ) (6)函数y =A cos(ωx +φ)的最小正周期为T ,那么函数图象的两个相邻对称中心之间的距离为T 2 .( √ ) 1.(2014·)为了得到函数y =sin(2x +1)的图象,只需把函数y =sin 2x 的图象上所有的点( ) A .向左平行移动1 2个单位长度 B .向右平行移动1 2个单位长度 C .向左平行移动1个单位长度 D .向右平行移动1个单位长度 答案 A 解析 y =sin 2x 的图象向左平移12个单位长度得到函数y =sin 2(x +1 2)的图象,即函数y = sin(2x +1)的图象. 2.(2013·)函数f (x )=2sin(ωx +φ)(ω>0,-π2<φ<π 2)的部分图象如图所示, 则ω,φ的值分别是( ) A .2,-π 3

由三角函数的图像求解析式

由B x A y ++=)sin(?ω的图像求解析式 知识点归纳: 1. 利用“五点法”作sin()y A x ω?=+图像,设X x ω?=+,令X =30,,, ,2 2 2 π π ππ 求出相应的x 值,计算得出五点的坐标,描点后得出图象 特 征 图像上升时与x 轴的交点 图像上的“峰点” 图像下降时与x 轴的交点 图像上的“谷点” 图像上升时与x 轴的交点 x 1x 2x 3x 4x 5x ?ω+x 0 2π π 2 3π π2 sin()A x ω?+ A A - 注: 1x 、2x 、3x 、4x 、5x 分别为所给图像上的五个关键点(第一个点至第五个点),要注意x 和?ω+x 之间的对应系 2.函数B x A y ++=)sin(?ω表达式的确定:A (B )由最值确定;ω由周期确定;?由图象上的特殊点(上面的关键点)确定 ①由图像观察最高点、最低点,B A y +=max 、B A y +-=min ,解这个关于A 和B 的二元一次方程组即得A 和B ②由图像观察周期,再利用T π ω2= ,求得ω 【由图像观察周期时,常见形式有: 1x 与5x 之间是一个周期T ;1x 与3x 、2x 与4x 之间是半个周期 2T ;1x 、2x 、3x 、4x 、5x 中相邻两个之间是四分之一的周期4 T .】 ③?的确定,一般要用图像的关键点来求,但要注意该关键点是“五点法”中的第几个点,如01=+?ωx ,2 2π ?ω= +x ,π?ω=+3x ,2 34π ?ω= +x ,从而根据以上等式,解出

? 考点 确定函数解析式问题 例1.⑴若函数sin()y A x ω?=+的图像(部分)如下图所示,则ω和?的取值是( ) A 、1,3 π ω?== B 、1,3 π ω?==- C 、1,26πω?== D 、1,6 πω?==- ⑵已知函数sin(),y A x x R ω?=+∈(其中0,0A ω>>)的图像在y 轴右侧的第一个最高点(函数取最大值的点)为() 2,22M ,与x 轴在原点右侧的第一个交点为()6,0N ,则这个函数的解析式是 . ⑶若函数()2sin()f x x ω?=+,x ∈R (其中0ω>,2 ?π < )的最小正周期是π,且(0)3f =,则( ) A .126 ω?π ==, B .123 ω?π= =, C .26 ω?π ==, D .23 ω?π ==, 例2.⑴某港口水的深度y (米)是时间t (240≤≤t ,单位:时)的函数,记作()y f t =, 下面是某日水深的数据: t/h 0 3 6 9 12 15 18 21 24 y/m 经常期观察,()y f t =的曲线可以近似的看成函数b t A y +=ωsin 的图象,根据以上的数据,可得函数()y f t =的近似表达式为 . ⑵一个大风车的半径为8m ,每12min 旋转一周,最低点离地面2m ,风车翼片的一个端点P 离地面的距离()h m 与时间()min t 之间的函数关系式是()sin h A t B ω?=++,0t =时端

“五点法”画正弦交流电波形图

“五点法”画正弦交流电波形图 叶和人(辽宁丹东市技师学院辽宁丹东118002) 摘要:已知解析式画波形图一般有两种,一是u-ωt波形图,二是u-t波形图。“五点法”画波形图的方法:一、由u=Umsinωt左右平移角得出波形图;二、由u=Umsinωt确定t 值得出波形图。无论哪种方法,都要记住正弦曲线的基本形状,知道“五点”是哪五点,纵坐标总是0、Um、0、-Um、0不变。 关键词:正弦交流电“五点”坐标平移波形图 “五点法”画正弦曲线,学生在数学课中学习过,对其波形图形状已熟知。《电工基础》课教学中,要求学生掌握正弦交流电的三种表示法:解析式、波形图、相量图。教材中没有介绍具体画法,本文将介绍用“五点法”画正弦交流电波形图的方法。会画波形图将对学生在正弦交流电路的相关计算和今后正弦交流电路分析时有所帮助。 正弦交流电解析式的一般表达式为: i=Imsin(ωt+i) u=Umsin(ωt+u) e=Emsin(ωt+e) 在已知解析式的条件下,画波形图一般有两种,一是u-ωt波形图,二是u-t波形图,下面以正弦交流电压波形图为例讲解“五点法”画波形图的方法。 一、由u=Umsinωt左右平移角得出波形图 1、 u-ωt波形图 (1)u=Umsinωt的波形图(初相位0) ①波形图的五点坐标为:(0、0)、(、Um)、(π、0)、(、-Um)、(2π、0)。 ②由五点画出波形图为: 上述五点坐标和波形图在数学课中已为学生所熟知。 (2)初相大于0,即u=Umsin(ωt+)的波形图 ①由u=Umsinωt波形图向左平移角,五点横坐标变为-、-、π-、-、2π-,即初相为0时横坐标均减去;纵坐标不变。 ②画出五点,描绘出波形图为:

高中数学《三角函数的图像和性质》教案

基础梳理 1.“五点法”描图 (1) y =sin x 的图象在[0,2π]上的五个关键点的坐标为 (3 (0,0), ( ,1) ,(π,0), 2 , 1) ,(2π,0). 2 (2) y =cos x 的图象在[0,2π]上的五个关键点的坐标为 (0,1), 0) ,(π,-1), (3 0) ,(2π,1). ( , , 2 2 2.三角函数的图象和性质 [-1,1] [-1,1] R

(k+0)k ∈Z , 2( k 0)k ∈Z , 2 单调增区间 [2k-2k+k ∈Z; , ] 2 2 单调减区间 [2k+2k+3 k ∈Z , ] 2 2 单调增区间 (k-k+k ∈Z , ) 2 2

) ) 1 . 函数 y = cos(x + ,x ∈R ( ). 双基自测 3 A .是奇函数 B .是偶函数 C. 既不是奇函数也不是偶函数 D .既是奇函数又是偶函数 y = - x ) 2. 函数 tan( 4 的定义域为( ). {x | x ≠ k - A . 4 ∈ Z } B .{x | x ≠ 2k - , k ∈ Z } 4 C .{x | x ≠ k + 4 ∈ Z } D .{x | x ≠ 2k + 4 ∈ Z } 3. y = sin(x - 的图象的一个对称中心是( ). 4 A .(-π,0) B . (- 3 C . (3 4 D. ,0) 2 ( ,0) 2 4. 函数 f (x )=cos (2x + 的最小正周期为 . ) 6 考向一 三角函数的周期 【例 1】?求下列函数的周期: y = - x ) (1) sin( 3 2 ;(2) y = tan(3x - ) 6 考向二 三角函数的定义域与值域 (1) 求三角函数的定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解. (2)求解三角函数的值域(最值)常见到以下几种类型的题目: ①形如 y =a sin 2x +b sin x +c 的三角函数,可先设 sin x =t ,化为关于 t 的二次函数求值域(最值); ②形如 y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设 t =sin x ±cos x ,化为关于 t 的二次函数求值域(最值). , k , k , k ,0)

根据三角函数图像求解析式经典题型分析

根据三角函数图像求解析式经典20题 1是函数π 2sin()2 y x ω???? =+< ?? ?的图象上的一段,则( ) A.10π 116ω?==, B.10π116 ω?= =-, C.π 26 ω?==, D.π 26 ω?==-, 2、若函数k x A y ++=)sin(?ω的最大值为5,最小值为-1,则函数A =____k =_______。 3、下列函数中,图像的一部分如右图所示的是( ) (A )sin()6y x π=+ (B )cos(2)6y x π=- (C )cos(4)3y x π =- (D )sin(2)6y x π=- 4、已知函数()?? ? ? ? <>+=2,0sin π?ω?ωx y 的部分图象如右上图所示,则( ) A. 6 ,1π ?ω== B. 6 ,1π ?ω- == C. 6 ,2π ?ω== D. 6 ,2π ?ω- == 5、将函数sin (0)y x ωω=>的图象向左平移 6 π 个单位,平移后的图象如图所示,则平移后的图象所对应函数的解析式是( ) A .sin()6 y x π =+ B .sin()6 y x π =- C .sin(2)3y x π =+ D .sin(2)3 y x π =- .6、设函数)(x f = )2sin(?+x (0<<-?π),)(x f 图像的一条对称轴是直线8 π = x , 则? 的值为( )A .2π B .π C .2π D .4 π 7、函数)20,0,)(sin(π?ω?ω<≤>∈+=R x x y 的部分图象如图,则

A .4 ,2 π ?π ω= = B .6 ,3 π ?π ω= = C .4,4π?πω== D .4 5,4π ?πω== 8、函数),2 ,0)(sin(R x x A y ∈π ω?+ω=的部分图象如图 所示,则函数表达式为) (A ))48sin(4π+π-=x y (B ))48sin(4π -π=x y (C ))48sin(4π-π-=x y (D ))4 8sin(4π +π=x y 9、函数()?ω+=x A y sin 的一个周期内的图象如下图, 求y 的解析式。(其中 π?πω<<->>,0,0A ) 10、已知函数k x A y ++=)sin(?ω (A >0,ω>0,|?|<π)在同一周期内,当9 π =x 时取 得最大值1,当9 4π =x 时,取得最小值0,求函数的表达式。 11、已知函数)sin(?ω+=x A y (A >0,ω>0,|?|<π) 的图象的一段如图,求它的解析式。 12、已知函数)sin(?ω+=x A y (A >0,ω>0,|?|< 2 π )的图象如图,求函数的解析式。 y x π 6 - 2 3 π 3 2 y x 2 1 -1 -2 π 12 11 O

相关主题