搜档网
当前位置:搜档网 › 滑坡监测的方法简述

滑坡监测的方法简述

滑坡监测的方法简述
滑坡监测的方法简述

滑坡监测方法简述及新进展

姓名:高峰

班级:土木(岩土)10

指导教师:田雨泽

滑坡监测方法简述及新进展

摘要:介绍了滑坡监测的内容,以及一些常用的滑坡监测技术方法。本文着重介绍了近些年不断发展的GPS监测系统、分布式光纤传感器、TDP测试技术、无线传感器在滑坡形监测中的应用。并且指出了不同滑坡监测方法的适用范围和相应的优缺点。

关键词:滑坡;滑坡监测;GPS系统; TDR监测;分布式光纤传感器;无线传感器;

1 引言

滑坡是指斜坡上的土体或岩体,受河流冲刷、地下水活动、地震及人工切坡等因素的影响,致使部分或全部土体(或岩体)在重力作用下,沿着地面软弱面(或软弱带)整体地或分散地顺坡向下滑动的地质现象。

我国是地质灾害多发国家之一,尤以滑坡灾害的影响最为严重。据不完全统计,中国有70多座城市和460多个县市受到滑坡灾害的威胁及危害,平均每年至少造成15-23亿元的经济损失。如果能够对滑坡进行监测, 实现滑坡危害的早期预报, 就可以最大限度地减少和防止滑坡所造成的损失。因此, 监测既是滑坡调查、研究和防治工程的重要组成部分,又是崩塌滑坡灾害预测预报信息获取的一种有效手段。

2 滑坡监测的内容

滑坡动态监测的内容包括滑坡变形监测、建筑物变形监测、地下水动态监测和滑坡推力实测。目前,国内外滑坡动态监测的技术方法已经发展到一个较高水平,已由过去的人工监测逐渐过渡到仪器检测,并正向高精度的自动化遥测系统发展。监测仪器也在不断更新,随着计算机技术和测量技术的不断发展,激光测距仪和高精度电子经纬仪等先进设备,正在逐步成为滑坡动态监测的新手段。

3 滑坡监测的方法

从滑坡的监测内容来看,滑坡监测应该是由多种监测方法相结合的。对于不同的监测目的、不同的滑坡发育阶段及不同的滑坡类型所选择的滑坡监测方法也不同。目前滑坡动态监测中使用的技术大致可归纳为宏观简易地质检测法、大地精密测量法、设站观测法、仪器仪表监测法和综合自动遥测法。

3.1 宏观简易地质检测法

这种方法主要是对滑坡发育过程中的各种迹象,如地裂隙、房屋、泉水动态等进行定期监测、记录,掌握滑坡的动态变化和发展趋势。其中,最常用的是对地表裂隙、建筑物变形的监测。在裂隙处设置简易监测标志,定期测量裂隙长度、宽度、深度的变化,以及裂隙的形态和开裂延伸方向等。由于滑坡体在滑动过程中各部位受力性质和大小不同,滑速也不同,因而不同部位产生不同力学性质的裂隙,有滑坡后部的拉张裂隙、滑坡体中前部两侧的剪切裂隙、滑体前缘的鼓张裂隙和滑坡舌部的扇形裂隙。除此之外,还有一些滑坡标志,如封闭洼地、滑坡鼓丘、滑坡泉、马刀树、醉汉林等。该方法的特点是获取的信息直观可靠,简单经济,实用性较强,适应于对正在发生病害的边坡进行观测。但也存在内容单一、精度低和劳动强度大等缺点。

3.2大地精密测量法

该方法即采用高精度光学和光电测量仪器,如精密水准仪、全站仪等仪器,通过测角和测距来完成监测任务。监测边坡的二维( X、Y 方向)水平位移常用前方交会法、距离交会法:监测水平单向位移常用视准线法、小角法、测距法:监测边坡的垂直位移常用几何水准测量法、精密三角高程测量法。

大地精密测量法长期以来受到滑坡工程监测人员的高度重视,是由于具有如下优

点:能确定边坡地表变形范围;量程不受限制;能观测到边坡体的绝对位移量;精度高;

通过三维测量能提供点位坐标和高程;测量数字化,和计算机技术结合形成系统,实时性强;一机多测点,效率高。适用于不同变形阶段的位移监测。但是这种方法的缺点是受到地形条件和气象条件的限制,工作量大,周期长,连续观测能力差。

3.3 仪器仪表监测法

滑坡稳定性的监测涉及到一系列的影响滑坡特定的因素及其随时间的变化量,如降雨量、土壤潮湿度、地下水位及移动特征,其中最重要的是两个因素是移动特征和地下水位。滑坡的移动特征则由滑动面的深度、方向、移动量和移动速度等指标来表示,通过监测这些指标中得一项或者多项就能达到监测滑坡的目的。其常用的仪器如表1所测量仪器测量指标技术实用范围测量精度特点

精密测尺△距离<30m 0.5mm/30m 人工、精度低引张线仪△距离<10~80m 0.3mm/30m 自动化、远程化裂缝探测仪△距离<5m 5mm

水准仪△H 不限制0.2~1mm/km 人工

经纬仪△角度不限制5”

倾斜仪△高度角10度左右5~10mm+1~2ppm 自动化、远程化测距仪△距离1~14km 1~5mm+1~5ppm

全站仪△角度,△距离2”~5”;2~5mm 人工

地面摄影仪△E,△N,△H 距离<100m 20~100m 人工

航空摄影仪△高度角高度<500m 100m

全自动全站仪△角度,△距离<1000m 2~5mm

GPS技术△X,△Y,△Z一般在20km以内5~10mm+5ppm 自动化、远程化示。

表1 监测常用仪器、测量指标、适用范围和特点

3.4综合自动遥测法

综合自动遥测法采用自动化程度高的远距离遥控监测系统或空间技术卫星遥测,自动采集、存储、打印和显示滑坡变形监测数据,并绘制出各种变化曲线、图表。该方法的优点是:监测内容丰富,自动化程度高,可全天候观测,并远距离传输,省时省力的特点。缺点是受外界因素干扰,传感器、仪器易出故障,长期稳定性差。适用于滑坡变形处于速变及临滑状态时的中、短期监测及防治施工期安全监测。由于传感器仪器的质量不过关,国内用的不多,公开报道的应用实例是该法曾经用于重庆市万县豆芽棚滑坡治理效果检验监测。

3.5 发展的新方法

3.5.1 GPS滑坡监测系统

GPS 作为现代大地测量的一种技术手段,可以实现三维大地测量,作业简单方便,具有测站间无需通视、能同时测定点的三维位移、不受气候条件的限制、易于实现全系统的自动化、可消除或削弱系统误差的影响和可直接用大地高进行垂直形变测量等优点。特别是在滑坡监测中,主要关注两期监测中所求得监测点的坐标之间的差异,而不是监测点本身的坐标。这样两期监测中所含的共同系统误差虽然会分别影响两期的坐标值,但却不会影响所求得的变形量,因此,GPS 技术在变形监测中迅速得到了推广,成为一种新的很有前途的滑坡监测方法。

2)GPS 滑坡变形监测的方法

a)周期性模式。当滑坡的变形速率相当缓慢,在局部时间域和空间域内可以

认为稳定不动时,用几台GPS 接收机,人工定期逐点采集数据,通过后处理获得各

期之间的变形。

b)连续性模式。连续运行GPS 监测技术主要利用GPS 高精度、自动化、全天

候以及测点之间无须通视等优点,已广泛应用地壳形变监测等领域。根据数据处理方式的不同,连续运行GPS 监测技术被分为实时动态监测和固定连续运行参考站。

实时动态监测主要用来监测目标的动态变形,数据采集密度高,实时计算出每个历元的位置。

3)GPS天线阵列监测系统

对于GPS自动化监测系统,在实际应用中,精密的测量型GPS接收机价格非常高,导致系统的建设成本很大。因此,高成本大大制约了其在滑坡监测中得应用。而GPS天线阵列监测技术就是在监测点上安置一个GPS天线,通过一个天线电缆与接收机连接,系统能够按照串口的设置,自动连接获取各个天线的卫星接收信号。因此在增加监测点数时,不要增加GPS 接收机,只需要增加接收天线和与之连接的天线电缆,从而硬件成本大幅降低。另外一个区域只有一台GPS 接收机,减少系统的通讯成本和数据处理复杂度,而GPS天线阵列的数据处理方式与连续运行监测技术的数据处理方式一样,使得获取监测点精度也比较高。

3.5.2 TDR监测技术

时域反射法(Time Domain Reflectometry,TDR)是一种远程遥感测试技术,产生于20 世纪30 年代,现在,在滑坡监测的应用方面也取得了很大的成效。

1)TDR 基本原理

同轴电缆中TDR 与雷达技术的工作原理基本相同,其区别在于传播介质不同。在同轴电缆TDR测试过程中,采用同轴电缆作为传输具有一定能量的瞬时脉冲的传播介质,电脉冲信号在同轴电缆中传播的同时,能够反映同轴电缆的阻抗特性。当电缆发生变形时, 它的特性阻抗将发生变化。当测试脉冲遇到电缆的特性阻抗变化时,就会产生反射波。对反射波信号的传播时间进行测量, 就可以确定其传播时间和速度, 由此可以推断出同轴电缆特性阻抗发生变化的位置;通过对反射信号振幅的分析, 就可进一步推算电缆的状态等。因此,同轴电缆的TDR技术又称之为“闭路雷达”。

2)TDR滑坡监测

TDR 滑坡稳定性监测系统的组成及埋设如图1所示。首先,在待监测的岩体或土体中钻孔,将同轴电缆放置于钻孔中,顶端与TDR 测试仪相连,并以砂浆填充电缆与钻孔之间的空隙,以保证同轴电缆与岩体或土体的同步变形。岩体或土体的位移和变形使埋置于其中的同轴电缆产生剪切、拉伸变形,从而导致其局部特性阻抗的变化,电磁波将在这些阻抗变化区域发生反射和透射,并反映于TDR 波形之中。通过对波形的分析,结合室内标定试验建立起的剪切和拉伸与TDR 波形的量化关系,便可掌握岩体或土体的变形和位移状况。

图1 TDR滑坡稳定性监测系统的组成及埋设与传统的测斜仪相比,TDR 测试技术具有以下优点:

(1)信号可信度高、测试过程快速方便、耗电量低,且一套TDR 设备可同时监测几百个测点。

(2)将TDR 技术与GIS 技术相结合,可利用通讯网络远距离传输监测数据及信号。

(3)技术人员只需在室内便可对各个测点进行远程监控,监测工作安全性大大提高。

3.5.3分布式光纤传感技术

1)分布式光纤传感技术原理

光纤传感技术是通过对光纤内传输光某些参数( 如强度、相位、频率、偏振态等) 变化的测量, 实现对环境参数的测量。分布式光纤传感技术以其可复用、分布式、长距离传输的优点成为光纤传感技术中最具前途的技术之一,是光纤传感监测技术的发展趋势。其中,光纤布拉格光栅传感技术(FBG)与布里渊光时域反射传感技术(BOTDR)是

最具代表性的两种分布式光纤传感技术。

2)光纤传感滑坡监测方法

在滑坡监测中,光纤的选择更为重要。因为滑坡体的应变往往都比较大,恰当的光纤选择能使监测寿命提高。目前常用于监测的光纤有裸纤和紧套型光纤两种。裸纤虽然测量灵敏度很高,但量程小,易于折断,施工难度大,适应于小应变测量;紧套型光纤由纤芯、包层、涂敷层和护套组成,具有耐腐蚀性强、防水性能好的优点,比裸纤更能抵抗应力作用,量程略大,并且不易断点,有利于施工。选用紧套型光纤可提高监测寿命,因此滑坡监测用光纤常选择紧套型光纤。光纤网络布置一般有两种形式:一维网络形式,光纤连续地沿灾害体自下而上作蛇形布置, 这种方式适合于监测一个方向的位移变化情况;二维网络形式,光纤首先连续地沿灾害体自下而上布置,然后,连续地沿水平方向从左至右或从右至左作蛇形布置,这种方式适合于监测两个方向的位移变化情况。在铺设光纤时,应根据典型工作区滑坡体的特点,确定具体的光纤网络的布置方式。在监测实际工程应用中,光纤铺设基本有两种方法,全面接触式铺设和定点接触式铺设,全面接触式铺设的特点是可以全面监测地质灾害体的变形情况,监测对象为整个滑坡体。定点接触式铺设的特点是重点监测变形缝、应力集中区等潜在变形处的变形情况,监测对象为滑坡变形缝等潜在变形处。

FBG与BOTDR两种光纤传感技术各有优缺点: FBG传感器灵敏度高,能够非常准确地测量应变,虽多个FBG串联组成的FBG传感网络能实现准分布测量,但其用于响应外部被测量的敏感单元是预先设置的传感阵列,因此需对这些离散分布的传感点进行测量,灵活性较低;BOTDR传感元件为光纤,可实现分布式、长距离、不间断测量, 受其技术本身的限制,测量的空间分辨率最高只能达到1 m。如果将FBG与BOTDR技术联合起来监测滑坡,在整个滑坡体上铺设监测光纤,利用BOTDR技术可获得整个滑坡体的概要信息;在滑坡体变形的关键部位——变形缝安装FBG传感器,利用其监测灵敏度高的特点,获得滑坡某些关键部位的应变值。这样,将FBG与BOTDR两种技术结合起来监测滑坡,既克服了BOTDR监测分辨率不高的缺点,又弥补了FBG只能实现离散点测量的不足,从而可实现由点到线再到面的滑坡监测,获得滑坡体较完整的应变信息。

3.5.4基于无线传感器网络的滑坡监测

1)监测预警系统的总体结构

在大范围监控、预警的基础上,以局域网为研究平台,主要致力于数据采集和发送的有效性及处理上的精确性,监测预警系统的总体结构如图2所示,可分为2个部分:上层的监控中心和下层的监控基站。监控基站和监控中心通过以太网连接起来,此外管理人员也可以通

过自定义网络访问监控基站。监控基站和众多的无线传感器节点一起组成无线传感器网络。无线传感器网络具有很好的扩展性,随意地增减节点,对网络的拓扑结构和组网模式无太大影响,因而可以方便地根据实际情况增加或减少监控节点的数量。

图2 系统结构图

2)适用于滑坡监测的无线传感器网络设计

这种无线传感器网络由众多具有感知和路由功能的无线传感器节点组成,能够协作实时监测,感知并采集各种环境对象的信息,将其通过多跳转发传送回主机进行分析、处理。以这些工作节点为依托,通过无线通信组成网络拓扑结构。系统中大部分的节点为子节点,从组网通信上看,他们只是其功能的一个子集,称为RFD(精简功能设备),这种设备不具有路由功能;另外还有一些节点负责与控制子节点通信、汇集数据和发布控制,或起到通信路由的作用,称为FFD (全功能设备或协调器) 。如图3所示为一个典型的远程数据采集并返回到计算机终端的应用。每个节点由一个MCU作为主控设备。通过倾角传感器可以监测滑坡的运动状况,通过液位传感器监测地下水位深度,数据采集间隔也可以由中心服务器灵活控制,在旱季可以调整为每24 h采集并传递1次数据,从而节省能量并避免大量的冗余数据。而在雨季危险期,其采集间隔可以密集到5 min/ 次,从而保证实时监测预警功能。每个信号采集节点通过ADC从模拟传感器得到实时数据,按照ZigBee 协议把数据打包,并通过射频芯片及前端天线发送给簇内的RFD;经过RFD预处理之后,再由RFD路由转发到远端计算机;结合地貌特点、滑坡的分布特点,多个水流量检测点之间的相互关系等多种地质学、水流动力学等方面的知识进行数据的融合和处理。在每个节点的外部可外接相应的PIO 芯片和其他外围电路进行交互。

图3无线传感器网络拓扑结构示意图

在整个硬件平台的设计中,节能是一个重要因素,它决定着传感器网络的寿命。当节点目前没有传感任务并且不需要为其他节点转发数据时,关闭节点的无线通信模块、数据采集

模块等以节省能耗,即让其置于睡眠状态。为控制子节点选择合适的地点,提供较充足的能源,以便延长节点使用寿命,提高监测预警系统有效性。在软件设计上,通过动态电源管理(Dy2namic Power Management ,DPM) 技术使系统各个部分都运行在节能模式。在关闭空闲模块状态下,传感器节点或其他部分将被关闭或者处于低功耗状态,直到有“感兴趣”的事件发生。

4 结束语

随着科学技术的不断发展,我们的监测技术已经越来越多,技术的发展也越来越完善。随着遥感卫星科技的不断进步,我们利用高科技手段作为监测工具的趋势已经日趋明显。我们需要从日新月异的科技发展中找到适合我们专业的方法。目前的滑坡监测不仅仅是单个监测方法就能完成的,需要我们综合运用各种监测手段,将他们有效的结合在一起。每个监测方法都有自己的优点和缺点,几个方法综合使用就能互补,更好地为滑坡监测服务。从而减少滑坡带来的危害与损失。

参考文献

[1 ]分布式光纤传感技术在滑坡监测中的应用

史彦新1, 2 , 张青2 , 孟宪玮2

1. 中国地质大学地下信息探测技术与仪器教育部重点实验室, 北京100083

2. 中国地质调查局水文地质环境地质调查中心, 河北保定071051

[2 ]滑坡变形监测技术的最新进展

冯春1 ,张军2 ,李世海1 ,许利凯1

1中国科学院力学研究所,北京100190; 2 重庆市地质环境监测总站,重庆400015) [3 ]一种基于无线传感器网络的滑坡监测系统设计

李波,赖于树,黄倩,文建祥

(重庆三峡学院重庆404000)

[4 ]滑坡地质灾害监测方法综述

刘东(湖南化工地质工程勘察院,湖南长沙410004)

[5 ]BOTDR光纤温度监测技术在土木工程中得应用研究

崔何亮,施斌‘徐洪钟,张丹,丁勇

(南京大学地球环境计算工程研究所,江苏南京 210093)

[6 ]TDR 测试技术在岩土工程中的应用

陈赟,陈仁朋,陈云敏

1.浙江大学软弱土和环境土工教育部重点实验室,浙江杭州 310058;

2.浙江大学岩土工程研究所,浙江杭州 310058;

3.浙江大学建筑设计研究院,浙江杭州 310027)

山体滑坡监控预警完整系统.docx

山体滑坡预警监测系统 一、需求概述 1. 山体滑坡24小时全天候监测需求 监测区域处于滑坡多发地段,临近居民区,需要采取24小时全天候的预警动态监测手段,及时发出监测预警信息,预警山体滑坡、泥石流等地质灾害而免受或减少损失。矚慫润厲钐瘗睞枥庑赖。 2. 自动报警定位需求 支持在山体滑坡或泥石流等地质灾害发生前,通过精密仪器及时监测出山体松动、偏移的微小征兆,在及时发现并立刻自动报警的同时,迅速确认并在监测地图上显示滑坡位置O聞創沟燴鐺險爱氇谴净。 3. 预警预测需求 支持通过分析长期的山体位移变化,预测未来可能产生的安全隐患,提前做好防范补救准备。 4. 信息查询管理需求 可以对历史监测数据、报警数据、统计图表数据等进行查询管理。并建立数据档案,用于长期监测研究。

二、系统总体方案 1. 系 统总体架构方案 数据传输与接收接口服务 1)基础层 基础成主要是整个系统的基础硬件,是整个系统架构的基础 数 据 收 发 接 口 管 理 报 警 信 息 查 询 软 件 历 史 数 据 查 询 管 理 监 测 数 据 管 理 存 储 基础地报警信监测分 理数据息数据析数据 历史监 测数据 实时监 测数据 数 据 层 系 统 维 护 管 理 软 件 0.M -1-00 -LED D.x 日E I.DG -J-BD ? - Uil : ?. 预 警 短 信 发 布 管 理 滑 坡 位 置 方 向 监 测 预 测 分 析 管 理 软 件 自 动 监 测 预 警 软 件 残骛楼諍锩瀨濟溆塹籟。

主要有激光测距传感器终端、网络平台、计算机等硬件设备。监测终 端采集数据通过传输网络与计算机平台互通,形成一个集成的系统。 酽锕极額閉镇桧猪訣锥。 2)数据层 整个系统的数据包括传感器监测的实时数据、历史数据、图表分 析数据、报警信息数据、历史报警信息数据、地理空间数据等。是整个系统的数据核心。彈贸摄尔霁毙攬砖卤庑。 3)应用层 在基础层和数据层基础上,开发应用系统,包括数据管理、自动 报警、图形分析预测等若干功能软件 4)表现层 是指最终系统的操作界面,将有电子地图为系统地图,实现各种功能包括报警、图表查询、图形分析等功能操作界面O謀荞抟箧飆鐸怼类蒋薔。 2. 系统总体配置方案 本系统从用户需求出发需求配置:激光测距监测设备终端设备、监测预警平台软件、无线传输设备。 1)激光测距监测设备3套。

滑坡监测方案

什德中快通德中项目示范段 K14+680-K14+741段滑坡监测方案 中铁十八局集团有限公司

二〇一九年十二月 什德中快速路德阳-中江段 K14+680-K14+741段滑坡监测方案 编制: 复核: 审核: 中铁十八局集团有限公司

二〇一九年十二月 K14+680-K14+741段滑坡监测方案 1. 工程概况 什德中快通德中项目示范段为什邡经德阳至中江干线公路工程德阳至中江段,本项目既是德阳主城区与中江县城之间的快速通道,又是德阳全市域范围内的一条东西走廊主通道,是德阳市“五纵五横”干线公路网的横向骨架。本项目全线按一级公路标准设计,设计速度80公里小时,路基宽度45.5米。主线起于金沙江东路终点德阳海关大楼附近,穿过齐家堰隧道后朝和新镇方向布线,与和新镇北侧通过后继续向东,过集凤镇双桥村,在隆兴场西侧飞马村附近与规划的成都市第三绕城高速隆兴互通设置双喇叭互通连接,后上跨人民渠,上跨三绕高速,向中江县城方网延伸。止于中江县二环路继光大道路口,与规划的继光大道西段对接。本监测方案为监测线路主线K14+680-K14+741段路基右侧一滑坡体。 2.目的与任务 a) 目的:用先进的仪器和设备在野外滑坡、崩塌现场及其周边地区进行连续或定期重复的测量工作,准确测定监测网和形变监测点的平面坐标、高程或空间三维相对位移值,经合理的数据处理提供监测网和形变监测点水平位移、垂直位移、裂缝及滑带相对位移等动态数据,为掌握滑坡变形规律、险情预报、灾害防治、治理,达到治工程效果的检验目的;确保滑坡体的地形地物实际变形及变形趋势,超前预报,保障滑坡体治理竣工后安全。

山体滑坡抢险专项方案

山体滑坡抢险专项方案施工方案及工艺 一、施工准备 开工前,做好各项技术准备工作。根据现场实际情况和工期要求,合理安排施工计划。做好施工阶段水、电、原材料等及配套设施的保障工作,方便施工顺利的进行。 二、施工方法及步骤 根据目前实际情况,因第二级边坡的桩基、托梁已施工完成,以及托梁上部挡墙第一层混凝土已基本施工完毕,且雨季即将来临,为防止坡顶土体受雨水浸泡后,增大对支护结构的侧向推力,加大下滑趋势,经业主单位、施工单位、监理单位、设计单位几方代表现场勘察后决定,按如下步骤和方案进行处理: 第一步:先对二级边坡坡顶进行抢险施工,以确保二级平台以上土体的安全。其主要施工工艺流程为:第一道截水沟开挖→滑坡体堵缝和夯实→第二道截水沟开挖→第三道截水沟开挖→挂网喷浆。 因第二级边坡挡墙至开挖线以外山体出现大量大小不一的裂缝,其中最大裂缝宽度达0.5米,深度达5米左右,为避免坡顶地表水对下面边坡的影响,本方案共设置三道断面尺寸为600*800mm的截水沟,第一道截水沟位于坡面最外侧裂缝与坡顶之间的正中处,主要作用是截住坡顶与本截水沟之间坡面的地表水,减少坡顶地表水对下侧边坡的浸泡。第二道截水沟位于边坡开挖线外侧2米处,主要作用是截住

第一道截水沟与本截水沟之间坡面的地表水。进一步减少两水沟间坡面地表水对下侧边坡的浸泡。第三道截水沟设置在距挡墙墙背2米处,主要作用是对墙背回填坡面上的地表水进行排除,减少雨水对墙背土体的浸泡和土体因自重的增加而产生对挡墙的水平推力。3条截水沟基本与路线呈平行状布置。为更有效的将坡面积水排除,水沟迎水面一侧不能高于原坡面,截水沟沟底应设置不小于2%纵坡,将坡面的地表水通过截水沟引入两侧山谷或自然沟渠中。截水沟槽采用人工方式进行开挖,断面尺寸为600*800mm。为进一步缩短截水沟的施工时间,在截水沟槽开挖成型经监理工程师验收合格后,对水沟两侧壁和沟底采取挂网+喷射水泥砂浆。水泥砂浆强度为M20,厚度为5cm。 为避免雨水对山体裂缝区域的冲刷和浸蚀,造成裂缝进一步的扩大。本方案采用小型挖掘机先将有裂缝处山体表层的杂草、树根以及表层土清除,然后用粘土将裂缝分层填入,用夯实机将其与裂缝土体分层夯打密实。最后用挖机将整个坡面修整平顺和夯实,做到坡面无松散土方或石块。且在墙背处回填土体的表面形成一定的纵坡,使墙背坡面积水能及时流入截水沟排出,以减少地表水对墙后土压力的影响。最后采用锚杆挂钢丝网+喷射水泥砂浆对整个坡面进行防护施工。喷射水泥砂浆厚度为5cm。Φ16mm锚杆长度为1米,布置间距为2000mm*2000mm,钢丝网网格尺寸为:20*20mm。为确保喷射砂浆的厚度,在砂浆喷射施工前应做好厚度标记,确保厚度均匀,无露筋现像。在施工时因天气或其他特殊原因导致施工中断时,必须采取有效措施将未施工完毕裸露的坡面用防水彩条布或塑料薄膜进行覆盖。施工完

滑坡监测的方法简述

滑坡监测方法简述及新进展 缪静芳 摘要:介绍了滑坡监测的内容,以及一些常用的滑坡监测技术方法。本文着重介绍了近些年不断发展的GPS监测系统、分布式光纤传感器、TDP测试技术、无线传感器在滑坡形监测中的应用。并且指出了不同滑坡监测方法的适用范围和相应的优缺点。 关键词:滑坡;滑坡监测;GPS系统; TDR监测;分布式光纤传感器;无线传感器; 1 引言 滑坡是指斜坡上的土体或岩体,受河流冲刷、地下水活动、地震及人工切坡等因素的影响,致使部分或全部土体(或岩体)在重力作用下,沿着地面软弱面(或软弱带)整体地或分散地顺坡向下滑动的地质现象。 我国是地质灾害多发国家之一,尤以滑坡灾害的影响最为严重。据不完全统计,中国有70多座城市和460多个县市受到滑坡灾害的威胁及危害,平均每年至少造成15-23亿元的经济损失。如果能够对滑坡进行监测, 实现滑坡危害的早期预报, 就可以最大限度地减少和防止滑坡所造成的损失。因此, 监测既是滑坡调查、研究和防治工程的重要组成部分,又是崩塌滑坡灾害预测预报信息获取的一种有效手段。 2 滑坡监测的内容 滑坡动态监测的内容包括滑坡变形监测、建筑物变形监测、地下水动态监测和滑坡推力实测。目前,国内外滑坡动态监测的技术方法已经发展到一个较高水平,已由过去的人工监测逐渐过渡到仪器检测,并正向高精度的自动化遥测系统发展。监测仪器也在不断更新,随着计算机技术和测量技术的不断发展,激光测距仪和高精度电子经纬仪等先进设备,正在逐步成为滑坡动态监测的新手段。 3 滑坡监测的方法 从滑坡的监测内容来看,滑坡监测应该是由多种监测方法相结合的。对于不同的监测目的、不同的滑坡发育阶段及不同的滑坡类型所选择的滑坡监测方法也不同。目前滑坡动态监测中使用的技术大致可归纳为宏观简易地质检测法、大地精密测量法、设站观测法、仪器仪表监测法和综合自动遥测法。 3.1 宏观简易地质检测法 这种方法主要是对滑坡发育过程中的各种迹象,如地裂隙、房屋、泉水动态等进行定期监测、记录,掌握滑坡的动态变化和发展趋势。其中,最常用的是对地表裂隙、建筑物变形的监测。在裂隙处设置简易监测标志,定期测量裂隙长度、宽度、深度的变化,以及裂隙的形态和开裂延伸方向等。由于滑坡体在滑动过程中各部位受力性质和大小不同,滑速也不同,因而不同部位产生不同力学性质的裂隙,有滑坡后部的拉张裂隙、滑坡体中前部两侧的剪切裂隙、滑体前缘的鼓张裂隙和滑坡舌部的扇形裂隙。除此之外,还有一些滑坡标志,如封闭洼地、滑坡鼓丘、滑坡泉、马刀树、醉汉林等。该方法的特点是获取的信息直观可靠,简单经济,实用性较强,适应于对正在发生病害的边坡进行观测。但也存在内容单一、精度低和劳动强度大等缺点。 3.2大地精密测量法 该方法即采用高精度光学和光电测量仪器,如精密水准仪、全站仪等仪器,通过测角和测距来完成监测任务。监测边坡的二维( X、Y 方向)水平位移常用前方交会法、距离交会法:监测水平单向位移常用视准线法、小角法、测距法:监测边坡的垂直位移常用几何水准测量法、精密三角高程测量法。 大地精密测量法长期以来受到滑坡工程监测人员的高度重视,是由于具有如下优点:能确定边坡地表变形范围;量程不受限制;能观测到边坡体的绝对位移量;精度高;

滑坡监测报告

五盂高速公路盂县境内梁家寨段滑坡监测 山西测绘工程院 2014 年7 月2 日

七、监测结果数据分析 八、结论 ............ 九、附件 ............ 、概述 1.1 工程概况 1.2 目标与任务 、监测依据 工作组织与设备配置 3.1 人员安排 3.2 设备配置 四、监测方法及等级 4.1 坐标系统的选择 4.2 监测等级 4.2 监测方法的选择 目录 .3 .4 五、项目工期及完成的工作量 .............................. 六、基准点的布设、观测、解算、精度、检测及稳定性分析 6.1 基准点的布设 6.2 基准点的观测 6.3 基准点的解算及精度分析 6.4 基准点的检测及稳定性分析 11 13 14

1)、2014年5月 15日至 5月 29日监测频率为 2天一次 五盂高速公路盂县境内梁家寨段滑坡监测 、概述 1.1 工程概况 现发现滑坡体范围已出现裂缝, 相关部门已进行了应急处理, 为进一步掌握滑坡 体的变形情况, 获得斜坡体发展变化趋势,须对滑坡体进行监测,通过对地表位 沉降的监 测,从而监测斜坡体的地形地物实际变形及变形趋势。 受山西省交通规划勘察设计院委托, 山西省测绘工程院承担该滑坡的监测工 作。 的稳定性现状及发展趋势, 及滑坡体的治理工程设计提供科学、 准确、及时的数 据基础。具体任务及工作量如下: 协助设计单位完成监测点、基准点的布设工作,根据现场地质情况和监测 要求,整个工作区域分 4 条轴线,共布设监测点 24 个,基准点 4 个。 1.3 工作时间及进度 28日至 5月 8日进行基准点及监测点布设 15日至 5月 16日连续观测两天作为第一组观测数据 17日至 5月 18日进行基准点和部分监测点的二等水准 1.4 监测频率 滑坡监测点位于盂县梁家寨乡椿树底村大垴梁。 滑坡体范围面积约 18000 平 方米,滑坡体南北走向,下方有在建高速公路和村庄, 北侧已发生过滑坡现象, 移、 1.2 工作任务及工作量 通过对滑坡区域及周围地表水平位移、 垂直位移的监测, 为分析研究滑坡体 (1)、2014年4月 (2)、2014年 5 月 (3)、2014年5月 测量

公路滑坡监测技术简介试题答案

第1题 以下不属于我国主要地质灾害类型的是: A.滑坡 B.崩塌 C.地面塌陷 D.雪崩 答案:D 您的答案: 题目分数:6 此题得分:6.0 批注: 第2题 联合国科教文组织世界滑坡编目工作组于上世纪90年代建议将滑坡的众多因素归纳为场地条件、地貌作用、自然作用和()四大类 A.人为作用 B.流水作用 C.风场作用 D.生物作用 答案:A 您的答案: 题目分数:6 此题得分:6.0 批注: 第3题 我国2013年1至10月,全国共发生地质灾害15196起,哪种灾害类型发生的最多() A.滑坡 B.崩塌 C.地面塌陷 D.雪崩 答案:A 您的答案: 题目分数:6 此题得分:6.0 批注: 第4题 以下不属于滑坡监测主要内容的是() A.地表位移 B.地下变形 C.水文 D.自振频率

答案:D 您的答案: 题目分数:6 此题得分:6.0 批注: 第5题 以下不属于滑坡监测中地表变形监测方法的是 A.大地测量 B.近景摄影 C.GPS D.测斜法 答案:D 您的答案: 题目分数:6 此题得分:6.0 批注: 第6题 以下不属于滑坡监测中地下变形监测方法的是 A.大地测量 B.重锤法 C.重锤法 D.测斜法 答案:A 您的答案: 题目分数:7 此题得分:7.0 批注: 第7题 以下设备中,()是滑坡监测中地表变形监测的主要仪器设备 A.风速风向仪 B.水位计 C.GPS D.测斜仪 答案:C 您的答案: 题目分数:7 此题得分:7.0 批注: 第8题 静力水准仪能够在以下哪种滑坡监测内容中使用

B.地声 C.地下变形 D.水文 答案:C 您的答案: 题目分数:7 此题得分:7.0 批注: 第9题 滑坡预测预报研究开始起步的时间是 A.20世纪50年代 B.20世纪60年代 C.20世纪70年代 D.20世纪80年代 答案:B 您的答案: 题目分数:7 此题得分:7.0 批注: 第10题 经过多年国内外滑坡专家的潜心研究、不断探索,滑坡理论有了较大发展,纵观其发展过程,大致可分为三个阶段,以下不属于滑坡研究发展阶段的是 A.现象预报和经验式预报 B.位移—时间统计分析预报 C.滑坡预报模型 D.综合预报模型及预报判据研究 答案:C 您的答案: 题目分数:7 此题得分:7.0 批注: 第11题 新世纪初,()地调局的滑坡灾害减灾战略规划将滑坡过程和诱发机理研究列为首要任务 A.美国 B.中国 C.日本 D.印度 答案:A 您的答案:

GPS监测山体滑坡方法的探讨

第1章绪论 1.1 全球定位系统概述 全球定位系统(GPS)是新一代的卫星无线导航系统。目前,GPS已经被广泛地应用于工程测量,车辆导航与控制,大地测量,形变体监测,资源调查,观测地壳运动,将测绘工程提高到了一个新的技术层面。GPS主要包括GPS空间部分,地面监控部分,用户接受部分。 1、地面控制部分,由主控站(负责管理、协调整个地面控制系统的工作)、地面天线(在主控站的控制下,向卫星注入导航电文)、监测站(数据自动收集中心)和通讯辅助系统(数据传输)组成。 2、空间部分,由24颗卫星组成,分布在6个轨道平面上。 3、用户装置部分,主要由GPS接收机和卫星天线组成。 全球定位系统的空间部分使用24颗高度约2.02万千米的卫星组成卫星星座。21+3颗卫星均为近圆形轨道,运行周期约为11小时58分,分布在六个轨道面上(每轨道面四颗),轨道倾角为55度。卫星的分布使得在全球的任何地方,任何时间都可观测到四颗以上的卫星,并能保持良好定位解算精度的几何图形(DOP)。这就提供了在时间上连续的全球导航能力。 经过20余年的实践证明,GPS系统是一个高精度、全天候和全球性的无线电导航、定位和定时的多功能系统。GPS技术已经发展成为多领域、多模式、多用途、多机型的高新技术国际性产业,目前已遍及国民经济各种部门,并开始逐步深入人们的日常生活。 1.2 GPS定位原理 GPS定位的基本原理是:卫星不断地发送出自己的时间信息和星历参数,用户接收到这些信息,通过计算得到接收器的三维方向和三维位置以及运动信息和时间速度。 例如,假定恒星的离我们的距离为17710米,它是一种高轨道和精确定位观测,这颗恒星以画圆为中心,我们是在球的上面。那么假定为19320米距离的二星级,我

滑坡监测方案111

目录 1.工程概况··························································错误!未定义书签。 2. 目的与任务 (1) 3、执行的技术规范与依据 (1) 4、滑坡监测内容、监测方法和工作量布设 (1) 4.1 监测内容 (1) 4.2 监测方法 (1) 4.3 监测周期 (1) 4.4 监测频率 (1) 4.5 监测的等级 (1) 4.6 布设监测工作量 (2) 5、监测工作实施方案 (2) 5.1监测系统基准网及监测网的建立、实施 (2) 5.2 监测基准网施测 (3) 5.3 变形观测点施测 (3) 5.4 位移监测点的建立及实施 (4) 6 监测数据的整理及分析 (4) 6.1 监测数据的整理 (4) 6.2 监测数据的分析及上报 (4) 6.3险情预警标准 (4) 7、人员与设备组织 (5)

8、提交成果资料 (5) 郴州市梅田区滑坡监测方案 1. 工程概况: 梅田区滑坡位于郴州市宜章县,滑坡与市区道路仅有人行便道连接,交通条件较差。工作区位于郴州地南端,处于山区过渡地带,气候温和湿润,雨量较充沛,光照适宜,四季分明,属亚热带湿润气候带。降雨多集中在夏季,多暴雨、大暴雨,引发洪涝灾害,江河猛涨,山洪爆发。多年平均气温16.0℃,多年平均降雨量为972.6mm,每年降雨主要集中在5~9月,其间降雨总量占全年降雨总量的75%。多年月平均降雨量最高为7月的236.8mm,最低为1月的3.8mm,最大一日降雨量为220.5mm,最大雨强为70mm/h。工作区位于斜坡上部位,坡面冲沟不发育,无地表水流。 2.目的与任务: a) 目的: 用常规的或先进的仪器和设备在野外滑坡、崩塌现场及其周边地区进行连续或定期重复的测量工作,准确测定监测网和形变监测点的平面坐标、高程或空间三维相对位移值,经合理的数据处理提供监测网和形变监测点水平位移、垂直位移、裂缝及滑带相对位移等动态数据,为掌握滑坡变形规律、险情预报、灾害防治、治理,达到治工程效果的检验目的;确保竣工斜坡体的地形地物实际变形及变形趋势,超前预报,保障斜坡体治理竣工后安全。 b) 任务: 1) 对斜坡体进行地表(包括构筑物顶部)的位移与沉降监。 2) 通过监测数据获得滑坡局部和整体变形及变形趋势,检验滑坡稳定状况。 3) 与气候、地下水位变化相联系,分析滑坡、危岩变形与之的相关性规律。 4) 在治理工程期间监测斜坡体的地形地物实际变形及变形趋势,超前预报,确保施工安全。 5) 提供治理工程效果评价报告,以及必要时的预警报告。 3 . 执行的技术规范与依据 a) 《工程测量规范》(GB 50026-2007)。 b) 《建筑变形测量规程》(JGJ/T 8-97)。 c) 《国家一、二等水准测量规范》(GB/T 12897-2006)。 d) 《精密工程测量规范》(GB/T 15314-94)。 e)《国家三角测量和精密导线测量规范》 4 . 变形斜坡体监测内容、监测方法和工作量布设 4.1 监测内容 根据《设计》要求,此次滑坡动态监测包括地表大地变形监测,沉降监测。 4.2 监测方法 a) 各观测点的水平位移采用测线支距法及光电极坐标法; b) 垂直位移采用电磁波测距三角高程测量; 4.3 监测周期 本监测工作从滑坡坡治理工程结束后共计6个月时间。 4.4 监测频率 水平位移变形观测、垂直位移变形观测:每月观测一次,遇特殊情况应增加观测次数,(如大雨后、绵雨期、自然条件急剧变化情况下)或平常发现山体有异常变化亦应增加观测次数

《公路滑坡监测技术简介》考试答案

《公路滑坡监测技术简介》考试答案 第1题 以下不属于我国主要地质灾害类型的是: A.滑坡 B.崩塌 C.地面塌陷 D.雪崩 答案:D 第2题 联合国科教文组织世界滑坡编目工作组于上世纪90年代建议将滑坡的众多因素归纳为场地条件、地貌作用、自然作用和()四大类 A.人为作用 B.流水作用 C.风场作用 D.生物作用 答案:A 第3题 我国2013年1至10月,全国共发生地质灾害15196起,哪种灾害类型发生的最多() A.滑坡 B.崩塌 C.地面塌陷 D.雪崩 答案:A 第4题 以下不属于滑坡监测主要内容的是() A.地表位移 B.地下变形 C.水文 D.自振频率 答案:D 第5题 以下不属于滑坡监测中地表变形监测方法的是 A.大地测量 B.近景摄影 C.GPS D.测斜法 答案:D

以下不属于滑坡监测中地下变形监测方法的是 A.大地测量 B.重锤法 C.重锤法 D.测斜法 答案:A 第7题 以下设备中,()是滑坡监测中地表变形监测的主要仪器设备 A.风速风向仪 B.水位计 C.GPS D.测斜仪 答案:C 第8题 静力水准仪能够在以下哪种滑坡监测内容中使用 A.环境 B.地声 C.地下变形 D.水文 答案:C 第9题 滑坡预测预报研究开始起步的时间是 A.20世纪50年代 B.20世纪60年代 C.20世纪70年代 D.20世纪80年代 答案:B 第10题 经过多年国内外滑坡专家的潜心研究、不断探索,滑坡理论有了较大发展,纵观其发展过程,大致可分为三个阶段,以下不属于滑坡研究发展阶段的是 A.现象预报和经验式预报 B.位移—时间统计分析预报 C.滑坡预报模型 D.综合预报模型及预报判据研究 答案:C 第11题 新世纪初,()地调局的滑坡灾害减灾战略规划将滑坡过程和诱发机理研究列为首要任务A.美国

基于物联网技术的山体滑坡监测系统

基于物联网技术的山体滑坡监测系统 山体滑坡是山区最常见的地质灾害之一,它严重威胁人民的生命财产安全,破坏工程设施,影响正常的生产和生活,造成巨大经济损失和人员伤亡。国内外用于山体滑坡监测的方法和手段很多,大体可以分为: 有线方式和无线方式两大类,由于山体滑坡监测区域的地理条件复杂、线路架设困难、电源供给等限制,使得有线系统部署起来非常困难,系统维护十分不便,并且监测网络结构的可靠性不高,很多都是把传感器监测节点简单串联起来,当一个传感器节点发生故障时,会影响后面节点的正常工作,从而影响整个系统的有效性,并且很多监测系统监测到的信息十分有限,不能为正确及时的预报预警提供充分的数据支持,从而影响系统的可靠性。现有的无线监测方式如GPS、 G IS,设备成本高,而合成孔径雷达干涉测量( InSAR) ,虽然具有全天候、连续获取信息和高空间分辨率的特点,但该方法对干涉相位图像质量要求 高,需要高分辨率的卫星遥感图像,这些决定了它不适合大范围推广与应用。 无线传感器网络(WSN, Wire less Sensor Networks)是一种全新的网络化信息获取与处理技术,具有自组网、无线多跳路由和多路径数据传输功能,结合数据融合技术,平衡网络负载,延长网络生命周期; 传感器节点成本低,可实现对整个滑坡监测区域进行大范围的节点布置,保证数据采集的深度,为实现山体滑坡状态监测和预警提供巨量数据基础。本方案针对山体滑坡监测,提出以无线传感器网络技术为基础,构建山体监测区域无线传感器监测网络,结合GPRS/3G通信技术,实现对监测区域的远程实时监护,并通过对采集数据的分析和处理,实现对山体滑坡的预警预报。 一、系统架构 山体滑坡监控系统由无线传感器监测网络、无线网关和远程监控中心三部分组成。为了得到监测区域的实时有效信息,在监测区域安放大量的传感器节点测量山体位移值和加速度值,由于山体滑坡主要是由地下水侵蚀产生,因

滑坡、地裂在线监测解决方案

滑坡、地裂在线监测解决方案 一、项目背景 人们由于过度砍伐树木、开辟矿场、修路等活动会破坏生态,影响土地结构。没有了树木植被,山坡土壤就像失去了胶水一样变得更加松散,更容易瓦解。国内部分地区山体滑坡事故频发,共发育有大型滑坡140余处,较大滑坡2212处以上。 在我国大部分地区经常会有雨季发生,大量的雨水渗透到了土壤内部,它不仅会减少土壤与下方岩石之间的摩擦力,而且饱含雨水的土壤会变得更重,这场雨就会成为压死骆驼的最后一根稻草。大块薄弱的土壤就会顺着山坡这个“滑梯”滑下去,掩埋山坡下方的房屋和道路,甚至阻塞河流。降雨量如果特别大还有可能会形成泥石流,那时泥土就不是成块地脱落,而是变成混杂着泥土的洪流。 山体滑坡一旦发生,不仅造成滑坡体上人员伤亡、财产损失,而且泥石流将危及一定范围内的房屋、交通、人员安全,针对山体滑坡存在预防难、救援难、危害大、治理难度大等问题,如何及时有效地监测山体状态并能够提前发现异常状态、及时报警等已经成为人们关注的重点。 二、需求分析 由于山体滑坡存在的诸多危害,因此摸清山体滑坡发生和发展的规律,对其作出准确预报具有理论意义和实践意义。由于山体滑坡时间的不确定性,滑坡过程短暂且迅速等原因,在山体滑坡中采集数据难度较大,如果能对不同坡面滑坡时收集到的数据进行科学分析,将对日后的准确预报提供科学依据。同时,农业、水利、城乡建设、交通、林业、矿产等部门也迫切需要这样的成果作为规划、管理等的依据。 滑坡、地裂在线监测系统主要针对各种山体的地表位移监测、地表裂缝监测、深部位移监测、地下水位监测等的信息进行采集跟处理,充分实现资源和信息共享,实现对山体滑坡的安全分析评价、对险情进行紧急预报,并可根据安全现状、数据变化动态,提出安全方案,为保障人民群众安全提供强有力的保障。

山体滑坡应急预案-(1)

山体滑坡应急预案 1 总则 1.1编制目的 高效有序地做好突发山体滑坡灾害应急防治工作,避免或最大程度地减轻灾害造成的损失,维护人民生命、财产安全。 1.2编制依据 依据《中华人民共和国安全生产法》、《地质灾害防治条例》、《国家突发地质灾害应急预案》等法律、法规、办法,制定本预案。 1.3适用范围 本预案适用于宁西第二项目部所辖区域内由于自然因素或者人为活动引发的危害人员生命和财产安全的山体滑坡灾害。 1.4应急工作原则 预防为主,以人为本。建立健全群测群防机制,最大程度地减少突发山体滑坡灾害造成的损失,把保障人民群众的生命财产安全作为应急工作的出发点和落脚点。 统一领导、分工负责。在项目部统一领导下,有关部门及各架子队各司其职,密切配合,共同做好突发山体滑坡灾害应急防治工作。 分级管理,属地为主。建立健全按灾害级别分级负责的

管理体制。 2 应急分析 2.1概况 我项目部辖区内,有可能发生山体滑坡灾害的工点主要集中在隧道及靠近大山的施工工点。 2.2山体滑坡灾害风险 (1)山体滑坡灾害有可能直接造成的人身伤亡、设施、设备毁损; (2)山体滑坡灾害有可能造成的供电、通信、供热、供气、道路等设施毁损所次生的影响和灾害; (3)山体滑坡灾害有可能造成的环境污染灾害; (4)山体滑坡灾害有可能造成的工期延误。 3 组织机构及职责 a) 应急救援指挥机构 项目部成立应急指挥领导小组。灾害应急救援工作依照法定职责和相关责任制负责,并与所在地国家市(县)级政府灾害应急救援体系相衔接,信息互通、资源共享:组长:杨前进; 副组长:刘文其、宋克鹏、洪富义、张留柱; 成员:各部室负责人及各架子队队长; 应急救援办公室设在项目部综合办公室,张娟任应急救援办公室主任;

高边坡滑坡监测方案

边坡滑坡监测方案 2015—09—17 编制

1.概述 为实现无人值守的边坡监测自动化,我公司推出了应用于边(滑)坡或大坝等的基于系统集成技术的边坡自动化监测系统。该系统是一种综合性的自动化远程监测系统,可对边坡岩土体内部沉降、倾斜、错动、土壤湿度、孔隙水压力变化等进行连续监测,及时捕捉边坡性状变化的特征信息,通过有线或无线方式将监测数据及时发送到监测中心。结合地表监测的雨量、位移等信息,由专用的计算机数据分析软件处理,对边(滑)坡的整体稳定性做出判断,快速做出诸如山体边坡崩塌、滑坡等灾害发生的预警预报,更加准确、有效地监测灾情发生,且可为保证地质安全和整治工程设计提供信息参考。 2监测方案系统构成 系统由传感器(渗压计、多点位移计、钢筋计、固定式测斜仪、雨量计、土体位移计、

拉线式位移计)、MCU-32型自动采集单元、通信模块、数据库服务器、数据采集软件等组成。见下图 3测量项目 3.1孔隙水压力 边坡除了受到恒定的重力作用以外,地下水的作用对其稳定性通常也是一个不能忽视的因素。而由于降雨等原因,地下水位往往会在一定范围内往复变化,使得在稳定的地下水位以上的部分岩土体经常处于干湿交替的状态。这对边坡的长期稳定性十分不利。 VWP型振弦式渗压计适用于长期埋设在水工结构物或其它混凝土结构物及土体内,测量结构物或土体内部的渗透(孔隙)水压力,并可同步测量埋设点的温度。渗压计加装配套附件可在测压管道、地基钻孔中使用。 3.2土体分层沉降 坑外土体分层竖向位移可通VWM多点位移计测量。 土体分层竖向位移的初始值应在分层竖向位移标埋设稳定后进行,稳定时间不应少于1周并获得稳定的初始值;监测精度不宜低于1mm。 每次测量应重复进行2次,2次误差值不大于1mm。 采用分层沉降仪法监测时,每次监测应测定管口高程,根据管口高程换算出测管内各监测点的高程。 VWM型振弦式多点位移计适用于长期埋设在水工结构物或土坝、土堤、边坡、隧道等结构物内,测量结构物深层多部位的位移、沉降、应变、滑移等,并可同步测量埋设点的温度。

滑坡处理专项方案

康临高速公路建设项目 隧道进出口滑坡处理专项方案 康临高速公路KL6合同段项目经理部 二〇〇八年八月二十二日

隧道进出口滑坡处理专项方案 一、隧道概况 南阳山隧道为上、下分离的四车道高速公路特长隧道,隧址位于甘肃省临夏回族自治州和政县境内,穿越南阳山。上行线K48+970~K52+260,全长3260m,明洞27m,下行线K48+962~K52+290,全长3290m,明洞24m,隧道出口下穿省道S309线。进、出口处Ⅵ级围岩地段,为提高围岩自身承载能力,提高岩体衬托能力,均设超前大管棚注浆预加固处理后进行暗洞开挖。浅埋段Ⅴ、Ⅵ级围岩采用双侧壁导坑先墙后拱法施工,深埋段Ⅴ级围岩采用超短台阶预留核心土先拱后墙法施工,洞身一、二次衬砌均采用模筑砼共同组成永久性承载结构。隧道进出口地处古滑坡地带,地质条件复杂,存在大量的软弱岩层,受地形、构造应力的影响,隧道开挖后出现滑坡、坍塌、大变形等问题,给隧道正常施工带来极大困难。 二、下行线进口滑坡体地质概况 根据区域地质和综合勘察资料,隧道地处陇西黄土高原与青藏高原的过渡带,隧道范围内主要为第四系全新统和更新统地层,隧道下行线K52+140~K52+340位于滑坡地带,坡面植被发育,自然边坡25℃左右,洞口段60米范围覆盖层厚6m~15m的坡积亚粘土及亚砂土层,下伏上第三系临夏组泥岩,围岩软弱,土质松散,含水量大,顺坡面向沟道内极易产生围岩失稳坍塌,影响隧道西端进、出口安全。2007年10月中下旬出现蠕滑变形,S309公路、乡间便道均被错开,滑坡体表部横向拉张裂隙与纵向剪切裂缝发育,滑坡体前缘冲沟沟底宽度仅5~10m,滑坡前缘空间狭小。该段原滑坡堆积亚粘土体吸水饱和与泥岩层面之间形成软化带,滑体与滑床间的抗剪强度大大降低,当土体的下滑力超过接触面处的抗滑力时,产生滑移。

滑坡治理及监测综述

滑坡治理及监测方案研究 摘要:滑坡作为边坡失稳最为长见的地质灾害,给世界经济建设和人民财产安全造成严重损失。目前过内外地对滑坡的治理及监测工作进行了大量的研究。本文对比分析了国内外滑坡的治理,监测方案。滑坡的治理方法主要有:抗滑桩、清方减重、加载反压和排水工程。滑坡的监测方案主要有:地表变形监测、深部位移监测、地下水位监测、孔隙水压力监测、抗滑桩监测。 关键字:滑坡治理监测 1、引言 滑坡是指斜坡上的土体或者岩体,受河流冲刷、地下水活动、雨水浸泡、地震及人工切坡等因素影响,在重力作用下,沿着一定的软弱面或者软弱带,整体地或者分散地顺坡向下滑动的自然[1]。从本质上讲,滑坡是土体或岩体在重力势能的作用下遵循由高处向地处运动规律的自然现象,但是,如果滑坡的发生对集体或个人的财产、人身安全构成损失,那么就将这种自然现象称为滑坡灾害[2、3]。 滑坡灾害作为边坡失稳最为常见的地质灾害,给世界经济建设和人民财产安全造成严重损失。特别是20世纪以来,随着世界范围内开采矿山,修筑道路等一系列的活动的影响,人们的生命、财产安全越来越多的受到滑坡灾害影响着。据有关资料统计[4-8]:前捷克斯洛伐克有滑坡9164处,占地6万公顷;意大利受滑坡威胁的面积占全国土地面积的三分之一;瑞士四万平方公里的国土面积中,山区占70%以上,己调查的体积大于1 km3的特大型滑坡就有几十处;亚美尼亚有各种规模不等的滑坡3500多处。 对滑坡变形的发展变化趋势进行监测,掌握滑坡发展变化的规律,及时制定出有针对性的整治措施,一方面可有效地避免由此带来的重大损失,另一方面也有助于对滑坡灾害进行预测预防问题进行专门研究,对治理后滑坡稳定性研究可以评估治理工程的好坏,同时可以确保人民生命的安全。因而对滑坡的治理和监测既具有重要的工程价值又具有较高的理论意义。 2、国内外研究现状 (一)滑坡的治理 由于滑坡的频发性和极大的危害性,滑坡灾害治理技术的研究一直为世人所关注[9-15] 欧美国家自19世纪中期就开始了对滑坡灾害治理的研究,由于早期人们对滑坡的性质和滑坡机理认识的不足,对大、中型滑坡只能做到避让,对于小型滑坡主要采用清方减重、加载反压、抗滑挡墙和排水工程进行治理,其中排水工程尤为重视。在20世纪50~60年代,我国治理滑坡的方法主要是清方减重、加载反压、抗滑挡墙和排水工程等措施。 到第二次世界大战后,各国经济逐渐恢复和发展,对土地的利用也逐渐增多,遇到的滑坡灾害越来越多,仅采用清方减重、加载反压和排水工程等措施治理的滑坡,大部分都只是暂时处于稳定状态,随着地质条件的改变以及外界因素的触发,很多滑坡又复活了,抗滑支挡工程成为治理滑坡的迫切需要[16-18]。随抗滑支挡作用的普遍重视,直到20世纪60年代中期,国内外最早成功的应用了抗滑桩治理边坡,由于抗滑桩具有布置灵活、施工简便以及对滑坡扰动较小等优点,得到了广泛应用。 但早期抗滑桩的设计主要是参照桩基的设计,直到70年代末,国内外许多学者才对抗滑桩的设计理论和方法开展了广泛的研究,这一时期具有代表性的学者为:刘光代等[19]用压力盒对6070年代在成昆铁路和宝成铁路几个堆积土滑坡中的抗滑桩进行了实时监测,监测结果表明作用在抗滑桩上的滑坡推力大致呈抛物线形,且推力经三到四个月后达到高峰,随后逐渐稳定。马骥[20]对单根抗滑桩的受力条件进行了室内的模型试验研究,得出了在受力初期

滑坡监测方法无线传感器

滑坡监测方法无线传感器 1)监测预警系统的总体结构 在大范围监控、预警的基础上,以局域网为研究平台,主要致力于数据采集和发送的有效性及处理上的精确性,可分为2个部分:上层的监控中心和下层的监控基站。监控基站和监控中心通过以太网连接起来,此外管理人员也可以通过自定义网络访问监控基站。监控基站和众多的无线传感器节点一起组成无线传感器网络。无线传感器网络具有很好的扩展性,随意地增减节点,对网络的拓扑结构和组网模式无太大影响,因而可以方便地根据实际情况增加或减少监控节点的数量。2)适用于滑坡监测的无线传感器网络设计 这种无线传感器网络由众多具有感知和路由功能的无线传感器节点组成,能够协作实时监测,感知并采集各种环境对象的信息,将其通过多跳转发传送回主机进行分析、处理。以这些工作节点为依托,通过无线通信组成网络拓扑结构。系统中大部分的节点为子节点,从组网通信上看,他们只是其功能的一个子集,称为RFD(精简功能设备),这种设备不具有路由功能;另外还有一些节点负责与控制子节点通信、汇集数据和发布控制,或起到通信路由的作用,称为FFD(全功能设备或协调器)。如图3所示为一个典型的远程数据采集并返回到计算机终端的应用。每个节点由一个MCU作为主控设备。通过倾角传感器可以监测滑坡的运动状况,通过液位传感器监测地下水位深度,数据采集间隔也可以由中心服务器灵活控制,在旱季可以调整为每24h采集并

传递1次数据,从而节省能量并避免大量的冗余数据。而在雨季危险期,其采集间隔可以密集到5min/次,从而保证实时监测预警功能。每个信号采集节点通过ADC从模拟传感器得到实时数据,按照ZigBee协议把数据打包,并通过射频芯片及前端天线发送给簇内的RFD;经过RFD预处理之后,再由RFD路由转发到远端计算机;结合地貌特点、滑坡的分布特点,多个水流量检测点之间的相互关系等多种地质学、水流动力学等方面的知识进行数据的融合和处理。在每个节点的外部可外接相应的PIO芯片和其他外围电路进行交互。 在整个硬件平台的设计中,节能是一个重要因素,它决定着传感器网络的寿命。当节点目前没有传感任务并且不需要为其他节点转发数据时,关闭节点的无线通信模块、数据采集模块等以节省能耗,即让其置于睡眠状态。为控制子节点选择合适的地点,提供较充足的能源,以便延长节点使用寿命,提高监测预警系统有效性。在软件设计上,通过动态电源管理技术使系统各个部分都运行在节能模式。在关闭空闲模块状态下,传感器节点或其他部分将被关闭或者处于低功耗状态,直到有“感兴趣”的事件发生。

地质灾害监测预警系统方案

地质灾害监测预警系统方案

目录 第一章项目概述 (3) 1.1项目背景 (3) 1.2建设目标 (3) 1.3需求描述 (4) 第二章总体架构 (5) 2.1系统架构 (5) 2.2预警发布 (6) 2.2.1发布权限 (6) 2.2.2预警发布内容 (6) 2.2.3预警信息发布对象 (7) 2.3预警发布方式 (7) 2.4预警发布通信方案 (7) 第三章详细实现 (8) 3.1概述 (8) 3.2系统架构 (8) 3.3水雨情监测系统 (10) 3.3.1中心监控平台 (12) 3.3.2前端采集设备 (13) 3.4无线预警广播系统 (16) 3.4.1预警中心系统 (16) 3.4.2预警终端 (17) 3.4.3预警信息发布流程 (17) 3.4.4预警组网方式 (18) 3.4.5相关设备的准备及安装 (22) 3.5LED发布系统 (23) 第四章总结 (26)

第一章项目概述 1.1 项目背景 泥石流是指在山区或者其他沟谷深壑,地形险峻的地区,因为暴雨、暴雪或其他自然灾害引发的山体滑坡并携带有大量泥沙以及石块的特殊洪流。泥石流具有突然性以及流速快,流量大,物质容量大和破坏力强等特点。发生泥石流常常会冲毁公路铁路等交通设施甚至村镇等,造成巨大损失。 泥石流一般发生在半干旱山区或高原冰川区。这里的地形十分陡峭,泥沙、石块等堆积物较多,树木很少。一旦暴雨来临或冰川解冻,大大小小的石块有了足够的水分,便会顺着斜坡滑动起来,形成泥石流。而我国是一个多山的国家,山丘区面积约占国土面积的三分之二。据调查,全国所有的县级行政区中,有75%在山区,而这75%的山区县级行政区聚集了全国56%的人口。由于山丘区居住的人口数量多、密度大、分布广,以及典型的季风气候导致的降雨时空分布不均和复杂的地形地质因素等,每年汛期,随着暴雨或冰川融化,极易形成泥石流。居住在山丘区的广大群众的生命财产安全都将面临山洪、泥石流和山体滑坡等灾害的严重威胁,其中7400万人直接受到影响。 地质灾害的防御策略是“以防为主,防重于抢”,防御防治的方法是既要采取工程措施,提高工程防治标准,也要采取非工程措施,建立综合预防减灾体系,提高防灾抗风险能力。 综上所述,建立地质灾害监测预警系统,是防治山洪、泥石流、山体滑坡等地质灾害的一项重要的非工程性措施。 1.2 建设目标 完整的地质灾害监测预警系统应同时具备:水雨情监测系统、LED灾情发布系统、无线预警广播系统。 水雨情监测系统应能够实时监测现场的地质数据,气候数据等,为预警信息的发布提供数据依据,并由LED灾情发布系统和无线预警广播系统进行预警发布。当地质灾害发生时,系统能有效地发布预警信号,提示当地民众及时防范或撤离。

变形监测数据处理

变形监测数据处理 第一章引论 变形是自然界的普遍现象,它是指变形体在各种荷载作用下,其形状、大小及位置在时空域中的变化。 变形监测,就是利用测量与专用仪器和方法对变形体的变形现象进行监视观测的工作。其任务是确定在各种荷载和外力作用下,变形体的形状、大小及位置变化的空间状态和时间特征。 变形体的范畴可以大到整个地球,小到一个工程建(构)筑物的块体,它包括自然的和人工的构筑物。根据变形体的研究范围,可将变形监测研究对象划分为这样三类: 1.全球性变形研究,如监测全球板块运动、地极移动、地球自转速率变化、地潮等; 2.区域性变形研究,如地壳形变监测、城市地面沉降等; 3.工程和局部性变形研究,如监测工程建筑物的三维变形、滑坡体的滑动、地下开采使引起的地表移动和下沉等。 变形监测的内容,应根据变形体的性质与地基情况来定。 1)工业与民用建筑物:主要包括基础的沉陷观测与建筑物本身的变形观测。就其基础而言,主要观测内容是建筑物的均匀沉陷与不均匀沉陷。对于建筑物本身来说,则主要是观测倾斜与裂缝。对于高层和高耸建筑物,还应对其动态变形(主要为振动的幅值、频率和扭转)进行观测。对于工业企业、科学试验设施与军事设施中的各种工艺设备、导轨等,其主要观测内容是水平位移和垂直位移。 2)水工建筑物:对于土坝,其观测项目主要为水平位移、垂直位移、渗透以及裂缝观测。对于混凝土坝,以混凝土重力坝为例,由于水压力、外界温度变化、坝体自重等因素的作用,其主要观测项目主要为垂直位移(从而可以求得基础与坝体的转动)、水平位移(从而可以求得坝体的扭曲)以及伸缩缝的观测,这些内容通常称为外部变形观测。此外,为了了解混凝土坝结构内部的情况,还应对混凝土应力、钢筋应力、温度等进行观测,这些内容通常称为内部观测。 3)地面沉降:对于建立在江河下游冲积层上的城市,由于工业用水需要大量地吸取地下水,而影响地下土层的结构,将使地面发生沉降现象。对于地下采矿地区,由于在地下大量的采掘,也会使地表发生沉降现象。这种沉降现象严重的城市地区,暴雨以后将发生大面积的积水,影响仓库的使用与居民的生活。有时甚至造成地下管线的破坏,危及建筑物的安全。因此,必须定期地进行观测,掌握其沉降与回升的规律,以便采取防护措施。对于这些地区主要应进行地表沉降观测。 变形监测所研究的理论和方法主要涉及到这样三个方面:变形信息的获取;变形信息的分析与解释;以及变形预报。 对于工程建筑物,变形监测的意义重点表现在:确保安全、验证设计、灾害防治。

公路滑坡监测技术简介试题及答案

公路滑坡监测技术简介试题及答案 第1 题 以下不属于我国主要地质灾害类型的是: A.滑坡 B.崩塌 C.地面塌陷 D.雪崩 答案:D 第2题联合国科教文组织世界滑坡编目工作组于上世纪90 年代建议将滑坡的众多因素归纳为场地条件、地貌作用、自然作用和()四大类 A.人为作用 B.流水作用 C.风场作用 D.生物作用 答案:A 第3题 我国2013年1至10月,全国共发生地质灾害

15196 起,哪种灾害类型发生的最多() A.滑坡 B.崩塌 C.地面塌陷 D.雪崩 答案:A 第4 题以下不属于滑坡监测主要内容的是() A.地表位移 B.地下变形 C.水文 D.自振频率 答案:D 第5题以下不属于滑坡监测中地表变形监测方法的是 A.大地测量 B.近景摄影 C.GPS D.测斜法 答案:D

第6题以下不属于滑坡监测中地下变形监测方法的是 A.大地测量 B.重锤法 C.重锤法 D.测斜法 答案:A 第7题 以下设备中,()是滑坡监测中地表变形监测的主要仪器设备 A.风速风向仪 B.水位计 C.GPS D.测斜仪 答案:C 第8 题静力水准仪能够在以下哪种滑坡监测内容中 使用 A.环境

B.地声 C .地下变形 D.水文 答案:C 第9 题 滑坡预测预报研究开始起步的时间是 A.20 世纪50 年代 B.20 世纪60 年代 C.20世纪70年代 D.20 世纪80年代 答案:B 第10 题经过多年国内外滑坡专家的潜心研究、不断探索,滑坡理论有了较大发展,纵观其发展过程,大致可分为三个阶段,以下不属于滑坡研究发展阶段的是 A .现象预报和经验式预报 B .位移—时间统计分析预报 C.滑坡预报模型 D.综合预报模型及预报判据研究

相关主题