搜档网
当前位置:搜档网 › 解三角形题型5正、余弦定理判断三角形形状(供参考)(新)

解三角形题型5正、余弦定理判断三角形形状(供参考)(新)

解三角形题型5正、余弦定理判断三角形形状(供参考)(新)
解三角形题型5正、余弦定理判断三角形形状(供参考)(新)

解三角形题型5:正、余弦定理判断三角形形状

1、(2013·陕西高考文科·T9)设△ABC 的内角A , B , C 所对的边分别为a, b, c , 若

cos cos sin b C c B a A +=, 则△ABC 的形状为 ( )

A. 直角三角形

B. 锐角三角形

C. 钝角三角形

D. 不确定

2、(2010上海文数)18.若△ABC 的三个内角满足sin :sin :sin 5:11:13A B C =,

则△ABC

(A )一定是锐角三角形. (B )一定是直角三角形.

(C )一定是钝角三角形. (D)可能是锐角三角形,也可能是钝角三角形. 3、如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为( )

A .锐角三角形

B .直角三角形

C .钝角三角形

D .由增加的长度决定

4、在△ABC 中,已知2a b c =+,2

sin sin sin A B C =,试判断△ABC 的形状。

5、在△ABC 中,已知C B A sin cos sin 2=,那么△ABC 一定是 ( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形 D .正三角形

6、A 为ΔABC 的一个内角,且sinA+cosA=

12

7

, 则ΔABC 是______三角形. 7、在△ABC 中,若c

C

b B a A sin cos cos =

=,则△ABC 是( ) A .有一内角为30°的直角三角形

B .等腰直角三角形

C .有一内角为30°的等腰三角形

D .等边三角形

8、若(a+b+c)(b+c -a)=3abc,且sinA=2sinBcosC, 那么ΔABC 是

( )

A .直角三角形

B .等边三角形

C .等腰三角形

D .等腰直角三角形

9、(2010辽宁文数17)在ABC ?中,a b c 、、分别为内角A B C 、、的对边,

且2sin (2)sin (2)sin a A b c B c b C =+++ (Ⅰ)求A 的大小;

(Ⅱ)若sin sin 1B C +=,试判断ABC ?的形状.

10、在ABC ?中,已知2222()sin()()sin()a b A B a b A B +?-=-?+,判断该三角形的形状。

11、在ΔABC 中,求分别满足下列条件的三角形形状:

①B=60°,b 2=ac ; ②b 2tanA=a 2tanB ; ③sinC=

B

A B

A cos cos sin sin ++④ (a 2-b 2)sin(A+B)=(a 2+b 2)sin(A -B).

题型5:正、余弦定理判断三角形形状答案

1、【解题指南】在含有边角关系式的三角函数恒等变形中,利用正弦定理将边的关系式化为角的正弦式或利用余弦定理将余弦式化为边的关系式,这是判断三角形形状的两个转化方向.

【解析】选A.因为bcosC+ccosB=asinA ,所以由正弦定理得

sinBcosC+sinCcosB=sin 2A,所以sin(B+C)=sin 2

A,

sinA=sin 2

A, sinA=1,所以三角形ABC 是直角三角形.

2、解析:由sin :sin :sin 5:11:13A B C =及正弦定理得a:b:c=5:11:13

由余弦定理得0

115213115cos 2

22

3、解析:设增加同样的长度为x ,原三边长为a 、b 、c ,且c 2=a 2+b 2,a +b >c .新的三角形的三边长为a +x 、b +x 、 c +x ,知c +x 为最大边,其对应角最大.

而(a +x )2+(b +x )2-(c +x )2=x 2+2(a +b -c )x >0,由余弦定理知新的三角形的最大角的余弦为正,则为锐角,那么它为锐角三角形.答案:A

4、解:由正弦定理2sin sin sin a b c R A

B

C

===得:sin 2a A R

=,sin 2b

B R

=

,sin 2c C R

=

。 所以由2

sin sin sin A B C =可得:2(

)222a b c R R R

=?,即:2a bc =。

又已知2a b c =+,所以224()a b c =+,所以24()bc b c =+,即2()0b c -=, 因而b c =。故由2a b c =+得:22a b b b =+=,a b =。所以a b c ==,△ABC 为等边三角形。

5、B 解析:2sin A cos B =sin C =sin (A +B )=sinAcosB+cosAsinB

∴sin (A -B )=0,∴A =B 另解:角化边

点评:本题考查了三角形的基本性质,要求通过观察、分析、判断明确解题思路和变形方向,

通畅解题途径 6、纯角

9、解:(Ⅰ)由已知,根据正弦定理得c b c b c b a )2()2(22

+++= 即bc c b a

++=222

由余弦定理得A bc c b a cos 2222-+=

故?=-=120,2

1

cos A A

(Ⅱ)由(Ⅰ)得.sin sin sin sin sin

222

C B C B A ++=

又1sin sin =+C B ,得2

1sin sin ==C B

因为?<

故B C =

所以ABC ?是等腰的钝角三角形。

10、【解析】把已知等式都化为角的等式或都化为边的等式。

方法一:22[sin()sin()][sin()sin()]a A B A B b A B A B --+=-+--

222cos sin 2cos sin a A B b B A ∴=

由正弦定理,即知22sin cos sin sin cos sin A A B B B A =

sin sin (sin cos sin cos )0A B A A B B ∴-=

sin 2sin 2A B ∴= 由0

2,22A B

π,得22A B =或22A B π=-

即ABC ?为等腰三角形或直角三角形

方法二:同上可得222cos sin 2cos sin a A B b B A =

由正、余弦定理,即得:2222222222b c a a c b a b b a bc ac

+-+-=

22222222()()a b c a b a c b ∴+-=+-

即22222()()0a b c a b ---=

a b ∴=或222c a b =+

即ABC ?为等腰三角形或直角三角形

【点拨】判断三角形形状问题,一是应用正弦定理、余弦定理将已知条件转化为边与边之间的关系,通过因式分解等方法化简得到边与边关系式,从而判断出三角形的形状;(角化边)

二是应用正弦定理、余弦定理将已知条件转化为角与角之间三角函数的关系,通过三角恒等变形以及三角形内角和定理得到内角之间的关系,从而判断出三角形的形状。(边化角)

11、分析:化简已知条件,找到边角之间的关系,就可判断三角形的形状. ①由余弦定理

ac ac c a ac b c a ac b c a =-+?=-+?-+=?222222222

1

2260cos 0)

(2=-∴c a ,

c a =∴. 由a=c 及B=60°可知△ABC 为等边三角形. ②由A

A

b B a A b cos sin tan tan 22

2

?=

,2sin 2sin ,cos sin cos sin sin sin cos sin cos sin cos sin 22222B A B B A A A

B a b B A A B B B a =∴=∴==?=∴A=B 或

A+B=90°,∴△ABC 为等腰△或Rt △. ③B

A B A C cos cos sin sin sin ++= ,由正弦定理:

,)cos (cos b a B A c +=+再由余弦定理:b a ac

b c a c bc c b a c +=-+?+-+?222

22222

??∴+=∴=--+∴Rt ABC b a c b a c b a 为,,0))((222222. ④由条件变形为2

22

2)sin()sin(b a b a B A B A +-=+-

?=+=∴=∴=?=--+-++∴90,2sin 2sin sin sin sin cos cos sin ,)sin()sin()sin()sin(2

222B A B A B A B

A B A B A b a B A B A B A B A 或. ∴△ABC 是等腰△或Rt △.

正弦定理和余弦定理

正弦定理和余弦定理 高考风向 1.考查正弦定理、余弦定理的推导;2.利用正、余弦定理判断三角形的形状和解三角形;3.在解答题中对正弦定理、余弦定理、面积公式以及三角函数中恒等变换、诱导公式等知识点进行综合考查. 学习要领 1.理解正弦定理、余弦定理的意义和作用;2.通过正弦、余弦定理实现三角形中的边角转换,和三角函数性质相结合. 1. 正弦定理:a sin A =b sin B =c sin C =2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形:(1)a ∶b ∶c =sin_A ∶sin_B ∶sin_C ;(2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C = c 2R 等形式,解决不同的三角形问题. 2. 余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形: cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 2 2ab . 3. S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =1 2 (a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R 、 r . 4. 在△ABC 中,已知a 、b 和A 时,解的情况如下: [1.在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ?a >b ?sin A >sin B ;tanA+tanB+tanC=tanA·tanB·tanC ;在锐角三角形中,cos A

解三角形题型5正、余弦定理判断三角形形状(供参考)(新)

解三角形题型5:正、余弦定理判断三角形形状 1、(2013·陕西高考文科·T9)设△ABC 的内角A , B , C 所对的边分别为a, b, c , 若 cos cos sin b C c B a A +=, 则△ABC 的形状为 ( ) A. 直角三角形 B. 锐角三角形 C. 钝角三角形 D. 不确定 2、(2010上海文数)18.若△ABC 的三个内角满足sin :sin :sin 5:11:13A B C =, 则△ABC (A )一定是锐角三角形. (B )一定是直角三角形. (C )一定是钝角三角形. (D)可能是锐角三角形,也可能是钝角三角形. 3、如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .由增加的长度决定 4、在△ABC 中,已知2a b c =+,2 sin sin sin A B C =,试判断△ABC 的形状。 5、在△ABC 中,已知C B A sin cos sin 2=,那么△ABC 一定是 ( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形 D .正三角形 6、A 为ΔABC 的一个内角,且sinA+cosA= 12 7 , 则ΔABC 是______三角形. 7、在△ABC 中,若c C b B a A sin cos cos = =,则△ABC 是( ) A .有一内角为30°的直角三角形 B .等腰直角三角形 C .有一内角为30°的等腰三角形 D .等边三角形 8、若(a+b+c)(b+c -a)=3abc,且sinA=2sinBcosC, 那么ΔABC 是 ( ) A .直角三角形 B .等边三角形 C .等腰三角形 D .等腰直角三角形 9、(2010辽宁文数17)在ABC ?中,a b c 、、分别为内角A B C 、、的对边, 且2sin (2)sin (2)sin a A b c B c b C =+++ (Ⅰ)求A 的大小; (Ⅱ)若sin sin 1B C +=,试判断ABC ?的形状. 10、在ABC ?中,已知2222()sin()()sin()a b A B a b A B +?-=-?+,判断该三角形的形状。 11、在ΔABC 中,求分别满足下列条件的三角形形状: ①B=60°,b 2=ac ; ②b 2tanA=a 2tanB ; ③sinC= B A B A cos cos sin sin ++④ (a 2-b 2)sin(A+B)=(a 2+b 2)sin(A -B).

(完整版)解三角形专题题型归纳

《解三角形》知识点、题型与方法归纳 一、知识点归纳(★☆注重细节,熟记考点☆★) 1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径) 变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R ===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b B b B c C c C === 2.正弦定理适用情况: (1)已知两角及任一边; (2)已知两边和一边的对角(需要判断三角形解的情况). 3.余弦定理及其推论 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+- 222 222 222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab +-= +-=+-= 4.余弦定理适用情况: (1)已知两边及夹角; (2)已知三边. 注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式. 5.常用的三角形面积公式 (1)高底??= ?2 1ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R ===?为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边) (2)sin sin (ABC A B a b A B ?>?>?>在中,即大边对大角,大角对大边) (3)在ABC ?中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22 A B C += 7.实际问题中的常用角 (1)仰角和俯角

解三角形常见题型

绝密★启用前 2014-2015学年度???学校8月月考卷 试卷副标题 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第I 卷(选择题) 请点击修改第I 卷的文字说明 一、选择题(题型注释) 1.在ABC ?中,若00120306===B A a ,,,则△ABC 的面积是= ( ). A .93 B.9 C.183 D.18 【答案】A 【解析】 试题分析:在ABC ?中,0 30180,120,30=--=∴==B A C B A Θ,ABC ?∴是等腰三角形, 6==a c ,由三角形的面积公式得 392 36621sin 21=???== ?B ac S ABC . 考点:解三角形. 2.[2014·广西模拟]在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,ac =3,且a =3bsinA ,则△ABC 的面积等于( ) A. 12 B.32 C.1 D.34 【答案】A 【解析】∵a =3bsinA ,∴由正弦定理得sinA =3sinBsinA.∴sinB = 1 3 .∵ac =3,∴△ABC 的面积S =12acsinB =12×3×13=1 2 ,故选A.

第II 卷(非选择题) 请点击修改第II 卷的文字说明 二、填空题(题型注释) 3.在ABC ?中,已知tan AB AC A ?=u u u r u u u r ,当6 A π =时,ABC ?的面积为________. 【答案】1 6 【解析】由tan AB AC A ?=u u u r u u u r 得,tan tan 26||||cos tan ,||||cos 3 cos 6 A AB AC A A AB AC A π π?=?== =u u u r u u u r u u u r u u u r , 所以,11221 ||||sin sin 223636 ABC S AB AC A π?=?=??==u u u r u u u r . 考点:平面向量的数量积、模,三角形的面积. 4.在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,已知a 、b 、c 成等比数列,且a 2 -c 2 =ac -bc ,则A =________,△ABC 的形状为________. 【答案】60° 正三角形 【解析】∵a 、b 、c 成等比数列,∴b 2 =ac . 又a 2-c 2=ac -bc ,∴b 2+c 2-a 2 =bc . 在△ABC 中,由余弦定理得cos A =2222b c a bc +-=2bc bc =1 2 ,∴A =60°. 由b 2 =ac ,即a =2b c ,代入a 2-c 2 =ac -bc , 整理得(b -c )(b 3+c 3+cb 2 )=0, ∴b =c ,∴△ABC 为正三角形. 三、解答题(题型注释) 5.在△ABC 中,角A ,B ,C 所对的边分别为,,a b c ,设S 为△ABC 的面积,且 22 2)S b c a = +-。 (Ⅰ)求角A 的大小; (Ⅱ)若6a =,求△ABC 周长的取值范围. 【答案】(1)3 π = A ;(2)周长的取值范围是(12,18]. 【解析】 试题分析:(1)在解决三角形的问题中,面积公式

解三角形题型总结原创

解三角形题型总结 ABC ?中的常见结论和定理: 一、 内角和定理及诱导公式: 1.因为A B C π++=, 所以sin()sin ,cos()cos , tan()tan A B C A B C A B C +=+=-+=-; sin()sin ,cos()cos ,tan()tan A C B A C B A C B +=+=-+=-; sin()sin ,cos()cos ,tan()tan B C A B C A B C A +=+=-+=- 因为,22A B C π++= 所以sin cos 22A B C +=,cos sin 22 A B C +=,………… 2.大边对大角 3.在△ABC 中,熟记并会证明tanA+tanB+tanC=tanA·tanB·tanC; (2)A 、B 、C 成等差数列的充要条件是B=60°; (3)△ABC 是正三角形的充要条件是A 、B 、C 成等差数列且a 、b 、c 成等比数列.

四、面积公式: (1)12a S ah = (2)1()2 S r a b c =++(其中r 为三角形内切圆半径) (3)111sin sin sin 222 S ab C bc A ac B === 五、 常见三角形的基本类型及解法: (1)已知两角和一边(如已知,,A B 边c ) 解法:根据内角和求出角)(B A C +-=π; 根据正弦定理 R C c B b A a 2sin sin sin ===求出其余两边,a b (2)已知两边和夹角(如已知C b a ,,) 解法:根据余弦定理2 2 2 2cos c a b ab C =+-求出边c ; 根据余弦定理的变形bc a c b A 2cos 2 22-+=求A ; 根据内角和定理求角)(C A B +-=π. (3)已知三边(如:c b a ,,) 解法:根据余弦定理的变形bc a c b A 2cos 2 22-+=求A ; 根据余弦定理的变形ac b c a B 2cos 2 22-+=求角B ; 根据内角和定理求角)(B A C +-=π (4)已知两边和其中一边对角(如:A b a ,,)(注意讨论解的情况) 解法1:若只求第三边,用余弦定理:222 2cos c a b ab C =+-; 解法2:若不是只求第三边,先用正弦定理R C c B b A a 2sin sin sin ===求B (可能出现一解,两解或无解的情况,见题型一); 再根据内角和定理求角)(B A C +-=π;. 先看一道例题: 例:在ABC ?中,已知0 30,32,6===B c b ,求角C 。(答案:045=C 或0135)

正余弦定理与三角形形状判断附标准答案

一、运用正弦定理进行判断 基本思路:运用正弦定理将条件全部转化为边(或角)之间的关系,进一步判断。 二、运用余弦定理进行判断 基本思路:关注特殊角余弦值,往往向边与边之间的关系进行转化。 三、运用正、余弦定理综合判断 基本思路:尽量统一边(或角)之间的关系,使3个未知量减少为2个未知量之间的关系往往可以导出结果;常用到sinA=sin(π-A)=sin(B+C);正弦值的比可以直接化为边的比值。 1、已知在△ABC 中,A c b cos ?=,试判断△ABC 的性状。 2 222222cos 22cos c b a a c b A bc b A c b =+∴-+=?=∴?=Θ ∴ΔABC 为直角三角形 2、已知在△ABC 中,角A 、B 均为锐角,且B A sin cos >,试判断△ABC 的形状。 2 2 2) 2cos(cos sin cos π π π π ><<>>C B A B A B A B A ∴+∴-∴-∴Θ ∴ΔABC 为钝角三角形 3、已知在△ABC 中,C a b sin ?=,且)2sin(B a c -?=π ,试判断△ABC 的形状。 2 222222cos 22cos )2sin(a c b b c a B ac c B a B a c =+∴-+=?=∴?=-?=π Θ ∴ΔABC 为直角三角形,且a c C =sin c b C a b =∴?=sin Θ ∴ΔABC 为等腰直角三角形 4、已知在△ABC 中,C B A sin cos sin 2=?,试判断△ABC 的性状。 b a b c a c B ac c B a =∴-+==?∴=?∴=?2222cos 2cos 2C sin cosB 2sinA Θ

正余弦定理与解三角形整理(有答案)

正余弦定理考点梳理: 1. 直角三角形中各元素间的关系:如图,在△ABC中,C=90°,AB=c,AC=b,BC=a。 (1)三边之间的关系:a2+b2=c2。(勾股定理) A (2)锐角之间的关系:A+B=90°; c (3)边角之间的关系:(锐角三角函数定义) b sin A=cos B=a c ,cos A=sin B= b c ,tan A= a b 。 C B 2. 2.斜三角形中各元素间的关系: a 如图6-29 ,在△ABC中,A、B、C为其内角,a、b、c 分别表示A、B、C的对边。 (1)三角形内角和:A+B+C=_____ (2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等。 3. 正弦定理: a b c 2R 。(R为外接圆半径)sin A sin B sin C a b c = ==2R的常见变形: sin A sin B sin C (1)sin A∶sin B∶sin C=a∶b∶c; (2) a b == sin A sin B c = sin C a+b+c =2R; sin A+sin B+sin C (3) a=2R sin_ A,b=2R sin_ B,c=2R sin_ C; a b c (4)sin A=,sin B=,sin C=. 2R 2R 2R 4. 三角形面积公式:S=1 2 ab sin C= 1 1 bc sin A=ca sin B. 2 2 5. 余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦 的积的两倍。 2 2 2 a b c 2bccos A 2 2 2 b a c 2accosB 2 2 2 c b a 2ba cosC 或 cos A cos B cos C 2 2 2 b c a 2bc 2 2 2 a c b 2ac 2 2 2 b a c 2ab 余弦定理的公式:. 6. (1)两类正弦定理解三角形的问题:1、已知两角和任意一边,求其他的两边及一角.

必修五解三角形常考题型非常全面

必修五解三角形常考题型 1.1正弦定理和余弦定理 1.1.1正弦定理 【典型题剖析】 考察点1:利用正弦定理解三角形 例1 在V ABC 中,已知A:B:C=1:2:3,求a :b :c. 【点拨】 本题考查利用正弦定理实现三角形中边与角的互化,利用三角形内角和定理及正弦定理的变形形式 a :b :c=sinA: sinB: sinC 求解。 解:::1:2:3,A . ,,, 6 3 2 1::sin :sin :sin sin :sin :sin :1 2.6 3 2 2A B C B C A B C a b A B C ππ π π π π π =++=∴= = = ∴=== =Q 而 【解题策略】要牢记正弦定理极其变形形式,要做到灵活应用。 例2在ABC 中,已知 ,C=30°,求a+b 的取值范围。 【点拨】 此题可先运用正弦定理将a+b 表示为某个角的三角函数,然后再求解。 解:∵C=30°, ,∴由正弦定理得: sin sin sin a b c A B C === ∴ )sin (150°-A ). ∴ )[sinA+sin(150° )·2sin75°·cos(75° -A)= 2 cos(75°-A) ① 当75°-A=0°,即A=75°时,a+b 取得最大值 2 ; ② ∵A=180°-(C+B)=150°-B,∴A <150°,∴0°<A <150°, ∴-75°<75°-A <75°,∴cos75°<cos(75°-A)≤1, ∴> 2 cos75° = 2 × 4 . 综合①②可得a+b 的取值范围为 ,8+ 考察点2:利用正弦定理判断三角形形状 例3在△ABC 中,2 a ·tanB=2 b ·tanA ,判断三角形ABC 的形状。 【点拨】通过正弦定理把边的关系转化为角的关系,利用角的关系判断△ABC 的形状。

解三角形专题题型归纳

解三角形专题题型归纳

《解三角形》知识点、题型与方法归纳 一、知识点归纳(★☆注重细节,熟记考点☆★) 1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径) 变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R ===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b B b B c C c C === 2.正弦定理适用情况: (1)已知两角及任一边; (2)已知两边和一边的对角(需要判断三角形解的情况). 3.余弦定理及其推论 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+- 222 222222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab +-=+-=+-= 4.余弦定理适用情况: (1)已知两边及夹角; (2)已知三边. 注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式. 5.常用的三角形面积公式 (1)高底??=?2 1ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R ===?为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边) (2)sin sin (ABC A B a b A B ?>?>?>在中,即大边对大角,大角对大边) (3)在ABC ?中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22 A B C += 7.实际问题中的常用角 (1)仰角和俯角

正弦余弦定理判断三角形形状专题

例1:已知△ABC 中,bsinB=csinC,且C B A 2 22sin sin sin +=,试判断三角形的形状. 例2:在△ABC 中,若B= 60,2b=a+c,试判断△ABC 的形状. 例3:在△ABC 中,已知 22 tan tan b a B A =,试判断△ABC 的形状. 例4:在△ABC 中,(1)已知sinA=2cosBsinC ,试判断三角形的形状; (2)已知sinA= C B C B cos cos sin sin ++,试判断三角形的形状. 例5:在△ABC 中,(1)已知a -b=ccosB -ccosA ,判断△ABC 的形状. (2)若b=asinC,c=acosB,判断△ABC 的形状. 例6:已知△ABC 中,5 4 cos = A ,且3:2:1)2(::)2(=+-c b a ,判断三角形的形状. 例7、△ABC 的内角A 、 B 、 C 的对边abc,若abc 成等比数列,且c=2a ,则△ABC 的形状为( ) ∴△ABC 为钝角三角形。 例8 △ABC 中,sinA=2sinBcosC,sin 2A=sin 2B+sin 2C,则△ABC 的形状为( ) 例9△ABC 中A 、B 、C 的对边abc ,且满足(a 2+b 2)sin(A-B)=(a 2-b 2)sinC,试判断△ABC 的形状。 ∴△ABC 为等腰三角形或直角三角形。 1、 在三角形ABC 中,三边a 、b 、c 满足::1)a b c =,试判断三角形的形状。 所以三角形为锐角三角形。 3、在△ABC 中,已知sin sin B C =cos 22A 试判断此三角形的类型.故此三角形是等腰三角形. 4、(06陕西卷) 已知非零向量AB →与AC →满足(AB →|AB →| +AC →|AC →| )·BC →=0且AB →|AB →| ·AC →|AC →| =12 , 则△ ABC 为( ) A 、三边均不相等的三角形 B 、直角三角形 C 、等腰非等边三角形 D 、等边三角形 5、在ABC ?中,设,,,BC a CA b AB c === 若,a b b c c a ?=?=? 判断ABC ?的形状。 6、在△ABC 中,cos cos b A a B =试判断三角形的形状 故此三角形是等腰三角形. 7、在ABC ?中,如果lg a lg c -=lgsin B =-B 为锐角判断此三角形的形状。 故此三角形是等腰直角三角形。 巩固练习:在ABC ?中,若 22 tan :tan :,A B a b =试判断ABC ?的形状。 ABC ∴?为等腰三角形或直角三角形。

利用正余弦定理解三角形资料

复习课: 解三角形 枣庄十八中 秦真 教学目标 重点:能够运用正弦定理余弦定理并结合三角形有关知识解决与三角形面积,形状有关的问题。 难点:如何选择适当的定理,公式,方法解决有关三角形的综合问题. 能力点:定理公式方法的适当选取,培养学生自主解决问题的能力. 教育点:提高学生的认知水平,为学生塑造良好的数学认识结构. 自主探究点:例题及变式的解题思路的探寻. 易错点:在用正弦定理解三角形问题中会出现判断几解问题中易出现错误 学法与教具 1.学法:讲授法、讨论法. 2.教具:投影仪. 一、【知识结构】 二、【知识梳理】 1.正弦定理: 2sin sin sin a b c R A B C ===,其中R 是三角形外接圆半径. 2.余弦定理:2 2 2 2cos a b c bc A =+-,2 2 2 2cos b a c ac B =+- ,2 2 2 2cos c a b ac C =+- , 222cos 2b c a A bc +-=,222cos 2a c b B ac +-=,222 cos 2a b c C ab +-= 3.111 sin sin sin 222 ABC S ab C bc A ac B ?= == 4.在三角形中大边对大角,反之亦然. 5.射影定理:cos cos a b C c B =+,cos cos b a C c A =+,cos cos c a B b A =+

6.三角形内角的诱导公式 (1)sin()sin A B C +=,cos()cos A B C +=-,tan tan()C A B =+,cos sin 22 c A B +=,sin cos 22 C A B +=,... 在△ABC 中,熟记并会证明tanA+tanB+tanC=tanA ·tanB ·tanC; 7.解三角形常见的四种类型 (1)已知两角A 、B 与一边a ,由A+B+C=180°及 sin sin sin a b c A B C == ,可求出角C ,再求,b c . (2)已知两边,b c 与其夹角A ,由2 2 2 2cos a b c bc A =+-,求出a ,再由余弦定理,求出角B 、C. (3)已知三边,,a b c ,由余弦定理可求出角A 、B 、C. (4)已知两边a 、b 及其中一边的对角A ,由正弦定理 sin sin a b A B = ,求出另一边b 的对角B ,由C=π-(A+B),求出c ,再由 sin sin a c A C =求出C ,而通过sin sin a b A B = 求B 时,可能出一解,两解或无解的情况,其判断方法,如下表: 8. 三、【范例导航】 题型(一):正、余弦定理 1正弦定理主要有两个方面的应用:(1)已知三角形的任意两个角与一边,由三角形内角和定理,可以 计算出三角形的第三个角,由正弦定理可以计算出三角形的另两边;(2)已知三角形的任意两边和其中一边的对角,应用正弦定理,可以计算出另一边的对角的正弦值,进而确定这个角和三角形其他的边和角. 2余弦定理有两方面的应用:(1)已知三角形的两边和它们的夹角可以由余弦定理求出第三边,进而求出其他两角;(2)已知三角形的三边,利用余弦定理求出一个角,进而求出其他两角. 例1.在?ABC 中,已知a =c = ,45B =o ,求b 及A ;

必修五解三角形常考题型

必修五解三角形常考题型1.1正弦定理和余弦定理 1.1.1正弦定理 【典型题剖析】 考察点1:利用正弦定理解三角形 例1在ABC中,已知A:B:C=1:2:3,求a :b :c. 例2在ABC中,已知,C=30°,求a+b的取值范围。 考察点2:利用正弦定理判断三角形形状 例3在△ABC中,2a·tanB=2b·tanA,判断三角形ABC的形状。

例4在△ABC 中,如果lg lg lg sin a c B -==-,并且B 为锐角,试判断此三角形的形状。 考察点3:利用正弦定理证明三角恒等式 例5在△ABC 中,求证 222222 0cos cos cos cos cos cos a b b c c a A B B C C A ---++=+++.

例6在△ABC 中,a,b,c 分别是角A,B,C 的对边,C=2B ,求证2 2 c b ab -=. 考察点4:求三角形的面积 例7在△ABC 中,a,b,c 分别是三个内角A,B,C 的对边,若2,,cos 4 25 B a C π == =,求△ABC 的面积S.

例8已知△ABC 中a,b,c 分别是三个内角A,B,C 的对边,△ABC 的外接圆半径为12,且3 C π =, 求△ABC 的面积S 的最大值。 考察点5:与正弦定理有关的综合问题 例9已知△ABC 的内角A,B 极其对边a,b 满足cot cot ,a b a A b B +=+求内角C 例10在△ABC 中,A ,B ,C 所对的边分别为a,b,c,且c=10, cos 4 cos 3 A b B a ==,求a,b 及△ABC

高中数学解三角形题型完整归纳

高中数学解三角形题型目录一.正弦定理 1.角角边 2.边边角 3.与三角公式结合 4.正弦定理与三角形增解的应对措施 5.边化角 6.正弦角化边 二.余弦定理 1.边边边 2.边角边 3.边边角 4.与三角公式结合 5.比例问题 6.余弦角化边 7.边化余弦角 三.三角形的面积公式 1.面积公式的选用 2.面积的计算 3.正、余弦定理与三角形面积的综合应用 四.射影定理 五.正弦定理与余弦定理综合应用 1.边角互化与三角公式结合 2.与平面向量结合 3.利用正弦或余弦定理判断三角形形状 4.三角形中的最值问题 (1)最大(小)角 (2)最长(短)边 (3)边长或周长的最值

(4)面积的最值 (5)有关正弦或余弦或正切角等的最值 (6)基本不等式与余弦定理交汇 (7)与二次函数交汇 六.图形问题 1.三角形内角之和和外角问题 2.三角形角平分线问题 3.三角形中线问题 4.三角形中多次使用正、余弦定理 5.四边形对角互补与余弦定理的多次使用 6.四边形与正、余弦定理 六.解三角形的实际应用 1.利用正弦定理求解实际应用问题 2.利用余弦定理求解实际应用问题 3.利用正弦和余弦定理求解实际应用问题 一.正弦定理 1.角角边 ?=?=?= 例.在中,解三角形 ABC A B a 30,45,2,. ?=?=?== 练习1.在中则 ABC A B a c ,30,45, . 练习2.在中,已知45,,求 ?=?=?= 30. ABC C A a b 2.边边角 例中,解这个三角形?===? ABC a .45,. 练习1中,则 ?==+== . 1,2,sin ABC a b A C B C 练习2.中则 ?===?= ,3,60,_____ ABC c b C A

正余弦定理、三角形的一些公式

正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即 R c C R b B R a A C R c B R b A R a R R C c B b A a 2sin 2sin 2sin sin 2sin 2sin 2)(2sin sin sin = = = ======变形有:为外接圆的半径 三角形的面积公式: A bc B ac C ab S ABC sin 2 1 sin 21sin 21=== ? 余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。即 ab c b a C ac b c a B bc a c b A C ab b a c B ac c a b A bc c b a 2cos 2cos 2cos cos 2cos 2cos 22222 222 22222222222-+= -+= -+= -+=-+=-+=变形有: 判断三角形的形状: 为锐角三角形 ,为直角角三角形 为钝角三角形 ABC b a c c a b c b a ABC c b a ABC c b a ?+<+<+2222222222 222 22,, 三角形中有: 形为正三角形 成等比数列,则该三角、、成等差数列,、、)若()(中c b a C B A C B A C B A C B A ABC 2tan )tan(cos )cos(sin )sin(1-=+-=+=+? 两角和差的正余弦公式及两角和差正切公式 ()βαβαβαsin cos cos sin sin -=- ()βαβαβαsin cos cos sin sin +=+ cos()cos cos sin sin αβαβαβ-=+ ()c o s c o s c o s s i n s i n αβα βαβ+=- ()βαβαβαt a n t a n 1t a n t a n t a n +-=- ()tan tan tan 1tan tan αβ αβαβ ++=- 二倍角公式: α α ααβ β ααααα2 22 2 2t a n 1t a n 22t a n 1 c o s 2s i n 21s i n c o s 2c o s c o s s i n 22s i n -= -=-=-== 半角公式:

正弦定理和余弦定理的应用举例(解析版)

正弦定理和余弦定理的应用举例 考点梳理 1.用正弦定理和余弦定理解三角形的常见题型 测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.2.实际问题中的常用角 (1)仰角和俯角 与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方的角叫仰角,目标视线在水平视线下方的角叫俯角(如图①). (2)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏北60°等; (3)方位角 指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②).(4)坡度:坡面与水平面所成的二面角的度数. 【助学·微博】 解三角形应用题的一般步骤 (1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.侧重考查从实际问题中提炼数学问题的能力. (2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型. (3)根据题意选择正弦定理或余弦定理求解. (4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等. 解三角形应用题常有以下两种情形 (1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解. (2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有

时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解. 考点自测 1.(2012·江苏金陵中学)已知△ABC 的一个内角为120°,并且三边长构成公差为4的等差数列,则三角形的面积等于________. 解析 记三角形三边长为a -4,a ,a +4,则(a +4)2=(a -4)2+a 2-2a (a -4)cos 120°,解得a =10,故S =12×10×6×sin 120°=15 3. 答案 15 3 2.若海上有A ,B ,C 三个小岛,测得A ,B 两岛相距10海里,∠BAC =60°,∠ABC =75°,则B ,C 间的距离是________海里. 解析 由正弦定理,知BC sin 60°=AB sin (180°-60°-75°) .解得BC =56(海里). 答案 5 6 3.(2013·日照调研)如图,一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68海里的M 处,下午2时到达这座灯塔的东南方向的N 处,则这只船的航行速度为________海里/时. 解析 由正弦定理,得MN =68sin 120°sin 45°=346(海里),船的航行速度为3464= 176 2(海里/时). 答案 176 2 4.在△ABC 中,若23ab sin C =a 2+b 2+c 2,则△ABC 的形状是________. 解析 由23ab sin C =a 2+b 2+c 2,a 2+b 2-c 2=2ab cos C 相加,得a 2+b 2= 2ab sin ? ????C +π6.又a 2+b 2≥2ab ,所以 sin ? ????C +π6≥1,从而sin ? ????C +π6=1,且a =b ,C =π3时等号成立,所以△ABC 是等边三角形. 答案 等边三角形

解三角形专题题型归纳

《解三角形》知识点、题型与方法归纳 1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径) 变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R ===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b B b B c C c C === 2.正弦定理适用情况: (1)已知两角及任一边; (2)已知两边和一边的对角(需要判断三角形解的情况). 3.余弦定理及其推论 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+- 222 222 222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab +-= +-=+-= 4.余弦定理适用情况: (1)已知两边及夹角; (2)已知三边. 注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式. 5.常用的三角形面积公式 (1)高底??= ?2 1ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R ===?为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边) (2)sin sin (ABC A B a b A B ?>?>?>在中,即大边对大角,大角对大边) (3)在ABC ?中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22A B C += 解三角形有用的结论

正余弦定理中等题讲义

正弦定理和余弦定理 1.考查正、余弦定理的推导过程. 2.考查利用正、余弦定理判断三角形的形状. 3.考查利用正、余弦定理解任意三角形的方法。 基础梳理 1.正弦定理:a sin A =b sin B =c sin C =2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形为: (1)a ∶b ∶c =sin A ∶sin B ∶sin C ; (2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ; (3)sin A =a 2R ,sin B =b 2R ,sin C =c 2R 等形式,以解决不同的三角形问题. 2.余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形为:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 2 2ac ,cos C =a 2+b 2-c 2 2ab . 3.S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =1 2(a +b +c )·r (R 是三角形外接圆半径,r 是三角形内切圆的半径),并可由此计算R ,r . 4.已知两边和其中一边的对角,解三角形时,注意解的情况.如已知a ,b ,A ,则

一条规律 在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ?a >b ?sin A >sin B . 两类问题n 在解三角形时,正弦定理可解决两类问题:(1)已知两角及任一边,求其它边或角;(2)已知两边及一边的对角,求其它边或角.情况(2)中结果可能有一解、两解、无解,应注意区分.余弦定理可解决两类问题:(1)已知两边及夹角求第三边和其他两角;(2)已知三边,求各角. 两种途径 根据所给条件确定三角形的形状,主要有两种途径: (1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换. 双基自测 1.()在△ABC 中,A =60°,B =75°,a =10,则c 等于( ). A .5 2 B .10 2 C.1063 D .56 2.在△ABC 中,若sin A a =cos B b ,则B 的值为( ). A .30° B .45° C .60° D .90°

(完整版)解三角形之正弦定理与余弦定理

正弦定理与余弦定理 教学目标 掌握正弦定理和余弦定理的推导,并能用它们解三角形正余弦定理及三角形面积公式. 教学重难点 掌握正弦定理和余弦定理的推导,并能用它们解三角形. 知识点清单 一. 正弦定理: 1. 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外 接圆的直径,即a b c2R( 其中R 是三角形外接圆的半 径) sin A sinB sinC 2. 变 形:1) a b c a b c sin sin sinC sin sin sinC 2)化边为 角: a:b:c sin A:sin B: sinC ; a sin A; b sin B a sin A b sinB c sinC c sin C 3)化边为角:a 2Rsin A, b 2Rsin B, c 2RsinC 4)化角为边:sin A a;sin B b ; sin A a sin B b sinC c sinC c 5)化角为边:sin A a sinB b,sinC c 2R2R2R 3. 利用正弦定理可以解决下列两类三角形的问题: ①已知两个角及任意—边,求其他两边和另一角;例:已知角B,C,a , 解法:由A+B+C=18o0 ,求角A,由正弦定理 a sinA; b sinB; b sin B c sin C a sin A ; 求出 b 与c c sinC ②已知两边和其中—边的对角,求其他两个角及另一边。例:已知边 a,b,A, 解法:由正弦定理 a sin A求出角B,由A+B+C=18o0 求出角C,再使用正 b sin B 弦定理 a sin A求出c边 c sinC 4. △ABC中,已知锐角A,边b,则 ① a bsin A 时,B 无解; ② a bsin A 或 a b 时, B 有一个解;

【高中数学】解三角形的知识总结和题型归纳

解三角形的知识总结和题型归纳 一、知识必备: 1.直角三角形中各元素间的关系: 在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。(1)三边之间的关系:a 2+b 2=c 2。(勾股定理)(2)锐角之间的关系:A +B =90°;(3)边角之间的关系:(锐角三角函数定义) sin A =cos B =c a ,cos A =sin B =c b ,tan A =b a 。 2.斜三角形中各元素间的关系: 在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。(1)三角形内角和:A +B +C =π。 (2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等 R C c B b A a 2sin sin sin ===(R 为外接圆半径)(3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ;c 2=a 2+b 2-2ab cos C 。 3.三角形的面积公式: (1)?S = 21ah a =21bh b =21 ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高);(2)?S =21ab sin C =21bc sin A =2 1 ac sin B ; 4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面 【高中数学】

相关主题