搜档网
当前位置:搜档网 › 【人教A版】高中数学必修2第二章课后习题解答

【人教A版】高中数学必修2第二章课后习题解答

【人教A版】高中数学必修2第二章课后习题解答
【人教A版】高中数学必修2第二章课后习题解答

A 新课程标准数学必修2第二章课后习题解答

第二章 点 、直线、平面之间的位置关系

2.1空间点、直线、平面之间的位置关系

练习(P43) 1、D ; 2、(1)不共面的四点可确定4个平面;(2)共点的三条直线可确定1个或3个平面 3、(1)× (2)√ (3)√ (4)√

4、(1)A ∈α,B ?α; (2)M ?α,M ∈a ; (3)a ?α a ?β

练习(P48) 1、(1)3条。分别是BB ’,CC ’,DD ’. (2)相等或互补

2、(1)∵BC ∥B ’C ’,∴∠B ’C ’A

’是异面直线A ’C ’与BC 所成的角。 在RT

△A ’B ’C ’中,A ’B ’B ’C ’B ’C ’A ’=45°.因此,异面直线A ’C ’与BC 所成的角为45°

(2)∵AA ’∥BB

’,∴∠B ’BC ’是异面直线AA ’与BC ’所成的角。在RT △B ’BC ’中,B ’C ’BB ’=AA=2,∴BC ’=4,∠B ’BC ’=60°.因此,异面直线AA ’与BC ’所成的角为60°

练习(P49) B

练习(P50)三个平面两两相交,它们的交线有一条或三条

习题2.1 A 组(P51)1、图略 2、图略

3、(1)√ (2)× (3)√ (4)× (5)×

4、(1)θ, (2)8, (3)2, (4)平行或在这个平面内, (5)b ∥平面α或b 与α相交, (6)可能相交,也可能是异面直线。

5、两条平行直线确定一个平面,第三条直线有两点在此平面内,所以它也在这个平面内。于是,这三条直线共面。

6、提示:利用平行关系的传递性证明AA ’∥CC ’,又利用相等关系的传递性证明AA ’=CC ’,因此,我们可得平行四边形ACC ’A ’,然后由平行四边形的性质得AB=A ’B ’,AC=A ’C ’,BC=B ’C ’,因此,△ABC ≌△A ’B ’C ’。

7、三条直线两两平行且不共面可以确定三个平面,如果三条直线交于一点则最多可以确定三个平面。

8、正方体各面所在平面分空间27部分。

B 组 1、(1)

C ; (2)

D ; (3)C.

2、证明:∵AB ∩α=P ,AB ?平面ABC ∴P ∈平面ABC ,P ∈α

∴P 在平面ABC 与α的交线上,同理可证,Q 和R 均在这条交线上,∴P ,Q ,R 三点共线 说明:先确定一条直线,在证明其他点也在这条直线上。

3、提示:直线EH 和FG 相交于点K ;由点K ∈EH ,EH ?平面ABD ,得K ∈平面ABD.

同理可证:点K ∈平面BCD ,而平面ABD ∩平面BCD=BD ,因此,点K ∈直线BD.

即EH ,FG ,BD 三条直线相交于一点。

2.2 直线、平面平行的判定及其性质

练习(P55) 1、(1)面A ’B ’C ’D ’,面CC ’D ’D ; (2)面DD ’C ’C ,面BB ’C ’C ;

(3)面A ’D ’B ’C ’,面BB ’C ’C. 2、解:直线BD 1∥面AEC ,证明如下:连接BD 于AC 交于点F ,连接EF

∵AC 、BD 为正方形ABCD 的对角线 ∴F 为BD 的中点 ∵E 为DD 1的中点 ∴EF 为△DBD 1的中位线

∴EF ∥BD 1 又∵EF ?平面AEC ,BD 1?平面AEC

∴BD 1∥平面AEC 练习(P58) 1、(1)命题不正确 (2)命题正确

2、提示:容易证明MN ∥EF ,NA ∥EB ,进而可证平面AMN ∥平面EFDB

3、D

练习(P61) 1、(1)× (2)× (3)× (4)√

习题2.2 A 组(P61) 1、(1)A ;(2)D ; (3)C ; 2、(1)平行或相交; (2)异面或相交

3、证明:(1)∵E 、F 分别为BC 、CD 的中点

∴EF 为△BCD 的中位线

∴EF ∥BD ,∵EF ?平面EFG ,BD ?平面EFG

∴BD ∥平面EFG (2)∵G 、F 分别为AD 、CD 的中点 ∴GF 为△ACD 的中位线

∴GF ∥AC ,∵GF ?平面EFG ,AC ?平面EFG ∴AC ∥平面EFG

4、在直线a 上任取一点P ,过P 作直线b’,使b’∥b.

则由a 与b’两相交直线确定的平面即为所求的平面α

5、证明:连接CD

,,,A B C D ABCD CD AC BD C AB AB CD ABCD AC BD AC BD =//??////???=//?

?

????

???

共面平面∩α∈α,D ∈α α 是平行四边形

6、AB AB AB CD CD //??//=?????

αβα∩β. 同样可证明AB ∥EF ,于是CD ∥EF.

7、证明:∵AA ’∥BB ’,AA ’=BB ’ ∴四边形AA ’B ’B 是平行四边形

∴AB ∥A ’B ’,又∵AB ?平面A ’B ’C ’,A ’B ’?平面A ’B ’C ’

∴AB ∥平面A ’B ’C ’, 同理可证BC ∥平面A ’B ’C ’

又∵AB ?平面ABC ,BC ?平面ABC 且AB ∩BC=B

∴平面ABC ∥平面A ’B ’C ’

8、证明:∵在△AOB 和△A ’OB ’中,AO=A ’O ,∠AOB =∠A ’OB ’,BO=B ’O

∴△AOB ≌△A ’OB ’(SAS ) ∴∠ABO =∠A ’ B ’O

∴AB ∥A ’B ’,又∵AB ?平面A ’B ’C ’,A ’B ’?平面A ’B ’C ’

∴AB ∥平面A ’B ’C ’, 同理可证BC ∥平面A ’B ’C ’

又∵AB ?平面ABC ,BC ?平面ABC 且AB ∩BC=B

∴平面ABC ∥平面A ’B ’C ’

B 组 1、过平面VA

C 内一点P 作直线DE ∥AC ,交VA 于

D ,交VC 于

E ;过平面VBA 内一点D 作

直线DF ∥VB ,交AB 于F ,则DE ,DF 所确定的截面为所求。理论依据是直线与平面平行的判定定理。

2、证明:设P 为b 上任意一点,则a 与P 确定一平面γ. β∩γ=c ,c ∥a ,所以c ∥α.

又c 与b 有公共点P ,且c 与b 不重合(否则a ∥b ,与已知矛盾),即c 与b 相交.

由b ∥α,可证α∥β

3、连接AF ,交β于G ,连接BG ,EG ,则由β∥γ得:

AB AG BC GF = 由α∥β,得AG

DE

GF EF =,AB

DE

BC EF =

4、正确命题序号是:(1)(2)(4)(5)

2.2 直线、平面垂直的判定及其性质

练习(P67) 1、证明:作AC 的中点D ,连接VD ,BD

∵VA=VC. AB=BC ,∴△VAC 和△ABC 是等腰三角形 又∵D 为底边AC 的中点 ∴VD ⊥AC ,BD ⊥AC 又∵VD ∩BD=D ∴AC ⊥平面VBD

∵VB ?平面VBD 所以 AC ⊥VB

2、(1)AB 边的中点; (2)点O 是△ABC 的外心; (3)点O 是△ABC 的垂心;

3、不一定平行

练习(P69) A

练习(P71) 1、(1)√ (2)√ (3)√ 2、b ∥α,或b ?α

练习(P73) 1、A 2、C

习题2.2 A 组(P73)1、(1)命题不正确 (2)命题正确

2、证明:如图,设α∩γ=l ,在平面α内作直线a ⊥l .

∵α⊥γ, ∴a ⊥γ

过a 作一个平面δ与平面β相交于直线b

由β∥α,得b ∥a ,∴b ⊥γ

又b ?β,∴β⊥γ

3、解:垂直关系,证明如下:

VA AB VA BC BC VAB VA ABC VAB VBC VA AC AB BC BC VBC ??????

?

?

??????⊥⊥⊥平面⊥平面平面⊥平面⊥⊥平面

4、解:取AB 中点M ,连接VM.CM ,

∵VA=VB ,且M 为底边AB 的中点 ∴VM ⊥AB

∵CA=CB ,且M 为底边AB 的中点 ∴CM ⊥AB ∴∠VMC 为二面角V-AB-C 的平面角 由已知得:VM=CM=VC=1 ∴△VMC 是等边三角形

故∠VMC=60° ∴二面角V-AB-C 的平面角的度数为60° 5、提示:在平面γ内作两条相交直线分别垂直于平面α,β于平面γ再利用面面垂直的性质定理证直线l ⊥平面γ.

6、已知:a ,b ,c 为两两互相垂直的直线,a ,b 确定一平面α,a ,c 确定一平面β,

b ,

c 确定一平面γ

求证:α,β,γ两两互相垂直

证明:∵c ⊥a ,c ⊥b ,且a ,b 是α内两条相交直线

∴c ⊥α 又∵c ?β ∴α⊥β

同理可证,α⊥γ,β⊥γ

7、90°或45°

8、证明:将m ,n 确定的平面定义为平面α,

由已知可证:l 1⊥α,l 2⊥α,∴l 1∥l 2,因此∠1=∠2

9、已知:a ∥b ,a ∩α=A 1,b ∩α=B 1,θ1,θ2分别是a ,b 求证:θ1=θ2 证明:如图,在a ,b 上分别取点A ,B ,这两点在平面α同侧. 且AA 1=BB 1,连接AB 和A 1B 1. ∵AA 1∥BB 1,AA 1=BB 1,∴四边形AA 1 B 1B ∴A B ∥A 1B 1. 又A 1B 1?α,AB ?α, ∴AB ∥α 设A 2,B 2分别是平面α的垂线AA 2,BB 2的垂足, 连接A 1A 2,B 1B 2,则AA 2=BB 2.

在RT △AA 1A 2和RT △BB 1B 2中,∵AA 2=BB 2,AA 1=BB 1,

∴RT △AA 1A 2≌RT △BB 1B 2 ∴∠AA 1A 2≌∠BB 1B 2,θ1=θ2

B 组 1、证明:∵AA ’⊥平面ABCD ,∴AA ’⊥BD. 又BD ⊥A

C ,∴B

D ⊥平面ACC ’A ’,

而BD ?平面A ’BD ,因此,平面ACC ’A ’⊥平面A ’BD

2、提示:由已知条件知:VD ⊥AB ,VO ⊥AB ,所以,AB ⊥平面VDC ,AB ⊥CD.

又因为AD=BD ,可得AC=BC.

3、提示:参考A 组第5题的解法

4、解:由VC 垂直于⊙O 所在平面,知VC ⊥AC ,VC ⊥BC ,即∠ACB 是二面角A-VC-B 的平面角. 由∠ACB 是直径上的圆周角,知∠ACB=90°. 因此,平面VAC ⊥平面VBC. 由DE 是△VAC 两边中点连线,知DE ∥AC ,故DE ⊥VC. 由两个平面垂直的性质定理,知直线DE 与平面VBC 垂直.

第二章 复习参考题A 组(P78)

1、三个平面将空间分成4或6或7或8个部分

2、解:连结C 1E ,在上底面过点E 作直线l ⊥C 1E 即可

∵CC 1⊥底面A 1B 1C 1D 1 ∴CC 1⊥l ,根据作法知l ⊥C 1E.

又∵C 1E ∩C 1C=C 1,, ∴l ⊥平面CC 1E ,因此,l ⊥CE

3、已知:直线l 1 ,l 2 ,l 3 , l 1 ∩l 2=A ,l 2 ∩l 3=B ,l 3 ∩l 1=C

求证:l 1 ,l 2 ,l 3共面

证明:∵l 1 ∩l 2=A ∴由公理2可知,l 1 ,l 2确定一平面α

又∵B ∈l 2,C ∈l 1 ∴B ∈α,C ∈α

而B ∈l 3,C ∈l 3(已知) ∴l 3?α(公理1)

∴l 1 ,l 2 ,l 3都在α内,即l 1 ,l 2 ,l 3共面

4、(1)如右图,CD ∥EF ,EF ∥AB ,CD ∥AB. 又CD ≠AB ,

∴四边形ABCD 是梯形

(2)298a 5、证明:连结EE 1,FF 1,根据已知条件AE ∥A 1E 1且AE=A 1E 1,AF ∥A 1F 1且AE=A 1F 1

推出A A 1∥E E 1且A A 1=E E 1,A A 1∥FF 1且A A 1=FF 1,

∴EE 1∥FF 1且EE 1=FF 1

∴四边形EFF 1E 1是平行四边形,因此EF ∥E 1F 1且EF=E 1F 1

6、解:设长方形的长、宽、高分别是x ,y ,z .

()22222222222222212x y a y z b x y z a b c z x c ?+=?+

=?++=++??+=?

长方形的对角线长为7、证明:作VO ⊥平面ABCD ,垂足为O ,则VO ⊥AB

取AB 中点H ,连结VH ,则VH ⊥AB.

∵VH ∩VO=V ,∴AB ⊥平面VHO

∴∠VHO 为二面角V-AB-C 的二面角.

∵VH 2=VA 2-AH 2=5-1=4,∴VH=2

而1

12OH AB ==,∴∠VHO=60°. 因此,二面角V-AB-C 的二面角为60°

8、因为α∩β=a ,γ∩α=b ,β∩γ=c ,且a ∩b=O ,

高中数学必修2综合测试题

正视图 侧视图 俯视图 2 1 1 高中数学必修2综合测试题 文科数学 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.若直线1=x 的倾斜角为α,则=α( ). A .0 B.3 π C .2π D .π 2.已知直线1l 经过两点)2,1(--、)4,1(-,直线2l 经过两点)1,2(、)6,(x ,且21//l l ,则=x ( ). A .2 B .-2 C .4 D .1 3.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( ). A .π25 B .π50 C .π125 D .π200 4.若方程02 2 =++++k y x y x 表示一个圆,则k 的取值范围是( ) A.21> k B.21≤k C. 2 1 0<

高一数学必修二练习题精编版

高一数学必修二练习题 精编版 MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】

三视图、直观图、公里练习 1、下列说法正确的是() A.有一个面是多边形,其余各面都是三角形,由这些面围成的几何体是棱锥 B.有两个面平行且相似,其余各面都是梯形的多面体是棱台 C.如果一个棱锥的各个侧面都是等边三角形,那么这个棱锥可能为六棱锥 D.有两个相邻侧面是矩形的棱柱是直棱柱 2、在正方体ABCD﹣A1B1C1D1中,O、O1分别为底面ABCD和A1B1C1D1的中心,以OO1所在直线为轴旋转线段BC1形成的几何体的正视图为() 、已知水平放置的△ABC的直观图 △A′B′C′(斜二测画法)是边长为a的正三角形,则原△ABC的面积为( ) 、将长方体截去一个四棱锥后,得到的几何体的直观图如图所示,则该几何体的俯视图为( ) 、一个正方体被过其中三个顶点的平面割去一个角余下的几何 体如图所示,则它的正视图应为() 6、已知正三角形的边长为1,那么的平面直观图的面积为() 3366 、如图所示为一个简单几何体的三视图,则其对应的实物是() 、如图是一正方体被过棱的中点M、N和顶点A、D、C1的两个截面截去两个角后所得的几何体,则该几何体的正视图为() 9、如图,在空间直角坐标系中,已知直三棱柱的顶点在轴上,平行于轴,侧棱平行于轴.当顶点在轴正半轴上运动时,以下关于此直三棱柱三视图的表述正确的是() A.该三棱柱主视图的投影不发生变化; B.该三棱柱左视图的投影不发生变化; C.该三棱柱俯视图的投影不发生变化;

2019年人教版高中数学必修二综合测试题(含答案)

必修2综合测试题 一、选择题 1.点(1,-1)到直线x -y +1=0的距离是( ). A . 2 1 B . 2 3 C . 2 2 D . 2 2 3 2.过点(1,0)且与直线x -2y -2=0平行的直线方程是( ). A .x -2y -1=0 B .x -2y +1=0 C .2x +y -2=0 D .x +2y -1=0 3.下列直线中与直线2x +y +1=0垂直的一条是( ). A .2x ―y ―1=0 B .x -2y +1=0 C .x +2y +1=0 D .x + 2 1 y -1=0 4.已知圆的方程为x 2+y 2-2x +6y +8=0,那么通过圆心的一条直线方程是( ). A .2x -y -1=0 B .2x +y +1=0 C .2x -y +1=0 D .2x +y -1=0 5.如图(1)、(2)、(3)、(4)为四个几何体的三视图,根据三视图可以判断这四个几何体依次分别为( ). A .三棱台、三棱柱、圆锥、圆台 B .三棱台、三棱锥、圆锥、圆台 C .三棱柱、四棱锥、圆锥、圆台 D .三棱柱、三棱台、圆锥、圆台 (4 (3 (1 (2

6.直线3x+4y-5=0与圆2x2+2y2―4x―2y+1=0的位置关系( ). A.相离B.相切 C.相交但直线不过圆心D.相交且直线过圆心 7.过点P(a,5)作圆(x+2)2+(y-1)2=4的切线,切线长为3 2,则a等于( ).A.-1 B.-2 C.-3 D.0 8.圆A : x2+y2+4x+2y+1=0与圆B : x2+y2―2x―6y+1=0的位置关系是( ).A.相交B.相离C.相切D.内含 9.已知点A(2,3,5),B(-2,1,3),则|AB|=( ). A.6B.26C.2D.22 10.如果一个正四面体的体积为9 dm3,则其表面积S的值为( ). A.183dm2B.18 dm2C.123dm2D.12 dm2 11.正六棱锥底面边长为a,体积为 2 3a3,则侧棱与底面所成的角为( ) A.30°B.45°C.60°D.75° 12.直角梯形的一个内角为45°,下底长为上底长的 2 3,此梯形绕下底所在直线旋转一周所成的旋转体表面积为(5+2),则旋转体的体积为( ).A.2 B. 32 + 4C. 32 + 5D. 3 7 二、填空题 13.在y轴上的截距为-6,且与y轴相交成30°角的直线方程是______. 14.若圆B : x2+y2+b=0与圆C : x2+y2-6x+8y+16=0没有公共点,则b的取值范围是________________. 15.已知△P1P2P3的三顶点坐标分别为P1(1,2),P2(4,3)和P3(3,-1),则这个三角形的最大边边长是__________,最小边边长是_________.

高中数学必修2测试题附答案

数学必修2 一、选择题 1、下列命题为真命题的是( ) A. 平行于同一平面的两条直线平行; B.与某一平面成等角的两条直线平行; C. 垂直于同一平面的两条直线平行; D.垂直于同一直线的两条直线平行。 2、下列命题中错误的是:( ) A. 如果α⊥β,那么α内一定存在直线平行于平面β; B. 如果α⊥β,那么α内所有直线都垂直于平面β; C. 如果平面α不垂直平面β,那么α内一定不存在直线垂直于平面β; D. 如果α⊥γ,β⊥γ,α∩β=l,那么l ⊥γ. 3、右图的正方体ABCD-A ’B ’C ’D ’ 中,异面直线AA ’与BC 所成的角是( ) A. 300 B.450 C. 600 D. 900 4、右图的正方体ABCD- A ’B ’C ’D ’ 中, 二面角D ’-AB-D 的大小是( ) A. 300 B.450 C. 600 D. 900 5、直线5x-2y-10=0在x 轴上的截距为a,在y 轴上的截距为b,则( ) A.a=2,b=5; B.a=2,b=-5; C.a=-2,b=5 D.a=-2,b=-5 6、直线2x-y=7与直线3x+2y-7=0的交点是( ) A (3,-1) B (-1,3) C (-3,-1) D (3,1) 7、过点P(4,-1)且与直线3x-4y+6=0垂直的直线方程是( ) A 4x+3y-13=0 B 4x-3y-19=0 C 3x-4y-16=0 D 3x+4y-8=0 8、正方体的全面积为a,它的顶点都在球面上,则这个球的表面积是:( ) A.3 a π; B. 2 a π; C.a π2; D.a π3. A B D A ’ B ’ D ’ C C ’

高中数学(人教版必修2)第二章2.1.2

2.1.2 空间中直线与直线之间的位置关系 一、基础过关 1.分别在两个平面内的两条直线间的位置关系是 ( ) A .异面 B .平行 C .相交 D .以上都有可能 2.若AB ∥A ′B ′,AC ∥A ′C ′,则有 ( ) A .∠BAC =∠B ′A ′C ′ B .∠BA C +∠B ′A ′C ′=180° C .∠BAC =∠B ′A ′C ′或∠BAC +∠B ′A ′C ′=180° D .∠BAC >∠B ′A ′C ′ 3.空间四边形的两条对角线相互垂直,顺次连接四边中点的四边形一定是 ( ) A .空间四边形 B .矩形 C .菱形 D .正方形 4.“a 、b 为异面直线”是指: ①a ∩b =?,且aD \∥b ;②a ?面α,b ?面β,且a ∩b =?;③a ?面α,b ?面β,且α∩β=?;④a ?面α,b ?面α;⑤不存在面α,使a ?面α,b ?面α成立. 上述结论中,正确的是 ( ) A .①④⑤ B .①③④ C .②④ D .①⑤ 5.如果两条直线a 和b 没有公共点,那么a 与b 的位置关系是________. 6.已知正方体ABCD —A ′B ′C ′D ′中: (1)BC ′与CD ′所成的角为________; (2)AD 与BC ′所成的角为________. 7.如图所示,四边形ABEF 和ABCD 都是直角梯形,∠BAD =∠F AB =90°,BC 綊12 AD , BE 綊12 F A , G 、 H 分别为F A 、FD 的中点. (1)证明:四边形BCHG 是平行四边形; (2)C 、D 、F 、E 四点是否共面?为什么? 8.如图,正方体ABCD -EFGH 中,O 为侧面ADHE 的中心,求: (1)BE 与CG 所成的角; (2)FO 与BD 所成的角.

(完整版)高中数学必修二练习题(人教版,附答案)

高中数学必修二练习题(人教版,附答案)本文适合复习评估,借以评价学习成效。 一、选择题 1. 已知直线经过点A(0,4)和点B(1,2),则直线AB的斜率为() A.3 B.-2 C. 2 D. 不存在 2.过点且平行于直线的直线方程为() A. B.C.D. 3. 下列说法不正确的 ....是() A.空间中,一组对边平行且相等的四边形是一定是平行四边形; B.同一平面的两条垂线一定共面; C. 过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内; D. 过一条直线有且只有一个平面与已知平面垂直. 4.已知点、,则线段的垂直平分线的方程是() A. B. C. D. 5. 研究下在同一直角坐标系中,表示直线与的关系 6. 已知a、b是两条异面直线,c∥a,那么c与b的位置关系()

A.一定是异面 B.一定是相交 C.不可能平行 D.不可能相交 7. 设m、n是两条不同的直线,是三个不同的平面,给出下列四个命题: ①若,,则②若,,,则 ③若,,则④若,,则 其中正确命题的序号是( ) (A)①和②(B)②和③(C)③和④(D)①和④ 8. 圆与直线的位置关系是() A.相交 B.相切 C.相离 D.直线过圆心 9. 两圆相交于点A(1,3)、B(m,-1),两圆的圆心均在直线x-y+c=0上,则m+c的值为() A.-1 B.2 C.3 D.0 10. 在空间四边形ABCD各边AB、BC、CD、DA上分别取E、F、G、H四点,如果EF、GH相交于点P,那么( ) A.点P必在直线AC上 B.点P必在直线BD上 C.点P必在平面DBC内 D.点P必在平面ABC外 11. 若M、N分别是△ABC边AB、AC的中点,MN与过直线BC的平面β的位置关系是(C ) A.MN∥β B.MN与β相交或MNβ C. MN∥β或MNβ D. MN∥β或MN与β相交或MNβ

高二数学必修二综合测试题有答案

班级 ________________ 姓名 ________________________________ 一、选择题(本大题共 12小题,每小题5分,共60分) 1.下面四个命题: ① 分别在两个平面内的两直线是异面直线; ② 若两个平面平行,则其中一个平面内的任何一条直线必平行于另一个平面; ③ 如果一个平面内的两条直线平行于另一个平面,则这两个平面平行; ④ 如果一个平面内的任何一条直线都平行于另一个平面,则这两个平面平行. 其中正确的命题是( ) A .①② B .②④ C .①③ D .②③ cos F 1PF 2 等于( C . 5. 已知空间两条不同的直线 m,n 和两个不同的平面 A .若 m// ,n ,则m//n B .若 m,m n,则n C .若 m// ,n// ,则m//n D .若m// ,m , I n,则m//n 6. 圆x 2 + y 2— 2x + 4y — 20= 0截直线5x — 12y + c = 0所得的弦长为 8,则c 的值是( ) A . 10 B . 10 或—68 C . 5 或—34 D . — 68 7. 已知ab 0,bc 0 ,则直线ax by c 通过( ) A .第一、二、三象限 B .第一、二、四象限 C .第一、三、四象限 D .第二、三、四象限 & 正方体 ABC —A 1BC 1D 1中,E 、F 分别是AA 与CC 的中点,则直线 ED 与DF 所成角的 数学 必修 综合测试题 总分: _________________ 2. 过点P ( 1,3)且垂直于直线x 2y 3 0的直线方程为( A . 2x y 1 0 B . 2x y 5 C . x 2y 5 D . x 2y 7 3. 4. 圆(x — 1)2+ y 2= 1的圆心到直线 2 2 y 1的左右焦点, 5 B . 2 x 已知F, F 2是椭圆石 C . P 为椭圆上一个点, 且 PF 1 : PF 1:2,则 B . ,则下列命题中正确的是( )

高中数学必修2知识框架

高一数学知识框架第一章集合与函数概念

第二章基本初等函数(I)

必修二立体几何 第一章空间几何体知识结构如下 画三视图的原则:长对齐、高对齐、宽相等 直观图:斜二测画法 斜二测画法的步骤: (1).平行于坐标轴的线依然平行于坐标轴; (2).平行于y轴的线长度变半,平行于x,z轴的线长度不变; (3).画法要写好。 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面 (3)画侧棱(4)成图

第二章 点、直线、平面之间的位置关系 知识结构如下 第三章 直线与方程 从代数表示到几何直观(通过方程研究几何性质和度量) 直线的倾斜角概念:当直线l 与x 轴相交时, 取 x 轴作为基准 , x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角 .特别地,当直线l 与x 轴平行或重合时, 规定α= 0° 1 平面含义:平面是无限延展的 2 平面的画法及表示 (1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图) (2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等, 也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的 大写字母来表示,如平面AC 、平面ABCD 等。 公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 公理1作用:判断直线是否在平面内 公理2:过不在一条直线上的三点,有且只有一 个平面。符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α,使A ∈α、B ∈α、C ∈α。 公理2作用:确定一个平面的依据。 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一 条过该点的公共直线。符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L 公理3作用:判定两个平面是否相交的依据 公理4:平行于同一条直线的两条直线互相平行。符号表示为:设a 、b 、c 是三条直线 强调:公理4实质上是说平行具有传递 性,在平面、空间这个性质都适用。 公理4作用:判断空间两条直线平行的依据。 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补 直线与平面有三种位置关系: 1)直线在平面内:有无数个公共点 2)直线与平面相交: 有且只有一个公共点 3)直线在平面平行: 没有公共点 平面平行:一个平面内的两条交直线与另一个平面平行,则这两个平面平行 平面互相垂直:一个平面过另一个平面的垂线,则这两个平面垂直 斜率公式: 点到线距离: 平行线距离:

最新高中数学必修二练习题(人教版,附答案)

高中数学必修二练习题(人教版,附答案) 1 2 本文适合复习评估,借以评价学习成效。 3 一、选择题 1. 已知直线经过点A(0,4)和点B(1,2),则直线AB的斜率为() 4 5 A.3 B.-2 C. 2 D. 不存在 6 2.过点且平行于直线的直线方程为() 7 A. B.C.D. 8 3. 下列说法不正确的 ....是() 9 A. 空间中,一组对边平行且相等的四边形是一定是平行四边形; 10 B.同一平面的两条垂线一定共面; 11 C. 过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面 12 内; 13 D. 过一条直线有且只有一个平面与已知平面垂直. 14 15 16 17 18 19 4.已知点、,则线段的垂直平分线的方程是() 20 21 A. B. C. D.

5. 研究下在同一直角坐标系中,表示直线与的关系 22 23 24 6. 已知a、b是两条异面直线,c∥a,那么c与b的位置关系() 25 A.一定是异面 B.一定是相交 C.不可能平行 D.不可能相交 26 27 7. 设m、n是两条不同的直线,是三个不同的平面,给出下列四个命题: 28 ①若,,则②若,,,则 29 30 ③若,,则④若,,则 31 32 其中正确命题的序号是( ) 33 (A)①和②(B)②和③(C)③和④(D)①和④ 34 35 8. 圆与直线的位置关系是() A.相交 B.相切 C.相离 D.直线过圆心 36 37 38 9. 两圆相交于点A(1,3)、B(m,-1),两圆的圆心均在直线x-y+c=0上,则m+c 39 的值为() 40 A.-1 B.2 C.3 D.0 41 10. 在空间四边形ABCD各边AB、BC、CD、DA上分别取E、F、G、H四点,如果EF、42 GH相交于点P,那么( )

高中数学必修2综合测试题__人教A版

2015-2016学年度第一学期高一数学期末考试试卷 试卷满分:150分考试时间:120分钟 12道小题,每小题5分,共60分。在每小题给出的四个选项中,只 、下图(1)所示的圆锥的俯视图为() .已知直线l的方程为1 y x =+,则该直线l的倾斜角为(). 30 (B) 60 (C) 45 (D)135 、边长为a正四面体的表面积是() A3;B3;C2;D2。 、对于直线:360 l x y -+=的截距,下列说法正确的是() A、在y轴上的截距是6; B、在x轴上的截距是6; C、在x轴上的截距是3; D、在y轴上的截距是3-。 、已知, a b αα ? //,则直线a与直线b的位置关系是() A、平行; B、相交或异面; C、异面; D、平行或异面。 、已知两条直线 12 :210,:40 l x ay l x y +-=-=,且 12 l l//,则满足条件a的值为 () A、 1 2 -;B、 1 2 ;C、2 -;D、2。 7.已知点(,1,2) A x B 和点(2,3,4),且AB=,则实数x的值是(). (A) 6或-2 (B)–6或2 (C)3或-4 (D) -3或4 8、已知圆22 :260 C x y x y +-+=,则圆心P及半径r分别为() A、圆心() 1,3 P,半径10 r=;B、圆心() 1,3 P,半径r=; C、圆心() 1,3 P-,半径10 r=;D、圆心() 1,3 P-,半径r=。 9、若直线a与平面α不垂直,那么在平面α内与直线a垂直的直线() (A)只有一条(B)无数条 (C)是平面α内的所有直线(D)不存在 10、两条不平行的直线,其平行投影不可能是() A、两条平行直线; B、一点和一条直线; C、两条相交直线; D、两个点。 11.棱长为a的正方体内切一球,该球的表面积为() A、2 a πB、22a πC、32a πD、a π2 4 12.直线 3 y2 x= - - 与圆 9 )3 y( )2 x(2 2= + + - 交于E、F两点,则 ?EOF(O是原 点)的面积为(). A. 5 2 B.4 3 C.2 3 D. 5 5 6(B 第 1 页共5 页

高中数学必修2第二章知识点总结90961

高中数学必修2知识点总结 立体几何初步 特殊几何体表面积公式(c 为底面周长,h 为高,' h 为斜高,l 为母线) ch S =直棱柱侧面积'21ch S =正棱锥侧面积')(21 21h c c S +=正棱台侧面积 rh S π2=圆柱侧()l r r S +=π2圆柱表rl S π=圆锥侧面积()l r r S +=π圆锥表 l R r S π)(+=圆台侧面积()2 2R Rl rl r S +++=π圆台表 柱体、锥体、台体的体积公式 V Sh =柱13 V Sh =锥''1()3 V S S S S h =++台2V Sh r h π==圆柱h r V 23 1π=圆锥 ''2211 ()()33V S S S S h r rR R h π=++=++圆台 (4)球体的表面积和体积公式:V 球=343 R π ; S 球面=2 4R π 第二章 直线与平面的位置关系 2.1空间点、直线、平面之间的位置关系 1 平面含义:平面是无限延展的 2 三个公理: (1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内. 符号表示为 A ∈L B ∈L => L α A ∈α B ∈α 公理1作用:判断直线是否在平面内. (2)公理2:过不在一条直线上的三点,有且只有一个平面。 符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。 公理2作用:确定一个平面的依据。 (3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。 符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L 公理3作用:判定两个平面是否相交的依据. 空间中直线与直线之间的位置关系 1 空间的两条直线有如下三种关系: 相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点; 异面直线: 不同在任何一个平面内,没有公共点。 2 公理4:平行于同一条直线的两条直线互相平行。 符号表示为:设a 、b 、c 是三条直线 a ∥ b c ∥b L A · α C · B · A · α P · α L β 共面直线 =>a ∥c

(word完整版)高一数学必修一必修二综合测试卷

高一数学必修一必修二综合测试卷 一、选择题 1.已知A ={x |y =x ,x ∈R },B ={y |y =x 2,x ∈R },则A ∩B 等于 A.{x |x ∈R } B.{y |y ≥0} C.{(0,0),(1,1)} D.? 2. 下列四个函数中,与y =x 表示同一函数的是 A.y =(x )2 B.y =33 x C.y =2 x D.y =x x 2 3. 下列四个函数中,在(0,+∞)上为增函数的是 A.f (x )=3-x B.f (x )=x 2-3x C.f (x )=-1 1+x D.f (x )=-|x | 4.已知点(1,2)A 、(3,1)B ,则线段AB 的垂直平分线的方程是( B ) A .524=+y x B .524=-y x C .52=+y x D .52=-y x 5. 二次函数y =ax 2+bx 与指数函数y =( a b )x 的图象只可能是 D 6. 已知函数f (n )=? ??<+≥-),10)](5([), 10(3n n f f n n 其中n ∈N ,则f (8)等于 A.2 B.4 C.6 D.7 7.过点(1,3)-且平行于直线032=+-y x 的直线方程为( A ) A .072=+-y x B .012=-+y x C .250x y --= D .052=-+y x 8. 下列说法不正确的.... 是( D ) A 空间中,一组对边平行且相等的四边形是一定是平行四边形;

B .同一平面的两条垂线一定共面; C. 过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内; D. 过一条直线有且只有一个平面与已知平面垂直. 9. 圆22 (1)1x y -+=与直线y x = 的位置关系是( A ) A .相交 B . 相切 C .相离 D .直线过圆心 10. 两圆相交于点A (1,3)、B (m ,-1),两圆的圆心均在直线x -y +c=0上,则m+c 的值为( ) A .-1 B .2 C .3 D .0 11. 已知A 、B 、C 、D 是空间不共面的四个点,且AB ⊥CD ,AD ⊥BC ,则直线BD 与AC ( ) A.垂直 B.平行 C.相交 D.位置关系不确定 12.某商场对顾客实行购物优惠活动,规定一次购物付款总额: (1)如果不超过200元,则不给予优惠; (2)如果超过200元但不超过500元,则按标价给予9折优惠; (3)如果超过500元,其500元内的按第(2)条给予优惠,超过500元的部分给予7折 优惠. 某人两次去购物,分别付款168元和423元,假设他一次性购买上述两次同样的商品,则应付款是 A.413.7元 B.513.7元 C.546.6元 D.548.7元 二 填空题 13.已知A (1,-2,1),B (2,2,2),点P 在z 轴上,且|PA|=|PB|,则点P 的坐标为 ; 14.函数 )23(log 3 2-=x y 的定义域为______________ 15.已知f (x )=x 2-1(x <0),则f - 1(3)=_______. 16.圆心在直线270x y --=上的圆C 与y 轴交于两点(0,4)A -,(0,2)B -,则圆C 的方程为 . 三、解答题 17. 求函数y = 1 2 -x 在区间[2,6]上的最大值和最小值.(10分)

高中数学必修2第二章(免费)

第二章 点、直线、平面之间的位置关系 A 组 一、选择题 1.设 α,β为两个不同的平面,l ,m 为两条不同的直线,且l ?α,m ?β,有如下的两个命题:①若 α∥β,则l ∥m ;②若l ⊥m ,则 α⊥β.那么( ). A .①是真命题,②是假命题 B .①是假命题,②是真命题 C .①②都是真命题 D .①②都是假命题 2.如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误..的是( ). A .BD ∥平面CB 1D 1 B .AC 1⊥BD C .AC 1⊥平面CB 1D 1 D .异面直线AD 与CB 1角为60° 3.关于直线m ,n 与平面 α,β,有下列四个命题: ①m ∥α,n ∥β 且 α∥β,则m ∥n ; ②m ⊥α,n ⊥β 且 α⊥β,则m ⊥n ; ③m ⊥α,n ∥β 且 α∥β,则m ⊥n ; ④m ∥α,n ⊥β 且 α⊥β,则m ∥n . 其中真命题的序号是( ). A .①② B .③④ C .①④ D .②③ 4.给出下列四个命题: ①垂直于同一直线的两条直线互相平行 ②垂直于同一平面的两个平面互相平行 ③若直线l 1,l 2与同一平面所成的角相等,则l 1,l 2互相平行 ④若直线l 1,l 2是异面直线,则与l 1,l 2都相交的两条直线是异面直线 其中假.命题的个数是( ). A .1 B .2 C .3 D .4 5.下列命题中正确的个数是( ). ①若直线l 上有无数个点不在平面 α 内,则l ∥α ②若直线l 与平面 α 平行,则l 与平面 α 内的任意一条直线都平行 (第2题)

人教版A版高中数学必修2课后习题解答

第一章空间几何体 1.1 空间几何体的结构 练习(第7 页) 1.(1)圆锥;(2)长方体;(3)圆柱与圆锥组合而成的组合体; (4)由一个六棱柱挖去一个圆柱体而得到的组合体。 2.(1)五棱柱;(2)圆锥 3.略 习题1.1 A组 1.(1) C;(2)C;(3)D;(4) C 2.(1)不是台体,因为几何体的“侧棱”不相交于一点,不是由平等于“底面”的平面截棱锥得到的。(2)、(3)也不是台体,因为不是由平行与棱锥和圆锥底面平面截得的几何体。 3.(1)由圆锥和圆台组合而成的简单组合体; (2)由四棱柱和四棱锥组合而成简单组合体。 4.两个同心的球面围成的几何体(或在一个球体内部挖去一个同心球得到的简单组合体)。 5.制作过程略。制作过程说明平面图形可以折叠成立体图形,立体图形可以展开为平面图形。 B组 1.剩下的几何体是棱柱,截去的几何体也是棱柱;它们分别是五棱柱和三棱柱。 2.左侧几何体的主要结构特征:圆柱和棱柱组成的简单组何体;中间几何体的主要结构特征:下部和上部都是一个圆柱截去一个圆柱组成的简单组何体;右侧几何体的主要结构特征:下部是一个圆柱体,上部是一个圆柱截去一个圆柱组成的简单组何体。 1.2 空间几何体的三视图和直观图 练习(第15 页) 1.略 2.(1)四棱柱(图略); (2)圆锥与半球组成的简单组合体(图略); (3)四棱柱与球组成的简单组合体(图略); (4)两台圆台组合而成的简单组合体(图略)。 3.(1)五棱柱(三视图略); (2)四个圆柱组成的简单组合体(三视图略); 4.三棱柱 练习(第19 页) 1.略。 2.(1)√(2)×(3)×(4)√ 3.A 4.略 5.略 习题1.2 A组 1.略 2.(1)三棱柱(2)圆台(3)四棱柱(4)四棱柱与圆柱组合而成的简单组合体 3~5.略 B组 1~2.略 3.此题答案不唯一,一种答案是由15个小正方体组合而成的简单组合体,如图。 1.3 空间几何体的表面积与体积

高中数学必修二直线和圆的综合问题精选

直线与圆 一.解答题(共10小题) 1.已知直线x﹣y+3=0与圆心为(3,4)的圆C相交,截得的弦长为2. (1)求圆C的方程; (2)设Q点的坐标为(2,3),且动点M到圆C的切线长与|MQ|的比值为常数k(k>0).若动点M的轨迹是一条直线,试确定相应的k值,并求出该直线的方程. 2.已知直线l:y=x+2被圆C:(x﹣3)2+(y﹣2)2=r2(r>0)截得的弦AB的长等于该圆的半径. (1)求圆C的方程; (2)已知直线m:y=x+n被圆C:(x﹣3)2+(y﹣2)2=r2(r>0)截得的弦与圆心构成三角形CDE.若△CDE 的面积有最大值,求出直线m:y=x+n的方程;若△CDE的面积没有最大值,说明理由. 3.已知M(4,0),N(1,0),曲线C上的任意一点P满足:?=6|| (Ⅰ)求点P的轨迹方程; (Ⅱ)过点N(1,0)的直线与曲线C交于A,B两点,交y轴于H点,设=λ1,=λ2,试问λ1+λ2是否为定值?如果是定值,请求出这个定值;如果不是定值,请说明理由. 4.已知动圆P与圆F1:(x+2)2+y2=49相切,且与圆F2:(x﹣2)2+y2=1相内切,记圆心P的轨迹为曲线C.(Ⅰ)求曲线C的方程; (Ⅱ)设Q为曲线C上的一个不在x轴上的动点,O为坐标原点,过点F2作OQ的平行线交曲线C于M,N两个不同的点,求△QMN面积的最大值.

5.已知动圆P过定点且与圆N:相切,记动圆圆心P的轨迹为曲线 C. (Ⅰ)求曲线C的方程; (Ⅱ)过点D(3,0)且斜率不为零的直线交曲线C于A,B两点,在x轴上是否存在定点Q,使得直线AQ,BQ的斜率之积为非零常数?若存在,求出定点的坐标;若不存在,请说明理由. 6.如图所示,在△ABC中,AB的中点为O,且OA=1,点D在AB的延长线上,且.固定边AB, 在平面内移动顶点C,使得圆M与边BC,边AC的延长线相切,并始终与AB的延长线相切于点D,记顶点C的轨迹为曲线Γ.以AB所在直线为x轴,O为坐标原点如图所示建立平面直角坐标系. (Ⅰ)求曲线Γ的方程; (Ⅱ)设动直线l交曲线Γ于E、F两点,且以EF为直径的圆经过点O,求△OEF面积的取值范围. 7.已知△ABC的顶点A(1,0),点B在x轴上移动,|AB|=|AC|,且BC的中点在y轴上. (Ⅰ)求C点的轨迹Γ的方程; (Ⅱ)已知过P(0,﹣2)的直线l交轨迹Γ于不同两点M,N,求证:Q(1,2)与M,N两点连线QM,QN的斜率之积为定值.

新课标人教A版高中数学必修2知识点总结

高中数学必修2知识点总结 第一章 空间几何体 1.1柱、锥、台、球的结构特征 (1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行, 由这些面所围成的几何体。 分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。 表示:用各顶点字母,如五棱柱' ' ' ' ' E D C B A ABCDE -或用对角线的端点字母,如五棱柱'AD 几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于 底面的截面是与底面全等的多边形。 (2)棱锥 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体 分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等 表示:用各顶点字母,如五棱锥'' ' ' ' E D C B A P - 几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高 的比的平方。 (3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分 分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等 表示:用各顶点字母,如五棱台' ' ' ' ' E D C B A P - 几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点 (4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体 几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。 (5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体 几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。 (6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分 几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。 (7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体 几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。 1.2空间几何体的三视图和直观图 (1)定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、 俯视图(从上向下) 注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度; 俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度; 侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。 (2)画三视图的原则: 长对齐、高对齐、宽相等

高中数学必修2综合测试题__人教A版

高中数学必修2综合试题 一、选择题(本大题共2道小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的) 1、下图(1)所示的圆锥的俯视图为() 2 、直线:30l y ++=的倾斜角α为() A 、30; B 、60; C 、120; D 、150。 3、边长为a 正四面体的表面积是() A 、34a ;B 、312a ;C 、24 ;D 2。 4、对于直线:360l x y -+=的截距,下列说法正确的是() A 、在y 轴上的截距是6; B 、在x 轴上的截距是6; C 、在x 轴上的截距是3; D 、在y 轴上的截距是3-。 5、已知,a b αα?//,则直线a 与直线b 的位置关系是() A 、平行; B 、相交或异面; C 、异面; D 、平行或异面。 6、已知两条直线12:210,:40l x ay l x y +-=-=,且12l l //,则满足条件a 的值为() A 、12 -;B 、12;C 、2-;D 、2。 7、在空间四边形ABCD 中,,,,E F G H 分别是,,,AB BC CD DA 的中点。若AC BD a ==, 且AC 与BD 所成的角为60,则四边形EFGH 的面积为() A 2a ;B 2;C 2;D 2。 8、已知圆22:260C x y x y +-+=,则圆心P 及半径r 分别为() 图(1) A B C D

A 、圆心()1,3P ,半径10r =; B 、圆心()1,3P ,半径r =; C 、圆心()1,3P -,半径10r =; D 、圆心()1,3P -,半径r = 9、下列叙述中错误的是() A 、若P αβ∈且l αβ=,则P l ∈; B 、三点,,A B C 确定一个平面; C 、若直线a b A =,则直线a 与b 能够确定一个平面; D 、若,A l B l ∈∈且,A B αα∈∈,则l α?。 10、两条不平行的直线,其平行投影不可能是() A 、两条平行直线; B 、一点和一条直线; C 、两条相交直线; D 、两个点。 11、长方体的一个顶点上的三条棱长分别为3、4、5,且它的8个顶点都在同一个球面上,则这个球的表面积是() A 、25π; B 、50π; C 、125π; D 、都不对。 12、四面体P ABC -中,若PA PB PC ==,则点P 在平面ABC 内的射影点O 是ABC 的() A 、外心; B 、内心; C 、垂心; D 、重心 二、填空题(本大题共4道小题,每小题4分,共16分。把答案填在题中横线上) 13、圆柱的侧面展开图是边长分别为2,a a 的矩形,则圆柱的体积为; 14、命题:一条直线与已知平面相交,则面内不过该交点的直线与已知直线为异面直线。 用符号表示为; 15、点()2,1M 直线0l y --=的距离是; 16、已知,a b 为直线,,,αβγ为平面,有下列三个命题: (1) a b αβ////,,则a b //; (2) ,a b γγ⊥⊥,则a b //; (3) ,a b b α?//,则a α//; (4) ,a b a α⊥⊥,则b α//;

(新)高一数学必修2第二章测试题及答案解析

第二章综合检测题 时间120分钟,满分150分。 一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的) 1.若直线a和b没有公共点,则a与b的位置关系是() A.相交B.平行 C.异面D.平行或异面 2.平行六面体ABCD-A1B1C1D1中,既与AB共面也与CC1共面的棱的条数为() A.3B.4C.5D.6 3.已知平面α和直线l,则α内至少有一条直线与l() A.平行B.相交C.垂直D.异面 4.长方体ABCD-A1B1C1D1中,异面直线AB,A1D1所成的角等于() A.30°B.45°C.60°D.90° 5.对两条不相交的空间直线a与b,必存在平面α,使得() A.a?α,b?αB.a?α,b∥α C.a⊥α,b⊥αD.a?α,b⊥α 6.下面四个命题: ①若直线a,b异面,b,c异面,则a,c异面; ②若直线a,b相交,b,c相交,则a,c相交; ③若a∥b,则a,b与c所成的角相等; ④若a⊥b,b⊥c,则a∥c. 其中真命题的个数为() A.4B.3C.2D.1 7.在正方体ABCD-A1B1C1D1中,E,F分别是线段A1B1,B1C1上的不与端点重合的动点,如果A1E=B1F,有下面四个结论: ①EF⊥AA1;②EF∥AC;③EF与AC异面;④EF∥平面ABCD. 其中一定正确的有() A.①②B.②③C.②④D.①④ 8.设a,b为两条不重合的直线,α,β为两个不重合的平面,下列命题中为真命题的是() A.若a,b与α所成的角相等,则a∥b B.若a∥α,b∥β,α∥β,则a∥b

C .若a ?α,b ?β,a ∥b ,则α∥β D .若a ⊥α,b ⊥β,α⊥β,则a ⊥b 9.已知平面α⊥平面β,α∩β=l ,点A ∈α,A ?l ,直线AB ∥l ,直线AC ⊥l ,直线m ∥α,n ∥β,则下列四种位置关系中,不一定成立的是( ) A .A B ∥m B .A C ⊥m C .AB ∥β D .AC ⊥β 10.(2012·大纲版数学(文科))已知正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为BB 1、CC 1的中点,那么直线AE 与D 1F 所成角的余弦值为 ( ) A .-45 B. .35 C .34 D .-35 11.已知三棱锥D -ABC 的三个侧面与底面全等,且AB =AC =3,BC =2,则以BC 为棱,以面BCD 与面BCA 为面的二面角的余弦值为( ) A.33 B.13 C .0 D .-12 12.如图所示,点P 在正方形ABCD 所在平面外,P A ⊥平面ABCD ,P A =AB ,则PB 与AC 所成的角是( ) A .90° B .60° C .45° D .30° 二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上) 13.下列图形可用符号表示为________.

人教版高中数学必修2空间几何体练习题及答案全

第一章空间几何体 1.1 空间几何体的结构 一、选择题 1、下列各组几何体中是多面体的一组是() A 三棱柱四棱台球圆锥 B 三棱柱四棱台正方体圆台 C 三棱柱四棱台正方体六棱锥 D 圆锥圆台球半球 2、下列说法正确的是() A 有一个面是多边形,其余各面是三角形的多面体是棱锥 B 有两个面互相平行,其余各面均为梯形的多面体是棱台 C 有两个面互相平行,其余各面均为平行四边形的多面体是棱柱 D 棱柱的两个底面互相平行,侧面均为平行四边形 3、下面多面体是五面体的是() A 三棱锥 B 三棱柱 C 四棱柱 D 五棱锥 4、下列说法错误的是() A 一个三棱锥可以由一个三棱锥和一个四棱锥拼合而成 B 一个圆台可以由两个圆台拼合而成 C 一个圆锥可以由两个圆锥拼合而成 D 一个四棱台可以由两个四棱台拼合而成

5、下面多面体中有12条棱的是() A 四棱柱 B 四棱锥 C 五棱锥 D 五棱柱 6、在三棱锥的四个面中,直角三角形最多可有几个() A 1 个 B 2 个 C 3个 D 4个 二、填空题 7、一个棱柱至少有————————个面,面数最少的棱柱有————————个顶点, 有—————————个棱。 8、一个棱柱有10个顶点,所有侧棱长的和为60,则每条侧棱长为———————————— 9、把等腰三角形绕底边上的高旋转1800,所得的几何体是—————— 10、水平放置的正方体分别用“前面、后面、上面、下面、左面、右面”表示。 图中是一个正方体的平面展开图,若图中的“似”表示正方体的前面,“锦”表示右面,“程”表示下面。 则“祝”“你”“前”分别表示正方体的————— 祝 你前程 似锦

相关主题