搜档网
当前位置:搜档网 › 基于 PSO 优化神经网络和空间网格的机器人位姿标定方法

基于 PSO 优化神经网络和空间网格的机器人位姿标定方法

基于 PSO 优化神经网络和空间网格的机器人位姿标定方法
基于 PSO 优化神经网络和空间网格的机器人位姿标定方法

BP神经网络测试例子(附数据)

Train.txt 5.0,3.0,1.6,0.2,1 5.0,3.4,1.6,0.4,1 5.2,3.5,1.5,0.2,1 5.2,3.4,1.4,0.2,1 4.7,3.2,1.6,0.2,1 4.8,3.1,1.6,0.2,1 5.4,3.4,1.5,0.4,1 5.2,4.1,1.5,0.1,1 5.5,4.2,1.4,0.2,1 4.9,3.1,1.5,0.1,1 5.0,3.2,1.2,0.2,1 5.5,3.5,1.3,0.2,1 4.9,3.1,1.5,0.1,1 4.4,3.0,1.3,0.2,1 5.1,3.4,1.5,0.2,1 5.0,3.5,1.3,0.3,1 4.5,2.3,1.3,0.3,1 4.4,3.2,1.3,0.2,1 5.0,3.5,1.6,0.6,1 5.1,3.8,1.9,0.4,1 4.8,3.0,1.4,0.3,1 5.1,3.8,1.6,0.2,1 4.6,3.2,1.4,0.2,1 5.3,3.7,1.5,0.2,1 5.0,3.3,1.4,0.2,1 6.6,3.0,4.4,1.4,2 6.8,2.8,4.8,1.4,2 6.7,3.0,5.0,1.7,2 6.0,2.9,4.5,1.5,2 5.7,2.6,3.5,1.0,2 5.5,2.4,3.8,1.1,2 5.5,2.4,3.7,1.0,2 5.8,2.7,3.9,1.2,2 6.0,2.7,5.1,1.6,2 5.4,3.0,4.5,1.5,2 6.0,3.4,4.5,1.6,2 6.7,3.1,4.7,1.5,2 6.3,2.3,4.4,1.3,2 5.6,3.0,4.1,1.3,2 5.5,2.5,4.0,1.3,2 5.5,2.6,4.4,1.2,2 6.1,3.0,4.6,1.4,2 5.8,2.6,4.0,1.2,2

基于神经网络的机器人模型辨识-自动化专业

第二章 神经网络 2.1神经网络基础 人的大脑中有众多神经元,它们连接在一起组成复杂的神经网络,因此大脑拥有高级的认知能力。人工神经网络实际上是对人大脑处理信息方法的简单化。 2.1.1神经网络概述 神经网络是推广众多简单处理单元构成的一种非线性动力学系统,能够大规模地进行信息分布式存储和并行处理。同时神经网络具有自学习的能力,当外界的环境发生了改变,神经网络经过训练能够在外界信息的基础上自动调整内部结构,对于给定的输入可以得到期望输出。 由图可知,神经元是一种性质为多输入单输出的系统,是由n 个输入i x 和一个输出j y 组成。 图2-1 神经元结构 j u :第j 个神经元的状态; j :第j 个神经元的阈值; i x :第i 个神经元的输入信号; ji w :第i 个神经元到第j 个神经元的连接权系数; 其中:激发状态时ji w 取正数,抑制情况下ji w 取的是负值;

j s :第j 个神经元的外部输入信号。 输出可以表示为 1n j ji i j j i Net w x s θ==+-∑ (2.1) ()j j u f Net = (2.2) ()()j j j y g u h Net == (2.3) 一般(.)g 是单位映射,也就是说()j j g u u = 。 j Net 表示第j 个神经元的输入; (.)f 表示第j 个神经元的激励函数; (.)g 表示第j 个神经元的输出函数。 激活函数往往采用这三种函数: (1)二值函数(阈值型): 1,0()0,0x f x x >?=?≤? (2.4) (2) S 型函数: 1 ()1x f x e α-= +,0()1f x << (2.5) (3)双曲正切函数: 1()1x x e f x e αα---=+,1()1f x -<< (2.6) 2.1.2神经网络的分类 以连接方式对神经网络可分为两大类:一是没有反馈的前向网络,二是相互结合型网络(含有反馈网络)[10]。 (1)前向神经网络

(完整word版)用MATLAB编写PSO算法及实例

用MATLAB 编写PSO 算法及实例 1.1 粒子群算法 PSO 从这种模型中得到启示并用于解决优化问题。PSO 中,每个优化问题的潜在解都是搜索空间中的一只鸟,称之为粒子。所有的粒子都有一个由被优化的函数决定的适值( fitness value) ,每个粒子还有一个速度决定它们飞翔的方向和距离。然后粒子们就追随当前的最优粒子在解空间中搜索。 PSO 初始化为一群随机粒子(随机解),然后通过迭代找到最优解。在每一次迭代中,粒子通过跟踪两个极值来更新自己;第一个就是粒子本身所找到的最优解,这个解称为个体极值;另一个极值是整个种群目前找到的最优解,这个极值是全局极值。另外也可以不用整个种群而只是用其中一部分作为粒子的邻居,那么在所有邻居中的极值就是局部极值。 假设在一个维的目标搜索空间中,有个粒子组成一个群落,其中第个粒子表示为一个维的向量 ,。 第个粒子的“飞行 ”速度也是一个维的向量,记为 ,。 第个粒子迄今为止搜索到的最优位置称为个体极值,记为 ,。 整个粒子群迄今为止搜索到的最优位置为全局极值,记为 在找到这两个最优值时,粒子根据如下的公式(1.1)和( 1.2)来更新自己的速度和位置: (1.1) (1. 2) 其中:和为学习因子,也称加速常数(acceleration constant),和为[0,1]范围内的均匀随机数。式(1.1)右边由三部分组成,第一部分为“惯性(inertia)”或“动量(momentum)”部分,反映了粒子的运动“习惯(habit)”,代表粒子有维持自己D N i D ),,,(21iD i i i x x x X N i ,,2,1 i D ),,21i iD i i v v v V ,( 3,2,1 i i ),,,(21iD i i best p p p p N i ,,2,1 ),,,(21gD g g best p p p g ) (2211id gd id id id id x p r c x p r c v w v id id id v x x 1c 2c 1r 2r

BP神经网络模型应用实例

BP神经网络模型 第1节基本原理简介 近年来全球性的神经网络研究热潮的再度兴起,不仅仅是因为神经科学本身取得了巨大的进展.更主要的原因在于发展新型计算机和人工智能新途径的迫切需要.迄今为止在需要人工智能解决的许多问题中,人脑远比计算机聪明的多,要开创具有智能的新一代计算机,就必须了解人脑,研究人脑神经网络系统信息处理的机制.另一方面,基于神经科学研究成果基础上发展出来的人工神经网络模型,反映了人脑功能的若干基本特性,开拓了神经网络用于计算机的新途径.它对传统的计算机结构和人工智能是一个有力的挑战,引起了各方面专家的极大关注. 目前,已发展了几十种神经网络,例如Hopficld模型,Feldmann等的连接型网络模型,Hinton等的玻尔茨曼机模型,以及Rumelhart等的多层感知机模型和Kohonen的自组织网络模型等等。在这众多神经网络模型中,应用最广泛的是多层感知机神经网络。多层感知机神经网络的研究始于50年代,但一直进展不大。直到1985年,Rumelhart等人提出了误差反向传递学习算法(即BP算),实现了Minsky的多层网络

设想,如图34-1所示。 BP 算法不仅有输入层节点、输出层节点,还可有1个或多个隐含层节点。对于输入信号,要先向前传播到隐含层节点,经作用函数后,再把隐节点的输出信号传播到输出节点,最后给出输出结果。节点的作用的激励函数通常选取S 型函数,如 Q x e x f /11)(-+= 式中Q 为调整激励函数形式的Sigmoid 参数。该算法的学习过程由正向传播和反向传播组成。在正向传播过程中,输入信息从输入层经隐含层逐层处理,并 传向输出层。每一层神经元的状态只影响下一层神经

标准粒子群算法(PSO)及其Matlab程序和常见改进算法

一、粒子群算法概述 粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),1995 年由Eberhart 博士和kennedy博士提出,源于对鸟群捕食的行为研究。该算法最初是受到飞鸟集群活动的规律性启发,进而利用群体智能建立的一个简化模型。粒子群算法在对动物集群活动行为观察基础上,利用群体中的个体对信息的共享使整个群体的运动在问题求解空间中产生从无序到有序的演化过程,从而获得最优解。 PSO中,每个优化问题的解都是搜索空间中的一只鸟。我们称之为“粒子”。所有的粒子都有一个由被优化的函数决定的适应值(fitness value),每个粒子还有一个速度决定他们飞翔的方向和距离。然后粒子们就追随当前的最优粒子在解空间中搜索。 PSO 初始化为一群随机粒子(随机解)。然后通过迭代找到最优解。在每一次迭代中,粒子通过跟踪两个”极值”来更新自己。第一个就是粒子本身所找到的最优解,这个解叫做个体极值pBest。另一个极值是整个种群目前找到的最优解,这个极值是全局极值gBest。另外也可以不用整个种群而只是用其中一部分作为粒子的邻居,那么在所有邻居中的极值就是局部极值。 二、算法原理 粒子群算法采用常数学习因子,及惯性权重,粒子根据如下的公式更新自己的速度和位置。 V ki=ωk V i?1i+c1r1(Q bi?Q k?1i)+c2r2(Q bg?Q k?1i)Q ki=Q k?1i+V ki 三、算法步骤 1、随机初始化种群中各微粒的位置和速度; 2、评价个粒子的适应度,将各粒子的位置和适应度储存在各微粒的pbest(Q bi)中,将所有pbest中适应度最优的个体的位置和适应度存储在gbest(Q bg)中。 3、更新粒子的速度和位移。 V ki=ωk V i?1i+c1r1(Q bi?Q k?1i)+c2r2(Q bg?Q k?1i)Q ki=Q k?1i+V ki 4、对每个微粒,与其前一个最优位置比较,如果较好,则将其作为当前的最优位置。 5、比较当前所有的pbest和上一迭代周期的gbest,更新gbest。 6、若满足停止条件(达到要求精度或迭代次数),搜索停止,输出结果,否则,返回2。

粒子群算法解决函数优化问题

粒子群算法解决函数优化问题 1、群智能算法研究背景 粒子群优化算法(Particle Swarm Optimization,PSO)是由Kennedy 和Eberhart 在研究鸟类和鱼类的群体行为基础上于1995 年提出的一种群智能算法,其思想来源于人工生命和演化计算理论,模仿鸟群飞行觅食行为,通过鸟集体协作使群体达到优。 PSO算法作为一种新的群智能算法,可用于解决大量非线性、不可微和多峰值的复杂函数优化问题,并已广泛应用于科学和工程领域,如函数优化、神经网络训练、经济调度、模式识别与分类、结构设计、电磁场和任务调度等工程优化问题等。 PSO算法从提出到进一步发展,仅仅经历了十几年的时间,算法的理论基础还很薄弱,自身也存在着收敛速度慢和早熟的缺陷。如何加快粒子群算法的收敛速度和避免出现早熟收敛,一直是大多数研究者关注的重点。因此,对粒子群算法的分析改进不仅具有理论意义,而且具有一定的实际应用价值。 2、国内外研究现状 对PSO算法中惯性权重的改进:Poli等人在速度更新公式中引入惯性权重来更好的控制收敛和探索,形成了当前的标准PSO算法。 研究人员进行了大量的研究工作,先后提出了线性递减权值( LDIW)策略、模糊惯性权值( FIW) 策略和随机惯性权值( RIW) 策略。其中,FIW 策略需要专家知识建立模糊规则,实现难度较大,RIW 策略被用于求解动态系统,LDIW策略相对简单且收敛速度快, 任子晖,王坚于2009 年,又提出了基于聚焦距离变化率的自适应惯性权重PSO算法。 郑春颖和郑全弟等人,提出了基于试探的变步长自适应粒子群算

法。这些改进的PSO算法既保持了搜索速度快的特点, 又提高了全局搜索的能力。 对PSO算法的行为和收敛性的分析:1999 年采用代数方法对几种典型PSO算法的运行轨迹进行了分析,给出了保证收敛的参数选择范围。在收敛性方面Fransvan den Bergh引用Solis和Wets关于随机性算法的收敛准则,证明了标准PSO算法不能收敛于全局优解,甚至于局部优解;证明了保证收敛的PSO算法能够收敛于局部优解,而不能保证收敛于全局优解。 国内的学者:2006 年,刘洪波和王秀坤等人对粒子群优化算法的收敛性进行分析,指出它在满足收敛性的前提下种群多样性趋于减小,粒子将会因速度降低而失去继续搜索可行解的能力,提出混沌粒子群优化算法。 2008 年,黄翀鹏和熊伟丽等人分析惯性权值因子大小对PSO算法收敛性所带来的影响,对粒子群算法进行了改进。2009 年,高浩和冷文浩等人,分析了速度因子对微粒群算法影响,提出了一种基于Gaussian 变异全局收敛的粒子群算法。并证明了它能以概率 1 收敛到全局优解。 2010 年,为提高粒子群算法的收敛性,提出了基于动力系统的稳定性理论,对惯性权重粒子群模型的收敛性进行了分析,提出了使得在算法模型群模型收敛条件下的惯性权重和加速系数的参数约束关系,使算法在收敛性方面具有显著优越性。在PSO算法中嵌入别的算法的思想和技术。 1997年,李兵和蒋慰孙提出混沌优化方法; 1998年,Angeline在PSO算法中引入遗传算法中的选择算子,该算法虽然加快了算法的收敛速度,但同时也使算法陷入局部优的概率大增,特别是在优化Griewank 基准函数的优值时得到的结果不理想; 2004 年,高鹰和谢胜利将混沌寻优思想引入到粒子群优化算法中,首先对当前群体中的优粒子进行混沌寻优, 再用混沌寻优的结果随机替换群体中的一个粒子,这样提出另一种混沌粒子群优化算法。

基于神经网络的多任务学习机器人

基于神经网络的多任务学习机器人 目前绝大多数智能机器人具有较高的鲁棒性,但其基于具体行为的实现方法都需要程序员对相应的任务进行手工编程。然而,环境是复杂多样的,而要使得机器人能够在多种环境下进行任务,需要程序员将各种情况考虑在内,这样的系统对环境并不具有适应性,让机器人的应用受到了局限。基于此,提出的自主学习机器人以类人形机器人为基本模型,以神经网络为基础,通过人体对机器人进行示范,训练一个能识别人关节姿态的完备的神经网络。当机器人身处不同环境执行任务时,能够做出适应环境变化的动作。为此所设计的学习机器人系统的特色就在于使用神经网络具有学习能力,提高机器人对环境的适应能力,从而让任务执行更加灵活,使得机器人拥有更广阔的应用前景。 标签:自主学习;神经网络;姿態识别;机器人 doi:10.19311/https://www.sodocs.net/doc/0117957509.html,ki.16723198.2017.01.092 1引言 1.1机器人在现代社会中的重要性 随着城乡居民消费结构的持续升级,以及智慧中国战略的不断推进,智能机器人在家庭、农业、工业等生活的方方面面都有着极其广泛的应用。随着社会的不断发展,社会分工越来越细,与此同时工作也变得越来越单调。另外,社会上有些工作风险较高,若让人去做,不仅效率不高,而且更会产生生命危险。在这样高风险的作业领域,对机器人的需求越来越高。在这一背景下,各种各样的机器人被研制了出来,用它们代替人来完成枯燥、单调、高风险的工作。这极大的提高了劳动生产率和生产质量,创造出了更多的社会财富。 同时,社会服务也对机器人产生了大量的需求。从公共服务方面来说,目前我国老龄人口已超过总人口的10%,人口老龄化问题已成为中国需要面临的重大课题。此外,我国残疾人口占总人口的比重也位居世界较高国家之列。机器人的运用,可以为他们提供大量的护理服务,提高他们的生活质量。在医疗服务方面机器人也有很大的优势,手术机器人凭借其操作的精度及可长期工作等特性广泛应用于手术操作中。总而言之,机器人已成为我们的社会不可取代的一部分。 1.2当前机器人领域的现状及弊端 目前机器人正处于快速发展的阶段,但目前市场上的机器人仍存在着许多弊端。传统机器人需要设计者针对具体的任务进行手工编程,为了使机器人在环境改变时也能完成任务,设计者就需要尽量将各种情况考虑在内。但是这样的机器人存在一些问题:一方面程序员无法穷尽所有的可能情况,另一方面环境的复杂性也无形中加大了机器人可能出故障的概率,这使得机器人缺乏良好的环境自适应能力,给机器人的广泛应用带来了很大的限制。

BP神经网络matlab实例

神经网络Matlab p=p1';t=t1'; [pn,minp,maxp,tn,mint,maxt]=premnmx(p,t); %原始数据归一化net=newff(minmax(pn),[5,1],{'tansig','purelin'},'traingdx');%设置网络,建立相应的BP网络 net.trainParam.show=2000; % 训练网络 net.trainParam.lr=0.01; net.trainParam.epochs=100000; net.trainParam.goal=1e-5; [net,tr]=train(net ,pn,tn); %调用TRAINGDM算法训练BP网络 pnew=pnew1'; pnewn=tramnmx(pnew,minp,maxp); anewn=sim(net,pnewn); %对BP网络进行仿真 anew=postmnmx(anewn,mint,maxt); %还原数据 y=anew'; 1、BP网络构建 (1)生成BP网络 = net newff PR S S SNl TF TF TFNl BTF BLF PF (,[1 2...],{ 1 2...},,,) R?维矩阵。 PR:由R维的输入样本最小最大值构成的2

S S SNl:各层的神经元个数。 [1 2...] TF TF TFNl:各层的神经元传递函数。 { 1 2...} BTF:训练用函数的名称。 (2)网络训练 = [,,,,,] (,,,,,,) net tr Y E Pf Af train net P T Pi Ai VV TV (3)网络仿真 = [,,,,] (,,,,) Y Pf Af E perf sim net P Pi Ai T {'tansig','purelin'},'trainrp' BP网络的训练函数 训练方法训练函数 梯度下降法traingd 有动量的梯度下降法traingdm 自适应lr梯度下降法traingda 自适应lr动量梯度下降法traingdx 弹性梯度下降法trainrp Fletcher-Reeves共轭梯度法traincgf Ploak-Ribiere共轭梯度法traincgp Powell-Beale共轭梯度法traincgb 量化共轭梯度法trainscg 拟牛顿算法trainbfg 一步正割算法trainoss Levenberg-Marquardt trainlm

用MATLAB编写PSO算法及实例

用MATLAB编写PSO算法及实例

用MATLAB 编写PSO 算法及实例 1.1 粒子群算法 PSO 从这种模型中得到启示并用于解决优化问题。PSO 中,每个优化问题的潜在解都是搜索空间中的一只鸟,称之为粒子。所有的粒子都有一个由被优化的函数决定的适值( fitness value) ,每个粒子还有一个速度决定它们飞翔的方向和距离。然后粒子们就追随当前的最优粒子在解空间中搜索。 PSO 初始化为一群随机粒子(随机解),然后通过迭代找到最优解。在每一次迭代中,粒子通过跟踪两个极值来更新自己;第一个就是粒子本身所找到的最优解,这个解称为个体极值;另一个极值是整个种群目前找到的最优解,这个极值是全局极值。另外也可以不用整个种群而只是用其中一部分作为粒子的邻居,那么在所有邻居中的极值就是局部极值。 假设在一个维的目标搜索空间中,有个粒子组成一个群落,其中第个粒子表示为一个维的向量 ,。 第个粒子的“飞行 ”速度也是一个维的向量,记为 ,。 第个粒子迄今为止搜索到的最优位置称为个体极值,记为 ,。 整个粒子群迄今为止搜索到的最优位置为全局极值,记为 在找到这两个最优值时,粒子根据如下的公式(1.1)和( 1.2)来更新自己的速度 D N i D ),,,(21iD i i i x x x X =N i ,,2,1 =i D ),,21i iD i i v v v V ,(=3,2,1 =i i ),,,(21iD i i best p p p p =N i ,,2,1 =),,,(21gD g g best p p p g =

和位置: (1.1) (1. 2) 其中:和为学习因子,也称加速常数(acceleration constant),和为 [0,1]范围内的均匀随机数。式(1.1)右边由三部分组成,第一部分为“惯性(inertia)”或“动量(momentum)”部分,反映了粒子的运动“习惯(habit)”,代表粒子有维持自己先前速度的趋势;第二部分为“认知(cognition)”部分,反映了粒子对自身历史经验的记忆(memory)或回忆(remembrance),代表粒子有向自身历史最佳位置逼近的趋势;第三部分为“社会(social)”部分,反映了粒子间协同合作与知识共享的群体历史经验。 二、算法设计 2.1 算法流程图 2.2 算法实现 算法的流程如下: ()) (2211id gd id id id id x p r c x p r c v w v -+-+*=id id id v x x +=1c 2c 1r 2 r

基于机器人的递归神经网络运动规划

基于机器人的递归神经网络运动规划 文章研究机器手臂的重复运动规划问题,在考虑关节角度极限和关节速度极限的情况下,将此模型转化为一个含不等式约束的二次规划问题,并利用简化对偶神经网络来求解该问题,从而实现机器手臂的关节重复运动。 标签:冗余机械臂;重复运动规划;二次规划;对偶神经网络 4 数值仿真 本节以平面六连杆冗余机械臂末端执行器作来回直线运动为例进行计算机仿真验证。直线长度为1m,观察其关节轨迹能否重合。末端执行器的运动周期为8s,关节变量的初始状态为:?兹(0)=(0,-?仔/4,0,?仔/2,0,-?仔/4)T弧度。仿真结果如图1所示,从图1也可以看出,在经过8s周期运动之后,平面六连杆机器手臂的各自关节状态都回到初始状态;仿真结果达到预期的目的,且其最大位置误差不大于1.79×10-6。可见,利用所提出的规划解析方案对带关节物理约束的机械臂进行重复运动规划是可行、有效的。 5 结束语 针对平面冗余机械臂重复运动规划问题,文章首先将机械臂重复运动问题转化为一个二次型规划问题,该二次规划方案可避开传统的伪逆解析方案难以求逆的问题,然后利用一种简单对偶神经网络来求解该含不等式约束的二次规划问题,该实现算法具有并行 性、快速实时处理能力和电路实现性。 6 致谢 感谢中山大学张雨浓教授提供相关源程序。 参考文献 [1]Malysz P,Sirouspour S.A kinematic control framework for single-slave asymmetric teleoperation systems. IEEE Transactions on Robotics,2011,27(5):901-917. [2]张智军,张雨浓.重复运动速度层和加速度层方案的等效性[J].自动化学报,2013,39(1):88-91. [3]Zhang Y N,Xie L,Zhang Z J,Li K N,Xiao L.Real-time joystick control and experiments of redundant manipulators using cosine-based velocity mapping. Proceedings of the 2011 IEEE International Conference on Automation and Logistics.

PSO算法

群体智能方法:是通过模拟自然界生物群体行为来实现人工智能的一种方法。 群体智能这个概念来自对自然界中生物群体的观察,群居性生物通过协作表现出的宏观智能行为特征被称为群体智能。 群体智能具有如下特点: (1) 控制是分布式的,不存在中心控制。因而它更能够适应当前网络环境下的工作状态,并且具有较强的鲁棒性,即不会由于某一个或几个个体出现故障而影响群体对整个问题的求解。 (2) 群体中的每个个体都能够改变环境,这是个体之间间接通信的一种方式,这种方式被称为“激发工作”。由于群体智能可以通过非直接通信的方式进行信息的传输与合作,因而随着个体数目的增加,通信开销的增幅较小,因此,它具有较好的可扩充性。 (3) 群体中每个个体的能力或遵循的行为规则非常简单,因而群体智能的实现比较方便,具有简单性的特点 (4) 群体表现出来的复杂行为是通过简单个体的交互过程突现出来的智能,因此,群体具有自组织性。 PSO基本原理 最初是为了在二维几何空间图形中优化模拟鸟群不可预测的运动。PSO 算法从这种模型中得到启示并用于解决优化问题。PSO算法中,每个优化问题的潜在解都是搜索空间中的一只鸟,称之为“粒子”。所有的粒子都有一个由目标函数决定的适应值(fitness value),每个粒子都由一个两维的速度变量决定各自飞翔的方向和距离。然后粒子们就追随当前的最优粒子在解空间中搜索。PSO算法初始化为一群随机粒子(随机解),然后通过迭代找到最优解。在每一次迭代中,粒子通过跟踪两个极值来更新自己。第一个极值就是粒子本身所经历的最优解,这个解被称为个体极值。另一个极值是整个种群目前所经历的最优解,这个极值被称为全局极值。另外也可以只选取整个种群中的一部分作为粒子的邻居,在所有邻居中的极值被称为局部极值。

(完整版)BP神经网络matlab实例(简单而经典)

p=p1';t=t1'; [pn,minp,maxp,tn,mint,maxt]=premnmx(p,t); %原始数据归一化 net=newff(minmax(pn),[5,1],{'tansig','purelin'},'traingdx');%设置网络,建立相应的BP网络net.trainParam.show=2000; % 训练网络 net.trainParam.lr=0.01; net.trainParam.epochs=100000; net.trainParam.goal=1e-5; [net,tr]=train(net ,pn,tn); %调用TRAINGDM算法训练BP 网络 pnew=pnew1'; pnewn=tramnmx(pnew,minp,maxp); anewn=sim(net,pnewn); %对BP网络进行仿真 anew=postmnmx(anewn,mint,maxt); %还原数据 y=anew'; 1、BP网络构建 (1)生成BP网络 = net newff PR S S SNl TF TF TFNl BTF BLF PF (,[1 2...],{ 1 2...},,,) PR:由R维的输入样本最小最大值构成的2 R?维矩阵。 S S SNl:各层的神经元个数。 [ 1 2...] { 1 2...} TF TF TFNl:各层的神经元传递函数。 BTF:训练用函数的名称。 (2)网络训练 [,,,,,] (,,,,,,) = net tr Y E Pf Af train net P T Pi Ai VV TV (3)网络仿真 = [,,,,] (,,,,) Y Pf Af E perf sim net P Pi Ai T {'tansig','purelin'},'trainrp'

机器人神经网络控制汇总

第一部分 机器人手臂的自适应神经网络控制 机器人是一具有高度非线性和不确定性的复杂系统,近年来各研究单位对机器人智能控制的研究非常热门,并已取得相当丰富的成果。 机器人轨迹跟踪控制系统的主要目的是通过给定各关节的驱动力矩,使得机器人的位置、速度等状态变量跟踪给定的理想轨迹。与一般的机械系统一样,当机器人的结构及其机械参数确定后,其动态特性将由动力学方程即数学模型来描述。因此,可采用经典控制理论的设计方法——基于数学模型的方法设计机器人控制器。但是在实际工程中,由于机器人模型的不确定性,使得研究工作者很难得到机器人精确的数学模型。 采用自适应神经网络,可实现对机器人动力学方程中未知部分的精确逼近,从而实现无需建模的控制。下面将讨论如何利用自适应神经网络和李雅普诺夫(Lyapunov )方法设计机器人手臂跟踪控制的问题。 1、控制对象描述: 选二关节机器人力臂系统(图1),其动力学模型为: 图1 二关节机器人力臂系统物理模型 ()()()()d ++++=M q q V q,q q G q F q ττ (1) 其中 123223223222cos cos ()cos p p p q p p q p p q p +++??=??+??M q ,3223122312sin ()sin (,)sin 0p q q p q q q p q q --+??=???? V q q

41512512cos cos()()cos()p g q p g q q p g q q ++??=??+?? G q ,()()0.02sgn =F q q ,()()0.2sin 0.2sin T d t t =????τ。 其中,q 为关节转动角度向量,()M q 为2乘2维正定惯性矩阵,(),V q q 为2乘2维向心哥氏力矩,()G q 为2维惯性矩阵,()F q 为2维摩擦力矩阵,d τ为未知有界的外加干扰,τ为各个关节运动的转矩向量,即控制输入。 已知机器人动力学系统具有如下动力学特性: 特性1:惯量矩阵M(q)是对称正定阵且有界; 特性2:矩阵(),V q q 有界; 特性3:()()2,-M q C q q 是一个斜对称矩阵,即对任意向量ξ,有 ()()()2,0T -=ξM q C q q ξ (2) 特性4:未知外加干扰d τ 满足 d d b ≤τ,d b 为正常数。 我们取[][]212345,,,, 2.9,0.76,0.87,3.04,0.87p p p p p kgm ==p ,两个关节的位置 指令分别为()10.1sin d q t =,()20.1cos d q t =,即设计控制器驱动两关节电机使对应的手臂段角度分别跟踪这两个位置指令。 2、传统控制器的设计及分析: 定义跟踪误差为: ()()()d t t t =-e q q (3) 定义误差函数为: =+∧r e e (4) 其中0>∧=∧T 。 则 d =-++∧q r q e

BP神经网络实例

BP神经网络实例

智能控制 第一章BP神经网络基本原理 一、BP神经网络基本概念 1、人工神经网络 人工神经网络ANN(Artificial Neural Network),是对人类大脑系统的一阶特性的一种描述。简单地讲,它是一个数学模型,可以用电子线路来实现,也可以用计算机程序来模拟,是人工智能研究地一种方法。近年来发展迅速并逐渐成熟的一种人工智能技术,其来源于对神经元细胞的模拟。人工神经网络具有以下三个特点:信息分布表示,运算全局并行与局部操作,信息非线性处理。由于这三个特点,使得由人工神经网络构成的分类器具有强大的数据拟和与泛化能力,因而广泛运用于模式识别与机器学习领域。 神经网络模式识别的过程分为两步:首先是学习过程,通过大量的训练样本,对网络进行训练,根据某种学习规则不断对连接权值进行调节,然后使网络具有某种期望的输出,这种输出就可以将训练样本正确分类到其所属类别中去,此时可以认为网络是学习到了输入数据或样本间的内在规律。接下来是分类过程,应用前面学习过程所训练好的权值,对任意送入网络的样本进行分类。 人工神经网络模型各种各样,目前已有数十种。他们从各个角度对生物神经系统的不同层次进行了描述和模拟。代表模型有感知机、多层映射BP网、RBF 网络、HoPfiled模型、Boit~机等等。虽然人工神经网络有很多模型,但按神经元的连接方式只有两种型态:没有反馈的前向网络和相互结合型网络。前向网络是多层映射网络,每一层中的神经元只接受来自前一层神经元的信号,因此信号的传播是单方向的。BP网络是这类网络中最典型的例子。在相互结合型网络中,任意两个神经元都可能有连接,因此输入信号要在网络中往返传递,从某一初态开始,经过若干变化,渐渐趋于某一稳定状态或进入周期震荡等其它状态,这方面典型的网络有Hopfiled模型等。 1

PSO算法使用简介

PSO算法使用简介 1 PSO工具箱简介 PSOt为PSO的工具箱,该工具箱将PSO算法的核心部分封装起来,提供给用户的为算法的可调参数,用户只需要定义好自己需要优化的函数(计算最小值或者最大值),并设置好函数自变量的取值范围、每步迭代允许的最大变化量(称为最大速度,Max_V)等,即可自行优化。 与遗传算法相比,PSO仅需要调整少数几个参数即可实现函数的优化。该算法对待优化函数没有任何特别的要求(如可微分、时间连续等),因而其通用性极强,对多变量、高度非线性、不连续及不可微的情况更加具有其优势。 该工具箱的使用主要分为几个步骤: 1) 在Matlab中设置工具箱的路径; 2) 定义待优化函数; 3) 调用PSO算法的核心函数:pso_Trelea_vectorized()。 其中第三步最关键,用户需要根据自己的需要设置好参数,可使算法极快收敛。 下面对各个步骤一一介绍。 2 设置工具箱的路径 2.1 在Matlab的命令窗口点击"File-->Set Path....",如下图: 2.2 在弹出的对话框中点击"Add Folder",然后浏览找到工具箱放置的位置,如下图 2.3 若想用到该工具箱所带的测试函数,还需要用如上同样的方法,设置路径指向工具箱下的"testfunctions"文件夹; 2.4 若想用于训练神经网络的训练,设置路径指向工具箱下的"testfunctions"文件夹"nnet" 3 定义待优化函数(参见文件test_func.m) 用户根据自己的需要,定义需要优化的函数。举个例子,若想计算如下二元函数的最小值 z= 0.5*(x-3)^2+0.2*(y-5)^2-0.1 其中自变量x、y的范围均为[-50, 50]。 可按下面的方法定义该待优化函数: %%----------------------------------------------------------------%% function z=test_func(in) nn=size(in); x=in(:,1); y=in(:,2); nx=nn(1); for i=1:nx temp = 0.5*(x(i)-3)^2+0.2*(y(i)-5)^2-0.1; z(i,:) = temp; end %%----------------------------------------------------------------%% 需要特别指出的是:PSO算法的核心函数pso_Trelea_vectorized()自动初始化一组随机

2019神经网络实学习 例子.doc

神经网络实学习例子 1通过神经网络滤波和信号处理,传统的sigmoid函数具有全局逼近能力,而径向基rbf函数则具有更好的局部逼近能力,采用完全正交的rbf径向基函 数作为激励函数,具有更大的优越性,这就是小波神经网络,对细节逼近能力 更强。 BP网络的特点①网络实质上实现了一个从输入到输出的映射功能,而数学 理论已证明它具有实现任何复杂非线性映射的功能。这使得它特别适合于求解 内部机制复杂的问题。我们无需建立模型,或了解其内部过程,只需输入,获 得输出。只要BPNN结构优秀,一般20个输入函数以下的问题都能在50000次 的学习以内收敛到最低误差附近。而且理论上,一个三层的神经网络,能够以 任意精度逼近给定的函数,这是非常诱人的期望;②网络能通过学习带正确答 案的实例集自动提取"合理的"求解规则,即具有自学习能力;③网络具有一定 的推广、概括能力。bp主要应用回归预测(可以进行拟合,数据处理分析,事 物预测,控制等)、分类识别(进行类型划分,模式识别等),在后面的学习中,都将给出实例程序。但无论那种网络,什么方法,解决问题的精确度都无法打 到100%的,但并不影响其使用,因为现实中很多复杂的问题,精确的解释是毫 无意义的,有意义的解析必定会损失精度。BP注意问题1、BP算法的学习速度 很慢,其原因主要有:a由于BP算法本质上为梯度下降法,而它所要优化的目 标函数又非常复杂,因此,必然会出现"锯齿形现象",这使得BP算法低效; 结论4:由上表可以看出,后者的初始权值比较合适些,因此训练的时间 变短, 误差收敛速度明显快些。因此初始权值的选取对于一个网络的训练是很重 要的。 1.4,用最基本的BP算法来训练BP神经网络时,学习率、均方 误差、权值、阈值的设置都对网络的训练均有影响。综合选取合理的值, 将有

基于神经网络的移动机器人避障控制和决策

2006年第8期农业装备与车辆工程基于神经网络的移动机器人避障控制和决策 伊连云,金秀慧,贺廉云,王慧 (德州学院机电工程系,山东德州,253015) 摘要:针对移动机器人避障的特点,提出了一种基于神经网络的动态避障控制方法。介绍了避障行为的决策、基于神经网络的机器人在避障过程中的运动控制等。该方法不用考虑障碍物的运动状态,简化了机器人避障的步骤,机器人能够根据各种情况灵活地判断是否避障以及灵活地选择适当的避障方式,提高了机器人避障的灵活性和鲁棒性。仿真试验证明这种方法是可行而有效的。 关键词:移动机器人;神经网络;避障中图分类号:TP24 文献标识码:A 文章编号:1673-3142(2006)08-0022-03 MobileRobotObstacleAvoidanceControlandDecisionBasedonNeuralNetwork YiLianyun,JinXiuhui,HeLianyun,WangHui (DepartmentofElectromechanicEngineering,DezhouUniversity,Dezhou253015,China) Abstract:Accordingtothecharacteristicsofthemobilerobotinobstacleavoidance,amethodofdynamicobstacleavoidancebasedonneuralnetworkispresented.Thisarticlepresentsthedecisionofobstacleavoidancebehavior,robotmovingcontrolbasedonneuralnetworkduringobstacleavoidanceprocess.Thismethoddoesnotnecessarilytakethevelocityandthedirectionoftheobstaclesintoaccount,sopredigeststheprocedureofobstacleavoidance.Therobotcanjudgeflexiblywhetheritneedstoavoidtheobstacleandcanchooseproperwaysofobstacleavoid-anceaccordingtodiversifiedcircumstances.Itimprovesflexiblyandadaptivelytherobotobstacleavoidance.Theexperimentofsimulationindicatesthatthemethodisfeasibleandvalid.KeyWords:mobilerobot;neuralnetwork;obstacleavoidance 收稿日期:2005-12-19 作者简介:伊连云(1974-),女,山东德州人,硕士,讲师,主要研究领域为自动控制及人工智能。 农业装备与车辆工程 AGRICULTURALEQUIPMENT&VEHICLEENGINEERING 2006年第8期(总第181期) No.82006(Totally181) 0引言 随着移动机器人的应用领域不断扩大,人们希望机器人能够在未知环境中自动实现路径规划,以大大提高其对环境的适应能力。避障是移动机器人运动规划中的基本问题之一,一直以来都是机器人路径规划中的难点。根据机器人对环境信息知道的程度不同,可分为两种类型:环境信息完全知道的全局路径规划和环境信息完全未知或部分未知的局部路径规划。对于已知环境下的避碰问题,已经提出了许多有效的解决方法。其中,Khatib提出的人工势场法,结构简单,易于实现,得到了广泛应用。但人工势场法主要存在陷阱区域,栅格法空间分辨率、时间复杂度与内存容量、实时性要求之间的矛盾限制了它的使用。近年来,一些生物进化算法被用于机器人的避碰与路径规划研究,如人工神经网络、遗传算 法、模拟退火算法、蚂蚁算法等。与在已知环境中相比,机器人在环境完全未知或部分未知情况下实现避障更加困难。针对环境信息不确定情况下的避障问题,本文提出一种机器人的动态避障方法,该方法是以机器人与障碍物之间的相对运动作为决策依据,不用考虑障碍物的运动状态,简化了机器人避障的步骤;另外,机器人能够根据各种情况灵活地判断是否避障以及灵活地选择适当的避障方式,使机器人在躲避碰撞的前提下能快速地跟踪规划路径。 1避障行为的决策 机器人在运动过程中需要对碰撞的危险性进行判断并以此作为机器人避障行为选择的依据。图1a给出了机器人的扇形视野区域。机器人把所有的障碍物都看作运动体,通过检测障碍物的历史位置与当前位置的相对关系,来判断机器人是否会与障碍物相撞,判断步骤如下: (1)连接历史点与当前点,并延长至与扇形区相交,当交点在扇形的弧线上,标志障碍物正远离物 ?22? 资料整理自互联网,版权归原作者! 欢迎访问 https://www.sodocs.net/doc/0117957509.html, 新势力单片机、嵌入式

BP神经网络的设计实例(MATLAB编程)资料

神经网络的设计实例(MATLAB编程) 例1 采用动量梯度下降算法训练BP 网络。 训练样本定义如下: 输入矢量为 p =[-1 -2 3 1 -1 1 5 -3] 目标矢量为t = [-1 -1 1 1] 解:本例的MATLAB 程序如下: close all clear echo on clc % NEWFF——生成一个新的前向神经网络 % TRAIN——对BP 神经网络进行训练 % SIM——对BP 神经网络进行仿真 pause % 敲任意键开始 clc % 定义训练样本 P=[-1, -2, 3, 1; -1, 1, 5, -3]; % P 为输入矢量 T=[-1, -1, 1, 1]; % T 为目标矢量 pause; clc % 创建一个新的前向神经网络 net=newff(minmax(P),[3,1],{'tansig','purelin'},'traingdm') % 当前输入层权值和阈值 inputWeights=net.IW{1,1} inputbias=net.b{1} % 当前网络层权值和阈值 layerWeights=net.LW{2,1} layerbias=net.b{2} pause clc % 设置训练参数 net.trainParam.show = 50; net.trainParam.lr = 0.05; net.trainParam.mc = 0.9; net.trainParam.epochs = 1000; net.trainParam.goal = 1e-3; pause clc % 调用TRAINGDM 算法训练BP 网络 [net,tr]=train(net,P,T);

相关主题