搜档网
当前位置:搜档网 › 赵凯华所编《电磁学》第二版答案

赵凯华所编《电磁学》第二版答案

赵凯华所编《电磁学》第二版答案
赵凯华所编《电磁学》第二版答案

第一章静电场

§1.1 静电的基本现象和基本规律

思考题:

1、给你两个金属球,装在可以搬动的绝缘支架上,试指出使这两个球带等量异号电荷的方向。你可以用丝绸摩擦过的玻璃棒,但不使它和两球接触。你所用的方法是否要求两球大小相等?

答:先使两球接地使它们不带电,再绝缘后让两球接触,将用丝绸摩擦后带正电的玻璃棒靠近金属球一侧时,由于静电感应,靠近玻璃棒的球感应负电荷,较远的球感应等量的正电荷。然后两球分开,再移去玻璃棒,两金属球分别带等量异号电荷。本方法不要求两球大小相等。因为它们本来不带电,根据电荷守恒定律,由于静电感应而带电时,无论两球大小是否相等,其总电荷仍应为零,故所带电量必定等量异号。

2、带电棒吸引干燥软木屑,木屑接触到棒以后,往往又剧烈地跳离此棒。试解释之。答:在带电棒的非均匀电场中,木屑中的电偶极子极化出现束缚电荷,故受带电棒吸引。但接触棒后往往带上同种电荷而相互排斥。

3、用手握铜棒与丝绸摩擦,铜棒不能带电。戴上橡皮手套,握着铜棒和丝绸摩擦,铜棒就会带电。为什么两种情况有不同结果?

答:人体是导体。当手直接握铜棒时,摩擦过程中产生的电荷通过人体流入大地,不能保持电荷。戴上橡皮手套,铜棒与人手绝缘,电荷不会流走,所以铜棒带电。

计算题:

1、真空中两个点电荷q1=1.0×10-10C,q2=1.0×10-11C,相距100mm,求q1受的力。解:

2、真空中两个点电荷q与Q,相距5.0mm,吸引力为40达因。已知q=1.2×10-6C,求Q。解:1达因=克·厘米/秒=10-5牛顿

3、为了得到一库仑电量大小的概念,试计算两个都是一库仑的点电荷在真空中相距一米时的相互作用力和相距一千米时的相互作用力。

解:

4、氢原子由一个质子(即氢原子核)和一个电子组成。根据经典模型,在正常状态下,电子绕核作圆周运动,轨道半径是r=5.29×10-11m。已知质子质量M=1.67×10-27kg,电子质量m=9.11×10-31kg。电荷分别为e=±1.6×10-19 C,万有引力常数G=6.67×10-11N·m2/kg2。(1)求电子所受的库仑力;(2)库仑力是万有引力的多少倍?(3)求电子的速度。

解:

5、卢瑟福实验证明:当两个原子核之间的距离小到10-15米时,它们之间的排斥力仍遵守库仑定律。金的原子核中有79个质子,氦的原子核(即α粒子)中有2个质子。已知每个质子带电e=1.6×10-19 C,α粒子的质量为6.68×10-27 kg.。当α粒子与金核相距为6.9×10-15m时(设这时它们仍都可当作点电荷)。求(1)α粒子所受的力;(2)α粒子的加速度。

解:

6、铁原子核里两质子间相距4.0×10-15m,每个质子带电e=1.6×10-19 C。(1)求它们之间的库仑力;(2)比较这力与所受重力的大小。

解:

7、两个点电荷带电2q 和q,相距l,第三个点电荷放在何处所受的合力为零?

解:设所放的点电荷电量为Q。若Q与q同号,则三者互相排斥,不可能达到平衡;故Q

只能与q异号。当Q在2q和q联线之外的任何地方,也不可能达到平衡。由此可知,只有Q与q异号,且处于两点荷之间的联线上,才有可能达到平衡。设Q到q的距离为x.

8、三个相同的点电荷放置在等边三角形的各顶点上。在此三角形的中心应放置怎样的电荷,才能使作用在每一点电荷上的合力为零?

解:设所放电荷为Q,Q应与顶点上电荷q异号。中心Q所受合力总是为零,只需考虑q 受力平衡。

平衡与三角形边长无关,是不稳定平衡。

9、电量都是Q的两个点电荷相距为l,联线中点为O;有另一点电荷q,在联线的中垂面上距O为r处。(1)求q所受的力;(2)若q开始时是静止的,然后让它自己运动,它将如何运动?分别就q与Q同号和异号两种情况加以讨论。

解:

(1)

(2)q与Q同号时,F背离O点,q将沿两Q的中垂线加速地趋向无穷远处。

q与Q异号时,F指向O点,q将以O为中心作周期性振动,振幅为r .

<讨论>:设q 是质量为m的粒子,粒子的加速度为

因此,在r<

10、两小球质量都是m,都用长为l的细线挂在同一点,若它们带上相同的电量,平衡时两线夹角为2θ。设小球的半径都可以略去不计,求每个小球上的电量。

解:小球静止时,作用其上的库仑力和重力在垂直于悬线方向上的分量必定相等。

--------------------------------------------------------------------------------------------------------------------- §1.2 电场电场强度

思考题:

1、在地球表面上通常有一竖直方向的电场,电子在此电场中受到一个向上的力,电场强度的方向朝上还是朝下?

答:电子受力方向与电场强度方向相反,因此电场强度方向朝下。

2、在一个带正电的大导体附近P点放置一个试探点电荷q0(q0>0),实际测得它受力F。若考虑到电荷量q0不是足够小的,则F/ q0比P点的场强E大还是小?若大导体带负电,情况如何?

答:q0不是足够小时,会影响大导体球上电荷的分布。由于静电感应,大导体球上的正电荷受到排斥而远离P点,而F/q0是导体球上电荷重新分布后测得的P点场强,因此比P点原来的场强小。若大导体球带负电,情况相反,负电荷受吸引而靠近P点,P点场强增大。

3、两个点电荷相距一定距离,已知在这两点电荷连线中点处电场强度为零。你对这两个点电荷的电荷量和符号可作什么结论?

答:两电荷电量相等,符号相反。

4、一半径为R的圆环,其上均匀带电,圆环中心的电场强度如何?其轴线上场强方向如何?

答:由对称性可知,圆环中心处电场强度为零。轴线上场强方向沿轴线。当带电为正时,沿轴线向外;当带电为负时,沿轴线向内,

-----------------------------------------------------------------------------------------------------------

计算题:

1、在地球表面上某处电子受到的电场力与它本身的重量相等,求该处的电场强度(已知电子质量m=9.1×10-31kg,电荷为-e=-1.610-19C).

解:

2、电子所带的电荷量(基本电荷-e)最先是由密立根通过油滴实验测出的。密立根设计的实验装置如图所示。一个很小的带电油滴在电场E内。调节E,使作用在油滴上的电场力与油滴的重量平衡。如果油滴的半径为1.64×10-4cm,在平衡时,E=1.92×105N/C。求油滴上的电荷(已知油的密度为0.851g/cm3)

解:

3、在早期(1911年)的一连串实验中,密立根在不同时刻观察单个油滴上呈现的电荷,其测量结果(绝对值)如下:

6.568×10-19 库仑13.13×10-19 库仑19.71×10-19 库仑

8.204×10-19 库仑16.48×10-19 库仑22.89×10-19 库仑

11.50×10-19 库仑18.08×10-19 库仑26.13×10-19 库仑

根据这些数据,可以推得基本电荷e的数值为多少?

解:油滴所带电荷为基本电荷的整数倍。则各实验数据可表示为kie。取各项之差点儿

4、根据经典理论,在正常状态下,氢原子中电子绕核作圆周运动,其轨道半径为5.29×10-11 米。已知质子电荷为e=1.60×10-19 库,求电子所在处原子核(即质子)的电场强度。解:

5、两个点电荷,q1=+8微库仑,q2=-16微库仑(1微库仑=10-6库仑),相距20厘米。求离它们都是20厘米处的电场强度。

解:

与两电荷相距20cm的点在一个圆周上,各点E大小相等,方向在圆锥在上。

6、如图所示,一电偶极子的电偶极矩P=ql.P点到偶极子中心O的距离为r ,r与l的夹角为。在r>>l时,求P点的电场强度E在r=OP方向的分量Er和垂直于r方向上的分量Eθ。解:

其中--

7、把电偶极矩P= ql的电偶极子放在点电荷Q的电场内,P的中心O到Q的距离为r(r>>l),分别求:(1)P//QO和(2)P⊥QO时偶极子所受的力F和力矩L。

解:(1)

F的作用线过轴心O,力矩为零

(2)

8、附图中所示是一种电四极子,它由两个相同的电偶极子P=ql组成,这两偶极子在一直线上,但方向相反,它们的负电荷重合在一起。证明:在它们的延长线上离中心为r 处,解:

9、附图中所示为另一种电四极子,设q 和l都已知,图中P点到电四极子中心O的距离为x.PO与正方形的一对边平行。求P点的电场强度E。当x>>l时,E=?

解:

10、均匀带电细棒(1)在通过自身端点的垂直面上和(2)在自身的延长线上的场强分布,设棒长为2l,带电总量为q .

解:(1)一端的垂直面上任一点A处

(2)延长线上任一点B处

11、两条平行的无限长直均匀带电线,相距为a ,电荷线密度分别为±ηe,(1)求这两线构成的平面上任一点(设这点到其中一线的垂直距离为x)的场强;(2)求两线单位长度间的相互吸引力。

解:(1)根据场强叠加原理,任一点场强为两无限长直带电线产生场强的矢量和

(2)

12、如图所示,一半径为R的均匀带电圆环,电荷总量为q。(1)求轴线上离环中心O 为x处的场强E;(2)画出E-x 曲线;(3)轴线上什么地方场强最大?其值是多少?

解:(1)由对称性可知,所求场强E的方向平行于圆环的轴线

(2)由场强表达式得到E-X曲线如图所示

(3)求极大值:

13、半径为R的圆面上均匀带电,电荷面密度为ζe,(1)求轴线上离圆心的坐标为x 处的场强;(2)在保持ζe不变的情况下,当R→0和R→∞时结果各如何?(3)在保持总电荷Q=πR2ζe不变的情况下,当R→0和R→∞时结果各如何?

解:(1)由对称性可知,场强E沿轴线方向

利用上题结果

(2)保持ζe不变时,

(3)保持总电量不变时,

14、一均匀带电的正方形细框,边长为l,总电量为q ,求这正方形轴线上离中心为x处的场强。

解:根据对称性,所求场强沿正方形的轴线方向

对于一段长为l的均匀带电直线,在中垂面上离中点为a处产生的电场强度为

正方形四边在考察点产生的场强为

15、证明带电粒子在均匀外电场中运动时,它的轨迹一般是抛物线。这抛物线在什么情况下退化为直线?

解:(1)设带电粒子的初速度方向与电场方向夹角为θ,其运动方程为

(2)当E为均匀电场且粒子的初速度为零时,或初速度平行于电场方向时,初速度没有垂直于场强方向的分量,抛物线退化为直线。

16、如图所示,示波管偏转电极的长度l=1.5cm,两极间电场是均匀的,E=1.2×104V/m(E 方向垂直于管轴),一个电子以初速度v0=2.6×107m/s沿管轴注入。已知电子质量m=9.1×10-31kg, 电荷为e=-1.6×10-19.C.

(1)求电子经过电极后所发生的偏转;

(2)若可以认为一出偏转电极的区域后,电场立即为零。设偏转电极的边缘到荧光屏的距离D=10厘米,求电子打在荧光屏上产生的光点偏离中心O的距离。

解:(1)电子的运动方程得

(2 )

------------------------------------------------------------------------------------------------------------------

§1.3 高斯定理

思考题:

1、一般地说,电力线代表点电荷在电场中运动的轨迹吗?为什么?

答:一般情况下,电力线不代表点电荷在电场中运动的轨迹。因为电力线一般是曲线,若电荷沿电力线作曲线运动,应有法向力存在;但电力线上各点场强只沿切线方向,运动电荷必定偏离弯曲的电力线。仅当电力线是直线,且不考虑重力影响时,初速度为零的点电荷才能沿着电力线运动。若考虑重力影响时,静止的点电荷只能沿竖直方向电力线运动。

2、空间里的电力线为什么不相交?

答:电力线上任一点的切线方向即为该点场强方向。如果空间某点有几条电力线相交,过交点对每条电力线都可作一条切线,则交点处的场强方向不唯一,这与电场中任一点场强有确定方向相矛盾。

3、一个点电荷q放在球形高斯面的中心处,试问在下列情况下,穿过这高斯面的电通量是否改变?

(1)如果第二个点电荷放在高斯球面外附近;

(2)如果第二个点电荷放在高斯球面内;

(3)如果将原来的点电荷移离了高斯球面的球心,但仍在高斯球面内。

答:由于穿过高斯面的电通量仅与其内电量的代数和有关,与面内电荷的分布及面外电荷无关,所以

(1);(2);(3)

4、(1)如果上题中高斯球面被一个体积减小一半的立方体表面所代替,而点电荷在立方体的中心,则穿过该高斯面的电通量如何变化?(2)通过这立方体六个表面之一的电通量是多少?

答:(1)立方形高斯面内电荷不变,因此电通量不变;

(2)通过立方体六个表面之一的电通量为总通量的1/6。即

5、附图所示,在一个绝缘不带电的导体球的周围作一同心高斯面S。试定性地回答,在将一正点荷q移至导体表面的过程中,

(1)A点的场强大小和方向怎样变化?

(2)B点的场强大小和方向怎样变化?

(3)通过S面的电通量如何变化?

答:由于电荷q的作用,导体上靠近A点的球面感应电荷-q′,远离A点的球面感应等量的+q′,其分布与过电荷q所在点和球心O的联线成轴对称,故±q′在A、B两点的场强E′沿AOB方向。

(1)E=E0+E′,q移到A点前,E0和E′同向,随着q的移近不断增大,总场强EA 也不断增大。q移过A点后,E0反向,且E0> E′,EA方向与前相反。随着q的远离A点,E0不断减小,±q′和E′增大,但因E′始终小于E0,所以EA不断减小。

(2)由于q及±q′在B点的场强始终同向,且随着q移近导体球,二者都增大,所以EB不断增大。

(3)q在S面外时,面内电荷代数和为零,故Φ=0;q在S面内时,Φ=q/ε0;当q在S面上时,它已不能视为点电荷,因高斯面是无厚度的几何面,而实际电荷总有一定大小,

此时Φ=△q/ε0,△q为带电体处于S面内的那部分电量。

6、有一个球形的橡皮气球,电荷均匀分布在表面上,在此气球被吹大的过程中,下列各处的场强怎样变化?

(1)始终在气球内部的点;(2)始终在气球外部的点;(3)被气球表面掠过的点。答:气球在膨胀过程中,电荷始终均匀分布在球面上,即电荷成球对称分布,故场强分布也呈球对称。由高斯定理可知:

始终在气球内部的点,E=0,且不发生变化;

始终在气球外的点,场强相当于点电荷的场强,也不发生变化;

被气球表面掠过的点,当它们位于面外时,相当于点电荷的场强;当位于面内时,E=0,所以场强发生跃变。

7、求均匀带正电的无限大平面薄板的场强时,高斯面为什么取成两底面与带电面平行且对称的柱体的形状?具体地说,

(1)为什么柱体的两底面要对于带电面对称?不对称行不行?

(2)柱体底面是否需要是圆的?面积取多大合适?

(3)为了求距带电平面为x处的场强,柱面应取多长?

答:(1)对称性分析可知,两侧距带电面等远的点,场强大小相等,方向与带电面垂直。只有当高斯面的两底面对带电面对称时,才有E1=E2=E,从而求得E。如果两底在不对称,由于不知E1和E2的关系,不能求出场强。若已先证明场强处处相等,就不必要求两底面对称。

(2)底面积在运算中被消去,所以不一定要求柱体底面是圆,面积大小也任意。(3)求距带电面x处的场强时,柱面的每一底应距带电面为x,柱体长为2x。同样,若已先证明场强处处相等,则柱面的长度可任取。

17、求一对带等量异号或等量同号电荷的无限大平行平面板之间的场强时,能否只取一个高斯面?

答:如果先用高斯定理求出单个无限大均匀带电平面的场强,再利用叠加原理,可以得到两个无限大均匀带电平面间的场强。在这样的计算过程中,只取了一个高斯面。

18、已知一高斯面上场强处处为零,在它所包围的空间内任一点都没有电荷吗?

答:不一定。高斯面上E=0,S内电荷的代数和为零,有两种可能:一是面内无电荷,如高斯面取在带电导体内部;二是面内有电荷,只是正负电荷的电量相等,如导体空腔内有电荷q时,将高斯面取在导体中,S包围导体内表面的情况。

19、要是库仑定律中的指数不恰好是2(譬如为3),高斯定理是否还成立?

答:不成立。设库仑定律中指数为2+δ,

穿过以q为中心的球面上的电通量为,此时通量不仅与面内电荷有关,还与球面半径有关,高斯定理不再成立。――――――――――――――――――――――――――――――――――――――

习题:

1、设一半径为5厘米的圆形平面,放在场强为300N/C的匀强电场中,试计算平面法线与场强的夹角θ取下列数值时通过此平面的电通量。(1)θ=00;(2)θ=300;(3)θ=900;(4)θ=1200;(5)θ=1800。

解:

2、均匀电场与半径为a的半球面的轴线平行,试用面积分计算通过此半球面的电通量。

解:通过半球面的电通量与通过半球面在

垂直于场强方向上的投影面积的电通量相等。

3、如附图所示,在半径为R1和R2的两个同心球面上,分别均匀地分布着电荷Q1和Q2,求:

(1)Ⅰ、Ⅱ、Ⅲ三个区域内的场强分布;

(2)若Q1=-Q2,情况如何?画出此情形的E-r曲线。

解:(1)应用高斯定理可求得三个区域内的场强为

E-r曲线(r

( r> R2)

( 2 ) 若Q1=-Q2,E1=E3=0,

E-r曲线如图所示。

4、根据量子理论,氢原子中心是一个带正电子qe的原子核(可以看成是点电荷),外面是带负电的电子云。在正常状态(核外电子处在S态)下,电子云的电荷密度分布是球对称的:

式中a0为一常数(它相当于经典原子模型中s电子圆形轨道的半径,称为玻尔半径)。求原子内电场的分布。

解:电子云是球对称分布,核外电子的总电荷量为

可见核外电荷的总电荷量等于电子的电荷量。

应用高斯定理:核外电荷产生的场强为

原子核与核外电荷产生的总场强为

5、实验表明:在靠近地面处有相当强的电场,E垂直于地面向下,大小约为100N/C;在离地面1.5千米高的地方,E也是垂直地面向下的,大小约为25N/C。

(1)试计算从地面到此高度大气中电荷的平均密度;

(2)如果地球上的电荷全部均匀分布在表面,求地面上电荷的面密度。

解:(1)以地心为心作球形高斯面,恰好包住地面,由对称性和高斯定理得

(2)以地球表面作高斯面

6、半径为R的无穷长直圆筒面上均匀带电,沿轴线单位长度的电量为λ.求场强分布,并画出E-r曲线。

解:应用高斯定理,求得场强分布为

E=0r

r>R

E-r曲线如图所示。

7、一对无限长的共轴直圆筒,半径分别为R1和R2,筒面上都均匀带电。沿轴线单位长度的电量分别为λ1和λ2,

(1)求各区域内的场强分布;

(2)若λ1=-λ2,情况如何?画出此情形的E-r曲线。

解:(1)由高斯定理,求得场强分布为

r

R1

r> R2

(2)若λ1=-λ2,E1=E3=0,E2不变。此情形的E-r曲线如图所示。

8、半径为R的无限长直圆柱体内均匀带电,电荷的体密度为ρ,求场强分布,并画出E-r曲线。

解:应用高斯定理,求得场强分布为

圆柱体内

圆柱体外

E-r曲线如图所示

9、设气体放电形成的等离子体圆柱内的体电荷分布可用下式表示,式中r是到轴线的距离,ρ0是轴线上的密度值,a是常数,求场强的分布。

解:应用高斯定理,作同轴圆柱形闭合柱面为高斯面。

E方向沿矢径r方向。

10、两无限大的平行平面均匀带电,电荷的面密度分别为±ζ,求各区域的场强分布。解:无限大均匀带电平面所产生的电场强度为

根据场强的叠加原理,各区域场强分别为

可见两面外电场强度为零,两面间电场是均匀电场。平行板电容器充电后,略去边缘效应,其电场就是这样的分布。

11、两无限大的平行平面均匀带电,电荷的面密度都是ζ,求各区域的场强分布。解:与上题同理,无限大均匀带电平面所产生的电场强度为

应用场强叠加原理,场强在各区域的分布为

可见两面间电场强度为零,两面外是均匀电场,电场强度大小相等,方向相反。

12、三个无限大的平行平面均匀带电,电荷的面密度分别为ζ1、ζ2、ζ3,求下列情况各处的场强:(1)ζ1=ζ2=ζ3=ζ;(2)ζ1=ζ3=ζ;ζ2=-ζ;(3)ζ1=ζ3=-ζ;ζ2=ζ;(4)ζ1=ζ;ζ2=ζ3=-ζ。

解:无限大均匀带电平面所产生的电场强度为

各区域场强为各带电面产生场强的叠加

E1E2E3E4

(1)

(2)

(3)

(4)

13、一厚度为d的无限大平板,平板体内均匀带电,电荷的体密度为ρ,求板内、板外场强的分布。

解:根据对称性,板内外的电场强度方向均垂直于板面,并对中心对称。

应用高斯定理可求得:

板内(r

板外(r>d/2)

14、在半导体p-n结附近总是堆积着正、负电荷,在n区内有正电荷,P区内有负电荷,两区电荷的代数和为零。把p-n结看成是一对带正、负电荷的无限大平板,它们相互接触。取坐标x的原点在p、n区的交界面上,n区的范围是-xn≤x≤0,p区的范围是0≤x≤xP.设两区内电荷体密度分布都是均匀的:

n区,

P区(突变结模型)

这里ND、NA是常数,且NAxp=NDxn(两区电荷数量相等)。

试证明电场的分布为:

n区,

P区并画出ρ和E随x变化的曲线。

解:将带电层看成无数无限大均匀带电平面的叠加,

由叠加原理可知,在p-n结以外区域,E=0

(1)对高斯面S1,应用高斯定理

(2 )对高斯面S2,应用高斯定理

(3 )ρ和E随x变化的曲线如图所示。

-

15、如果在上题中电荷的体分布为

p-n结外ρ(x)=0

-xn≤x≤xp ρ(x)=-eax (线性缓变结模型)

这里a 是常数,xn= xp(为什么?),统一用xm/2 表示。试证明电场分布为

并画出ρ和E随x变化的曲线。

解:正负电荷代数和仍为零,p-n结外E=0

作高斯面

ρ和E随x变化的曲线如图所示。

----------------------------------------------------------------------

§1.4 电位及其梯度

思考题:

1、假如电场力的功与路径有关,定义电位差的公式还有没有意义?从原则上说,这时还能不能引入电位差、电位的概念?

答:如果电场力的功与路径有关,积分在未指明积分路径以前就没有意义,路径不同,积分结果也不同,相同的位置,可以有无限多取值,所以就没有确定的意义,即不能根据它引入电位、电位差的概念来描写电场的性质。

2、(1)在附图a所示的情形里,把一个正电荷从P点移动到Q,电场力的功APQ是正还量负?它的电位能是增加还是减少?P、Q两点的电位哪里高?(2)若移动负电荷,情况怎样?(3)若电力线的方向如附图b所示,情况怎样?

答:(1)正电荷在电场中任一点受电场力F= qE,方向与该点E方向相同,在PQ路径上取任一微元,dA>0

P→Q,电场力的功APQ >0,

APQ=q(UP-UQ)=Wp-WQ>0,所以电位能减少,

q>o ,A>0,所以UP>UQ

(2)负电荷受力与电场方向相反,P→Q,电场力的功APQ<0,电位能增加,但仍有UP>UQ (3)由于场强方向与前述相反,则所有结论与(1)(2)相反。

3、电场中两点电位的高低是否与试探电荷的正负有关?电位差的数值是否与试探电荷的电量有关?

答:电位高低是电场本身的性质,与试探电荷无关。电位差的数值也与试探电荷的电量无关。4、沿着电力线移动负试探电荷时,它的电位能是增加还是减少?

答:沿着电力线移动负试探电荷时,若dl与E同向,电场力作负功,电位能增加;反之电位能减少。

5、说明电场中各处的电位永远逆着电力线方向升高。

答:在任何情况下,电力线的方向总是正电荷所受电场力的方向,将单位正电荷逆着电力线方向由一点移动到另一点时,必须外力克服电场力作功,电位能增加。电场中某点的电位,在数值上等于单位正电荷在该点所具有的电位能,因此,电位永远逆着电力线方向升高。6、(1)将初速度为零的电子放在电场中时,在电场力作用下,这电子是向电场中高电位处跑还是向低电位处跑?为什么?(2)说明无论对正负电荷来说,仅在电场力作用下移动时,电荷总是从电位能高处移向电位能低处。

答:(1)电子带负电,被电场加速,逆着电力线方向运动,而电场中各点的电位永远逆着电力线方向升高--电子向高电位处移动。

(2)若电子初速度为零,无论正负电荷,单在电场力作用下移动,电场力方向与位移方向总是一致的,电场力作正功,电位能减少,所以电荷总是从电位能高处向电位能低处移动。7、可否规定地球的电位为+100伏,而不规定它为零?这样规定后,对测量电位、电位差的数值有什么影响?

答:可以。因为电位零点的选择是任意的,假如选取地球的电位是100V而不是0V,测量

的电位等于以地为零电位的数值加上100V,而对电位差无影响。

8、若甲、乙两导体都带负电,但甲导体比乙导体电位高,当用细导线把二者连接起来后,试分析电荷流动的情况。

答:在电场力作用下,电荷总是从电位能高处向电位能低处移动。负电荷由乙流向甲,直至电位相等。

9、在技术工作中有时把整机机壳作为电位零点。若机壳未接地,能不能说因为机壳电位为零,人站在地上就可以任意接触机壳?若机壳接地则如何?

答:把整机机壳作为零电位是对机上其他各点电位而言,并非是对地而言。若机壳未接地,它与地之间可能有一定的电位差,而人站在地上,与地等电位,这时人与机壳接触,就有一定电位差加在人体上。当电压较高时,可能造成危险,所以一般机壳都要接地,这样人与机壳等电位,人站在地上可以接触机壳。

10、(1)场强大的地方,是否电位就高?电位高的地方是否场强大?

(2)带正电的物体的电位是否一定是正的?电位等于零的物体是否一定不带电?(3)场强为零的地方,电位是否一定为零?电位为零的地方,场强是否一定为零?(4)场强大小相等的地方电位是否相等?等位面上场强的大小是否相等?

以上各问题分别举例说明之。

答:

(1)不一定。E仅与电势的变化率有关,场强大仅说明U的变化率大,但U本身并不一定很大。例如平行板电容器,B板附近的电场可以很强,但电位可以很低。同样电位高的地方,场强不一定大,因为电位高不一定电位的变化率大。如平行板电容器A板的电位远高于B板电位,但A板附近场强并不比B板附近场强大。

(2)当选取无限远处电位为零或地球电位为零后,孤立的带正电的物体电位恒为正,带负电的物体电位恒为负。但电位的正负与零电位的选取有关。假如有两个电位不同的带正电的物体,将相对于无限远电位高者取作零电位,则另一带电体就为负电位,由引可说明电位为零的物体不一定不带电。

(3)不一定。场强为零仅说明U的变化率为零,但U本身并不一定为零。例如两等量同号电荷的连线中点处,E=0而U≠0。U为零时,U的变化率不一定为零,因此E也不一定为零。例如两等量异号电荷的连线中点处,U=0而E≠0

(4)场强相等的地方电位不一定相等。例如平行板电容器内部,E是均匀的,但U并不相等。等位面上场强大小不一定相等。如带电导体表面是等位面,而表面附近的场强与面电荷密度及表面曲率有关。

11、两个不同电位的等位面是否可以相交?同一等位面是否可以与自身相交?

答:在零电位选定之后,每一等位面上电位有一确定值,不同等位面U值不同,故不能相交。同一等位面可与自身相交。如带电导体内部场强为零,电位为一常量,在导体内任意作两个平面或曲面让它们相交,由于其上各点的电位都相同,等于导体的电位,这种情况就属于同一等位面自身相交。

习题:

1、在夏季雷雨中,通常一次闪电里两点间的电位差约为100MV(十亿伏特),通过的电量约为30C。问一次闪电消耗的能量是多少?如果用这些能量来烧水,能把多少水从00C 加热到1000C?

解:一次闪电消耗的能量为W=QU=30×109=3×1010(J)

所求的水的质量为M=W/J=72(t)

2、已知空气的击穿场强为2×106V/m,测得某次闪电的火花长100米,求发生这次闪电时两端的电位差。

解:U=2×106×100=2×108(V)

3、证明:在真空静电场中凡是电力线都是平行直线的地方,电场强度的大小必定处处相等;或者凡是电场强度的方向处处相同的地方,电场强度的大小必定处处相等。

证明:在电场中作任意矩形闭合回路abcd,

移动电荷q一周,电场力作功为

4、求与点电荷q=1.0×10-6C分别相距为a=1.0m和b=2.0m的两点间的电位差。解:

5、一点电荷q在离它10厘米处产生的电位为100V,求q 。

解:

6、求一对等量同号电荷联线中点的场强和电位,设电荷都是q ,两者之间距离为2l. 解:

7、求一对等量异号电荷联线中点的场强和电位,设电荷分别是±q ,两者之间距离为2l.

解:

8、如图所示,AB=2l,OCD是以B为中心,l为半径的半圆,A点有正点电荷+q,B点有负点电荷-q。

(1)把单位正电荷从O点沿OCD移到D点,电场力对它作了多少功?

(2)把单位负电荷从D点沿AB的延长线移到无穷远去,电场力对它作了多少功?解:电荷在电场中移动时,电场力作功等于电势能减少的值。

(1)

(2)

9、两个点电荷的电量都是q,相距为l,求中垂面上到两者联线中点为x处的电位。解:根据电势的叠加原理

10、有两个异号点电荷me 和-e(n>1),相距为a ,

(1)证明电位为零的等位面是一个球面;

(2)证明球心在这两个点电荷的延长线上,且在-e点电荷的外边;

(3)这球的半径是多少?

解:以-e为原点O,两电荷的联线为x轴,取坐标系如图所示。根据电势叠加原理,空间任一点的电势为

11、求电偶极子p=ql电位的直角坐标表达式,并用梯度求出场强的直角分量表达式。解:(1)取坐标系如图所示,根据电势叠加原理

当r>>l时,

(2)由电势梯度求得场强为

12、证明如图所示电四极子在它的轴线延长线上的电位为,并由梯度求场强。

解:取坐标系如图所示,根据电势的叠加原理

13、一电四极子如图所示,证明:当r>>l时,它在P(r,θ)点产生的电位为图中的极轴通过正方形中心O点,且与一边平行。

解:(1)根据电势叠加原理

当r>>l时,

(2)由电势梯度求场强

此题也可以将平面电四极子当作两个电偶极子,由电偶极子产生的电势叠加求U及E。14、求均匀带电圆环轴线上电位的分布,并画U-x 曲线。

解:(1)P点的电势及场强为

(2)由电势表达式得

因此得U-x曲线为

15、求均匀带电圆面轴线上的电位分布,并画U-x 曲线。

解:(1)利用上题结果,求得电位及场强分布为

(2)由电势表达式得

U-X曲线如图所示

16、求两个均匀带电的同心球面在三个区域内的电位分布,并画U-r 曲线。

解:(1)已知均匀带电球面产生的电场中电位的分布为

由电势叠加原理可知:

(2)U-r曲线如图所示

17、在上题中,保持内球上电量Q1不变,当外球电量Q2改变时,试讨论三个区域内的电位有何变化?两球面之间的电位差有何变化?

解:保持Q1不变,当外球电量Q2变化时,各区域电位随之变化

18、求均匀带电球体的电位分布。并画U-x 曲线。

解:(1)由高斯定理可求得场强分布为

(2)由场强求得电势为

(3)U-r曲线如图所示

19、金原子核可当作均匀带电球,半径约为6.9×10-15米,电荷为Ze=79×1.6×10-19C,求它表面上的电位。

解:

20、(1)一质子(电荷为e=1.6×10-19C,质量为1.67×10-27kg),以1.2×102m/s的初速从很远的地方射向金原子核,求它能达到金原子核的最近距离。

(2)α粒子的电荷为2e,质量为6.7×10-27kg,以1.6×102m/s的初速度从很远的地方射向

金原子核,求它能达到金原子核的最近距离。

解:由能量守恒定律得

(1)

(2)

2 1 、在氢原子中,正常状态下电子到质子的距离为5.29×10-11m,已知氢原子核(质子)和电子带电各为±e。把氢原子中的电子从正常状态下离核的最近距离拉开到无穷远处所需的能量,叫做氢原子核的电离能。求此电离能是多少电子伏和多少焦耳。

解:设电子的质量为m,速度为v,氢原子基态的能量为

负号是因为,以电子和质子相距无穷远时为电势能的零点,要把基态氢原子的电子和质子分开到相距无穷远处,需要外力做功。这功的最小值便等于氢原子的电离能量E E=-W=-13.6eV

一摩尔氢原子的电离能量为

Emol=NAE=8.19eV=1.31×106(J)

2 2、轻原子核(如氢及其同位素氘、氚的原子核)结合成为较重原子核的过程,叫做核聚变。核聚变过程可以释放出大量能量。例如,四个氢原子核(质子)结合成一个氦原子核(α粒子)时,可释放出28MeV的能量。这类核聚变就是太阳发光、发热的能量来源。如果我们能在地球上实现核聚变,就可以得到非常丰富的能源。实现核聚变的困难在于原子核都带正电,互相排斥,在一般情况下不能互相靠近而发生结合。只有在温度非常高时,热运动的速度非常大,才能冲破库仑排斥力的壁垒,碰到一起发生结合。这叫做热核反应。根据统计物理学,绝对温度为T时,粒子的平均平动动能为,k=1.38×10-23J/K.试计算:

(1)一个质子以怎样的动能(以eV表示)才能从很远的地方达到与另一个质子接触的距离?

(2)平均热运动动能达到此数值时,温度(以K表示)需为多少?

解:(1)设两个质子迎头相碰,碰撞时两者中心距离为2r

(2)

实际上,由于量子力学的隧道效应,使质子不需要那么大的动能就可以穿过静电壁垒而达到互相接触,故发生热核聚变所需的温度可以低一些,据估算,108K即可。

23、在绝对温度为T时,微观粒子热运动能量具有KT的数量级。有时人们把能量KT折合成电子伏,就说温度T为若干电子伏。问:

(1)T=1eV相当于多少开?

(2)T=50keV相当于多少开?

(3)室温(T=300K)相当于多少eV?

解:(1)

(2)

(3)

又如:

太阳表面温度约为6000K,T=0.52eV

热核反应时温度高达108K,T=8.6(keV)

24、电量q均匀地分布在长为2l的细直线上,求下列各处的电位U:

(1)中垂面上离带电线段中心O为r处,并利用梯度求Er;

(2)延长线上离中心O为Z处,并利用梯度求EZ;

(3)通过一端的垂面上离该端点为r 处,并利用梯度求Er.

解:(1)中垂面上离中心为r1处,

(2)延长线上离中心为r2 处

( 3 )端垂面上离该端为r3处,

25、如图所示,电量q均匀地分布在长为2l的细直线上,

(1)求空间任一点P(r,z)的电位U(0

(2)利用梯度求任一点P(r,z)的场强分量Er 和EZ;

(3)将所得结果与上题中的特殊位置相比较。

解:(1)在图示坐标系中,

(2)由电势梯度求场强

(3)与上题比较:

r=r1,z=0时, 得中垂面上任一点的电位与场强

r=0,Z=r2时,得延长线上任一点的电位与场强

r=r3,Z=|l|时,得端面上任一点的电位与场强

26、一无限长直线均匀带电,线电荷密度为η,求离这线分别为r1和r±两点的两点之间的电位差。

解:

27、如附图所示,两条均匀带电的无限长平行直线(与图纸垂直),电荷的线密度分别为±η,相距为2a。求空间任一点P(x,y)的电位。

解:取O点为电势零点时,空间任一点的电势为两无限长带电线电势的叠加

若以无穷远处为电势零点,一条无限长带电线所产生的电势是无穷大,但两条无限长带等量异号电荷的直线产生的电势是有限值,因为单位长度的电荷量大小相等而符号相反,结果电势在相加时,消去无穷大,而成为有限值。

28、证明在上题中电位为U的等位面是半径为的圆筒面,筒的轴线与两直线共面,位置在处,其中。U=0的等位面是什么形状?

解:P点的电势为

由于对称性,U与z无关。

为方便,令,

在三维空间,这是一个圆柱同,轴线在z-x平面内并与Z轴平行,位置在处,其半径为。

U=0的等位面为X=0的Y-Z平面。

29、求两无限长共轴圆筒间的电势分布和两筒间的电位差(设),并画出U-r曲线。解:根据高斯定理可求得两筒间的电场强度为

30、求无限长直圆柱体的电位分布(以轴线为参考点,设它电位为零)。

解:由高斯定理可求得圆柱体内的场强分布为

31、求电荷密度为的无限长等离子体柱的电势分布(以轴线为参考点,设它的电位为零)解:由高斯定理可求得场强分布为

以轴线为电势零点,其电位分布为

32、一电子二极管由半径a=0.50mm的圆柱形阴极K和套在阴极外同轴圆筒形的阳极A构成,阳极半径R=0.45cm。阳极电位比阴极电位高300V。设电子从阴极发射出来时速度很小,可忽略不计。求:

(1)电子从K向A走过2.0mm时的速度;

(2)电子到达A时的速度。

解:设离阴极K的轴线为r 处的电势为U,则

33、如图所示,一对均匀、等量异号的平行带电平面。若其间距离d远小于带电平面的线度时,这对带电面可看成是无限大的。这样的模型可叫做电偶极层。求场强和电位沿垂直两平面的方向x 的分布,并画出E-x曲线和U-x曲线(取离两平面等距的O点为参考点,令该处的电位为零)。

解:由高斯定理可求得电偶极层内部

电偶极层外部

以O点为电势的参考点

E-x曲线为U-x曲线为

34、证明半导体突变型p-n结内的电位分布为

n区,

p区

这公式是以哪里作为电位参考点的?p-n结两侧的电位差是多少?

解:n区

p区

以交界面处为电势的零点。P-n结两侧的电势差为

35、证明半导体线性缓变p-n结内的电位分布为

这公式是以哪里作为电位参考点的?p-n结两侧的电位差是多少?

解:(1)

此电位是以O点为参考点的。

(2)p-n结两侧的电位差为

36、在示波管中,若已知的不是偏转电极间的场强E,而是两极板间的距离d=1.0cm和电压120伏,其余尺寸相同。求偏转距离y和y′.

解:示波器内部

(与§2习题16结果相同)

37、电视显象管的第二和第三阳极是两个直径相同的同轴金属圆筒。两电极间的电场即为显象管中的主聚焦电场。图中所示为主聚焦电场中的等位面,数字表示电位值。试用直尺量出管轴上各等位面间的距离,并求出相应的电场强度。

解:用直尺量出管轴上各等位

面间的距离

根据

可求出各等位间的电场强度--

场强分布是非均匀电场,但具有对称性。从左至右各等位面间的场强分布为

(单位:伏/米)

4.44 9.09 22.22 33.3350 66 50 33.33 22.22 9.09 4.44

38、带电粒子经过加速电压加速后,速度增大。已知电子的质量为,电荷绝对值为

(1)设电子质量与速度无关,把静止电子加速到光速c=3×108m/s要多高的电压?(2)对于高速运动的物体来说,上面的算法不对,因为根据相对论,物体的动能不是,而是。按照这公式,静止电子经过上述电压加速后,速度v是多少?它是光速c的百分之几?

(3)按照相对论,要把电子从静止加速到光速,需要多高的电压?这可能吗?

解:(1)根据能量守恒定律

(2)对于高速运动的物体,根据能量守恒定律

(3)根据

所需电压为

因此,根据狭义相对论,不可能把带电粒子加速到光速。―――――――――――――――――――――――――――――――――――――――

§1.5 带电体系的静电能

思考题:

1、为什么在点电荷组相互作用能的公式中有因子1/2,而点电荷在外电场中的电位能公式W(P)=qU(P)中没有这个因子?

答:在计算点电荷组的相互作用能时,每一对点电荷之间的相互作用能计算了两两次,所以求和公式中有因子1/2。点电荷在外电场中的电位能公式没有重复计算。

2、在电偶极子的位能公式W=-P·E中是否包括偶极子的正、负电荷间的相互作用能?

答:公式中的电场是外电场,因此此位能不包括偶极子正负电荷之间的相互作用能。――――――――――――――――――――――――――――――――――――

习题:

1、计算三个放在等边三角形三个顶点的点电荷的相互作用能。设三角形的边长为l,顶点上的点电荷都是q。

解:根据点电荷组的相互作用能公式

2、计算上题三角形中心的电荷q′= 处在其余顶点上三个电荷产生的外电场中的电位能。

解:

3、求均匀带电球体的电位能,设球的半径为R,带电总量为q。

解:根据静电能量公式

4、利用虚功概念计算电偶极子放在点电荷Q的电场中时,偶极子所受的力和力矩。解:(1)P//QO时

(2)P⊥QO时

当r与P成夹角θ时,

5、利用虚功概念证明:均匀带电球壳在单位面积上受到的静电排斥力为ζ2/2ε0。

解:均匀带电球壳的自能为

第一章结束

第二章静电场中的导体和电介质

§2.1 静电场中的导体

思考题:

1、试想放在匀强外电场E0中的不带电导体单独产生的电场E′的电力线是什么样子(包

括导体内和导体外的空间)。如果撤去外电场E0,E′的电力线还会维持这个样子吗?

答:电场Eˊ的特征有:(1)静电平衡时,在导体内部,E0和Eˊ的矢量和处处为零。

因此Eˊ的电力线在导体内部是与E0反向的平行直线;(2)导体上的等量异号电荷,在离导体足够远处激发的场,等效于一个电偶极子激发的场,因此其电力线也等效于电偶极子电场的电力线;(3)导体上电荷密度大的地方,电力线的数密度较大;(4)在导体表面附近,E0和Eˊ的矢量和的方向一定垂直于导体表面。因此,Eˊ的方向相对于E0一定位于表面法线的另一侧。

Eˊ的电力线分布如图所示。值得注意的是,单独考虑感应

电荷的场Eˊ时,导体并非等位体,表面也并非等位面,所以

感应电荷激发的场的电力线在外表面上会有一些起于正电荷而

止于负电荷。

如果撤去外电场E0,静电平衡被破坏,,Eˊ的电力线不会

维持这个样子。最后Eˊ将因导体上的正、负电荷中和而消失。

2、 无限大带电面两侧的场强02/εσ=E ,这个公式对于靠近有限大小带电面的地方也适

用。这就是说,根据这个结果,导体表面元△S 上的电荷在紧靠它的地方产生的场强也应是02/εσ,它比导体表面处的场强小一半。为什么?

答:可以有两种理解:(1)为了用高斯定理求场强,需作高斯面。在两种情形下,通过此高斯面的电通量都是0/εσS ,但在前一种情况,由于导体内部场强为零,通过位于导体内部的底面的电通量为零,因而造成两公式不同;(2)如果两种情况面电荷密度相同,无限大带电平面的电力线对称地分布在带电面两侧,而导体表面电力线只分布在导体外侧,因此电力线的密度前者为后者的二分之一,故场强也为后者的二分之一。

3、 根据式0/εσ=E ,若一带电导体面上某点附近电荷面密度为σ,这时该点外侧附近场

强为0/εσ=E ,如果将另一带电体移近,该点的场强是否改变?公式0/εσ=E 是否仍成立?

答:场强是所有电荷共同激发的。另一带电体移近时,由于它的影响和导体上电荷分布的变

化,该点的场强E 要发生变化。当达到静电平衡时,因为表面附近的场强总与导体表面垂直,应用高斯定理,可以证明0/εσ=E 仍然成立,不过此时的ζ是导体上的电荷重新分布后该点的电荷密度。

4、 把一个带电物体移近一个导体壳,带电体单独在导体空腔内产生的电场是否等于零?静

电屏蔽效应是怎样体现的?

答:带电体单独在导体空腔内产生的场强不为零。静电平衡的效应表现在,这个场强与导体

外表面感应电荷激发的场强,在空腔内的矢量和处处为零,从而使空腔内的场不受壳外带电体电场的影响。

5、 万有引力和静电力都服从平方反比定律,都存在高斯定理。有人幻想把引力场屏蔽起来,

这能否作到?引力场和静电力有什么重要差别?

答:产生静电平衡的关键,在于导体中存在两种电荷,而且负电荷(电子)在电场力作用下

能够自由移动,因此在外电场作用下,能够形成一附加电场,使得在导体壳内总场强为零。引力场与此不同,引力场的源只有一种,因此在外部引力场的作用下不可能产生一附加引力场,使得物质壳内部的引力场处处为零,所以屏蔽引力场是不可能的。两种场的重要差别在于:静电场的源有两种,相应的电荷之间的作用力也有两种,引力和斥力;引力场的源只有一种,相应的物质的引力相互作用只有一种引力。

6、 (1)将一个带正电的导体A 移近一个不带电的绝缘导体B 时,导体B 的电位是升高还

是降低?为什么?

(2)试论证:导体B上每种符号感应电荷的数量不多于A上的电量。

答:(1)A移近时,B的电位将升高。因为带电体A移近时,B上将出现感应电荷,靠近A的一边感应电荷为负,远离A的一边为正。从A上正电荷发出的电力线,一部分终止于负的感应电荷上,正的感应电荷发出的电力线延伸至无限远,由于同一电力线其起点的电位总是高于终点的电位,若选取无限远处的电位为零,则正的感应电荷所在处(导体B)的电位大于零。静电平衡时,导体B为等位体,因此整个导体B的电位大于零,而在A未移近之前,B的电位为零。可见,当A移近时,B的电位升高了。

(2)从A上正电荷发出的电力线,一部分终止于B上,其余延伸至无限远处,因此B上的负电荷电量小于A上的正电荷电量,且B上感应电荷总是等量异号的,所以B导体上每种电荷的电量均少于A上的电荷。

7、将一个带正电的导体A移近一个接地的导体B时,导体B是否维持零电位?其上是否

带电?

答:导体B与大地等电位,电位仍为零。不论B导体原来是否带电,由于A所带电荷的符号、大小和位置的影响,B将带负电。

8、一封闭的金属壳内有一个带电量 q的金属物体。试证明:要想使这金属物体的电位与金

属壳的电位相等,唯一的办法是使q=0 。这个结论与金属壳是否带电有没有关系?答:若q≠0,金属壳的电位与带电金属物体的电位不等。应用高斯定理可证明,金属壳内表面上带负电,电量为-q ,从带电的金属物体上发出的电力线终止于金属壳的内表面上,因此带电金属物体的电位高于金属壳的电位。反之,若q=0,金属壳和金属物体之间无电场,电荷从它们中的一个移向另一个的过程中,没有电场力做功,所以它们之间无电位差。

由于静电屏蔽效应,金属壳带电与否,不会影响金属壳表面上所包围区域内的场强和电位差,所以,金属壳是否带电对以上证明的结论没有影响。

9、有若干个互相绝缘的不带电导体A、B、C、…,它们的电位都是零。如果把其中任一

个如A带上正电,证明:

(1)所有这些导体的电位都高于零;

(2)其他导体的电位都低于A的电位。

答:(1)与6题解释相同。当选无限远处电位为零时,一个不带电的绝缘导体附近放入一个带正电的物体时,这个导体的电位将升高。因此电位不为零的带正电绝缘导体A将使B、C、…的电位高于零。

电磁学第二章例题

物理与电子工程学院 注:教案按授课章数填写,每一章均应填写一份。重复班授课可不另填写教案。教学内容须另加附页。

(3)在导体外,紧靠导体表面的点的场强方向与导体表面垂直,场强大小与导体表面对应点的电荷面密度成正比。 A 、场强方向(表面附近的点) 由电场线与等势面垂直出发,可知导体表面附近的场强与表面垂直。而场强大小与面密度的关系,由高斯定理推出。 B 、场强大小 如图,在导体表面外紧靠导体表面取一点P ,过P 点作导体表面 的外法线方向单位矢n ?,则P 点场强可表示为n E E n P ?= (n E 为P E 在n ?方向的投影,n E 可正可负)。过P 点取一小圆形面元1S ?,以1S ?为底作一圆柱形高斯面,圆柱面的另一底2S ?在导体内部。由高斯定理有: 11/) 0(?1 1 2 1 εσφS S E s d E E s d n E s d E s d E s d E s d E s d E n S S n S S S S ?=?=⊥=?= ?= ?+?+?= ?=?????????? ?????? 导体表面附近导体内侧 (导体的电荷只能分布在导体表面,若面密度为σ,则面内电荷为 为均匀的很小,视,且因σσ11S S ??) ∴ ?? ?<>=?? ?<<>>= 反向,,同向,,即,,n E n E n E E E E n n n ?0?0?0 00 00 σσεσ σσεσ

可见:导体表面附近的场强与表面上对应点的电荷面密度成正比,且无论场和电荷分布怎样变化,这个关系始终成立。 C 、0 εσ = E n ?中的E 是场中全部电荷贡献的合场强,并非只是高斯面内电荷S ?σ的贡献。这一点是由高斯定理得来的。P45-46 D 、一般不谈导体表面上的点的场强。 导体内部0=E ,表面外附近0 εσ=E n ?;没提表面上的。 在电磁学中的点、面均为一种物理模型,有了面模型这一概念,场强在带电面上就有突变(P23小字),如果不用面模型,突变就会消失。但不用面模型,讨论问题太复杂了,所以我们只谈“表面附近”而不谈表面上。 补充例:习题2.1.1(不讲) Rd θ 解:利用上面的结果,球面上某面元所受的力:n dS F d ?20 2 εσ= ,利用对称性知,带有同号电荷的球面所受的力是沿x 轴方向: 右半球所受的力:

电磁学(赵凯华_陈熙谋_)__第二版_课后答案1.

第一章 静 电 场 §1.1 静电的基本现象和基本规律 计 算 题 : 1、 真空中两个点电荷q 1=1.0×10-10C ,q 2=1.0×10-11C ,相距100mm ,求q 1受的力。 解:)(100.941 10 2 210排斥力N r q q F -?== πε 2、 真空中两个点电荷q 与Q ,相距5.0mm,吸引力为40达因。已知q=1.2×10-6C,求Q 。 解:1达因=克·厘米/秒=10-5牛顿 C q F r Q r qQ F 13202 01093441 -?-==?=πεπε 3、 为了得到一库仑电量大小的概念,试计算两个都是一库仑的点电荷在真空中相距一米时 的相互作用力和相距一千米时的相互作用力。 解:? ??=?=?==物体的重量相当于当万吨物体的重量 相当于当kg m r N m r N r q q F 900)1000(100.990)1(100.941 3 92210πε 4、 氢原子由一个质子(即氢原子核)和一个电子组成。根据经典模型,在正常状态下,电 子绕核作圆周运动,轨道半径是r=5.29×10-11m 。已知质子质量M=1.67×10-27kg ,电子质量m=9.11×10-31kg 。电荷分别为e=±1.6×10-19 C,万有引力常数G=6.67×10-11N ·m 2/kg 2。(1)求电子所受的库仑力;(2)库仑力是万有引力的多少倍?(3)求电子的速度。 解: 不计 万有引力完全可以略去与库仑力相比在原子范围内由此可知吸引力吸引力,,,/1019.241 41)3(1026.2/)(1063.3)2() (1022.841 )1(62 02 2 02394722 18 2 20s m mr e v r e r v m F F N r m m G F N r e F g e g e ?==?=?=??==?==--πεπεπε 5、 卢瑟福实验证明:当两个原子核之间的距离小到10-15米时,它们之间的排斥力仍遵守 库仑定律。金的原子核中有79个质子,氦的原子核(即α粒子)中有2个质子。已知每个质子带电e=1.6×10-19 C ,α粒子的质量为6.68×10-27 kg.。当α粒子与金核相距为6.9×10-15m 时(设这时它们仍都可当作点电荷)。求(1)α粒子所受的力;(2)α粒子的加速度。

电磁学赵凯华答案第6章麦克斯韦电磁理论

1 一平行板电容器的两极板都是半径为的圆导体片,在充电时,其中电场强度的变化率为: 。试求:(1)两极板间的位移电流;(2)极板边缘的磁感应强度。 解: (1)如图所示,根据电容器极板带电情况,可知电场强度的方向水平向右(电位移矢量 的方向与的方向相同)。因电容器中为真空,故。忽略边缘效应,电场只分布在两板之间的空间内,且为匀强电场。 已知圆板的面积,故穿过该面积的的通量为 由位移电流的定义式,得电容器两板间位移电流为 因,所以的方向与的方向相同,即位移电流的方向与的方向相同。 (2)由于忽略边缘效应,则可认为两极板间的电场变化率是相同的,则极板间的位移电流是轴对称分布的,因此由它所产生的磁场对于两板中心线也具有轴对称性。 在平行板电容器中沿极板边缘作以半径为的圆,其上的大小相等,选积分方向与方向一致,

则由安培环路定理可得(全电流) 因在电容器内传导电流,位移电流为,则全电流为 所以极板边缘的磁感应强度为 根据右手螺旋定则,可知电容器边缘处的磁感应强度的方向,如图所示。 2 一平行板电容器的两极板为圆形金属板,面积均为,接于一交流电源时,板上的电荷随时间变化,即。试求:(1)电容器中的位移电流密度的大小;(2)设为由圆板中心到该点的距离,两板之间的磁感应强度分布。 解: (1)由题意可知,,对于平行板电容器电位移矢量的大小为 所以,位移电流密度的大小为 (2)由于电容器内无传导电流,故。又由于位移电流具有轴对称性,故可用安培环路求解磁感应强度。 设为圆板中心到场点的距离,并以为半径做圆周路径。 根据全电流安培环路定理可知通过所围面积的位移电流为

所以.最后可得 3. 如图(a)所示,用二面积为的大圆盘组成一间距为的平行板电容器,用两根长导线垂直地接在二圆盘的中心。今用可调电源使此电容器以恒定的电流充电,试求:(1)此电容器中位移电流密度;(2)如图(b)所示,电容器中点的磁感应强度;(3)证明在此电容器中从半径为﹑厚度为的圆柱体表面流进的电磁能与圆柱体内增加的电磁能相等。 解:(1)由全电流概念可知,全电流是连续的。 电容器中位移电流密度的方向应如图(c)所示,其大小为 通过电源给电容器充电时,使电容器极板上电荷随时间变化,从而使极板间电场发生变化。 因此,也可以这样来求: 因为由于,因此所以

电磁学第二章习题答案教程文件

电磁学第二章习题答 案

习题五(第二章 静电场中的导体和电介质) 1、在带电量为Q 的金属球壳内部,放入一个带电量为q 的带电体,则金属球 壳内表面所带的电量为 - q ,外表面所带电量为 q +Q 。 2、带电量Q 的导体A 置于外半径为R 的导体 球壳B 内,则球壳外离球心r 处的电场强度大小 204/r Q E πε=,球壳的电势R Q V 04/πε=。 3、导体静电平衡的必要条件是导体内部场强为零。 4、两个带电不等的金属球,直径相等,但一个是空心,一个是实心的。现使它们互相接触,则这两个金属球上的电荷( B )。 (A)不变化 (B)平均分配 (C)空心球电量多 (D)实心球电量多 5、半径分别R 和r 的两个球导体(R >r)相距很远,今用细导线把它们连接起来,使两导体带电,电势为U 0,则两球表面的电荷面密度之比σR /σr 为 ( B ) (A) R/r (B) r/R (C) R 2/r 2 (D) 1 6、有一电荷q 及金属导体A ,且A 处在静电平衡状态,则( C ) (A)导体内E=0,q 不在导体内产生场强; (B)导体内E ≠0,q 在导体内产生场强; (C)导体内E=0,q 在导体内产生场强; (D)导体内E ≠0,q 不在导体内产生场强。 7、如图所示,一内半径为a ,外半径为b 的金属球壳,带有电量Q , 在球壳空腔内距离球心为r 处有一点电荷q ,设无限远 处为电势零点。试求: (1)球壳外表面上的电荷; (2)球心O 点处由球壳内表面上电荷产生的电势; (3)球心O 点处的总电势。

解: (1) 设球壳内、外表面电荷分别为q 1 , q 2,以O 为球心作一半径为R (a 电场中的电势分布: )111(4 ,03211b a r Q dr E dr E dr E V a r b b a a r +-= ++=

电磁学-第二版--习题答案

电磁学 第二版 习题解答 电磁学 第二版 习题解答 (1) 第一章 ................................................................................................................................................................ 1 第二章 .............................................................................................................................................................. 16 第三章 .............................................................................................................................................................. 25 第四章 .............................................................................................................................................................. 34 第五章 .............................................................................................................................................................. 38 第六章 .............................................................................................................................................................. 46 第七章 .. (52) 第一章 1.2.2 两个同号点电荷所带电荷量之和为Q 。在两者距离一定的前提下,它们带电荷量各为多少时相互作用力最大? 解答: 设一个点电荷的电荷量为1q q =,另一个点电荷的电荷量为 2()q Q q =-,两者距离为r ,则由库仑定律求得两个点电荷之间的作用力为 2 0() 4q Q q F r πε-= 令力F 对电荷量q 的一队导数为零,即 20()04dF Q q q dq r πε--== 得 122 Q q q ==

电磁学试题库电磁学第二章试题(含答案)

一、填空题 1、一面积为S 、间距为d 的平行板电容器,若在其中插入厚度为2d 的导体板,则其电容为 ;答案内容:;20d S ε 2、导体静电平衡必要条件是 ,此时电荷只分布在 。 答案内容:内部电场处处为零,外表面; 3、若先把均匀介质充满平行板电容器,(极板面积为S ,极反间距为L ,板间介电常数为r ε)然后使电容器充电至电压U 。在这个过程中,电场能量的增量是 ; 答案内容:2 02U L s r εε 4、在一电中性的金属球内,挖一任意形状的空腔,腔内绝缘地放一电量为q 的点电荷,如图所示,球外离开球心为r 处的P 点的场强 ; 答案内容:r r q E e ∧=204περ; 5、 在金属球壳外距球心O 为d 处置一点电荷q ,球心O 处电势 ; 答案内容:d q 04πε; 6、如图所示,金属球壳内外半径分别为a 和b ,带电量为Q ,球壳腔内距球心O 为r 处置一电量为q 的点电荷,球心O 点的电势 。 答案内容:??? ??++-πεb q Q a q r q 0 41 7、导体静电平衡的特征是 ,必要条件是 。 答案内容:电荷宏观运动停止,内部电场处处为零; 8、判断图1、图2中的两个球形电容器是串连还是并联,图1是_________联,图2是________联。 答案内容:并联,串联; 9、在点电荷q +的电场中,放一金属导体球,球心到点电荷的距离为r ,则导体球上感应电荷在球心处产生的电场强度大小为: 。 答案内容:201 4q r πε ;

10、 一平板电容器,用电源将其充电后再与电源断开,这时电容器中储存能量为W 。然后将介电常数为ε的电介质充满整个电容器,此时电容器内存储能量为 。 答案内容:00W εε ; 11、半径分别为R 及r 的两个球形导体(R >r ),用一根很长的细导线将它们连接起来,使二个导体带电,电势为u ,则二球表面电荷面密度比/R r σσ= 。 答案内容:/r R ; 12、一带电量 为Q 的半径为r A 的金属球A ,放置在内外半径各为r B 和r C 的金属球壳B 内。A 、B 间为真空,B 外为真空,若用导线把A 、B 接通后,则A 球电位 (无限远处u=0)。 答案内容:()0/4c Q r πε ; 13、一平行板电容器的电容为C ,若将它接在电压为U 的恒压源上,其板间电场强度为E ,现不断开电源而将两极板的距离拉大一倍,则其电容为______,板间电场强度为_____。 答案内容: 21C , 21E 。 14、一平行板电容器的电容为C ,若将它接在电压为U 的恒压源上,其板间电场强度为E ,现断开电源后,将两极板的距离拉大一倍,则其电容为________,板间电场强度为_____。 答案内容: 21C , E 不变 二、单选择题 1、将一带电量为Q 的金属小球靠近一个不带电的金属导体时,则有( ) (A )金属导体因静电感应带电,总电量为-Q ; (B )金属导体因感应带电,靠近小球的一端带-Q ,远端带+Q ; (C )金属导体两端带等量异号电荷,且电量q

电磁学答案第3章.

第三章 静电场的电介质 3.2.1 偶极矩为p → =q l → 的电偶极子,处于场强为E 的外电场中,p → 与E → 的夹角为θ。 (1) 若是均匀的,θ为什么值时,电偶极子达到平衡? (2)如果E 是不均匀的,电偶极子能否达到平衡? 解: (1)偶极子受的力: F + =F _=qE 因而F → +=-F → _∴偶极子 受合力为零。偶极子受的力矩 T =p ?E 即 T=qEsin θ 当 T=0时,偶极子达到平衡, ∴ pEsin θ=0 p → ≠0 E → ≠0 ∴θ=0 , π θ=0这种平衡是稳定平衡。θ=π是不稳定平衡。 (2) 当E → 不是均匀电场时,偶极子除受力矩外还将受一个 力(作用在两个点电荷的电场力的合力)。所以不能达到平衡。 3.2.2 两电偶极子 1p →和2 p → 在同一直线上,所以它们之间距r 比它们自己的线度大的很多。证明:它们的相互作用力的大小为F= 4 02 123r p p πε,力的方向是:1 p → 与 2 p → 同方向时互相吸引,反方向时互相排斥。 证: 已知当r >>l 时,偶极子在其延长线上 一点的场强:E → =3 02r p πε→ 当 1p → 与 2p → 同方向时,如图 2p → 所受的力的大小: +→ F =E → q= r l r q p ∧ +3 201)2 (2πε

-→ F = - E → q= r l r q p ∧ --3 201)2 (2πε ∴F → = +→ F +-→ F =r l r l r q p ∧????? ? ?? ????--+323201)2(1 )2(12πε =r l r l l r q p ∧ ?? ? ???---?32223 222 01)2()2(2262πε 略去 4 22l 及 83 2 l 等高级小量。 F → =-r r ql p ∧ 4 02 146πε = -r r p p ∧ 4 02123πε 当 1p → 与 2p → 反方向时(如图) ,同理: F →= r l r l r q p ∧????? ? ?? ????--+323201)2(1 )2(12πε =012πεq p ?r l r l l r ∧ -+3222 3 222) 4 ()2(23 略去高级小量得: F → =r r P P ∧ 402123πε 3.2.3 一电偶极子处在外电场中,其电偶极矩为 ,其所在处的电场强度为 。 (1) 求电偶极子在该处的电位能, (2) 在什么情况下电偶极子的电位能最小?其值是 多少?

电磁学第二章习题答案word精品

习题五(第二章静电场中的导体和电介质) 1、在带电量为Q的金属球壳内部,放入一个带电量为q的带电体,则金属球壳内表面所带的电量为- q,外表面所带电量为q+ Q 2、带电量Q的导体A置于外半径为R的导体 球壳B内,则球壳外离球心r处的电场强度大小

E =Q/4「:;o r 1 2 3 4 5,球壳的电势 V = Q/4 o R 。 3、 导体静电平衡的必要条件是 导体内部场强为零。 4、两个带电不等的金属球,直径相等,但一个是空心,一个是实心的。现使它 们互相接触,则这两个金属球上的电荷(B )。 (A)不变化 (B)平均分配 (C)空心球电量多(D)实心球电量多 5、 半径分别R 和r 的两个球导体(R >r)相距很远,今用细导线把它们连接起来, 使两导体带电,电势为U o ,则两球表面的电荷面密度之比 CR / r 为(B ) 2 2 (A) R/r (B) r/R (C) R /r (D) 1 6、 有一电荷q 及金属导体A ,且A 处在静电平衡状态,则(C) (A) 导体内E=0,q 不在导体内产生场强; (B) 导体内E 工0,q 在导体内产生场强; (C)导体内E=0,q 在导体内产生场强; (D)导体内E M 0,q 不在导体内产生场强 7、如图所示,一内半径为a ,外半径为b 的金属球壳,带有电量 Q , 在球壳空腔内距离球心为r 处有一点电荷q ,设无限远 处为电势零点。试求: (1)球壳外表面上的电荷; ⑵球心O 点处由球壳内表面上电荷产生的电势; ⑶球心O 点处的总电势。 解:(1)设球壳内、外表面电荷分别为 qi , q,以O 为球心作一半径为R(avRvb) 的高斯球面S,由高斯定理..E ?dS = qL ~q ,根据导体静电平衡条件 a r

电磁学赵凯华陈熙谋___第二版_课后答案

第一章 静电 场 §1.1静电的基本现象和基本规律 计算题: 1、 真空中两个点电荷q 1=1.0×10-10 C ,q 2=1.0×10-11 C ,相距100mm ,求q 1受的力。 解:)(100.941 102 2 10排斥力N r q q F -?== πε 2、 真空中两个点电荷q 与Q ,相距5.0mm,吸引力为40达因。已知q=1.2×10-6 C,求Q 。 解:1达因=克·厘米/秒=10-5 牛顿 3、 为了得到一库仑电量大小的概念,试计算两个都是一库仑的点电荷在真空中相距一米时的相互作用 力和相距一千米时的相互作用力。 解:? ??=?=?==物体的重量相当于当万吨物体的重量 相当于当kg m r N m r N r q q F 900)1000(100.990)1(100.941 3 92210πε 4、 氢原子由一个质子(即氢原子核)和一个电子组成。根据经典模型,在正常状态下,电子绕核作圆 周运动,轨道半径是r=5.29×10-11 m 。已知质子质量M=1.67×10-27 kg ,电子质量m=9.11×10-31 kg 。电荷分别为e=±1.6×10-19 C,万有引力常数G=6.67×10-11 N ·m 2 /kg 2 。(1)求电子所受的库仑力;(2)库仑力是万有引力的多少倍?(3)求电子的速度。 解: 不计 万有引力完全可以略去与库仑力相比在原子范围内由此可知吸引力吸引力,,,/1019.241 41)3(1026.2/)(1063.3)2() (1022.841 )1(62 02 2 02394722 18 2 20s m mr e v r e r v m F F N r m m G F N r e F g e g e ?==?=?=??==?==--πεπεπε 5、 卢瑟福实验证明:当两个原子核之间的距离小到10 -15 米时,它们之间的排斥力仍遵守库仑定律。 金的原子核中有79个质子,氦的原子核(即α粒子)中有2个质子。已知每个质子带电e=1.6×10-19 C ,α粒子的质量为6.68×10-27 kg.。当α粒子与金核相距为6.9×10-15 m 时(设这时它们仍都可当作点电荷)。求(1)α粒子所受的力;(2)α粒子的加速度。 解: s m m F a N r q q F /1014.1)2()(1064.741 )1(2922 2 10?== ?== 排斥力πε

最新电磁学第二章习题答案

习题五(第二章 静电场中的导体和电介质) 1、在带电量为Q 的金属球壳内部,放入一个带电量为q 的带电体,则金属球壳 内表面所带的电量为 - q ,外表面所带电量为 q +Q 。 2、带电量Q 的导体A 置于外半径为R 的导体 球壳B 内,则球壳外离球心r 处的电场强度大小 204/r Q E πε=,球壳的电势R Q V 04/πε=。 3、导体静电平衡的必要条件是导体内部场强为零。 4、两个带电不等的金属球,直径相等,但一个是空心,一个是实心的。现使它们互相接触,则这两个金属球上的电荷( B )。 (A)不变化 (B)平均分配 (C)空心球电量多 (D)实心球电量多 5、半径分别R 和r 的两个球导体(R >r)相距很远,今用细导线把它们连接起来,使两导体带电,电势为U 0,则两球表面的电荷面密度之比σR /σr 为 ( B ) (A) R/r (B) r/R (C) R 2/r 2 (D) 1 6、有一电荷q 及金属导体A ,且A 处在静电平衡状态,则( C ) (A)导体内E=0,q 不在导体内产生场强; (B)导体内E ≠0,q 在导体内产生场强; (C)导体内E=0,q 在导体内产生场强; (D)导体内E ≠0,q 不在导体内产生场强。 7、如图所示,一内半径为a ,外半径为b 的金属球壳,带有电量Q , 在球壳空腔内距离球心为r 处有一点电荷q ,设无限远 处为电势零点。试求: (1)球壳外表面上的电荷; (2)球心O 点处由球壳内表面上电荷产生的电势; (3)球心O 点处的总电势。 解: (1) 设球壳内、外表面电荷分别为q 1 , q 2,以O 为球心作一半径为R (a

[VIP专享]电磁学(赵凯华)答案[第2章 稳恒磁场]39

1.一边长为2a的载流正方形线圈,通有电流I。试求:(1)轴线上距正方形中心为r0 处的磁感应强度;(2) 当a=1.0cm , I=5.0A , r0=0 或10cm时,B等于多少特斯拉? 解(1)沿轴向取坐标轴OX,如图所示。利用一段 载流直导线产生磁场的结果, 正方形载流线圈每边在点P产生的磁感应强度的大小 均为:,式中: 由分析可知,4条边在点P的磁感应强度矢量的方向并不相同,其中AB边在P点的B1方向如图所示。由对称性可知,点P上午B应沿X轴,其大小等于B1在X轴投影 的4倍。设B1与X轴夹角为α则: 把r0=10cm , a=1.0cm ,I=5.0A 带入上式,得B=3.9×10-7(T)。把r0=0cm , a=1.0cm ,I=5.0A 带入上式,得B=2.8×10-7(T)。可见,正方形载流线圈中心的B要比轴线上的一点大的多。 2. 将一根导线折成正n边形,其外接圆半径为a,设导线栽有电流为I,如图所示。试求:(1)外接圆中心处磁感应强度B0;(2) 当n→∞时,上述结果如何? 解: (1)设正n边形线圈的边长为b,应用有限长载流直导线产生磁场的公式,可知各边在圆心处的感应强度大小相等,方向相同,即: 所以,n边形线圈在O点产生的磁感应强度为: 因为2θ=2π/n,θ=π/n,故有:由右手法则,B0方向垂直 于纸面向外。 (2)当n→∞时,θ变的很小,tanθ≈θ,所以:代入上述结果中,得:

此结果相当于一半径为a,载流为I的圆线圈在中心O点产生磁感应强度的结果,这一点在 n→∞时, 是不难想象的。 3. 如图所示,载流等边三角形线圈ACD,边长为2a,通有电流I。试求轴线上距中心为r0处的磁感应强度。 解:由图可知,要求场点P的合场强B,先分别求出等边三角形载流线圈三条边P点产生的磁感应强度Bi ,再将三者进行矢量叠加。 由有限长载流导线的磁场公式可知,AC边在P点产生的磁感应强度BAC的大小为: 由于⊿ACP为等腰三角形,且PC垂直AC,即: 代入上述结果中,得: 由右手螺旋定则可知,BAC的方向垂直于ACP平面向外, 如图所示。由对称性可知,AC,CD,DA三段载流导线在 P点产生的磁感应强度BAC、BCD、BDA在空间方位上对 称,且它们在垂直于Z轴方向上的分量相互抵消,而平行 于Z轴方向上的分量相等,所以: 根据等边三角形性质,O点是⊿ACP的中心,故:,并由⊿EOP可知 sinα=,所以P点的磁感应强度BP的大小为: 磁感应强度BP的方向沿Z轴方向。 4. 一宽度为b的半无限长金属板置与真空中,均匀通有电流I0。P点为薄板边线延长线上一点,与薄板边缘距离为d。如图所示。试求P点的磁感应强度B。 解: 建立坐标轴OX,如图所示,P点为X轴上一点。整个金属板可视为无限多条无限长的载

电磁学(赵凯华)答案[第3章 电磁感应]

1 一根长直导线载有 5.0A直流电流,旁边有一个与它共面的矩形线圈ABCD,已知l=20cm,a=10cm,b=20cm;线圈共有N=1000匝,以v=3.0m/s的速度离开直导线,如图所示。试求线圈中的感应电动势的大小与方向。 解:

2. 如图所示,无限长直导线中的电流为I,在它附近有一边长为2a的正方形线圈,可绕其中心轴以匀角速度旋转,转轴与长直导线的距离为b。试求线圈中的感应电动势。

解: 3. 如图所示,一无限长的直导线中通有交变电流:,它旁边有一个与其共面的长方形线圈ABCD,长为l,宽为()。试求:(1)穿过回路ABCD的磁通量 ;(2)回路ABCD中的感应电动势。

解: 4.一无限长直导线,通电流为I。在它旁边放有一矩形金属框,边长分别为a、b,电阻 为R,如图所示。当线圈绕轴转过180o时,试求流过线框截面的感应电量。 解:

5. 如图所示为具有相同轴线的两个导线回路,小线圈在大线圈上面x处,已知大、小线圈半径分别为R、r,且x>> R,故当大线圈中有电流I流动时,小线圈所围面积内() 的磁场可近似视为均匀的。设大小线圈在同轴情况下,其间距x以匀速变化。

试求:(1)穿过小线圈的磁通量和x之间的关系;(2)当x=NR时(N为一正数),小线圈内产生的感应电动势;(3)若v>0,小线圈内的感应电流的方向。 解: 6.如图所示,在均匀磁场B中放一很长的良导体线框,其电阻可忽略。今在此线框上横跨一长度为l、质量为m、电阻为R的导体棒,并让其以初速度运动起来,忽略棒与线框之间的摩擦,试求棒的运动规律。

电磁学第二章

第二章 静电场中导体与电介质 一、 选择题 1、 一带正电荷的物体M,靠近一不带电的金属导体N,N 的左端感应出负电荷,右端感应出正电荷。若将N 的左端接地,则: A 、 N 上的负电荷入地。 B 、N 上的正电荷入地。 C 、N 上的电荷不动。 D 、N 上所有电荷都入地 答案:B 2、 有一接地的金属球,用一弹簧吊起,金属球原来不带电。若在它的下方放置一电量为q 的点电荷,则: A 、只有当q>0时,金属球才能下移 B 、只有当q<0就是,金属球才下移 C 、无论q 就是正就是负金属球都下移 D 、无论q 就是正就是负金属球都不动 答案:C 3、 一“无限大”均匀带电平面A,其附近放一与它平行的有一定厚度的“无限大”平面导体板B,已知A 上的电荷密度为σ+,则 在导体板B 的两个表面1与2上的感应电荷面密度为: A 、σσσσ+=-=21, B 、σσσσ2 1 ,2121 +=-= C 、σσσσ2 1 ,2121 -=-= D 、0,21 =-=σσσ 答案:B 4、 半径分别为R 与r 的两个金属球,相距很远。用一根细长导线将两球连接在一起并使它们带电。在忽略导线的影响下,两球表面 的电荷面密度之比r R σσ为: A 、r R B 、2 2 r R C 、2 2 R r D 、R r 答案:D 5、 一厚度为d 的“无限大”均匀带电导体板,电荷面密度为σ,则板的两侧离板距离均为h 的两点a,b 之间的电势差为() A 、零 B 、 2εσ C 、 0εσh D 、0 2εσh 答案:A 6、 一电荷面密度为σ 的带电大导体平板,置于电场强度为0E (0E 指向右边)的均匀外电场中,并使板面垂直于0E 的方向,设外电 场不因带电平板的引入而受干扰,则板的附近左右两侧的全场强为() A 、0000 2,2εσ εσ+- E E B 、0000 2,2εσ εσ++ E E C 、0 000 2,2εσεσ-+ E E D 、0 000 2,2εσεσ-- E E 答案:A 7、 A,B 为两导体大平板,面积均为S,平行放置,A 板带电荷+Q 1,B 板带电荷+Q 2,如果使B 板接地,则AB 间电场强度的大 小E 为() A 、 S Q 01 2ε B 、 S Q Q 0212ε- C 、 S Q 01ε D 、 S Q Q 0212ε+ 答案:C 8、带电时为q 1的导体A 移近中性导体B,在B 的近端出现感应电荷q 2,远端出现感应电荷q 3,这时B 表面附近P 点的场强为n E ?0 εσ= ,问E 就是谁的贡献?()

电磁学第二章习题答案

习题五(第二章 静电场中的导体与电介质) 1、在带电量为Q 的金属球壳内部,放入一个带电量为q 的带电体,则金属球壳内 表面所带的电量为 - q ,外表面所带电量为 q +Q 。 2、带电量Q 的导体A 置于外半径为R 的导体 球壳B 内,则球壳外离球心r 处的电场强度大小 204/r Q E πε=,球壳的电势R Q V 04/πε=。 3、导体静电平衡的必要条件就是导体内部场强为零。 4、两个带电不等的金属球,直径相等,但一个就是空心,一个就是实心的。现使它们互相接触,则这两个金属球上的电荷( B )。 (A)不变化 (B)平均分配 (C)空心球电量多 (D)实心球电量多 5、半径分别R 与r 的两个球导体(R >r)相距很远,今用细导线把它们连接起来,使两导体带电,电势为U 0,则两球表面的电荷面密度之比σR /σr 为 ( B ) (A) R/r (B) r/R (C) R 2/r 2 (D) 1 6、有一电荷q 及金属导体A,且A 处在静电平衡状态,则( C ) (A)导体内E=0,q 不在导体内产生场强; (B)导体内E ≠0,q 在导体内产生场强; (C)导体内E=0,q 在导体内产生场强; (D)导体内E ≠0,q 不在导体内产生场强。 7、如图所示,一内半径为a,外半径为b 的金属球壳,带有电量Q, 在球壳空腔内距离球心为r 处有一点电荷q,设无限远 处为电势零点。试求: (1)球壳外表面上的电荷; (2)球心O 点处由球壳内表面上电荷产生的电势; (3)球心O 点处的总电势。 解: (1) 设球壳内、外表面电荷分别为q 1 , q 2,以O 为球心作一半径为R (a

电磁学第二章

第二章 导体周围的静电场 重点 1、电场与物质相互作用: 2、本章: 金属导体, 静电场 3、根据: 高斯定理、环路定理 §1 静电场中的导体 1. 导体的电性质 (经典观点) 导体静电平衡:无宏观电流, 电荷分布不再改变——静电场 宏观电荷分布—带电 2. 导体静电平衡条件 E 内=E 外+E ’=0 3. 导体静电平衡时的性质 导体内部无电荷,电荷在表面层(面密度σ) 导体为等位体, 表面为等位面 导体表面外附近电场 ⊥ 表面 导体表面场强为: E 表=σε0 n 4. 静电场问题的唯一性定理 1 唯一性定理 唯一性问题: (1)电荷自动调整,电场唯一吗? (2)边界条件确定, 域内电荷分布不变, 域内电场唯一吗? 唯一性定理: 适当的物理条件确定之后,在给定区域V 内电场的稳定分布(静电平衡下的分布)是唯一的. 适当的物理条件: U ?S or E n ?S 确定; V 内除导体外电荷分布确定;导体总电荷or 电位确定 2 唯一性定理意义 (1)若有一个解就是 唯一的解. (2)指出决定解的因素. (3)V 外电荷分布改变(上述条件不变)则解不变 3 唯一性定理简略证明(介绍) U ?S 给定的边界条件

设在同一条件下有两解,证明两解相同 对导体第一种情况的证明 5. 例 "猜出"可能的解, 就是唯一的真的解 1. 已知孤立导体总电荷q ,求: 电荷分布σ (1)半径为R 的球体总电荷q “猜”:q 均匀分布在球的外表面上 σ=q/4πR 2 则:E 内=0 是解,且唯一 (2)无限大带电导体平板 “猜”:q E 总=σ/ε0=q/(2ε0S) E 总=0 所猜即为解 (3)一般形状 ——由实验测量 2. 外电场中的中性导体 匀强电场中的球形导体 当σ(θ)=σ0cos θ 时, 导体内电场匀强为 E ’内= -σ0 z /3ε0 若σ0=3ε0 E 0 E 内=E 0+E ’=0 此即唯一解 3. 外电场中的带电导体 导体大平板A 、B, 面积S, 带电为Q A 、Q B . 设: 电荷在表面均匀分布 (σ1-σ2-σ3-σ4)/2ε0=0 (σ1+σ2+σ3-σ4)/2ε0=0 S(σ1+σ2)=Q A S (σ3+σ4)=Q B σ1=σ4=(Q A +Q B ) /2 σ2= -σ3=(Q A -Q B )/2 6. 电象法简介 个别点电荷情况下,计算导体上感应电荷的一种简单方法——电象法 例1: 半径为R 的接地导体球,点电荷q 距导体球中心d. 保持导体表面为零等位面, 球面外部的场不变, q’代替感应电荷对外部场的作用 (1) 确定q’ U(r=R)=q/(4πε0b)+q’/(4πε0b ’)=0 R 1234

赵凯华所编《电磁学》第二版答案

第一章静电场 §1.1 静电的基本现象和基本规律 思考题: 1、给你两个金属球,装在可以搬动的绝缘支架上,试指出使这两个球带等量异号电荷的方向。你可以用丝绸摩擦过的玻璃棒,但不使它和两球接触。你所用的方法是否要求两球大小相等? 答:先使两球接地使它们不带电,再绝缘后让两球接触,将用丝绸摩擦后带正电的玻璃棒靠近金属球一侧时,由于静电感应,靠近玻璃棒的球感应负电荷,较远的球感应等量的正电荷。然后两球分开,再移去玻璃棒,两金属球分别带等量异号电荷。本方法不要求两球大小相等。因为它们本来不带电,根据电荷守恒定律,由于静电感应而带电时,无论两球大小是否相等,其总电荷仍应为零,故所带电量必定等量异号。 2、带电棒吸引干燥软木屑,木屑接触到棒以后,往往又剧烈地跳离此棒。试解释之。答:在带电棒的非均匀电场中,木屑中的电偶极子极化出现束缚电荷,故受带电棒吸引。但接触棒后往往带上同种电荷而相互排斥。 3、用手握铜棒与丝绸摩擦,铜棒不能带电。戴上橡皮手套,握着铜棒和丝绸摩擦,铜棒就会带电。为什么两种情况有不同结果? 答:人体是导体。当手直接握铜棒时,摩擦过程中产生的电荷通过人体流入,不能保持电荷。戴上橡皮手套,铜棒与人手绝缘,电荷不会流走,所以铜棒带电。 --------------------------------------------------------------------------------------------------------------------- §1.2 电场电场强度 思考题: 1、在地球表面上通常有一竖直方向的电场,电子在此电场中受到一个向上的力,电场强度的方向朝上还是朝下? 答:电子受力方向与电场强度方向相反,因此电场强度方向朝下。 2、在一个带正电的大导体附近P点放置一个试探点电荷q0(q0>0),实际测得它受力F。若考虑到电荷量q0不是足够小的,则F/ q0比P点的场强E大还是小?若大导体带负电,情况如何? 答:q0不是足够小时,会影响大导体球上电荷的分布。由于静电感应,大导体球上的正电荷受到排斥而远离P点,而F/q0是导体球上电荷重新分布后测得的P点场强,因此比P点原来的场强小。若大导体球带负电,情况相反,负电荷受吸引而靠近P点,P点场强增大。 3、两个点电荷相距一定距离,已知在这两点电荷连线中点处电场强度为零。你对这两个点电荷的电荷量和符号可作什么结论? 答:两电荷电量相等,符号相反。 4、一半径为R的圆环,其上均匀带电,圆环中心的电场强度如何?其轴线上场强方向如何? 答:由对称性可知,圆环中心处电场强度为零。轴线上场强方向沿轴线。当带电为正时,沿轴线向外;当带电为负时,沿轴线向, ----------------------------------------------------------------------------------------------------------- §1.3 高斯定理 思考题: 1、一般地说,电力线代表点电荷在电场中运动的轨迹吗?为什么?

电磁学第二章

四川师范大学教案电磁学物理与电子工程学院 课程名称电磁学 授课专业物理学 班级 08级 课程编号0706042021 1、2班 课程类型必修课校级公共课();基础或专业基础课(√);专业课()选修课限选课();任选课() 授课方式课堂讲授(√);实践课()考核方式考试(√);考查()课程教学学时80学时学分5学分 教材及主要参考书作者 教材:《电磁学》(第二版),高等教育出版社,2004年 参考书: 1.《电磁学》(上、下册),人民教育出版社,1978。2.《新概念物理教程·电磁学》,高等教育出版社,1998。3.《物理学》(电磁学),上海科学技术出版社,1979。4.《物理学》(第二卷第一分册),科学出版社,1979。梁灿彬、秦光戎、梁竹健原著,梁灿彬修订 赵凯华、陈熙谋 赵凯华等 复旦大学、上海师范大学 物理系编 哈里德·瑞斯尼克著,李 仲卿译 学时分配 第一章静电场的基本规律(14+2学时)第二章有导体时的静电场(8+1学时) 第三章静电场中的电介质(8+1学时) 第四章恒定电流和电路(5+1学时) 第五章恒定电流的磁场(11+1学时) 第六章电磁感应与暂态过程(15+1学时)第七章磁介质(7+1学时) 第九章时变电磁场和电磁波(4学时)

物理与电子工程学院 章节名称 第二章 有导体时的静电场 教学目的及要求 使学生掌握静电平衡时导体的性质,了解封闭金属导体壳内外空间电场的分布,并通过对1、2节的学习,加深对高斯定理和环路定理的理解,并能解释静电感应、静电屏蔽现象;理解电容的物理意义,并能进行电容的计算;了解带电体系静电能的概念,能对电容器的静电能进行计算。 教 学重点与难点及处理方法 重点:静电平衡时导体的性质,电容的物理意义及电容的计算,静电能的概念及电容器静电能的计算 难点:导体静电平衡问题的讨论方法,导体静电平衡时的性质的应用,对带电体系静电能概念的理解 处理方法:课堂讲授、课后讨论、课后做习题等方式相结合 讨论、练习、作业习题: 2.1.1; 2.1.4 2.2.1;2.2.2 2.3.2;2.3.5;2.3.7 2.5.1 教学内容 第一节静电场中的导体:静电感应现象,静电平衡状态及静电平衡时导体的性质,带电导体所受的静电力,孤立导体的形状对电荷分布的影响,导体静电平衡问题的讨论方法 第二节封闭金属壳内外的静电场:壳内外空间静电场的分布,静电屏蔽现象 第三节电容器及其电容:孤立导体的电容,电容器及其电容,电容器的连接,电容的计算 第四节静电演示仪器:感应起电机,静电计(自学) 第五节带电体系的静电能:带电体系静电能的概念,电容器的静电能及计算 注:教案按授课章数填写,每一章均应填写一份。重复班授课可不另填写教案。教学内容须另加附页。

相关主题