1、对一般二叉树,仅根据一个先序、中序、后序遍历,不能确定另一个遍历序列。但对于满
二叉树,任一结点的左右子树均含有数量相等的结点,根据此性质,可将任一遍历序列转为
另一遍历序列(即任一遍历序列均可确定一棵二叉树)。
void PreToPost(ElemType pre[] ,post[],int l1,h1,l2,h2)
//将满二叉树的先序序列转为后序序列,l1,h1,l2,h2是序列初始和最后结点的下标。
{if(h1>=l1)
{post[h2]=pre[l1]; //根结点
half=(h1-l1)/2; //左或右子树的结点数
PreToPost(pre,post,l1+1,l1+half,l2,l2+half-1) //将左子树先序序列转为后序序列PreToPost(pre,post,l1+half+1,h1,l2+half,h2-1) //将右子树先序序列转为后序序列
} }//PreToPost
32. .叶子结点只有在遍历中才能知道,这里使用中序递归遍历。设置前驱结点指针pre,初
始为空。第一个叶子结点由指针head指向,遍历到叶子结点时,就将它前驱的rchild指针
指向它,最后叶子结点的rchild为空。
LinkedList head,pre=null; //全局变量
LinkedList InOrder(BiTree bt)
//中序遍历二叉树bt,将叶子结点从左到右链成一个单链表,表头指针为head
{if(bt){InOrder(bt->lchild); //中序遍历左子树
if(bt->lchild==null && bt->rchild==null) //叶子结点
if(pre==null) {head=bt; pre=bt;} //处理第一个叶子结点
else{pre->rchild=bt; pre=bt; } //将叶子结点链入链表
InOrder(bt->rchild); //中序遍历左子树
pre->rchild=null; //设置链表尾
}
return(head); } //InOrder
时间复杂度为O(n),辅助变量使用head和pre,栈空间复杂度O(n)
2、两棵空二叉树或仅有根结点的二叉树相似;对非空二叉树,可判左右子树是否相似,采用
递归算法。
int Similar(BiTree p,q) //判断二叉树p和q是否相似
{if(p==null && q==null) return (1);
else if(!p && q || p && !q) return (0);
else return(Similar(p->lchild,q->lchild) && Similar(p->rchild,q->rchild))
}//结束Similar
3、(1)p->rchild (2)p->lchild (3)p->lchild (4)ADDQ(Q,p->lchild) (5)ADDQ(Q,p->rchild)
25. (1)t->rchild!=null (2)t->rchild!=null (3)N0++ (4)count(t->lchild) (5)count(t->rchild)
26. .(1)top++ (2) stack[top]=p->rchild (3)top++ (4)stack[top]=p->lchild
27. (1)*ppos // 根结点(2)rpos=ipos (3)rpos–ipos (4)ipos (5)ppos+1