搜档网
当前位置:搜档网 › 哈工程机械动力学大作业DOC

哈工程机械动力学大作业DOC

哈工程机械动力学大作业DOC
哈工程机械动力学大作业DOC

机械动力学大作业

含弹性摆杆的铰链四杆机构动力学仿真

学号:

院系名称:机电工程学院

专业:机械工程

学生姓名:

本次进行设计和分析的对象为平面铰链四杆机构,在Adams的环境下,通过对四杆机构进行建模以及运动仿真,绘制出摆杆的相关曲线图。为了形成有效的对比,先建立含有刚性摆杆的四杆机构,进行运动仿真,绘制出摆杆的相关曲线。再建立含有柔性摆杆的铰链四杆机构,所有参数设置均和刚性摆杆一样。考虑到弹性摇杆可能发生较大的形变,不利于观测,绘制摇杆运动曲线时选择摇杆的质心作为参考点。

在Adams中主要有三种方法创建柔性构件,第一种是将刚性构件离散化后采用柔性梁连接;第二种是直接将刚体替换为柔性体;第三种是运用有限元分析的方法建立柔性构件。本次建模,主要采用前两种方法建立柔性摆杆。运用有限元建立柔性构件,等以后再进行深入研究。同时两种方法建立的柔性杆可以形成对比。

通过本次设计,主要学习了Adams 软件建模以及运动仿真、图形处理、刚柔混合建模的操作方法,对自己也是一个很大锻炼和提升。设计的为平面曲柄摇杆机构。相关参数如:

曲柄长L=200mm,宽W=60mm,高D=30mm;

连杆长L=427mm,宽W=30mm,高D=20mm;

摇杆长L=403mm,宽W=40mm,高D=20mm;

机架长L=600mm,宽W=40mm,高D=20mm;曲柄角速度为40deg/sec。经过验证,最短杆长度加上最长杆长度小于中间两根杆的长度之和,满足曲柄存在的条件,且最长杆为机架,故为曲柄摇杆机构。

一、建模过程

1、建立四个标记点,这四个点依次连接就可以确定一个铰链四杆机构。

2、建立四根杆的模型

3、在杆件之间添加转动副

4、选择最长杆为机架并固定

5、给曲柄添加驱动,使曲柄角速度为40deg/sec。

6、使模型的显示方式为实体显示

7、进行运动仿真,主要通过时间和步长来控制仿真运动的快慢。

8、载入动画,进行图像处理,绘制曲线图。

9、将刚性摇杆换成柔性的摇杆并添加转动副和驱动

10、进行运动仿真

11、载入动画,进行图像处理,绘制曲线。

12、将连杆改为柔性体,添加转动副,并生成模型,进行运动仿真。

13、载入动画,生成曲线图。

14、将摇杆换成弹性体,生成模型,进行运动仿真。

15、载入动画,进行图像处理,生成数据。

二、运动学及动力学分析

图1 刚性摆杆质心位移

图2 柔性摆杆质心位移

图3 柔性摆杆质心位移

分析图1,图2,图3

分析摆杆质心位置的变化曲线。刚性和柔性摆杆质心的初始位置的X坐标均为500mm,Y坐标均为175mm,Z坐标均为0,说明两次运动过程起始位置一模一样,两个模型具有对比性。刚性摆杆和柔性摆杆质心的位置均按类似余弦曲线变化,说明摇杆在一定角度范围内转动,与预期相符合。

由图中观察和数据分析,周期T大概为9s左右,从而验证了角速度 为40 。其中刚性摆杆最低点Y坐标大约为50mm左右,说明摇杆没有运动到水平位置,最高点大约为200mm左右,说明当曲柄和连杆共线时,摇杆接近和机架垂直。柔性摆杆质心最低位置Y坐标大约25mm,说明摇杆也没有运动到水平位置,最高位置Y坐标也约为200mm,说明曲柄和连杆共线时,摇杆也能和机架接近垂直。柔性摆杆最低点Y坐标小于刚性摆杆,可能是由于杆发生了弯曲变形。

在任意时刻,柔性摆杆的X坐标均大于刚性摆杆的,说明杆发生弯曲了,使得X坐标增大。Z坐标没有变化且为0,说明机构在XY平面内运动,与预期相符合。由图还看出曲柄摇杆机构具有急回特性。

无论在什么方向上,摆杆质心的坐标始终为正,说明摆杆在XY 平面的第一象限内运动,并且摆角不超过180度。

图4 刚性摆杆质心速度曲线

图5 柔性摆杆质心速度曲线

图6 柔性摆杆质心速度曲线

分析图4,图5,图6

分析摆杆质心速度变化曲线。在Z 方向上,刚性杆和柔性杆质心速度始终为0,可见机构在XY 平面内运动。

在X 方向上,刚性杆质心初始速度为-57mm/s,而柔性杆在X 方向上速度为0,由此可以看出,对于刚性杆,任一点的速度都可以用质心的速度来代替,而柔性杆则不可以。刚性杆运动时整个杆件同时运动,而柔性杆则是由一部分带动另一部分类似于波的传播过程。从

图中看出,无论刚性还是弹性的摆杆,质心的速度均有正有负,说明摇杆是往复摆动,符合实际。

在Y方向上,刚性摆杆质心初始速度为-33mm/s,而柔性杆初始速度为0,也说明了刚性构件和弹性构件在运动时的不同。刚性摆杆质心最低速度大于25mm/sec,而柔性摆杆质心最低速度小于25mm/sec,说明柔性摆杆由于弯曲变形,使得运动速度变得缓慢。刚性摆杆和柔性摆杆质心的最大速度几乎相同,说明此时虽然柔性摆杆发生了弹性形变,但是对速度的影响很低。刚性摆杆速度在最大值附近瞬间变化,而柔性摆杆几乎是缓慢过渡。在Adams中,对刚性摆杆质心的位移曲线对时间求导数可以得到质心的速度变化曲线,和直接生成的质心速度曲线一致。从中可以看出,速度的变化周期为9s,和预期相符合。

而对柔性杆,由于是将构件离散化后采用柔性梁连接,属于不连续体,不能直接对质心的位移变化曲线求导来得到相应的速度曲线。虽然X,Y方向速度有正有负,但是空间的速度始终为正。

图7 刚性摆杆质心加速度曲线

图8 柔性摆杆质心X方向加速度

图9 柔性摆杆质心加速度

分析图7,图8,图9

由图可以看出,刚性摆杆和柔性摆杆区别十分明显。刚性摆杆呈现明显的周期性,而柔性摆杆只在X方向上有周期性。对于刚性摆杆,加速度最小值为-50mm/s2,最大值为60mm/s2。分析图9可知,对于柔性摆杆,在刚启动瞬间,加速度有一个突变,之后几乎一直为零,说明柔性体在Y方向上几乎不受力。

由图7和图8均可分析出,摇杆运动的周期为9s。

图10 刚性摆杆质心角速度

图11 柔性摆杆质心角速度

图12 柔性摆杆质心角速度

分析角速度

图10和图11说明,在绕X轴和绕Y轴,摆杆的角速度都为0,说明角速度为绕Z轴施加。在绕Z轴,角速度有正有负,说明摆杆是往复摆动。绕Z轴的角速度和摆杆在空间的角速度曲线在0—3秒内完全重合,说明绕Z轴的角速度即为摆杆的角速度。虽然绕Z轴角速度有正,有负,但是在空间,摆杆的角速度始终为正。刚性摆杆最大角速度为22.5deg/sec,最小角速度为-22.5dec/sec。说明刚性摆杆

是左右对称的往复运动。柔性摆杆最大角速度36dec/sec,最小角速

度-33dec/sec,最大和最小角速度绝对值不等,说明摆杆在经过同一位置时往复运动速度不一样。从图可以清楚的看出摆杆运动的周期为9s。摆杆在空间的角速度始终为正,当绕Z轴的角速度为负时,将曲线沿着X轴翻转就得到了摆杆在空间的曲线。

图12说明,启动瞬间,摆杆的角速度有一个变化的过程,之后和图10,图11几乎一样,说明采用两种方法建立的柔性体十分类似。

图13 刚性摆杆质心角加速度

图14柔性摆杆质心角加速度

图15 柔性摆杆质心角加速度

分析角加速度曲线

对比分析图13和图14,在X,Y方向上,角加速度均为0,和角速度曲线符合。在0到6s内,刚性摆杆角加速度有两个最大值,分别为19.5,7.5,一个最小值点为4.5,在1.5秒和6秒的时候,角加速度为0.且在空间的角加速度为沿着轴的角速度沿着X轴翻转。整个周期内最大角加速度为24,最小角加速度为-19.5.角加速度的变化周

期为9秒。柔性摆杆有三个最值,两个最小值,两个0点。变化周期

“机械动力学”课程教学大纲

“机械动力学”课程教学大纲 英文名称:Mechanical Dynamics 课程编号:MACH3441 学时:32 (理论学时:32 实验学时:课外学时:2实验) 学分:2 适用对象:机械设计、机械制造及自动化、机械电子工程、流体机械、电机、电器、材料工程等本科生高年级。 先修课程:高等数学、普通物理学、理论力学、材料力学、线性代数使用教材及参考书: [1] 石端伟主编. 机械动力学. 北京:中国电力出版社,2007. [2] 张策主编. 机械动力学.北京:高等教育出版社, 2008. [3] 倪振华主编. 振动力学. 西安交通大学出版社,1988. 一、课程性质和目的 性质:专业课 目的: 1.了解机械动力学的研究内容、发展历史以及最新研究进展。 2.培养机械系统动力学分析的基本能力。 3.了解机械系统动力学分析相关的CAE软件。 4.了解机械系统动态测试有关技术。 5.培养查阅和运用相关科技文献进行动力学分析的初步能力。 6.培养创新思维以及解决工程实际问题的能力。 7.培养科学、严谨的工作作风。

二、课程内容简介 随着现代机械装备朝着高精度、高效、大功率的方向发展,其动态性能指标的优劣越来越受到广泛关注和高度重视。机械动力学已日益成为现代机械设计与制造工程领域不可或缺的基础知识。本课程主要介绍机械系统动力分析的基本理论、分析方法、测试与控制技术以及典型机械系统动力学分析方法。通过课程的学习,培养学生能够在机械系统动力分析方面具有明确的基本概念、必要的专业基础知识、一定的机械系统动力分析能力与计算能力。 三、教学基本要求 1.了解相关机械系统动力学分析的新理论、新方法及发展趋向。 2. 掌握有关机械系统动力学分析的基本概念、基本理论与方法。 3. 了解典型机械系统动力学分析流程,具有进行工程实际问题分析的初步能力。 4. 建立正确的机械系统动力分析的思维方式,理论联系实际,具备一定的科研创新精神; 5. 课后需要查阅文献,并开展讨论,完成作业。 四、教学内容及安排 第一章:绪论 1.熟悉研究机械动力学的意义。 2.熟悉机械动力学的主要研究内容。 教学安排及教学方式

哈工大机械设计大作业V带传动设计完美版

哈工大机械设计大作业V带传动设计完美版

————————————————————————————————作者:————————————————————————————————日期: ?

Harbin Instituteof Technology 机械设计大作业说明书 大作业名称:机械设计大作业 设计题目:V带传动设计 班级: 设计者: 学号: 指导教师: 设计时间: 2014.10.25 哈尔滨工业大学

目录 一、大作业任务书 ........................................................................................................................... 1 二、电动机的选择 ........................................................................................................................... 1 三、确定设计功率d P ..................................................................................................................... 2 四、选择带的型号 ........................................................................................................................... 2 五、确定带轮的基准直径1d d 和2d d ............................................................................................. 2 六、验算带的速度 ........................................................................................................................... 2 七、确定中心距a 和V 带基准长度d L ......................................................................................... 2 八、计算小轮包角 ........................................................................................................................... 3 九、确定V 带根数Z ........................................................................................................................ 3 十、确定初拉力0F ......................................................................................................................... 3 十一、计算作用在轴上的压力 ....................................................................................................... 4 十二、小V 带轮设计 .. (4) 1、带轮材料选择 ............................................................................................................. 4 2、带轮结构形式 . (4) 十二、参考文献 ............................................................................................................................... 6 ?

哈工大机械设计基础学时试题答案

班 级 姓 名 题号 一 二 三 四 五 六 七 八 九 十 总分 分数 一、 填空题(共24 分,每空1分) 1)按照两表面间的润滑状况,可将摩擦分为 干摩擦 、 边界摩擦 、 流体摩擦 和 混合摩擦 。 2)当两个被联接件之一太厚,不宜制成通孔,且联接不需要经常装拆时,往往采用螺纹联接中的 螺钉 联接。 3)带传动中,带在带轮上即将打滑而尚未打滑的临界状态下,紧边拉力F 1与松边拉力F 2之间的关系为 112f F F e α=? 。 4)滚动轴承的基本额定寿命L ,是指一批相同的轴承,在相同的条件 下运转,其中 90% 的轴承在疲劳点蚀前所能转过的总转数,单位为106r 。 5)非液体摩擦滑动轴承限制pv 值,主要是为了防止轴瓦 胶合 失效。 6)弹簧指数C= D/d ,C 越大,弹簧刚度越 小 。 7)当机构处于死点位置时,机构的压力角为 90° 。 8)有一紧螺栓连接,已知预紧力'F =1500N ,轴向工作载荷F =1000N ,螺栓的刚度C b =2000N/mm ,被连接件的刚度C m =8000N/mm ,则螺栓所受的总拉力F 0= 1700 N ,剩余预紧力''F = 700 N ,保证结合面不出现缝隙的最大轴向工作载荷F max = 1875 N 。 9)对于软齿面闭式齿轮传动,通常先按 齿面接触疲劳 强度进行设计,然后校核 齿根弯曲疲劳 强度。 10)蜗杆传动的失效形式主要是 齿面点蚀 、 齿面胶合 和 齿面磨损 ,而且失效通常发生在 蜗轮轮齿上 。 哈工大2005 年秋季学期 机械设计基础(80学时)试题答案

11)在凸轮机构的几种基本的从动件运动规律中,等速运动规律使凸轮机构产生刚性冲击,正弦加速度运动规律则没有冲击,等加速等减速、余弦加速度运动规律产生柔性冲击。 二、选择题(共11分,每小题1分) 1)一阀门螺旋弹簧,弹簧丝直径d=2.5mm,因环境条件限制,其弹簧外径D2不得大于17.5mm,则弹簧指数不应超过c) 。 a) 5 ; b) 6.5 ; c) 6 ; d) 7 。 2)平键的剖面尺寸b×h是根据d) 从标准中查取。 a) 传递转矩的大小; b) 载荷特性; c) 键的材料; d) 轴的直径。 3)带传动采用张紧轮的目的是d) 。 a)减轻带的弹性滑动; b) 提高带的寿命; c) 改变带的运动方向; d) 调节带的初拉力。 4)润滑良好的闭式软齿面齿轮传动最常见的失效形式为b) 。 a) 齿面磨损; b) 齿面疲劳点蚀; c) 齿面胶合; d) 齿面塑性变形。 5)在V带传动设计中,取小带轮基准直径d d1≥d dmin,主要是为了考虑 a) 对传动带疲劳强度的影响 a) 弯曲应力; b) 离心拉应力; c) 小带轮包角; d) 初拉力。 6)蜗杆传动中,当其它条件相同时,增加蜗杆的头数,则传动效率 b) 。 a) 降低; b) 提高;c) 不变;d)可能提高,可能降低。 7)工作时只承受弯矩,不传递转矩的轴,称为a) 。 a) 心轴; b) 传动轴; c) 转轴; d) 曲轴。 8)半圆键连接的主要优点是c) 。 a) 对轴的强度削弱较轻; b) 键槽的应力集中较小; c) 适于锥形轴端的连接。

机械动力学大作业

单自由度杆机构的Adams动力学仿真 摘要:文章分析了单自由度的铰链机构的动力学问题,已知原动件曲柄的转矩,绘制输出件摆杆的运动曲线。首先在Adams软件中构造连杆,添加三个连杆,使其成一定角度,相互连接。再在两杆之间添加转动副,并且头尾连杆与地相连。并在曲柄处加转矩,最后进行仿真,并绘出相应图表。 关键词:铰链机构;Adams仿真 1、机构模型的建立 根据题目要求,选择一个铰链四杆机构——曲柄摇杆机构为模型,其结构简图如图1所示。其中,曲柄1为原动件。 图1曲柄摇杆机构简图 在Adams软件中,建立该曲柄摇杆机构的模型如图2所示。 图2 Adams中的曲柄摇杆机构模型

曲柄摇杆机构各连杆的惯性参数参考表1。杆件的材料均选择钢材(密度ρ=7.801×10-6 kg?mm-3,杨氏模量E=2.07×105 N?mm-2,泊松比μ=0.29)。 表1 传动导杆机构各部件惯性参数 2、利用Adams软件添加约束和力矩 杆1和地之间有转动副,杆1和杆2、杆2和杆3之间有转动副,杆3和地之间有转动副。杆1为原动件,在杆1上添加转矩。转矩大小为30。 图3约束与转矩 3、进行仿真 点击仿真按钮,开始仿真,选择仿真时间为2s,可以观察到该机构各个时间的运动状态如图4和图5所示。

(a)T=0时刻(b)T=1时刻 图4仿真过程中机构模型的运动状态 (a)T=1.2时刻(b)T=2时刻 图5仿真过程中机构模型的运动状态 结论 当原动件曲柄的转矩取为30时,点击“后处理”,可以绘制出输出件摆杆的位移曲线、角速度曲线、加速度曲线分别如图10、图11和图12所示。 图10输出件摆杆的位移曲线

matlab机电系统仿真大作业

一曲柄滑块机构运动学仿真 1、设计任务描述 通过分析求解曲柄滑块机构动力学方程,编写matlab程序并建立Simulink 模型,由已知的连杆长度和曲柄输入角速度或角加速度求解滑块位移与时间的关系,滑块速度和时间的关系,连杆转角和时间的关系以及滑块位移和滑块速度与加速度之间的关系,从而实现运动学仿真目的。 2、系统结构简图与矢量模型 下图所示是只有一个自由度的曲柄滑块机构,连杆与长度已知。 图2-1 曲柄滑块机构简图 设每一连杆(包括固定杆件)均由一位移矢量表示,下图给出了该机构各个杆件之间的矢量关系 图2-2 曲柄滑块机构的矢量环

3.匀角速度输入时系统仿真 3.1 系统动力学方程 系统为匀角速度输入的时候,其输入为输出为;。 (1) 曲柄滑块机构闭环位移矢量方程为: (2)曲柄滑块机构的位置方程 (3)曲柄滑块机构的运动学方程 通过对位置方程进行求导,可得 由于系统的输出是与,为了便于建立A*x=B形式的矩阵,使x=[], 将运动学方程两边进行整理,得到 将上述方程的v1与w3提取出来,即可建立运动学方程的矩阵形式 3.2 M函数编写与Simulink仿真模型建立 3.2.1 滑块速度与时间的变化情况以及滑块位移与时间的变化情况 仿真的基本思路:已知输入w2与,由运动学方程求出w3和v1,再通过积分,即可求出与r1。 (1)编写Matlab函数求解运动学方程 将该机构的运动学方程的矩阵形式用M函数compv(u)来表示。 设r2=15mm,r3=55mm,r1(0)=70mm,。 其中各个零时刻的初始值可以在Simulink模型的积分器初始值里设置

M函数如下: function[x]=compv(u) %u(1)=w2 %u(2)=sita2 %u(3)=sita3 r2=15; r3=55; a=[r3*sin(u(3)) 1;-r3*cos(u(3)) 0]; b=[-r2*u(1)*sin(u(2));r2*u(1)*cos(u(2))]; x=inv(a)*b; (2)建立Simulink模型 M函数创建完毕后,根据之前的运动学方程建立Simulink模型,如下图: 图3-1 Simulink模型 同时不要忘记设置r1初始值70,如下图: 图3-2 r1初始值设置

哈工大机械设计大作业轴系

HarbinI n s t i tut e o fTech n o logy 机械设计大作业说明书大作业名称:轴系设计 设计题目: 5.1.5 班级:1208105 设计者: 学号: 指导教师: 张锋 设计时间:2014.12.03 哈尔滨工业大学

哈尔滨工业大学 机械设计作业任务书 题目___轴系部件设计____ 设计原始数据: 方案电动机 工作功 率P/k W 电动机满 载转速n m /(r/min) 工作机的 转速n w /(r/min) 第一级 传动比 i1 轴承座 中心高 度 H/mm 最短工 作年限 工作环 境 5.1.5 3 710 80 2 170 3年3 班 室内清 洁 目录 一、选择轴的材料 (1) 二、初算轴径 (1) 三、轴承部件结构设计 (1) 3.1轴向固定方式 (2) 3.2选择滚动轴承类型 (2) 3.3键连接设计 (2) 3.4阶梯轴各部分直径确定 (2) 3.5阶梯轴各部段长度及跨距的确定 (2) 四、轴的受力分析 (3) 4.1画轴的受力简图 (3) 4.2计算支反力 (3) 4.3画弯矩图 (3) 4.4画转矩图 (5) 五、校核轴的弯扭合成强度 (5)

六、轴的安全系数校核计算………………………………………………6 七、键的强度校核 (7) 八、校核轴承寿命 (8) 九、轴上其他零件设计 (9) 十、轴承座结构设计 (9) 十一、轴承端盖(透盖).........................................................9参考文献 (10)

一、选择轴的材料 该传动机所传递的功率属于中小型功率,因此轴所承受的扭矩不大。故选45号钢,并进行调质处理。 二、初算轴径 对于转轴,按扭转强度初算直径 3min m P d C n ≥ 式中: P ————轴传递的功率,KW ; m n ————轴的转速,r/mi n; C————由许用扭转剪应力确定的系数,查各种机械设计教材或机械设计手册。 根据参考文献1表9.4查得C=118~106,取C=118, 所以, mm n P C d 6.23355 85.211833==≥ 本方案中,轴颈上有一个键槽,应将轴径增大5%,即 ????d ≥23.6×(1+5%)=24.675mm 按照GB 2822-2005的a R 20系列圆整,取d=25mm。 根据GB/T1096—2003,键的公称尺寸78?=?h b ,轮毂上键槽的尺寸 b=8m m,mm t 2.0013.3+= 三、轴承部件结构设计 由于本设计中的轴需要安装带轮、齿轮、轴承等不同的零件,并且各处受力不同,因此,设计成阶梯轴形式,共分为七段。以下是轴段的草图: 3.1及轴向固定方式 因传递功率小,齿轮减速器效率高、发热小,估计轴不会长,故轴承部件的固定方式可采用两端固定方式。因此,所涉及的轴承部件的结构型式如图2所示。然后,可按轴上零件的安装顺序,从min d 处开始设计。 3.2选择滚动轴承类型 因轴承所受轴向力很小,选用深沟球轴承,因为齿轮的线速度,齿轮转动时飞溅的润滑油不足于润滑轴承,采用油脂对轴承润滑,由于该减速器的工作环境清 洁,脂润滑,密封处轴颈的线速度较低,故滚动轴承采用毡圈密封,由于是悬臂布置所以不用轴上安置挡油板。 3.3 键连接设计 轴段⑦ 轴段⑥ 轴段⑤ 轴段④ 轴段③ 轴段② 轴段① L1 L2 L3 图1

哈尔滨工业大学机械设计基础轴系部件设计

机械设计基础大作业计算说明书 题目:朱自发 学院:航天学院 班号:1418201班 姓名:朱自发 日期:2016.12.05 哈尔滨工业大学

机械设计基础 大作业任务书题目:轴系部件设计 设计原始数据及要求:

目录 1.设计题目 (4) 2.设计原始数据 (4) 3.设计计算说明书 (5) 3.1 轴的结构设计 (5) 3.1.1 轴材料的选取 (5) 3.1.2初步计算轴径 (5) 3.1.3结构设计 (6) 3.2 校核计算 (8) 3.2.1轴的受力分析 (8) 3.2.2校核轴的强度 (10) 3.2.3校核键的强度 (11) 3.2.4校核轴承的寿命 (11) 4. 参考文献 (12)

1.设计题目 斜齿圆柱齿轮减速器轴系部件设计2.设计原始数据

3.设计计算说明书 3.1 轴的结构设计 3.1.1 轴材料的选取 大、小齿轮均选用45号钢,调制处理,采用软齿面,大小齿面硬度为241~286HBW ,平均硬度264HBW ;齿轮为8级精度。 因轴传递功率不大,对重量及结构尺寸无特殊要求,故选用常用材料45钢,调质处理。 3.1.2初步计算轴径 按照扭矩初算轴径: 6 3 39.55100.2[]P P n d n τ?≥ =式中: d ——轴的直径,mm ;

τ——轴剖面中最大扭转剪应力,MPa ; P ——轴传递的功率,kW ; n ——轴的转速,r /min ; []τ——许用扭转剪应力,MPa ; C ——由许用扭转剪应力确定的系数; 根据参考文献查得106~97C =,取106C = 故 10635.0mm d ≥== 本方案中,轴颈上有一个键槽,应将轴径增大5%,即 35(15%)36.75mm d ≥?+= 取圆整,38d mm =。 3.1.3结构设计 (1)轴承部件的支承结构形式 减速器的机体采用剖分式结构。轴承部件采用两端固定方式。 (2)轴承润滑方式 螺旋角: 12() arccos =162n m z z a β+= 齿轮线速度: -338310175 2.37/6060cos 60cos16n m zn dn v m s πππ β???==== 因3/v m s <, 故轴承用油润滑。

哈工程机械动力学大作业

机械动力学大作业 含弹性摆杆的铰链四杆机构动力学仿真 学号: 院系名称:机电工程学院 专业:机械工程 学生:

本次进行设计和分析的对象为平面铰链四杆机构,在Adams的环境下,通过对四杆机构进行建模以及运动仿真,绘制出摆杆的相关曲线图。为了形成有效的对比,先建立含有刚性摆杆的四杆机构,进行运动仿真,绘制出摆杆的相关曲线。再建立含有柔性摆杆的铰链四杆机构,所有参数设置均和刚性摆杆一样。考虑到弹性摇杆可能发生较大的形变,不利于观测,绘制摇杆运动曲线时选择摇杆的质心作为参考点。 在Adams中主要有三种方法创建柔性构件,第一种是将刚性构件离散化后采用柔性梁连接;第二种是直接将刚体替换为柔性体;第三种是运用有限元分析的方法建立柔性构件。本次建模,主要采用前两种方法建立柔性摆杆。运用有限元建立柔性构件,等以后再进行深入研究。同时两种方法建立的柔性杆可以形成对比。 通过本次设计,主要学习了Adams 软件建模以及运动仿真、图形处理、刚柔混合建模的操作方法,对自己也是一个很大锻炼和提升。设计的为平面曲柄摇杆机构。相关参数如: 曲柄长L=200mm,宽W=60mm,高D=30mm; 连杆长L=427mm,宽W=30mm,高D=20mm; 摇杆长L=403mm,宽W=40mm,高D=20mm; 机架长L=600mm,宽W=40mm,高D=20mm;曲柄角速度为40deg/sec。经过验证,最短杆长度加上最长杆长度小于中间两根杆的长度之和,满足曲柄存在的条件,且最长杆为机架,故为曲柄摇杆机构。

一、建模过程 1、建立四个标记点,这四个点依次连接就可以确定一个铰链四杆机构。 2、建立四根杆的模型

哈尔滨工业大学机械设计大作业_带传动电算

H a r b i n I n s t i t u t e o f T e c h n o l o g y 上机电算说明书 课程名称:机械设计 电算题目:普通V带传动 院系:机电工程学院 班级: 设计者: 学号: 指导教师: 设计时间:2015.11.11-2015.12.1 哈尔滨工业大学

目录 一、普通V带传动的内容 (1) 二、变量标识符 (1) 三、程序框图 (2) 四、V带设计C程序 (3) 五、程序运行截图 (10) 参考文献 (11)

一、普通V带传动的内容 给定原始数据:传递的功率P,小带轮转速n1 传动比i及工作条件 设计内容:带型号,基准长度Ld,根数Z,传动中心距a,带轮基准直径dd1、dd2,带轮轮缘宽度B,初拉力F0和压轴力Q。 二、变量标识符 为了使程序具有较好的可读性易用性,应采用统一的变量标识符,如表1所示。表1变量标识符表。 表1 变量标识符表

三、程序框图

四、V带设计c程序 #include #include #include #define PAI 3.14 int TYPE_TO_NUM(char type); /*将输入的字符(不论大小写)转换为数字方便使用*/ float Select_Ki(float i); /*查表选择Ki的程序*/ float Select_KA(float H,int GZJ,int YDJ); /*查表选择KA的程序*/ float Select_KL(float Ld,int TYPE); /*查表选择KL的程序*/ float Select_M(int TYPE); /*查表选择m的程序*/ float Select_dd1(int TYPE); /*查表选择小轮基准直径dd1的程序*/ float Select_dd2(int dd1,float i); /*查表选择大轮直径dd2的程序*/ float Compute_P0(float V,int TYPE,float dd1); /*计算P0的程序*/ float Compute_DIFP0(int TYPE,float Ki,int n1); /*计算DIFP0的程序*/ float Compute_VMAX(int TYPE); /*计算VMAX的程序*/ float Compute_KALF(float ALF1); /*计算KALF的程序*/ float Compute_B(int TYPE,int z); /*计算带宽B的程序*/ float* Compute_LAK(float dd1,float dd2,int TYPE); /*计算Ld,a,KL的程序*/ main() { float P,H,i,n1,KA,Ki,dd1,dd2,V,P0,DIFP0,Pd,VMAX,*LAK,m,Ld,KALF,a,KL,z,F0,ALF1, Q,B; int YDJ,GZJ,TYPE,ANS; char type,ans; printf(" V带传动设计程序\n"); printf(" 程序设计人:×××\n 班号:123456678\n 学号:1234567896\n"); START: printf("请输入原始参数:\n"); printf("传递功率P(KW):"); scanf("%f",&P); printf("小带轮转速n1(r/min):"); scanf("%f",&n1); printf("传动比i:"); scanf("%f",&i); printf("每天工作时间H(h):"); scanf("%f",&H); printf("原动机类型(1或2):"); scanf("%d",&YDJ); printf("工作机载荷类型:\n1,载荷平稳\n2,载荷变动较小\n3,载荷变动较大\n4,载荷变动很大\n"); scanf("%d",&GZJ);

机械设计基础试题及答案

一、填空题:(每空1分,计32分) 1. 按表面间摩擦状态不同,滑动轴承可分为 液体摩擦 滑动轴承和 非液体摩擦 滑动轴承 2. 普通螺栓连接的凸缘联轴器是通过 摩擦力矩 传递转矩的;铰制孔螺栓连接的凸缘联轴器是通过 剪切与挤压 传递转矩的。 3. 三角形螺纹的牙型角为 60度 ,因其具有较好的 自锁 性能,所以通常用于 连接 。 4. 滑动轴承轴瓦上浇铸轴承衬的目的是 提高轴瓦的减磨耐磨性能 写出一种常用轴承衬材料的名称 轴承合金 。 5. 普通平键的工作面是 两侧面 ,其主要失效形式为 平键被压溃 ,其剖面尺寸b*h 是根据 轴的直径 来选择的。 6. 轮齿折断一般发生在 齿根 部位,为防止轮齿折断,应进行 齿根弯曲疲劳 强度计算。 7. 滚动轴承的基本额定寿命是指一批轴承,在相同运转条件下,其中 90 %的轴承不发生 疲劳点蚀 前所运转的总转数。 8. 按工作原理不同,螺纹连接的防松方法有 摩擦防松 、 机械防松 和 破坏螺纹副防松 。 9.转速与当量动载荷一定的球轴承,若基本额定动载荷增加一倍,其寿命为原来寿命的 8 倍。 10.蜗杆传动中,蜗杆分度圆柱上的螺旋线升角应等于蜗轮分度圆上的螺旋角,且两螺旋线方向应 相同 。 11.机构具有确定运动的条件是(1) 机构自由度大于零 (2) 原动件数等于自由度数 。 12.曲柄摇杆机构中,当 曲柄 与 机架 处于两次共线位置之一时,出现最小传动角。 13.圆柱螺旋弹簧的特性线是表示弹簧 受力与变形 之间的关系曲线;弹簧受轴向工作载荷时,其簧丝横截面上的应力最大点在 簧丝内侧点 ; 哈工大2004年秋季学期 机械设计基础(80学时) 试题答案

多刚体动力学大作业(MAPLE)

MAPLE理论力学 学号:201431206024 专业:车辆工程 姓名:张垚 导师:李银山

题目一: 如图,由轮1,杆AB 和冲头B 组成的系统。A ,B 两处为铰链连接。OA=R,AB=l,如忽略摩擦和物体自重,当OA 在水平位置,冲压力为F 时,系统处于平衡状态。 求:(1)作用在轮1上的力偶矩M 的大小 (2)轴承O 处的约束力 (3)连接AB受的力 (4)冲头给导轨的侧压力。 解: 对冲头B进行受力分析如图2:F,FB FN 对连杆AB进行受力分析如图3:FB ,FA > restart: #清零 > sin(phi):=R/l; #几何条件 > cos(phi):=sqrt(l^2-R^2)/l; > eq1:=F[N]-F[B]*sin(phi)=0; #冲头, x F ∑=0 > eq2:=F-F[B]*cos(phi)=0; #冲头, y F ∑=0 > solve({eq1,eq2},{F[N],F[B]}); #解方程 > F[B]:=F/(l^2-R^2)^(1/2)*l;#连杆的作用力的大小 > F[A]:=F[B]; #连杆AB ,二力杆 := ()sin φR l := ()cos φ - l 2R 2 l := eq1 = - F N F B R l 0 := eq2 = - F F B - l 2R 2 l 0{}, = F B F l - l 2 R 2 = F N F R - l 2 R 2 := F B F l - l 2 R 2 := F A F l - l 2 R 2 图1 图2 图3

> eq3:=F[A]*cos(phi)*R-M; #轮杆0=A M > eq4:=F[Ox]+F[A]*sin(phi)=0; #轮杆1 0=∑ x F > eq5:=F[Oy]+F[A]*cos(phi)=0; #轮杆1 0=∑ y F > solve({eq3,eq4,eq5},{M,F[Ox],F[Oy]});#解方程 答:(1)作用在轮1上的力偶矩M=FR; (2)轴承O处的约束力 (3)连杆AB受力 (4)侧压力 题目二: 如图4,图示曲线规尺的杆长OA=AB=200mm,而CD=DE=AC=AE=50mm 。如OA 杆以等角速度 s rad 5π ω= 绕O 轴转动,并且当运动开始时,角?=0?。 (1)求尺上D 点的运动方程。 (2)求D 点轨迹,并绘图。 > restart: #清零 > OA:=l: #OA 长度 > AB:=l: #AB 长度 > CD:=l/4: #CD 长度 > DE:=l/4: #DE 长度 > AC:=l/4: #AC 长度 > AE:=l/4: #AE 长度 > phi:=omega*t: #瞬时夹角 > x:=OA*cos(phi): #D 点的横坐标 := eq3 - F R M := eq4 = + F Ox F R - l 2 R 2 0 := eq5 = + F Oy F 0{},, = M F R = F Oy -F = F Ox - F R - l 2 R 2 = F Ox -F R - l 2 R 2 = F Oy -F := F B F l - l 2 R 2 = F N F R - l 2 R 2 图4

液压伺服 大作业

硕士学位课程考试试卷 考试科目:电液伺服控制 考生姓名:刘双龙 考生学号:20140713189 学院:机械工程学院专业:机械工程 考生成绩: 任课老师(签名) 考试日期:2014年1月20日午时至时

考试主题:电液伺服(比例)系统 考试题目: 1、为什么把液压控制阀称为液压放大元件? 2、什么叫阀的工作点?零位工作点的条件是什么? 3、电液伺服阀由哪几部分组成?各部分的作用是什么? 4、什么是液压固有频率?在阀控缸系统中液压固有频率与活塞位 置有关吗?为什么? 5、为什么电液伺服系统一般都要加校正装置? 6、结合自己研究领域,写一篇液压伺服系统建模、分析的论文, 字数不少于2000字。 注:要求独立完成,不允许抄袭。 交作业时间: 最迟2015年第一个学期的第一周交到7教136,交纸质档。

三自由度平台液压伺服系统建模 摘要: 我的专业是机械工程,主要方向是机械设计,所以本文选择了与我专业方向有关的一个机构进行建模。本文开始对机构进行了说明(采用已有的机构,并非自己设计),然后对其进行运动学分析,从而的到上平台和下平台的速度及加速度,和雅可比矩阵及液压缸速度。然后对驱动机构进行电液伺服系统建模。其中 一:自由度运动平台系统简介 本文所研究的三自由度运动平台类似与六自由度平台是由一个上平台(动平台)、地基(下平台)、三个支杆、三个线性作动器以及若干关节连接而成的。上平台装有负载,完成既定的位置、速度、加速度运动要求,进而实现刑于道路状况的复现。其结构示意图如图1.1所示。 图 1三自由度运动平台的结构图 该平台的结构如下:上平台与地面之间以三个支杆(strut)来约束并起支撑作用,并以三个液压缸作为驱动部件进行驱动。每个液压缸两端为关节轴承,中间为一个移动副和一个转动副连接;每根支杆两端也是采用关节轴承分别与地面和上平台相连中间一个转动副。通过计算可知每个支杆所在的支路都具有5个自由度,每个支路对上平台提供一个约束;每个液压作动器所在的支路都具有6个自由度,对于上平台没有约束。通过每个分支对上平台的约束很容易计算得出其自由度为3。因此,通过三套液压作动器的驱动,上平台能够实现对于给定运动的跟踪复现。 简单直观的对运动进行分析可得到:由于三根支杆的限制作用,上平台平动受到限制:而转动自由度相对更为自由,运动范围更大。当两竖直作动器差动动

哈工大机械设计大作业一千斤顶

Harbin Institute of Technology 哈尔滨工业大学 机械设计作业设计计算说明书 题目:设计螺旋起重器(千斤顶) 系别: 班号: 姓名: 日期:

Harbin Institute of Technology 哈尔滨工业大学 机械设计作业任务书 题目:设计螺旋起重器 设计原始数据:题号3.1.1 起重量Fq=30 kN 最大起重高度H=180mm

一 选择螺杆、螺母的材料 螺杆采用45#调制钢,由参考文献[2]表10.2查得抗拉强度b 600 MPa σ=,s 355 MPa σ=。 螺母材料用铝黄铜ZCuAl10Fe3。 二 耐磨性计算 螺杆选用45# 钢,螺母选用铸造铝黄铜ZCuAl10Fe3,由参考文献[1]表 5.8 查得[]p =18~25MPa 从表 5.8 的注释中可以查得,人力驱动时[]p 值可以加大20%,则[]p =21.6~30MPa 取[]25MPa p = 。 按耐磨性条件设计螺纹中径2d ,选用梯形螺纹,则 2d ≥ 由参考文献[1]查得,对于整体式螺母系数2ψ==1.2—2.5,取2ψ=。 则 式中:Q F -----轴向载荷,N ; 2d -----螺纹中径,mm ; []p -----许用压强,MPa ; 查参考文献[2]表11.5取公称直径28d =mm ,螺距3P =mm ,中径226.5d =mm ,小径 324.5d =mm ,内螺纹大径428.5D =mm 。 三 螺杆强度校核 螺杆危险截面的强度条件为: 219.6d mm ≥==

e []σσ=≤ (2) 式中:Q F -----轴向载荷,N ; 3d -----螺纹小径,mm ; 1T -----螺纹副摩擦力矩,2 1tan(') 2Q d T F ψρ=+ (3) ψ为螺纹升角,ψ ; []σ-----螺杆材料的许用应力,MPa 。 查参考文献[1]表5.10得钢对青铜的当量摩擦因数'0.08~0.10f =,螺纹副当量摩擦角 'arctan 'arctan 0.08~arctan 0.10 4.5739~5.7106f ρ===,取'5.7106ρ=(由表5.10的注 释知,大值用于启动时,人力驱动属于间歇式,故应取用大值)。把数据代入(3)式中,得 把数据代入(2)式中,得 由参考文献[1]表5.9可以查得螺杆材料的许用应力 s []4σ σ= (4) 其中s 355 MPa σ=,则 []88.75a MP σ= 显然,e []σσ<,螺杆满足强度条件。 四 螺母螺牙强度校核 螺母螺纹牙根部的剪切强度条件为 4[]Q F Z D b ττπ= ≤ (5) 式中:Q F -----轴向载荷,N ; 4D -----螺母螺纹大径,mm ; 126.5 30000tan(2.0637 5.1427)502612T N mm =??+?= ?70.4e MPa σ==

2016年哈工大考研《机械设计基础》真题回忆版

2016年哈工大考研《机械设计基础》真题回忆版 填空题 题目很多,我记不太清了,但是有很多选①②③④这种填空格式的选择题,有几道确定是单选,还有几道我不确定,但是选的一个。考的还是五花八门,大概得认真把机械设计整本书背下来才能打高分。 简答题 第一道问张紧轮怎么布置 第二道是给出两个图问你哪个可以形成油膜,其实是考液体动压润滑的三个必要条件 第三道是给出一个高转速轴,一个低速重载轴,问都应该装哪种轴承 第四道问轴上装两个平键,考虑强度因素,问为什么两轴要呈180度放置 第五道说的是大批量生产一个直径280mm的齿轮套在直径50mm的轴上,问选用哪种结构,轮坯用哪种方式制造 第三题 计算自由度,机构蛮复杂的,但是这种题再难也难不到哪里去啦 第四题 是考虑摩擦圆摩擦角,让你对一个机构受力分析,然后第一问求某滑块速度,第二问求机构的效率。机构挺复杂的,有两个移动副和三个杆件,我时间不够这题没怎么做,大概觉得需要用到考虑摩擦圆摩擦角之后的受力分析,速度瞬心法求速度,还有效率的计算公式。←_←这题14分,特别值钱,但是又难又花时间第五题 凸轮,考对心直动从动件,理论轮廓是圆的一部分,考从动件位移,压力角计算

第六题 齿轮,考齿条刀具加工某齿轮,第一问加工标准的,第二问加工变位的,直接套公式就ok 第七题 轮系,两个周转和一个定轴的组合,问传动比 第八题 等效和速度波动调节,第一问求最大盈亏功,第二问求最大速度最小速度,第三问求它们出现的时间。唔,问题很常规,M-φ曲线比较新鲜,但总体还是很简单第九题 第一道,考的是铰制孔用螺栓,第一问求失效形式,第二问求设计最优结构,第三问求螺栓剪切力并根据校核条件设计直径。 考了十几年的普通螺栓今年突然就出了铰制了! 第二道,给的图是传送带加斜齿轮,直齿轮的三级传dong装置。在安装小齿轮的高速轴上,装了一对圆锥滚子轴承,给了小齿轮的Fa Fr Ft,传送带对该轴的压li,小齿轮转速,问小齿轮左旋还是右旋对轴承寿命有什么影响 第十题作图题 第一问是让你画联轴器和唇形密封圈,题目没直接提唇形,问的比较隐晦。 第二个题是轴系改错,轴承奇葩了点,是左边一个右边一对儿,不过常考的点还是那些

哈工大机械设计大作业

哈尔滨工业大学 机械设计作业设计计算说明书 题目: 轴系部件设计 系别: 英才学院 班号: 1436005 姓名: 刘璐 日期: 2016.11.12

哈尔滨工业大学机械设计作业任务书 题目:轴系部件设计 设计原始数据: 图1 表 1 带式运输机中V带传动的已知数据 方案d P (KW) (/min) m n r(/min) w n r 1 i轴承座中 心高H(mm) 最短工作 年限L 工作 环境 5.1. 2 4 960 100 2 180 3年3班 室外 有尘 机器工作平稳、单向回转、成批生产

目录 一、带轮及齿轮数据 (1) 二、选择轴的材料 (1) 三、初算轴径d min (1) 四、结构设计 (2) 1. 确定轴承部件机体的结构形式及主要尺寸 (2) 2. 确定轴的轴向固定方式....................................... 错误!未定义书签。 3. 选择滚动轴承类型,并确定润滑、密封方式 .................. 错误!未定义书签。 4. 轴的结构设计................................................ 错误!未定义书签。 五、轴的受力分析 (4) 1. 画轴的受力简图 (4) 2. 计算支承反力 (4) 3. 画弯矩图 (5) 4. 画扭矩图 (5) 六、校核轴的强度 (5) 七、校核键连接的强度 (7) 八、校核轴承寿命 (8) 1. 计算轴承的轴向力 (8) 2. 计算当量动载荷 (8) 3. 校核轴承寿命 (8) 九、绘制轴系部件装配图(图纸) (9) 十、参考文献 (9)

哈工大2012机械设计基础(839回忆版)

2012哈工大机械设计基础真题回忆版上一年考前两个月因为没有找到2011年真题而很惘然的时候,我找到了某人士的热心回忆版。今年终于到我考完了,感觉还不错,是时候让我回馈这个网站了,现呈上我的2012的回忆版,考完这晚就默写出来,大概有个百分之八九十吧。希望能给有志考上哈工大的你们一点点鼓励。 一、填空题: 1.规定涡轮加工刀具的原因。 2.梯形螺纹的牙型角 3.齿面接触应力是否每处接触点都一样? 4.滚动轴承的寿命计算及定义 5.多级减速箱输出轴按高速还是低速计算? 6.提高螺纹连接刚度的措施:(减少)螺栓刚度,举例 7.轴承部件轴向固定的三种方式 二、简答题 1.齿轮传动的载荷系数的组成及其分别影响系数 2.软齿面闭式齿轮传动设计准则,怎么选择M和Z? 3.非液体摩擦滑动轴承设计校核准则? 4.图1中带受应力最大为何处?应力组成。

三、计算题(8题) 1.自由度计算,问某一杆为主动件,机构运动是否确定,一般题。《机械原 理试题精选与解答》里面的会做,这个也没问题的 2.刨床刨削机构。在《机械原理试题精选与解答》P39例2.19的基础上加了 几个问:1.摆杆摆角大少?2.知AD尺寸,求其他杆尺寸3.标出曲柄AB 运动方向4.什么位置CD角速度最大? 3.(1)画出该位置凸轮转角,推杆位移,压力角。(2)推程角,远休止角, 回程角,近休止角的计算数值。(3)若推程时压力角最大为45°,问a 的取值。(两轮大小相同为R) 4.加工齿轮及变位。P85例4.17,(1)(2)问。跟03到05中的某一年的真 题基本是一样的。第三个问特别点:求变位后da(齿顶圆直径),rb(基圆半径)

车辆系统动力学仿真大作业(带程序)

Assignment Vehicle system dynamics simulation 学院:机电学院 专业:机械工程及自动化 姓名: 指导教师:

The model we are going to analys: The FBD of the suspension system is shown as follow:

According to the New's second Law, we can get the equation: 2 )()(221211mg z z c z z k z m --+-=???? 221212)()(z k mg z z c z z k z m w +-----=? ??? 0)()()()(222111222111=-++--+-++--+? ? ? ? ? ? ? ?w w w w z L z k z L z k z L z c z L z c z m χχχχ 0)()()()(2222111122221111=-++----++---? ? ? ? ? ? ? ?w w w w z L z L k z L z L k z L z L c z L z L c J χχχχχ d w w w w Q z L z k z L z c z m ,111111111)()(-=------? ? ? ? ?χχ d w w w w Q z L z k z L z c z m ,222222222)()(-=-+--+-? ????χχ When there is no excitation we can get the equation: 2)()(221211mg z z c z z k z m --+-=???? 2 21212)()(z k mg z z c z z k z m w +-----=? ??? Then we substitude the data into the equation, we write a procedure to simulate the system: Date: ???? ?? ??? ??==?==?===MN/m 0.10k m 25.1s/m kN 0.20MN/m 0.1m kg 3020kg 2100kg 3250w 2l c k I m m by w b

相关主题