搜档网
当前位置:搜档网 › 无线电导航的发展历程

无线电导航的发展历程

无线电导航的发展历程
无线电导航的发展历程

1.无线电导航的发展历程

无线电导航是20世纪一项重大的发明

电磁波第一个应用的领域是通信,而第二个应用领域就是导航。早在1912年就开始研制世界上第一个无线电导航设备,即振幅式测向仪,称无线电罗盘(Radiocompass),工作频率0.1一1.75兆赫兹。1929年,根据等信号指示航道工作原理,研制了四航道信标,工作频率为0.2一0.4兆赫兹,已停止发展。1939年便开始研制仪表着陆系统(ILS),1940年则研制脉冲双曲线型的世界第一个无线电定位系统奇异(Gee),工作频率为28一85兆赫兹。1943年,脉冲双曲线型中程无线电导航系统罗兰A(Loran-A)投入研制,1944年又进行近程高精度台卡(Dessa)无线电导航系统的研制。

1945年至1960年研制了数十种之多,典型的系统如近程的伏尔(VOR)、测向器( D ME)、塔康(Tacan)、雷迪斯特、哈菲克斯(Hi-Fix)等;中程的罗兰B(Loran-B)、低频罗兰(LF-Loran)、康索尔(Consol)等;远程的那伐格罗布((Navaglohe)、法康(Facan)、台克垂亚(Dectra)、那伐霍(Navarho),罗兰C(Loran-C)和无线电网(Radionrsh)等;超远程的台尔拉克(Delrac)和奥米加(Omega)与。奥米加;空中交通管制的雷康(Rapcon)、伏尔斯康(VOLSCAN)、塔康数据传递系统(Tacandata-link)和萨特柯((Satco)等,另外还有多卜勒导航雷达(Doppler navigation tadar),这期间主要保留下来的系统如表1

表1主要地基无线电导航系统运行年代表

1.1 无线电导航发展的重大突破

1960年以后,义发展了不少新的地基无线电导航系统。如近程高精度的道朗((TORAN)、赛里迪斯(SYLEDIS)、阿戈(ARGO)、马西兰(MAXIRAN)、微波测距仪(TRISPONDER)以及MRB-201,NA V-CON,RALOG-20,RADIST等等;中程的有罗兰D (Loran-D)和脉冲八(Pulse8)等;远程的恰卡(Chayka);超远程的奥米加((Omega与 );突破在星基的全球导航系统,还有新的飞机着陆系统。同时还开始发展组合导航与综合导航系统,以及地形辅助导航系统等。表2列出几种常用的系统及主要性能与用量。

表2几种常用的地基系统性能与用量

*D为飞行距离。

1.2 无线电导航发展概括

无线电导航是所有导航手段中最重要的一种。由于电磁波的传播特性,发展异常迅速,迄今约有100个系统投人使用,而且已由陆基发展到星基,由单一功能发展到多功能;作用距离也由近及远并发展至全球;定位精度则由粗到精,高达厘米量级;应用领域则由军事领域步入国民经济以及国计民生诸领域了。

随着电子科学技术的飞速发展,大规模与超大规模集成电路的问世,以及微处理器的普遍采用等,使得导航设备业已进人小型化,数字化与全自动化,进而使导航台站实现了无人值守,下面介绍目前世界上正在使用的典型的无线电导航系统。

2. 几个典型的无线电导航系统

2.1无线电信标

1929年问世,精度3一100 (2drms),目前全球约有10000余个信标台,其中美国航空与航海信标分别为1800个与200个,各拥有美国用户18万与50万个。我国第一个指向标台是1927年在长江花鸟山建成,1933年在山东成山头建第二座。目前约有各种信标台6000余座,上万台无线电罗盘和信标台接收机,船用测向仪也有1000台左右。

虽然该类系统技术陈旧,精度又低,但价格低廉,使用简单,工作可靠,大量的民用飞机和小型船舶都用它。因此,它将作为一种低成本与备份导航系统保留到了21世纪。

2.2台卡系统

面世于1944年,作用距离370公里,定位精度可达15米,主要在欧洲使用。其空中用户有1000个,海上用户30000有余,由于英国及其周围地区业已使用习惯,加上系统又作了技术改造,因此,它作为这一区域性导航系统可望用到2014年。

我国1973年研制成功,称“长河三号”。它采用低频连续波相位双曲线定位体制,共生产固定岸台34套,定位接收机253台。主要用于海上石油勘探和多次执行高精度重大科学试验任务。

2.3伏尔/测距器

分别诞生于1946年和1959年,作用距离在视线距离之内,重复精度与相对精度分别约0.35 (2drms)和185米(2drms)。现在全球约有VOR台2000个,用户不下20万个;DME用户约9万个。由于GPS的起用,它们的作用就大大下降了。

甚高频全向信标((VOR)和超高频测距器((DME)两种系统配套工作可为飞机提供相对于正北的方位和到地面台的距离。我国先后研制成功这两种无线电导航系统,一共建设有176套VOR和DME投人使用,使它成为我国民用航空的主要无线电导航系统。

2.4塔康

频段和精度与OVR/DME相近,塔康军用,VOR民用,二者组合则VORTAC。系统1954年建成,现有用户约1.7万个,舰基塔康将继续使用下去。

1965年我国成功研制了超高频测向/测距系统—TACAN,它在一个频段上实现了同时测向、测距,更适合军事上使用。80年代又研发了Ⅲ型地面台和机载设备以及机动式的塔康地面台,并进行了小批生产和装备。目前整个地面台生产装备了约65套,机载设备约793台。该体制已成为我国军航的主要装备体制。

2.5罗兰A

问世于40年代,工作频率为1950千赫,用于海上,作用距离白天700海里,夜间450海里;定位精度白天0.5海里,夜间数海里。全球建有83个台,罗兰C问世后该系统陆续退出历史舞台。

1968年我国研制成功,叫“长河一号”工程,双曲线定位体制,覆盖我国沿海1000公里海域,从北部海域到海南岛沿海岸建设了10座导航台,昼夜发射导航信号。舰船上安装“长河一号”船载定位仪,便可导航定位。共计生产了4581台定位仪。系统一直使用到1995年是当时我国军民舰船的主要导航设备。

2.6罗兰C

第一个台链1957年建成。作用距离地波2000公里,天波4000公里,定位精度地波460

米(2drms),重复与相对精度为18-90米(2drms)。目前,全球共建了大小台链约20个,近100个地面台,拥有用户已超过100万个,而且还在大量增加。系统也还在发展,它作为军用已在美国完成历史使命,但作为民用将还在继续效力。原苏联的类似系统叫“恰卡”。

1987年我国研制成功,称“长河二号”工程,它采用脉冲、相位双曲线定位体制,覆盖我国沿海全部海域,从南到北共建设六座脉冲功率为2兆瓦的大功率地面导航台,它们分布在广西省境内二座,广东、江苏、山东、吉林省境内各一座,组成了我国南海、东海、北海三个导航定位台链,形成了我国独立自主控制使用的远程无线电导航系统。

1993年东海、北海台链建成投入使用。共生产“长河二号”导航定位接收机4500多台。

罗兰-C和奥米加分别是低频段(100kHz)和甚低频段(10~14kHz)含标准时间频率信息的双曲线导航、定位系统。它们的作用距离大,覆盖面广,导航、定位精度高,在全球范围内得到广泛应用。

罗兰-C是低频、脉冲式的双曲线无线电导航与定位系统,它是在40年代由美国麻省理工学院应美国陆军的要求而研制的。当时要求是能全天候导引飞机,能远距离工作(离发射台926km),并且在一万多米的高空也能收到信号。首批布站83个,称作罗兰-A,主要在太平洋地区,覆盖了北大西洋、北太平洋、北海和墨哥墨西哥湾。两个站发射相同频率的信号,用户据此可确定自己的位置,精度可达到2.8km/926km,12.9~3.7km/ 2222.4km。战后美国海岸警卫队把它的应用扩展到海上导航。罗兰-A由于其台站的过时和维持费用的增加,在1980年退出使用,在改善的基础上研制了罗兰-B,罗兰-B使用3个台发射相同的频率信号,本想为港口和海湾提供精密导航,由于技术上的原因阻碍了其发展,1958年,罗兰-C 投入使用。罗兰-C是一种远距离(1850km)、低频(100kHz)的双曲线无线电导航系统,它使用两个同步发射器信号到达的时间差来定位。较低的频率允许地波沿地球表面曲面传播较远的距离,多脉冲允许接收机把天波与地波区分开来。根据不同的几何条件、接收机测时精度及传播条件,罗兰-C可以提供100~200m的精度。在60年代中期,美国空军开始研制罗兰-D,它是C型的一种短距、战术型的版本,作用距离限制在1100km。

2.7奥米加

甚低频系统,全球8个地面台,于1982年全面建成,作用距离1.5万公里,精度3.7一7.4公里(2drms)。全球用户约2.7万个,80%以上为民用用户,美国已于1997年关闭。类似系统俄罗斯叫“ ”,仍在工作。我国曾进行过研究与试验,经仔细论证没必要发展而停止工作。

一、概念

奥米加导航系统 (Omega navigation system),是以地面为基准、工作在10~14千赫频段的无线电双曲线导航系统,是唯一基本上能覆盖全球的导航系统。

奥米加导航系统(Omega navigation system) 是一种超远程双曲线无线电导航系统。其作用距离可达1万多公里。只要设置8个地面台,其工作区域就可覆盖全球。

1972年,美国在北达科他州建立第一个奥米加正式导航台;1982年,在澳大利亚伍德赛德建成最后一个台,共8个台。这8个奥米加导航台由多个国家管理, 分布在美国的夏威夷和北达科他州以及挪威、利比里亚、留尼汪岛、阿根廷、澳大利亚和日本。

二、原理和性能

奥米加导航系统是由 8个台组成的覆盖全球的甚低频连续波比相双曲

线系统,没有主台和副台之分。每台都以由 4个铯钟组成的钟阵作为频率基准,都同步在统一的美国海军天文台标准频率上。全系统共有4个导航频率,其中10.2千赫是导航基本频率,其他3个辅助导航频率是13.6、11劆和11.05千赫。另外各台还发送各自的识别频率。各台均按规定的程序发射导航电磁波。奥米加导航系统采用时分工作体制。在10秒周期内轮流发射信号,每个周期分8个节段,同一节段内各台发射信号的频率不同(见表)。

奥米加导航系统在同载频上比相而产生多值性。在10.2千赫上比相,产生巷宽为8海里的巷道(1/2波长为一巷道)。为了扩展巷宽,利用与3个辅助频率的差拍作用,将巷道分别展宽到24、72和288海里。

接收机用机内振荡器产生的基准信号来测量 2个或更多个台信号的相位。内部振荡器可存储相位信息,使不同台的相对相位互比,输出是以百分周表示的相位差,可在记录器上连续记录。用户在大区域内常能收到4~6个台的信号,可选用两对双曲位置线交角最佳的台。

奥米加台交错发射信号,发射时间长短不一,从0.9至1.2秒,但发射休止时间均为0.2秒。每台均用150千瓦发射机和467米铁塔天线(日本台用500米铁塔),挪威台使用跨度达 3公里的山谷天线。规定的天线辐射功率为10千瓦。

奥米加导航系统的准确度,决定于甚低频信号在甚长传播路径上的相位稳定性和预测准确性。奥米加导航系统作用距离在5000海里以上。甚低频传播模式是天波传播模式,受电离层变动影响很大,使相速不稳定,产生昼夜和季节变化。此外,猝发电离干扰和极冕吸收会引起很大的误差。奥米加导航系统在全球设有40个监测台,长期分别收集数据,以供产生传播修正模型。奥米加导航系统设计预期准确度为2~4海里(2)。

另一种奥米加定位模式是圆-圆方式,要求接收机具备高精度频率源,但使用两台就能定位。全球有若干个大功率甚低频军用通信台,都采用铯频标,均可按圆-圆导航方式定位。奥米加导航系统发射的电磁波有入水能力,但深度仅约为10米。奥米加信号还是良好的授时手段。

差转奥米加奥米加频率在甚长传播路径上传播时,不同区段有不同的变化,但在很短区段内的变化很小或者基本相同。这种现象称为空间相关。差转奥米加导航系统利用这一特点,在50海里以内的小区域内设立监测站,将理论计算的准确度与实测值的差值广播给小区域内用户作修正用,可把系统的准确度提高到0.2~0.4海里(2)。准确度随距离增加而下降,400海里之外已无意义。国际海事组织已同意采用此法进行沿海导航,沿大西洋两岸已建立14个差转奥米加导航台。

三、补充

奥米加导航系统 (Omega navigation system),是全球范围的导航系统,定位精度为1.6~3.2公里,它由机上接收装置、显示器和地面发射台组成。飞行器一般可接收到5个地面台发射的连续电磁波信号。电波的行程差和相位差有确定的关系,测定两个台发射的信号的相位差,就得到飞行器到两个地面台的距离差。对应恒定相位差(即恒定距离差)的点的轨迹是一条以这两个地面台为焦点的双曲线位置线(见飞机导航系统)。同理,由另一对地面台得到另一条双曲线。根据这两条双曲线的交点即可定出飞行器的位置。由于连续电磁波是周期性的,相位差也作周期性变化,因而无法由相位差单值地确定距离差。距离差与相位差存在单值关系的区域称为巷道宽度,其值为电波波长的1/2。这样就存在一个巷道识别问题,可采用先粗测后精测的方法来解决。各地面台先发射一个10.2千赫的信号,这时对应的精测巷道宽度为14.7公里。为消除相位差周期性变化带来的多值性,须判断精测巷道的位置。每个台再发射一个13.6千赫的信号,测出两个地面台两个第一差频(3.4千赫)的相位差,就得到粗测的距离差值。第一个信号频率是第一差频的3倍,所以第一差频的巷道宽度是第一个信号频率巷道宽度的3倍,即44公里。于是可在此粗测的44公里范围内,定出精测巷道的位置。同理,各地面台再发射一个11.33千赫的信号,与第一个信号的差频为1.13千赫,可把粗测巷道宽度扩大到132公里。每个地面台轮流发射频率为10.2、11.33、13.6千赫的3个信号。在实际工作时,从接收机得到的是巷道的计数,可通过特制的导航图把奥米加巷道数字转换成以经纬度为单位的地理坐标位置。由于基线(两个台之间的连线)长,奥米加导航系统测量位置线的几何误差较小。这种系统的误差主要是电波传播速度因季节和昼夜而异所致(见无线电导航)。

导航员发现在太阳高年阶段的白天更难应用罗兰远程导航系统(LORAN-C)和奥米加导航系统(OMEGA);相反,在太阳低年几乎没有问题。这些耀斑的影响,主要是X射线,对于GPS的应用者来讲没有影响。GPS信号通常不受电离层变化的影响而是对太阳X射线大量的注入有响应。

移动通信技术1G~4G发展史

第1章移动通信现状问题与基本解决方法 1.1移动通信1G—4G简述 现在,人们普遍认为1897年是人类移动通信的元年。这一年意大利人.马可尼在相距18海里的固定站与拖船之间完成了一项无线电通信实验,实现了在英吉利海峡行驶的船只之间保持持续的通信,从而标志着移动通信的诞生,也由此揭开了世界移动通信辉煌发展的序幕错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。。 现代意义上的移动通信系统起源于20世纪20年代,距今已有90余年的历史。本文主要简述移动通信技术从1G到4G的发展。移动通信大发展的原因,除了用户需求的迅猛增加这一主要推动力外,还有技术进展所提供的条件,如微电子技术的发展、移动通信小区制的形成、大规模集成电路的发展、计算机技术的发展、通信网络技术的发展、通信调制编码技术的发展等。1.1.1第一代移动通信系统(1G) 20世纪70年代中期至80年代中期是第一代蜂窝网络移动通信系统发展阶段。第一代蜂窝网络移动通信系统(1G)是基于模拟传输的,其特点是业务量小、质量差、交全性差、没有加密和速度低。1G主要基于蜂窝结构组网,直接使用模拟语音调制技术,传输速率约s错误!未找到引用源。。 1978年底,美国贝尔实验室成功研制了先进移动电话系统(Advanced Mobile Phone System, AMPS),建成了蜂窝状移动通信网,这是第一种真正意义上的具有随时随地通信的大容量的蜂窝状移动通信系统。蜂窝状移动通信系统是基于带宽或干扰受限,它通过小区分裂,有效地控制干扰,在相隔一定距离的基站,重复使用相同的频率,从而实现频率复用,大大提高了频谱的利用率,有效地提高了系统的容量错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。。

信息技术的发展历程

信息技术发展史: 第一次信息技术革命是语言的使用。发生在距今约35 000年~50 000年前。 语言的使用——从猿进化到人的重要标志 类人猿是一咱类似于人类的猿类,经过千百万年的劳动过程,演变、进化、发展成为现代人,与此同时语言也随着劳动产生。祖国各地存在着许多语言。如:海南话与闽南话有类似,在北宋时期,福建一部人移民到海南,经过几十代人后,福建话逐渐演变成不语言体系,闽南话、海南话、客家话等。 第二次信息技术革命是文字的创造。大约在公元前3500年出现了文字 文字的创造——这是信息第一次打破时间、空间的限制 陶器上的符号:原始社会母系氏族繁荣时期(河姆渡和半坡原始居民) 甲骨文:记载商朝的社会生产状况和阶级关系,文字可考的历史从商朝开始 金文(也叫铜器铭文):商周一些青铜器,常铸刻在钟或鼎上,又叫“钟鼎文” 第三次信息技术的革命是印刷的发明。大约在公元1040年,我国开始使用活字印刷技术(欧洲人1451年开始使用印刷技术)。 印刷术的发明 汉朝以前使用竹木简或帛做书材料,直到东汉(公元105年)蔡伦改进造纸术,这种纸叫“蔡候纸”。从后唐到后周,封建政府雕版刊印了儒家经书,这是我国官府大规模印书的开始,印刷中心:成都、开封、临安、福建阳。 北宋平民毕发明活字印刷,比欧洲早400年 第四次信息革命是电报、电话、广播和电视的发明和普及应用。 世纪中叶以后,随着电报、电话的发明,电磁波的发现,人类通信领域产生了根本性的变革,实现了金属导线上的电脉冲来传递信息以及通过电磁波来进行无线通信。 1837年美国人莫尔斯研制了世界上第一台有线电报机。电报机利用电磁感应原理(有电流通过,电磁体有磁性,无电流通过,电磁体无磁性),使电磁体上连着的笔发生转动,从而在纸带上画出点、线符号。这些符号的适当组合(称为莫尔斯电码),可以表示全部字母,于是文字就可以经电线传送出去了。1844年5月24日,他在国会大厦联邦最高法院议会厅作了“用导线传递消息”的公开表演,接通电报机,用一连串点、划构成的“莫尔斯”码发出了人类历史上第一份电报:“上帝创造了何等的奇迹!”实现了长途电报通信,该份电报从美国国会大厦传送到了40英里外的巴尔的摩城。 1864年英国著名物理学家麦克斯韦发表了一篇论文(《电与磁》),预言了电磁波的存在,说明了电磁波与光具有相同的性质,都是以光速传播的。 1875年,苏格兰青年亚历山大.贝尔发明了世界上第一台电话机,1878年在相距300千米的波世顿和纽约之间进行了首次长途电话实验获得成功。 电磁波的发现产生了巨大影响,实现了信息的无线电传播,其他的无线电技术也如雨后春笋般的涌现:1920年美国无线电专家康拉德在匹兹堡建立了世界上第一家商业无线电广播电台,从此广播事业在世界各地蓬勃发展,收音机成为人们了解时事新闻的方便途径。1933年,法国人克拉维尔建立了英法之间的第一条商用微波无线电线路,推动了无线电技术的进一步发展。 1876年3月10日,美国人贝尔用自制的电话同他的助手通了话。 1895年俄国人波波夫和意大利人马可尼分别成功地进行了无线电通信实验。 1894年电影问世。1925年英国首次播映电视。 静电复印机、磁性录音机、雷达、激光器都是信息技术史上的重要发明。 第五次信息技术革命是始于20世纪60年代,其标志是电子计算机的普及应用及计算机与现代通信技术的有机结合。 随着电子技术的高速发展,军制、科研、迫切需要解决的计算工具也大大得到改进,1946年由美国宾夕法尼亚大学研制的第一台电子计算机诞生了。 1946~1958年第一代电子计算机 1958~1964年第二代晶体管电子计算机 1964~1970年第三代集成电路计算机 1971~20世纪80年代第四代大规模集成电路计算机 至今正丰研究第五代智能化计算机

近代以来世界的科学发展历程.doc

近代以来世界的科学发展历程 考点提示 近代科学技术 (1)经典力学、相对论、量子论 (2)进化论 (3)蒸汽机的发明和电气技术的应用 知识清单 知识梳理 一、物理学的重大进展 (一)近代自然科学产生的背景 经济基础——资本主义经济发展,生产经验的积累。 思想准备——文艺复兴、宗教改革、启蒙运动解放了思想。 个人因素——科学家具有科学精神。 (二)经典力学 1、伽利略——意大利文艺复兴后期伟大的天文学家、物理学家。 (1)主张:为了解自然界,必须进行系统地观察和实验。 (2)通过实验证实,外力并不是维持运动状态的原因,只是改变运动状态的原因。 (3)通过实验,发现了自由落体定律等物理学定律,大大改变了古希腊哲学家亚里士多德以来有关运动的观念。 (4)开创了以实验事实为依据并具有严密逻辑体系的近代科学,为牛顿经典力学的创立和发展奠定了基础,被誉为近代科学之父。 2、牛顿——17世纪英格兰伟大的物理学家、数学家、天文学家、自然哲学家。 (1)牛顿在其经典著作《自然哲学的数学原理》一书中,提出了物体运动三大定律和万有引力定律。把地球上的物体运动和天体运动概括到同一理论之中,形成了一个以实验为基础、以数学为表达形式的牛顿力学体系,即经典力学体系。 (2)牛顿经典力学体系对解释和预见物理现象,具有决定性意义。海王星的发现是证明牛顿力学和万有引力定律有效性的最成功的范例。 (3)数学方面,牛顿是微积分的发明者之一。另外牛顿还发现了太阳光的光谱,发明了反射式望远镜等。 (三)相对论的创立: 1、背景:19世纪,随着物理学研究的进展,经典力学无法解释研究中遇到的新问题。20 世纪初,德国物理学家爱因斯坦提出相对论。 2、内容:包括狭义相对论和广义相对论。 狭义相对论——物体运动时,质量随着物体运动速度增大而增加,同时空间和时间也会随着物体运动速度的变化而变化,即会发生尺缩效应和钟慢效应。

1 无线电导航基础

第1章绪论 导航的发展简史 1.1.1导航的基本概念 导航是一门研究导航原理和导航技术装置的学科。导航系统是确定航行体的位置方向,并引导其按预定航线航行的整套设备(包括航行体上的、空间的、地面上的设备)。 一架飞机从一个机场起飞,希望准确的飞到另外一个机场就必须依靠导航、制导技术。 导航,即引导航行的意思,也就是正确的引导航行体沿预定的航线,以要求的精度,在指定的时间内将航行体引导至目的地。由此可知除了知道起始点和目标位置之外,还要知道航向体的位置、速度、姿态等导航参数。其中最主要的是知道航行体的位置。 1.1.2导航系统的发展 在古代,我们的祖先一直利用天上的星星进行导航,在古石器时代,为了狩猎方便,人们利用简单的恒星导航方法,这就是最早的天文导航方法。 后来,随着技术的不断发展和人们对事物认知的发展,人们利用导航传感器来导航,最早是我们祖先发明的指南针。现有的导航传感器包括六分仪、磁罗盘、无线电罗盘、空速表、气压高度表、惯性传感器、雷达、星体跟踪器、信号接收机等。 以航空领域为例,从20世纪20年代开始飞机出现了仪表导航系统。

30年代出现了无线电导航系统,即依靠飞机上的信标接收机和无线电罗盘来获得地面导航台的信息已进行导航。 40年代开始研制甚高频导航系统。 1954年,惯性导航系统在飞机上试飞成功,从而开创了惯导时代。 50年代出现了天文导航系统和多普勒导航系统。 1957年世界上第一颗卫星发射成功以后,利用卫星进行导航、定位的研究工作被提上了议事日程,并着手建立海事卫星系统用于导航定位。随着1967年海事卫星系统经美国政府批准对其广播星历解密并提供民用,由此显示出卫星定位的巨大潜力。 60年代开始使用远程无线电罗兰-C导航系统,同时还有塔康导航系统、远程奥米伽导航系统以及自动天文导航系统。 60年代后,无线电导航得到进一步发展,并与人造卫星导航相结合。 70年代以后,全球定位导航系统得到进一步发展和应用。 在此过程中,为了发挥不同导航系统的优点,互为补充,出现了各种组合导航系统,它们主要以惯性导航系统为基准。 80年代以后,导航系统主要朝着以惯性导航系统为基础的组合导航系统,可组合的传感器除了GPS外还有星光、地形和各种无线电导航装置。 1.1.3导航系统的任务 导航系统的任务是确定载体的位置,并把载体由目前所在的地点按照给定的时间和航线引导到目的地,为此导航系统应该能够提供以下导航信号: 1)载体质量中心所在地的“定位信号”; 2)载体的“定向信号”; 3)载体的“速度信号”。

收音机的百年辉煌发展史

收音机的百年辉煌发展史 收音机是凝聚着太多的东西,她是一部辉煌的科技史,是一部繁复的社会史,也是一部精美的艺术史...... 收音机的出现 在1844年,电报机被发明出来,可以在远地互相通讯,但是 还是必须依赖导线来连接。而收音机讯号的收、发,却是「无线电 通讯」;整个无线电通讯发明的历史,是多位科学家先后研究发明 的结果。 1888年德国科学家赫兹(Heinrich Hertz),发现了无线电波 的存在。1895年俄罗斯物理学家波波夫(Alexander Stepanovitc h Popov),宣称在相距600码的两地,成功地收发无线电讯号。 同年稍后,一个富裕的意大利地主的儿子年仅21岁的马可尼( Guglielmo Marco ni)在他父亲的庄园土地内,以无线电波成功地进行了第一次发射。 1897年波波夫以他制做的无线通讯设备,在海军巡洋舰上与陆地上的站台进行通讯成功。 1901年马可尼发射无线电波横越大西洋。 1906年加拿大发明家费森登(Reginald Fessenden)首度发射出声音,无线电广播就此开始。 同年,美国人德.福雷斯特(Lee de Forest)发明真空电子管,是真空管收音机的始祖。

之后,又有改良的半导体收音机(原子粒收音机)、电晶体收音机出现。 收音机发展史上的几件大事 1923年1月23日,美国人在上海创办中国无线电公司,播送广播节目,同时出售收音机,以美国出品最多,其种类一是矿石收音机,二是电子管收音机。 1953年,中国研制出第一台全国产化收音机(“红星牌”电子管收音机),并投放市场。 1956年,研制出中国第一只锗合金晶体管。 1958年,我国第一部国产半导体收音机研制成功。 1965年,半导体收音机的产量超过了电子管收音机的产量。 1980年左右是收音机市场发展的高峰时期。 1982年,出现了集成电路收音机和硅锗管混合线路和音频输出OTL电路的收音机。 1985年至1989年,随着电视机和录音机的发展,晶体管收音机销量逐年下降,电子管收音机也趋于淘汰。收音机款式从大台式转向袖珍式。 直到现在,科技越来越发达,收音机的更新换代也很快。 发展中的第一个阶段 时间:出现到20世纪初 19世纪四十年代,是电气的广泛应用的时代。 主要的成果有:第一,新能源的大规模应用, 如电力,煤炭等。第二,内燃机的发明解决了 长期困扰人类的动力不足的问题。第三,第三, 通讯工具的发明。收音机的出现也是关乎于这 个时代。刚开始出现的收音机在形态上都是比

光纤通信技术发展历程、特点及现状

光纤通信技术发展历程、特点及现状

————————————————————————————————作者:————————————————————————————————日期: 2

学号:20085044013 本科学年论文 学院物理电子工程学院 专业电子科学与技术 年级2008级 姓名王震 论文题目光纤通信技术发展历程、特点及现状 指导教师张新伟职称讲师 成绩

2012年1月10日 目录 摘要 (1) Abstract (1) 绪论 (1) 1光纤通信发展历程 (1) 1.1 世界光纤通信发展史 (1) 1.2 中国光纤通信发展史 (2) 2 光纤通信技术的特点 (3) 2.1 频带极宽,通信容量大 (3) 2.2 损耗低,中继距离长 (3) 2.3 抗电磁干扰能力强 (3) 2.4 无串音干扰,保密性好 (3) 3 不断发展的光纤通信技术 (3) 3.1 SDH系统 (3) 3.2 不断增加的信道容量 (3) 3.3 光纤传输距离 (4) 3.4 向城域网发展 (4) 3.5 互联网发展需求与下一代全光网络发展趋势 (4) 4 结束语 (4) 参考文献 (4)

光纤通信技术发展历程、特点及现状 摘要:光纤通信是利用光作为信息载体、以光纤作为传输的通信方式。光纤通信是以其传输频带宽、通信容量大、中继距离长、损耗低特点,并具有抗电磁干扰能力强,保密性好的优势,光纤通信不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。光纤通信技术正朝着超大容量、超长距离传输和交换、全光网络方向发展。 关键词:光纤通信;发展历程;特点;发展现状 绪论 光纤通信技术已成为现代通信的主要通信方式,在现代信息网中起着非常重要的作用,随着信息技术的发展,大容量光纤通信网络的建设,光电子技术将起到越来越重要的作用。光电子技术将继微电子技术之后再次推动人类科学技术的革命。有专家预测,21世纪将是“光子世纪”,十年内,光子产业可能会全面取代传统电子工业,成为本世纪最大的产业。光纤通信又进入了一个蓬勃发展的新时期,而这一次发展将涉及信息产业的各个领域,其范围更广,技术更新,难度更大,动力更强,无疑将对21世纪信息产业的发展和社会进步产生巨大影响。 1 光纤通信发展历程 1.1 世界光纤通信发展史 光纤的发明,引起了通信技术的一场革命,是构成21世纪即将到来的信息社会的一大要素。 1966年出生在中国上海的英籍华人高锟,发表论文《光频介质纤维表面波导》,提出用石英玻璃纤维(光纤)传送光信号来进行通信,可实现长距离、大容量通信。于1970年损失为20db/km的光纤研制出来了。据说康宁公司花费3000万美元,得到30米光纤样品,认为非常值得。这一突破,引起整个通信界的震动,世界发达国家开始投入巨大力量研究光纤通信。1976年,美国贝尔实验室在亚特

中国科技发展历程

中国科技发展历程 古代中国——科学技术成就辉煌 中华民族的科技活动有着悠久的历史,曾经为人类发展作出过巨大的贡献,并且在16世纪中期以前一直处于世界科技舞台的中心。早在距今3300多年以前的甲骨文中就有有关日食的记载。距今2500年以前的战国时期问世的《考工记》准确地记载了六种不同成份的铜锡合金及其不同用途。公元1世纪初期的西汉时期,中国人发明了造纸术,公元105年左右中国科学家蔡伦又改进和提高了造纸技术,从而使造纸技术在中国迅速推广开来。公元3世纪左右,中国人发明了瓷器,这一技术在11世纪传到波斯,由那里经阿拉伯于1470年左右传到意大利以及整个欧洲。到唐朝,中国科学家发明了火药,并在公元9世纪首次将其用于战争之中。在11世纪中期的宋朝,中国科学家发明的指南针和活字印刷技术得到了广泛的应用。15世纪中期,中国医学家时珍所著的《本草纲目》成为中国古代医学发展的集大成者。到此时为止,中国古代科学的发展达到了顶峰时期,四大发明已经先后登上了历史舞台。著名英国科学家约瑟博士认为,中国“在3世纪到13世纪之间保持一个西方所望尘莫及的科学知识水平”,现代西方世界所应用的许多发明都来自中国,中国是一个发明的国度。 由于从明代14世纪60年代末始以来,中国对外长期实行“闭关锁国”政策,影响了近代科学技术在中国的传播和发展,并使之处于相对停滞状态。 与此同时,欧洲成为现代科学的发源地,生产力突飞猛进,科学技

术获得迅速进展。中国逐渐拉大了与世界先进国家的距离。 近现代中国——科技发展历经曲折 在近代历史上,积贫积弱的中国不仅在科技发展上乏善可,而且自1840年鸦片战争以后还逐步沦为半殖民地半封建的国家。一个有着光辉灿烂历史的文明古国就这样退出了世界科技舞台。 19世纪中叶,一批向西方寻求救国真理的中国先行者,倡导科学救国、教育救国,主学习西方的先进科学技术。 于是中国开始有了出国求学者。1847年,来自香山南屏镇的容闳来到美国,3年后,他考入耶鲁大学。1854年,他又以优异的成绩从这所大学毕业,成为历史上毕业于美国大学的第一位中国人。1872年至1875年,清朝政府先后派出四批共120名青少年到美国留学。1905年,中国废除了科举制度,清政府举行了第一次归国留学生考试。这些归国人员为引进西方的先进科学技术发挥了一定的作用。 1911年10月10日,在武昌爆发了辛亥革命。在革命先行者领导下,终于推翻了延续两千多年的封建专制帝制,中国走向。 是近代中国主科学救国的先驱。但是,20世纪前叶的中国,动荡不安,科学技术事业发展的物质条件极差,所以发展依然很缓慢。 第一次世界大战结束后,为反对“巴黎和会”上帝国主义列强强加给中国的不平等条约,1919年5月4日,中国爆发了伟大的爱国救亡运动,即“五四运动”。“五四运动”提倡与科学,为中国近代科学的诞生扫清了道路。当时的留美学生元任、任鸿隽、铨、胡适等在美国发起组织了中国科

无线电导航的发展历程

1.无线电导航的发展历程 无线电导航是20世纪一项重大的发明 电磁波第一个应用的领域是通信,而第二个应用领域就是导航。早在1912年就开始研制世界上第一个无线电导航设备,即振幅式测向仪,称无线电罗盘(Radiocompass),工作频率0.1一1.75兆赫兹。1929年,根据等信号指示航道工作原理,研制了四航道信标,工作频率为0.2一0.4兆赫兹,已停止发展。1939年便开始研制仪表着陆系统(ILS),1940年则研制脉冲双曲线型的世界第一个无线电定位系统奇异(Gee),工作频率为28一85兆赫兹。1943年,脉冲双曲线型中程无线电导航系统罗兰A(Loran-A)投入研制,1944年又进行近程高精度台卡(Dessa)无线电导航系统的研制。 1945年至1960年研制了数十种之多,典型的系统如近程的伏尔(VOR)、测向器( D ME)、塔康(Tacan)、雷迪斯特、哈菲克斯(Hi-Fix)等;中程的罗兰B(Loran-B)、低频罗兰(LF-Loran)、康索尔(Consol)等;远程的那伐格罗布((Navaglohe)、法康(Facan)、台克垂亚(Dectra)、那伐霍(Navarho),罗兰C(Loran-C)和无线电网(Radionrsh)等;超远程的台尔拉克(Delrac)和奥米加(Omega)与。奥米加;空中交通管制的雷康(Rapcon)、伏尔斯康(VOLSCAN)、塔康数据传递系统(Tacandata-link)和萨特柯((Satco)等,另外还有多卜勒导航雷达(Doppler navigation tadar),这期间主要保留下来的系统如表1 表1主要地基无线电导航系统运行年代表 1.1 无线电导航发展的重大突破 1960年以后,义发展了不少新的地基无线电导航系统。如近程高精度的道朗((TORAN)、赛里迪斯(SYLEDIS)、阿戈(ARGO)、马西兰(MAXIRAN)、微波测距仪(TRISPONDER)以及MRB-201,NA V-CON,RALOG-20,RADIST等等;中程的有罗兰D (Loran-D)和脉冲八(Pulse8)等;远程的恰卡(Chayka);超远程的奥米加((Omega与 );突破在星基的全球导航系统,还有新的飞机着陆系统。同时还开始发展组合导航与综合导航系统,以及地形辅助导航系统等。表2列出几种常用的系统及主要性能与用量。 表2几种常用的地基系统性能与用量 *D为飞行距离。

现代通信技术的历史

现代通信技术的历史 所谓通信,最简单的理解,也是最基本的理解,就是人与人沟通的方法。无论是现在的电话,还是网络,解决的最基本的问题,实际还是人与人的沟通。现代通信技术,就是随着科技的不断发展,如何采用最新的技术来不断优化通信的各种方式,让人与人的沟通变得更为便捷,有效。这是一门系统的学科,目前炙手可热的3G就是其中的重要课题。 通信技术和通信产业20世纪80年代以来发展最快的领域之一。不论是在国际还是在国内都是如此。这是人类进入信息社会的重要标志之一。 通信就是互通信息。从这个意义上来说,通信在远古的时代就已存在。人之间的对话是通信,用手势表达情绪也可算是通信。以后用烽火传递战事情况是通信,快马与驿站传送文件当然也可是通信。现代的通信一般是指电信,国际上称为远程通信。 纵观同新的发展分为以下三个阶段:第一阶段是语言和文字通信阶段。在这一阶段,通信方式简单,内容单一。第二阶段是电通信阶段。1937年,莫尔斯发明电报机,并设计莫尔斯电报码。1876年,贝尔发明电话机。这样,利用电磁波不仅可以传输文字,还可以传输语音,由此大大加快了通信的发展进程。1895年,马可尼发明无线电设备,从而开创了无线电通信发展的道路。第三阶段是电子信息通信阶段。从总体上看,通信技术实际上就是通信系统和通信网的技术。通信系统是指点对点通所需的全部设施,而通信网是由许多通信系统组成的多点之间能相互通信的全部设施。 而现代的主要通信技术有数字通信技术,程控交换技术,信息传输技术,通信网络技术,数据通信与数据网,ISDN与ATM技术,宽带IP技术,接入网与接入技术。 数字通信即传输数字信号的通信,,是通过信源发出的模拟信号经过数字终端的心愿编码成为数字信号,终端发出的数字信号,经过信道编码变成适合与信道传输的数字信号,然后由调制解调器把信号调制到系统所使用的数字信道上,在传输到对段,经过相反的变换最终传送到信宿。数字通信以其抗干扰能力强,便于存储,处理和交换等特点,已经成为现代通信网中的最主要的通信技术基础,广泛应用于现代通信网的各种通信系统。 程控交换技术即是指人们用专门的电子计算机根据需要把预先编好的程序存入计算机后完成通信中的各种交换。程控交换最初是由电话交换技术发展而来,由当初电话交换的人工转接,自动转接和电子转接发展到现在的程控转接技术,到后来,由于通信业务范围的不断扩大,交换的技术已经不仅仅用于电话交换,还能实现传真,数据,图像通信等交换。程控数字交换机处理速度快,体积小,容量大,灵活性强,服务功能多,便于改变交换机功能,便于建设智能网,向用户提供更多,更方便的电话服务。随着电信业务从以话音为主向以数据为主转移,交换技术也相应地从传统的电路交换技术逐步转向给予分株的数据交换和宽带交换,以及适应下一代网络基于IP的业务综合特点的软交换方向发展。 信息传输技术主要包括光纤通信,数字微波通信,卫星通信,移动通信以及图像通信。 光纤是以光波为载频,以光导纤维为传输介质的一种通信方式,其主要特点是频带宽,比常用微波频率高104~105倍;损耗低,中继距离长;具有抗电磁干扰能力;线经细,重量轻;还有耐腐蚀,不怕高温等优点。 数字微波中继通信是指利用波长为1m~1mm范围内的电磁波通过中继站传输信号的一种通信方式。其主要特点为信号可以"再生";便于数字程控交换机的连接;便于采用大规模集成电路;保密性好;数字微波系统占用频带较宽等的优点,因此,虽然数字微波通信只有二十多年的历史,却与光纤通信,卫星通信一起被国际公认为最有发展前途的三大传输手段。 卫星通信简单而言就是地球上的无线电通信展之间利用人在地球卫星作中继站而进行的通信。其主要特点是:通信距离远,而投资费用和通信距离无关;工作频带宽,通信容量大,适用于多种业务的传输;通信线路稳定可靠;通信质量高等优点。

信息技术与课程整合十年发展历程概览

信息技术与课程整合十年发展历程概览

信息技术与课程整合十年发展历程概览 从2000年至今,我国基础教育信息化取得了一系列成就与长足发展,具体表现在“校校通”工程、农村中小学现代远程教育工程、“班班通”工程、国家贫困地区义务教育工程等大规模项目和工程的实施;硬件设施建设日渐完备、软件资源建设日益丰富、信息技术与课程整合认识备受重视等信息技术与课程整合环境的建设与完善;教师教育技术培训、教师技能大赛、信息技术与课程整合优质课大赛、现代教育发展论坛等促进信息技术与课程整合内涵发展及理论提升 的相关活动举办;教师应用信息技术的意识提高、教师应用信息技术能力加强、学生信息素养提升等效果日益明显。 ●发展历程 概览十年来的发展,我们将信息技术与课程整合的发展分为四个阶段。 1.多媒体的到来 我国在上世纪90年代就开始了信息技术与课程整合的研究,到2000年也积累了很多经验。但是这段时间的发展也存在明显的不足和问题,没有形成良好的信息技术与课程整合氛围,一些学校和地区仅仅停留在视听教学的硬件本位时代;缺乏信息技术与课程整合的理论及方法指导,教师应用信

学生而言,多媒体教学中应用了图片、动画、影音、视频等素材,更能激发他们的学习兴趣,增加了学习的趣味性,也使得呆板的内容变得丰富多彩而容易理解和领会。 2.网络资源库的建设 多媒体的到来阶段对于那些从未接触过信息技术的教师而言,是很大的进步,但是在应用过程中教师们也逐渐发现:他们能够获得的资源多是针对某一知识或者具体章节的演示课件或素材,往往无法根据需要对其内容进行修改。他们渴望能够根据个人能力及学生特征选择适合的资源,然而当时的资源建设极大地滞后于教学需求,虽然已经涌现了很多致力于资源建设的公司和企业,但是由于缺少教学理念指导,并非所有资源都是有价值的,甚至很难在其中查找真正需要的资源。 这种情况随着“校校通”工程的深入而日益凸显,阻碍了信息技术与课程整合的有效开展,因此,资源建设和资源库建设受到了教育信息化界越来越多的关注和重视,取得了快速的发展。初期,大多数人都在关注网络资源库快速建设,同时,一些专家学者以发展的眼光关注网络资源库的内涵发展,对其定位、分类、标准、功能等层面进行了深入思考。我国的网络资源库建设也逐渐关注资源的规范和标准。因此,可以将资源建设的发展历程归纳为资源建设和资源平台建设两个

飞机导航系统

飞机导航系统 一、判断题 1、导航是一个时间和空间的联合概念,需要在特定的时刻描述在特定空间位置的状态,空间位置的描述可以采用地理坐标,由于导航通常是相对于某一具体目的地面而言的,因此采用地理坐标是方便而合理的. 2、无线电导航具有不受时间、天气的限制,精度高,定位时间短,设备简单,可靠等优点. 3、测距询问脉冲有用户发出,该询问脉冲需要经过特殊的编码以区别是哪个用户的询问脉冲,导航台站收到该脉冲后,及时向该用户发射应答脉冲,由用户接收并测量询问脉冲和应答脉冲之间的时间间隔,由导航台测量载体和导航台之间的距离. 4、无线电导航中的角参量可以分为两类:一类用于描述载体与导航台之间的相对角度关系;另一类用于描述载体的飞行状态,如导航、俯仰、横滚等. 5、频率测距通常是利用发射信号与反射信号的频率差来进行距离测量的,不一定要有反射面,因此作为频率测距系统. 6、载体航行状态指的是载体作为一个刚体在空间运动时所表现的非物理状态,通常与一定的参照量(如载体坐标系,当地理坐标系)相联系,他们可以从不同的角度进行描述,如方位、距离、位置、速度、姿态等. 7、 VOR方位飞机所在未知的磁北方向顺时针测量到飞机与VOR连线之间的夹角,是以飞机为基准来观察VOR台在地理上的方位. 8、无线电高度表,又称雷达高度表是一种等幅调频测距无线电导航设备。利用普通雷达的工作原理,以地面为发射体,在飞机上发射电波,并接收地面的反射波以测定飞机到地面的高度. 9、仪表着陆系统(ILS)决断高度(DH)是指驾驶员对飞机着陆或复飞做出判断的最低高度,在决断上,驾驶员必须看见跑到才能着陆,否则放弃着陆,进行复飞. 10、ADF指示的角度是飞机横轴方向到地面导航台的相对方位,因此,若要得到飞机相对于导航台的方位,还必须获知飞机的航向,这需要与磁罗盘或其他航向测量设备相结合. 二、选择题 1、无线电导航距离测量主要有___________________________三种测量方法。 2、导航参量的方位以经线北端为基准,顺时针测量到水平面上某方向线的高度 3、 ADF无线电罗盘,是一种_________________测向无线电导航系统,利用设置在地面的无方向信标(NDB)发射无线电波,在机上用环形方向性天线接收和处理电波信号,获取飞机到地面导航台的相对方位. 4频率测距的基本原理实际上的发射信号为__________________信号,由于颠簸的传播需要时间,那么在某一时刻,反射回来的信号的频率与正在发射的信号的频率之间的差频将反映这段时间,而这段时间同时也代表往返的距离. 5、 VOR伏尔是一种__________比较测向进程导航系统。机载设备通过接收地面VOR导航台发射的甚高频电波,可直接测量从飞机所在位置的磁北方向到地面导航台的位置,以近一步确定飞机相对于所选航道的偏离状态. 6、位置线或位置面,单值确定载体的位置,至少需要测定____条位置线或____

科学技术发展史论文

成都理大学 科学技术史论文题目:世界科技发展史回顾与未来科技发展展望 彭静 201206020228 核自学院 指导老师:周世祥

世界科技发展史回顾与未来科技发展展望 科学技术发展史是人类认识自然、改造自然的历史,也是人类文明史的重要组成部分。今天,当人类豪迈地飞往宇宙空间,当机器人问世,当高清晰度数字化彩电进入日常家庭生活,当克隆羊多利诞生惊动整个世界之时,大家是否会感受到,人类经历了一个多么漫长而伟大的科学技术发展历程。 一.古代科技发展概况 大约在公元前4000年以前,人类由石器时代跨入青铜器时代,并逐渐产生了语言和文字。在于自然界的长期斗争中,人类不断推动着生产工具和生产技术的进步,与此同时,人类对自然界的认识也不断丰富,科学技术的萌芽不断成长起来。 世界文明发端于中国,埃及,印度和巴比伦四大文明古国。中国古代科学技术十分辉煌,但主要在技术领域。中国的四大发明对世界文明产生巨大影响。古代中国科技文明的主要支桂有天文学、数学、医药学、农学四大学科和陶瓷、丝织、建筑三大技术,及世界闻名的造纸、印刷术、火药、指南针四大发明。四大发明:造纸、印刷术、火药、指南针。 生活在尼罗河和两河流域的古埃及和巴比伦人在天文学,数学等方面创造了杰出的成就,埃及金字塔名垂史册,印度数学为世界数学发展史大侠光辉的一页。 古希腊是科学精神的发源地,古希腊人创造了辉煌夺目的科学奇迹,在人类历史上第一次形成了独具特色的理性自然观,为近代科学的诞生奠定了基础。在人类历史上第一次形成了独具特色的的理性自然观,为近代科学的诞生奠定了基础。毕达哥拉斯,希波克拉底,以及百科全书式的学者亚里士多德都是那一时期的解除代表人物。公元前3世纪,进入希腊化时期的古希腊获得更大的发展,出现了欧几里得,阿基米德和托勒密三位杰出的科学家,使得古代科学攀上三座高峰。 公元最初的500多年中,欧洲的科学技术持续衰落,5世纪后进入黑暗的年代,并且延续了1000多年,科学一度成为宗教的婢女。但是科学精神在14世纪发出自己的呐喊,近代实验科学的始祖逻辑尔-培根像一颗新星,点亮了欧洲的天空。 在整个古代,技术发展的水平不高,科学也没有达到系统的程度,不同地域的人民之间还未建立起长期稳定的经济、文化联系, 但许多古代的科学技术成果, 如阳历和阴历, 节气、月、星期和其它时间单位的划分, 恒星天区的划分和名称,数学的基础知识和十进制记数法、印度——阿拉伯数字、轮车技术、杠杆技术、造纸术、印刷术等等,都已深深镶入了整个人类文明大厦的基础。 古代自然科学的发展还停留在描述现象,总结经验的阶段,个学科的分野并不明确,因而具有实用性,经验性和双重性,但它给近代科学的发展准备了充分的条件。 2.近现代科学技术的发展

导航原理(pdf版)

导航原理(V0.1) 导航贯穿于飞行全过程。正确实施导航,是完成任务的先决条件。对于每一个想要在虚拟战线任务中顺利找到目标,完成任务并安全返航的飞友,熟练的掌握导航技术是必须的。 第一节导航仪表 与导航有关的仪表主要有罗盘和无线电导航仪,罗盘又分为磁罗盘和综合远读罗盘(也叫做转发罗盘),综合远读罗盘实际上是把远读罗盘和无线电导航仪合二为一,比如德机的罗盘中的小飞机就是无线电导航仪的指针,它指向无线电导航台或电台的方位,德机的罗盘外圈的刻度是活动的,跟随航向的变化而旋转,正12点的位置就是当前航向。美国海军飞机的罗盘中的双针就是无线电导航仪的指针,它指向电台方向,单针指示的是当前航向,而美国陆航的指针定义刚好相反,单针是无线电导航仪的指针,双针指示当前航向。苏机的无线电导航仪是单独的,它的使用我们以后再说。磁罗盘实际上跟指南针是一样的,只是它的刻度盘是做在磁体上的,跟磁体一起旋转,因此它只能在水平状态下使用。导航仪表中还包括航空时钟,它跟我们平时用的钟一样,这里就不讲了。 综合远读罗盘(德)综合远读罗盘(美)磁罗盘(美) 磁罗盘(苏)无线电导航仪(苏)

第二节判读航图和导航计算 航图的判读是导航的基础,游戏中的航图,跟我们常见的地图大体相同,所用的图标也很相似,但由于游戏本身的特点,以及我们在飞行中的实际需要,因此也有一些不同的地方。 图1 图例图2放大后的图1局部游戏中的航图图标大多与真实地图相同,如浅蓝色不规则线条表示河流,较大面积浅蓝色区域表示湖泊,黑色线条表示铁路,但公路却分为两种,红线表示泥土公路,黄色带棕色边的线表示沥青或水泥公路,大块的绿色区域表示森林,森林间的浅色区域表示草地,不规则的小块黄色区域表示城镇,城镇上面标有城镇名称。图中的蓝色菱形图标表示空军基地。 游戏中的航图跟真实地图一样是上北下南,左西右东,并且也采用 经度和纬度,图2是放大后的地图,可以看到地图边缘标有经度和纬度, 但游戏中的航图主要采用英文字母和数字来表示位置。图1是我们看航 图时最常用的一种比例,图中经线和纬线交叉将地图划分为一个个区 域,用英文字母代表纵列(经度),用数字代表横列(纬度),两条经线 和两条纬线之间的距离是10千米,因此地图上每一个区域的边长是10 千米。每一个区域可以用字母和数字来表示,如D5、E3等等。图3 区域分划但用这样的方法来表示位置不够精确,因此我们在此基础上将每一个区域分为9个小区,每个小区用一个数字来表示,以增加精度。如图3,将一个区域(图中为D3)均分为9个小区,用小键盘上的数字键位置进行编号,这样每一个小区就可以这样表示,如D3-1,D3-6。图1中的空军基地,如果用D3来表示,因为D3地区有10×10千米,因此精度很低,而如果用D3-5来表示,由于D3-5小区只有3.3×3.3千米,精度大为提高。 一般的航图显示比例分为两个档次,既每格10千米和每格1千米,而在太平洋地区的一些地

浅谈通信技术发展史

浅谈通信技术发展史 在学习《现代通信技术》这么课程学期过半后,了解并掌握了一些与通信相关的知识,加以课程之余自己通过查阅书籍和使用网络工具,将通信史这一知识方面整理成以下文字,用以自我提高以及与大家共同进步。 人类进行通信的历史悠久。历史上最早的通信手段和现在一样是“无线”的,如利用以火光传递信息的烽火台,通常大家认为这是最早传递消息的方式了。事实上不是,在我国和非洲古代,击鼓传信是最早最方便的办法,非洲人用圆木特制的大鼓可传声至三四公里远,再通过“鼓声接力”和专门的“击鼓语言”,可在很短的时间内把消息准确地传到50公里以外的另一个部落。其实,不论是击鼓、烽火、旗语,还是今天的移动通信,要实现消息的远距离传送,都需要中继站的层层传递,消息才能到达目的地。不过,由于那时人类还没有发现电,所以要想畅通快速地实现远距离传递消息只有等待了…… 19世纪中叶以后,随着电报、电话的发明,电磁波的发现,人类通信领域产生了根本性的巨大变革,实现了利用金属导线来传递信息,甚至通过电磁波来进行无线通信,使神话中的“顺风耳”、“千里眼”变成了现实。从此,人类的信息传递可以脱离常规的视听觉方式,用电信号作为新的载体,同此带来了一系列技术革新,开始了人类通信的新时代。 1837年,美国人塞缪乐·莫乐斯成功地研制出世界上第一台电磁式电报机。他利用自己设计的电码,可将信息转换成一串或长或短的电脉冲传向目的地,再转换为原来的信息。 1864年,英国物理学家麦克斯韦建立了一套电磁理论,预言了电磁波的存在,说明了电磁波与光具有相同的性质,两者都是以光速传播的。1875年,苏格兰青年亚历山大·贝尔发明了世界上第一台电话机。1878年在相距300公里的波士顿和纽约之间进行了首次长途电话实验,并获得了成功,后来就成立了著名的贝尔电话公司。1888年,德国青年物理学家海因里斯·赫兹用电波环进行了一系列实验,发现了电磁波的存在,他用实验证明了麦克斯韦的电磁理论,导致了无线电的诞生和电子技术的发展。 电磁波的发现产生了巨大影响。不到6年的时间,俄国的波波夫、意大利的马可尼分别发明了无线电报,实现了信息的无线电传播,其他的无线电技术也如雨后春笋般涌现出来。 电磁波的发现也促使图像传播技术迅速发展起来。实现了电子扫描方式的电视发送和传输,制造出第一台符合实用要求的电视摄像机。经过人们的不断探索和改进,一些国家相继建立了超短波转播站,电视迅速普及开来。 图像传真也是一项重要的通信。1980年后,传真技术向综合处理终端设备过渡,除承担通信任务外,它还具备图像处理和数据处理的能力,成为综合性处理终端。静电复印机、磁性录音机、雷达、激光器等等都是信息技术史上的重要发明。 随着电子技术的高速发展,军事、科研迫切需要解决的计算工具也大大改进。微电子技术极大地推动了电子计算机的更新换代,使电子计算机显示了前所未有的信息处理功能,成为现代高新科技的重要标志。 随着国民经济和社会发展的信息化,人们要通信息化开创新的工作方式、管

科学技术发展史

科学问题在科学研究中的地位如何? 科学问题指:一定时代的科学认识主体,在当时的知识背景下提出的关于科学认识和科学实践中需要解决而尚未解决(且有可能解决)的矛盾或疑难。它包含一定的求解目标和应答域,但尚无确定的答案。科学问题的提出,并不是孤立的,而是有结构的。它蕴涵着问题的指向,即科研的目标和求解的应答域。问题的指向是指问题的现状和性质,求解目标是指求解的方向和要求,应答域是指在问题的论述中所确定的域限,并假定所提出问题的解必定在这个域限之中。 科学研究的过程是一个提出问题、解决问题并推广应用的过程。可见,问题是科学研究的起点,并贯穿于整个研究过程。旧的问题解决了,又引入了新的、更深刻的问题。因此,善于和勇于提出科学问题,用科学批判和理性质疑的科学精神去审视旧的科学问题,充分发挥想象力去提出新的科学问题,尤其是提出大跨度、综合而复杂的重大交叉科学难题就显得更有意义了。 问题是从已知通向未知的桥梁。人们认识事物,总是由不知到知,由知之较少到知之较多。科学研究的过程,可以说就是从已知出发提出问题进而探求未知的过程,对于从事科学研究的人(个人或集体)来说,是否善于发现问题和科学地提出问题是衡量其科学研究能力的一个重要标志,甚至可以说是最重要的标志。问题的提出,问题不断的解决、不断的再生,表示科学的前沿在不断地向前推进,表示人类的认识在不断地从已知向未知推进。科学研究始于问题,最终目的是要解决问题,可以说没有问题就没有科学研究,也就没有科学的进步。 技术与科学有哪些区别? 技术是将科学知识应用于实际目的。相反,技术是应用科学。技术涉及使用工具以及研究特定科学的知识。技术与设计的综合有关。虽然科学涉及理论和研究结果,但技术却非常关注过程。技术必须使其流程正确地在应用科学领域取得进步。科学和技术之间的另一个重要区别是科学涉及观察和实验,而技术则涉及发明和生产。工具及其生产的发明是技术的方面。 科学是“知识和实践活动,包括通过观察和实验系统地研究物理和自然世界的结构和行为。科学可以称为系统知识库。科学是对物理学,化学和生物学等各个学科的研究。科学涉及观察和实验。科学更关注分析。科学涉及理论及其发现。科学这个词被解释为通过实验和观察获得知识的系统,以便阐明自然现象。 区别: 1. 科学可以被定义为通过各种观察和实验收集关于某一主题的知识的有组织的方式。技术是用于不同目的的科学定律的实际用法。 2. 科学只不过是探索新知识的过程,而技术则将科学知识付诸实践。 3. 科学对于获得有关自然现象及其原因的知识非常有用。相反,技术可能是有用的或有害的,即技术既有利也有祸害,如果以正确的方式使用,它可以帮助人类解决许多问题,但是,如果它被错误地解决了使用,它可以导致整个世界的破坏。 4. 科学仍然是不可改变的; 只增加了进一步的知识。相反,技术变化很快,从某种意义上说,以前的技术不断改进。 5. 科学强调发现,就像事实和自然规律一样。与技术不同,重点放在发明上,例如开发最新技术,以减轻人类的工作。 6. 科学是研究自然和物理世界的结构和行为,创造前提。相比之下,技术涉及将这些前提付诸实践。 7. 科学关注的是分析,演绎和理论发展。另一方面,技术基于设计的分析和综合。 8. 科学用于预测,而技术简化了工作并满足了人们的需求。 试述科学理论评价的标准

无线电导航原理与系统课件

无线电导航原理与系统课件 无线电导航原理与系统 第三章无线电导航理论基础 一.空间坐标系无线电导航的基本任务就是确定被引导的航行体在运动过程中的状态参数,包括位置、速度、加速度、姿态等,这些参数是在一定的空间坐标系内定义的,因此要进行导航首先必须建立适当的参考坐标系。地球是人类的活动中心,在选择导航空间坐标系的时候,总是以地球为考虑的出发点。首先介绍一下地球的几何形状及其参数, 以便于认识和理解下面介绍的各种空间坐标系。一.空间坐标系地球的几何形状及其参数地球是一个旋转椭球;但是地球又不是一个理想的旋转椭球体,其表面起伏不平,很不规则,有高山、陆地、大海等。在实际应用中,人们采用一个旋转椭球面按照一定的期望指标(如椭球面和真实大地水准面之间的高度差的平方和为最小)来近似大地水准面,并称之为参考椭球面。参考椭球面的大小和形状可以用两个几何参数来描述,即长半轴a和扁率f。一.空间坐标系地球的几何形状及其参数目前应用中两个比较重要的参考椭球系是克拉索夫斯基椭球和WGS-84椭球。我国使用了40多年的1954北京坐标系(京-54坐标系),就是基于克拉索夫斯基椭球系。一.空间坐标系参考椭球上的主要面、线和曲率半径 1 参考椭球的法截面和法截线如图所示,O为参考椭球的中心。过地面点P作椭球面的垂线PK,称之为法线。包含过P点的法线的平面叫法截面。法截面与椭球面的交线叫做法截线。一.空间坐标系一.空间坐标系在实际计算中,为了方便往往在某一范围内把椭球面当作球面来处理,一般取该点所有方向的法截面曲率半径的平均值作为近似球面半径,称为平均曲率半径R,可推导出它的计算公式为:一.空间坐标系一.空间坐标系常用导航坐标系天球坐

相关主题