搜档网
当前位置:搜档网 › 土壤自动化监测系统

土壤自动化监测系统

土壤自动化监测系统
土壤自动化监测系统

墒情监测系统实施方案

目录

1 概述 (1)

1.1建设土壤墒情监测系统的必要性 (1)

1.2系统建设任务 (1)

1.3系统建设目标 (2)

1.4系统设计依据 (2)

1.5系统设计原则 (2)

1.6影响墒情变化的主要因素 (3)

1.7墒情监测要素 (3)

1.8主要专业术语解释 (5)

2 墒情自动化监测系统总体设计 (6)

2.1总体思路 (6)

2.2系统组成 (6)

2.3系统功能 (7)

2.4系统工作方式及数据流程 (8)

2.5系统特点 (9)

3 墒情监测站网及站网布设 (9)

3.1墒情监测站网分类 (9)

3.2土壤墒情监测基本站点的设置 (10)

3.3土壤含水量垂向测点的布设 (11)

4 墒情遥测站设计 (12)

4.1设备构成 (12)

4.2遥测站功能 (12)

4.3土壤墒情监测点区域选建及选站原则和相关土建 (13)

4.4仪器安装调试及数据校验 (15)

4.5主要设备 (16)

4.5.1 墒情传感器 (16)

4.5.2 数据采集终端 (17)

5 墒情自动化监测系统通信设计 (18)

5.1公共电话交换网(PSTN) (18)

5.2超短波信道 (19)

5.3全球移动通信系统(GSM) (20)

5.4GSM的通用无线分组业务(GPRS) (22)

5.5CDMA通讯网络 (23)

5.6基于GPRS/CDMA网络的组网解决方案 (24)

6 监测中心站设计 (28)

6.1中心站系统配置 (28)

6.1.1 硬件配置 (28)

6.1.2 软件配置 (30)

6.2墒情自动化监测应用软件设计 (31)

6.2.1 软件设计总体思想 (31)

6.2.2 软件设计原则 (31)

6.2.3 软件体系结构 (32)

6.3中心站主要功能 (33)

6.4自动气象站的建设 (33)

6.4.1 气象观测概述 (33)

6.4.2 气象采集系统 (34)

7 采集系统的可靠性 (37)

7.1电源管理 (37)

7.2雷电防护 (38)

7.3信道可靠性 (39)

8 系统安全 (39)

8.1数据安全 (39)

8.2系统安全 (40)

9 实施组织与培训 (41)

附录1 墒情监测点的勘查和土壤含水量的测定方法 (43)

附录2 墒情报送制度与报送方法 (48)

1 概述

1.1 建设墒情监测系统的必要性

土壤墒情监测是水循环规律研究、农牧业灌溉、水资源合理利用及抗旱救灾基本信息收集的基础工作。

墒情监测负责收集旱作农业、牧业的墒情信息,收集农业和环境干旱的信息。为指导农牧业灌溉、分析干旱的形成及分布发展、抗旱救灾决策提供准确的信息,是水资源合理利用,水资源科学管理和抗旱救灾决策的最重要的基础工作。其最重要的要素是土壤含水量的监测!

我国是受干旱影响较为严重的国家,旱灾平均每两年就要出现一次,平均年受旱面积为2000万hm2以上,占我国气候灾害的59.3%,因此干旱缺水已成为制约国家农业和整个国民经济发展的重要因素。我国从上个世纪中叶就开始了土壤水份的监测,先后采用了烘干称重、中子水份计和TDR时域反射仪等方法,这些方法虽然可以实现土壤水份的测量,但均无法在野外、无人职守的状况下自动工作,更无法实现墒情数据的自动传输、处理和统计,无法适应当前的农业、抗旱决策以及城市绿化的现代化建设的需要,造成一种遇旱而抗的被动局面。为此,有必要建设墒情监测自动化系统,以保证我国经济的持续增长和社会稳定。

1.2 系统建设任务

根据国家墒情监测规范和监测站实施方案和实时规程,整个墒情监测系统包括如下建设任务:测站选址、地理勘查、土建施工、设备采购、安装调试、软件开发等。

根据墒情监测工作需要,从系统集成角度考虑系统建设任务主要包括以下四方面内容:

采集系统的建设:包括墒情及气象传感器的选型、率定、安装等;

通讯传输系统的建设:包括通信方式的确定,通信设备的选型,安装调试等; 监测应用软件系统的建设:完成软件的开发设计,实现系统集成;

监测中心网络建设:包括中心站设备配置及其局域网的建设;

1.3 系统建设目标

通过墒情自动化监测系统的建设,采用先进的墒情监测仪器,实现无人值守状况下的自动监测;

采用先进、可靠、稳定的通讯方式,实现墒情数据的自动传输;

通过中心监测软件的设计,实现数据的自动处理、统计、分析。

通过墒情自动化监测系统的建设准确地引导、组织农民进行农业结构调整和生产布局的宏观决策,为农技推广部门和农民适时采取补充灌溉及农田蓄水保墒措施,提高水资源利用效率和效益,为防早抗旱技术措施的应用等提供科学依据。

1.4 系统设计依据

设计的主要依据是:

《土壤墒情监测规范》SL000-2005

《国家防汛指挥系统总体设计大纲》

《国家防汛指挥系统一期工程初步设计总报告》

《国家防汛指挥系统一期工程旱情分中心设计指导书》

《计算机软件开发规范》GB8566。

1.5 系统设计原则

规范性

系统建设中必须依据统一的规范和标准,包括数据类型与存储格式,输入输出格式,用户界面设计等,标准应参照有关国际、国家和行业的标准与规范,符合墒情监测和旱情信息管理系统工程的建设要求。

先进性

针对系统的具体需要,应综合利用遥测技术、网络技术、GIS技术、数据库技术及其他先进的软件技术与开发工具,来设计和开发系统。

可靠性

在建设过程中,应采用各种软件质量控制技术,建立质量评估体系,保证系统运行稳定,数据传输安全可靠,数据处理准确无误。

实用性

要求系统整体结构清晰,系统界面简明直观,各类安装手册、用户手册等文档详尽明了,系统操作符合工作习惯,易于系统维护,充分满足江西省抗旱工作需要。系统利用现有资源进行整合开发,具有较高的资源利用率。

集成性

要求子系统有良好的集成性,数据调用处理和各种功能实现平滑过渡。

开放性

软件系统统一采用Windows操作系统平台,增强系统移植性。同时为了对系统进行修改、补充和不断完善,应采用开放式的结构设计,使系统在具有可扩充性的软硬件环境下,能在运行过程中不断地添加新的操作功能和加入新的信息,为系统的进一步开发预留接口。

1.6 影响墒情变化的主要因素

降水量:自然降水是土壤水分的主要来源,因此降水量的多少成为土壤墒情变化的决定因素。

气温:气温通过影响土壤中水分的蒸发,对土壤墒情变化产生重要的影响。 大风:一般大风持续时间长,空气对流加强,加速了土壤水分损失。

地形:地形高低不同墒情的分布也不同,一般地势较低的地形墒情较足。

其它因素:人们的耕作措施、植物蒸腾、光照强度等也对土壤墒情产生重要影响。

1.7 墒情监测要素

墒情和旱情及其发展趋势是同气象条件、土壤、土壤的水分状态,作物种类及其生长发育状况密切相关的,因此墒情监测主要是对气象条件、土壤的物理特性、土壤水分状态、作物种类及生长发育状况四大要素进行监测。

(一)气象要素

气象观测要素主要有降雨量、气温、气压、温度、风速、水面蒸发量、地温、日照等。

对于墒情监测区内有气象站的区域,为节省费用、避免重复投资,气象信息可以通过在监测软件系统建立与本地气象中心的链接,进行自动搜索;或者与本地气象中心进行信息共享,通过发送气象简报的形式获得;

对于墒情监测区或临近区无气象站的区域和重点灌区可以建立自己的小型气象站,其中气象观测场的建设应符合气象观测场的规范要求,仪器及设备应按照气象部门的要求配置,并按照气象部门的观测规范来进行气象要素的观测、记录和资料的整编。

墒情监测点除收集气象资料外,还应收集当地气象部门的未来天气趋势预报,以了解墒情监测区的未来天气变化趋势。

(二)土壤的物理特性

土壤的物理特性由土壤的质地、土壤的结构、土壤的比重、土壤干容重、土壤空隙度来表达。

土壤的质地由当地的土壤颗粒级配清况来决定,其判别方法采用国际标准分类方法来进行。土壤垂向分布由层次结构时,需分析不同层次的土壤质地和其他的物理特性。

(三)土壤水份状态

土壤水份常数施土壤水份特性的重要指标,主要有饱和含水量,田间持水量、凋萎含水量及作物不同生长期适宜的含水量。

土壤含水量施墒情和旱情监测的主要指标、土壤水份状态可由重量含水量、体积含水量、土层中的蓄水量和土壤相对湿度四个指标来表达。具体可根据规范的换算关系来进行换算。

另外浅层地下水水位的变化及地下水埋深也是影响土壤墒情变化的重要要素之一。实际墒情监测中也应对地下水进行监测。

(四)作物种类及生长发育状况

墒情监测站点还应收集代表区域的作物种植情况,即作物的种类,作物的分布情况及各种作物占总面积的百分比。观测土壤含水量的同时记录作物的播种日期,作物生长发育期,观察作物的生长发育状况。

记录代表地块的作物的水分状态,以涝、渍、正常、缺水、受旱等分级来表示。收集不同作物、不同生长期的适宜土壤含水量资料,此含水量值一般以土壤

相对湿度来表示。

旱地田间积水时间超过24小时为涝、地下水面达及土壤表层为渍、土壤含水量小于适宜土壤含水量时为缺水(脱墒)、土壤含水量小于凋萎含水量时为受旱。收集不同作物不同生长期脱墒和受旱的临界含水量资料,记录脱墒和受旱开始的日期,受旱的天数,代表区域干旱程度及干旱的分布情况。

1.8 主要专业术语解释

旱作农业区:指主要依靠天然降雨和集水补充灌溉而从事农业生产的区域。除以粮食安全为核心的种植业外,还包括林果、牧草等种植区域。

土壤墒情与早情监测:指通过对降雨量、气温、土壤含水量、农业技术配置、作物产量、灾害性天气等的观测记载,分析耕地土壤水分动态变化,分析土壤墒情对作物的影响及旱情程度。

土壤墒情评定指标:以土壤含水量与田间持水量比值的百分数表示。根据土壤墒情评价指标,把土壤墒情分为五个等级,即过多、适宜、轻度不足、不足、严重不足。

?“过多”为高于相对适宜含水量;

?“轻度不足”根据生产实际情况确定,介于适宜和不足之间;

?“不足”为低于相对毛管断裂联系含水量;

?“严重不足”介于不足和相对凋萎含水量之间。

?旱情评价指标:把旱情分为轻早、中旱、重旱、极旱四个等级。

墒情“轻度不足”即为“轻旱”;

墒情“不足”即为“中旱”;

墒情“严重不足”即为“重旱”;

小于相对凋萎含水量即为“极旱”。

2 墒情自动化监测系统总体设计

2.1 总体思路

墒情自动化监测系统是一套集土壤含水率数据的采集、传输、存储到对大量采集数据的集中管理、统计分析、预测以及显示的完整解决方案。系统是基于墒情监测、墒情预报、旱情分析、旱情统计、抗旱管理功能为一体的综合系统。

通过旱情信息中心的建设,完成信息的接收、处理、发布、应用等工作;系统总体设计灾地市级建立旱情信息站、县级以下设立墒情采集点,建立全面、综合的旱情数据库和抗旱管理调度模型,为抗旱决策提供科学依据和技术支持。

全面实时监测和掌握旱情的发生及发展趋势,提出相应的抗旱减灾对策,实现由单一农业抗旱向生产、生活、生态全面抗旱,由被动抗旱向主动防旱抗旱,由传统抗旱向现代抗旱转变,提高抗旱工作水平!

2.2 系统组成

系统整体由采集终端、数据传输系统及监测中心三部分组成,结构如下图所示。

2.3 系统功能

墒情自动化监测系统能够在线监测土壤湿度、雨量、蒸发量、地下水水位等旱情监测数据,实现旱情数据的自动采集、记录、处理、传输,同时可以将实时数据通过多种通讯方式混合组网传送至中心站,通讯信道可实现主备路由自动切换。系统支持多级网络结构,平稳实现计算机网络与遥测网络连接。系统软件平台采用B/S结构、TCP/IP协议,可在网络计算机上通过浏览器实现数据的在线浏览,数据库存储采用分布—动态同步数据存储,实现多个节点数据中心数据库之间任意表、站和参数的数据实时同步。

(1)遥测系统功能要求

实现全省(市)墒情信息自动采集、传输和接收,可采用中心召测、中心巡测和终端主动发送三种运行方式。

(2)旱情信息管理系统功能要求

利用现有工作基础,系统采用B/S和C/S混合的多层体系结构。以现有防办综合数据库为载体,进行一定的增加设计,形成旱情数据库,以地理信息系统为平台,通过WEBGIS服务,使用C/S结构旱情相关数据的导入等功能,利用浏览器进行旱情信息的查询、分析、预测、管理等交互。全面实现实时快速准确地搜集全省旱情有关的各类信息,如土壤墒情信息、水情信息、气象信息、农情信息以及水利工程蓄水、引水、提水等情况,通过对各类信息的综合分析,实时监测旱情发展过程和发展趋势,分析干旱灾害程度及造成的损失和影响,拟定抗旱减灾方案和对策。从而使江西省防汛抗旱总指挥部能及时全面掌握全省范围的旱情形势以及旱情对农业生产和群众生活造成的影响,采取有效的防旱、抗旱措施,以使旱灾造成的损失和影响降到最低程度。

1)建立旱情综合数据库,实现旱情信息的集中管理和二级信息共享。旱情数据库依据属性不同分为八类:气象水文数据、抗旱水源数据、抗旱工程数据、实时旱情数据、社会经济数据、抗旱管理数据、历史旱灾数据、图形数据。数据库的表结构依据上述八类数据的分类标准,按国家防总表结构形式分别进行表结构设计。数据库管理系统采用大型网络数据等技术来建立,系统软件设计采用C/S体系结构(要求在省市级能用),旱情信息查询系统软件设计采用B/S体系结构(要求在省市级能用)。

2)建立空间数据库,整合GIS数据和其他数据,统一建立基于服务器(采用ORACLE数据库平台)的空间地理数据库,实现各种应用系统共享。

3)完成COM+组件开发,COM+组件包括基于ArcInfo的电子地图组件,数据库访问组件、数据统计分析计算组件、墒情预测模型组件、遥感监测预报模型组件、旱情分析模型组件、旱灾评估模型组件、文件上传组件、用户安全认证组件。

4)完成客户端软件开发,包括属性数据和空间数据库维护、各种应用模型管理、日志记录、系统配置。

5)完成浏览器端软件开发(要求在省市级能用),包括以下模块:基本信息、水文信息、水资源信息、墒情信息、遥感信息、旱情分析、旱情预测、旱情统计、抗旱预案和评价、抗旱会商、系统管理。

6)系统集成和数据库开发要考虑遥感监测系统的数据、二期(77个固定点、23个移动点和试验站)的数据和气象数据的处理、传输和查询。

7)完成系统安全设计,包括数据库备份和恢复、系统资源讯问认证和防病毒安全。

2.4 系统工作方式及数据流程

系统设计采用间隙式连续工作方式,连续采样、实时记录最大墒情数据,采用定时自报和召测/应答的混合工作体制。报送定时可设定为:6小时、8小时、24小时。

墒情遥测站可以采用召测、巡测、自报和人工发送四种运行方式。

召测:监测中心向墒情监测站发送指令,墒情监测站接收到指令后采集实时墒情数据,并将数据发送给监测中心;

巡测:监测中心逐个向墒情监测站发送指令,墒情监测站接收到指令后采集实时墒情数据,并将数据逐个发送给监测中心;

自报:墒情监测站按设定时间间隔采集数据并发送给监测中心;

人工发送:通过终端置数操作,将数据编制并发给监测中心。

2.5 系统特点

土壤墒情监测终端操作简便易用,高效省时,取代传统的数据采集方式,从而节省大量人力物力和时间;

提供特有的四种运行方式和混合式的工作模式,满足各种不同的应用需求; 多种数据传输方式可自由选择;

数据处理和传输完全实现自动化,有效避免在传输过程终由于人为因素造成的数据失真。

3 墒情监测站网及站网布设

3.1 墒情监测站网分类

墒情监测站网可分为全国墒情监测站网、地方墒情监测站网和灌区墒情监测站网三种类型。

属于全国墒情监测站网的基本监测站负责向主管部门及协议单位等部门报送墒情和旱情信息。

国家墒情监测站网由国家统一规划,全国墒情监测站网的密度视历史上旱情和旱作农业、牧业的分布情况而定,对一般县、市,每市、县至少有两个监测点,易旱县中每县至少三个监测点,历史上旱情严重的市、县,每市、县需有3个以上的墒情和旱情监测点。

地方墒情监测站网由地方负责规划,国家级墒情监测站点可纳入地方监测站网、地方墒情监测站网负责向地方各级主管部门发布墒情监测信息。

灌区墒情监测站网由灌区负责规划,主要为灌区的农业灌溉和科学用水管理服务,同时也有义务向上级主管部门报告墒情和旱情,地方和国家级站网也可以利用灌区的墒情监测站点作为自己的基本监测站点。国家和地方墒情监测站点同时也可以纳入灌区的墒情监测站网。

国家和地方级墒情监测站网的基本站点可分为两类,即可灌溉耕地和牧场的基本监测站和无灌溉土地的基本监测站,同一地区国家级墒情监测站应有两类墒情监测点。

3.2 土壤墒情监测基本站点的设置

国家和地方墒情监测基本站点的观测位置应当相对稳定,观测点的位置一经确定不得随意改变,以保持墒情监测资料的一致性和连续性。

进行墒情观测的代表性地块的选择应考虑其地貌的代表性,土壤的代表性、气象和水文地质条件的代表性和种植的作物的代表性。

土壤含水量监测点设置在代表性地块中,选择代表性地块时应对其进行调查,其主要内容有:

(1)地理位置,所属行政区划。周围地形及地物、地貌;

(2)水文地质条件,地下水测井情况及地下水理深;

(3)土壤质地、土层深度及土壤物理特性;

(4)作物种植的种类,种植制度;

(5)灌溉条件。

在经过调查和代表性分析后,选定代表性地块并作代表性地块的土壤含水量空间变异性分析,以确定土壤含水量监测的平面空间的取样数目。

国家墒情监测站网代表性地块的选择应考虑气象要素、地下水要素的同期观测条件,代表性地块与气象站在气象条件上不应该有较大的差别。

山丘区代表性地块应设在坡面上比降较小而面积较大的地块中,不应设在沟底和坡度大的地块中。

平原区代表性地块应设置在平整且不易积水的地块。

土壤含水量观测点应布置在地块中央平整的地方,应避开低洼易积水的地点,且同沟漕和供水渠道保持一定的距离,避免沟渠侧渗对土壤含水量的影响。

代表性地块平面布点方法可采用均匀布点法,一般同时在三个点采样,墒情监测站的土壤含水量采用同一平面深度三点的均值,采样点之间应保持一定的距离,采样点的位置一经确定,应保持相对的稳定,不应作较大的改变。

采样点的确定主要考虑采样位置对周围微地貌的代表性。

国家及地方墒情监测站网的基本站点除收集代表性地块的土壤墒情资料外,在发生脱墒和旱情的情况下,应在代表的区域中进行墒情巡测,巡测点的布设视土壤、水文地质条件、作物种类代表性等情况来确定。

另外,当确定国家和地方墒情和旱情监测点的位置后,应对站点位置及代表

区域的自然地理、水文气象、地质地貌、农田水利工程及农业种植情况进行调查。将调查的结果和统计的报表等输入监测中心的数据库,为监测参数的率定,土壤分类,抗旱决策等更好的服务。

3.3 土壤含水量垂向测点的布设

土壤含水量垂向测点布设视观测目的、水文地质条件及土层的厚度来确定观测土层的深度、观测点的数目。

垂向测点的数目可根据观测区域的具体情况采用以下的方案。

测点数测点深度(cm)

一点法30

二点法20、50

三点法10、30、50

四点法10、30、50、70

五点法10、30、50、70、90

六点法10、30、50、70、90、110

土壤层薄的山丘区和地下水埋深浅的平原区可视具体情况采用一点法和二点法。国家和地方墒情监测站点的垂向测点布置应相同,地下水埋深浅的平原区测深可达饱和带上界面。

国家和地方墒情测报站网的基本观测站点需采用三点法且测点一经确定后,不得随意改动测点的布置。

国家和地方墒情观测站网的代表区域中的巡测点可采用一点法或两点法。

灌区墒情监测站网代表性地块的垂向监测深度可达80cm,采用五点法,而巡测点可采用二点法或三点法。

以实验和研究为目的土壤含水量观测,当地下水埋深较大时,土壤层的观测深度达含水量稳定的支持毛管水带即可,取土深度超过110cm时取土点的距离步长可加大、间距可取为30cm,超过200cm时间距可采用50cm。

当垂向土壤存在层次结构时,垂向测点的布置应考虑土壤的层次结构,在土壤质地有很大变化且厚度超过20cm的层次中应有观测点。在灌区墒情观测站网中,若监测任务重,按规范规定的要求难以完成墒情同步观测的条件下可以进行

垂向测点精简分析。进行不同测点数计算的土层平均含水量对多点法计算土层实际含水量的代表性分析,精简垂向测点的数目。

4 墒情遥测站设计

墒情遥测站是一种野外工作、无人职守、自动定时采集墒情数据的自动化遥测站(分为移动站和固定站两种)。主要实现土壤含水率数据的自动采集和存储,并通过各种通信网络向监控中心报送数据和接受监控中心的指令。

4.1 设备构成

设备配置主要由墒情传感器、墒情遥测终端机、电源系统、通讯设备等组成。根据地域特点和监测需要遥测站还可配置雨量、温度、蒸发、风速/风向、气压等传感器构成旱情综合测站。

如下图所示:

4.2 遥测站功能

遥测站主要功能:

实时、在线自动测量墒情数据;

可根据现场通信条件选择通信信道设计;

可设置各种参数,如站号、采样间隔时间、定时自报时间、通信参数等;

具有随机自报、定时自报和应答功能;

具有人工置数功能;

具有固态存储功能,断电时能保存数据和设备信息不丢失;

具有低功耗特点和电源电压告警功能。

4.3 土壤墒情监测点区域选站原则和相关土建

土壤墒情监测点区域选建应参照现有的区域类型和农业区划、地貌类型、降水时空分布特点,进行建设。

土壤墒情监测点选站原则:

标准站建设应体现布局合理、高标准、数据采集可靠原则。在区(片)范围内,根据代表土壤类型、耕地类型(旱川地、梯田、塬地、坡耕地)和作物种植制度等建立墒情监测标准站。

墒情监测标准站(点)的构成:

每个墒情监测标准站包括一个主点和若干个辅点,以及10亩试验地。

主点位置选择应考虑能够代表当地气候类型、地貌地形、土壤类型、生产布局等因素,须设在空旷平坦、能够反映当地土壤墒情变化特点、并便于进行设备管理的地块上。每个主点设置5—6个辅点。辅点位置应考虑当地耕作制度、灌溉方式、灌溉保证率、技术模式等因素,位置选择在当地典型旱作农业模式和技术管理水平的地块上。试验地用于不同技术模式的土壤水分变化试验研究。

(一)主点的建立

墒情监测主点位置确定后,必须应用GPS定位,并设立保护性标志,长期保持不变。

主点配置定点实时土壤墒情监测设备和小型气象站各一套(或与当地气象部门共享气象数据)。

建立的主要过程是:选好主点后,开挖一个长1m,深度为80cm的土壤剖面坑,将插入探头一面削刮平整,自上而下量取10、20、40、60cm位置标记,手持探头沿平面在标记处平行插入,直至不动,将探头连线加以固定,并将连线通过穿线管埋入地下或沿墙面加以固定,固定好连线后,将连线与由多通道数据采集器及计算机连线分别进行连接,然后进行仪器调试。仪器调试主要包括以下内容,一是打开监测仪,将数据采集器采集时间定为5-10分钟进行数据采集,将采集数据和近年来当地采集数据进行比较,若发现数据出现问题,应及时对探头进行调试或将探头重新插入,直至得到较为满意的结果;二是对采集数据进行一定时间跟踪数据比较,并在相邻近的地方,用酒精燃烧法进行同层次土壤水分测定,了解仪器安装后土壤墒情变化;三是仪器稳定后,将数据采集器采集时间定为4小时直至6小时采集数据。

(二)辅点的建立

辅点位置设立在采用不同技术模式的耕种农田里,配置土壤水分速测仪若干台及土壤采样设备。

其监测方法为:根据地形按“S型”线路采样测定,尽可能减少梯田及地边、地中水分含量的误差,采用交叉法、分内、中、边三个部位设置取样点,先将10cm探头安装在传感器上,水平插入,打开测试仪器,得到10cm土壤水分数据并进行记录,然后将20cm探头水平插入得到20cm水分数据进行记录,然后向下挖一铣土(约为20cm),将测定面取平,并将20cm探头水平插入,得到40cm 水分数据进行记录,最后沿用以上方法,测定60cm水分数据进行记录。记录数据后,填埋好土坑。以上方法应连续多次,求取同一层次多点平均值作为最终的结果。

4.4 仪器安装调试及数据校验

监测仪器的数据校验工作是墒情监测工作的基础,也是保证监测数据质量,确保及时、有效地提供上报可靠的监测数据,提高监测技术工作水平重要环节。为此,各监测站建立后,要求抓紧进行墒情监测仪器与常规测定方法间的比较、校验工作,以提高监测数据质量。

土壤墒情与旱情监测工作一般采用采用仪器测定与试验室化验分析相结合的方法,以仪器监测为主,以试验室分析数据对仪器进行必要校正的方法。同时

各点也采用酒精燃烧法、土壤样品烘干法等常规土壤水分分析方法,进行了土壤水分监测数据的类比、校验分析。

主要工作方法是,在用墒情传感器测定墒情数据时,同时用铝盒采集相应土层平行土样,并带化验室统一处理后,用常规测定方法主要使用烘干法测定土壤水分含量,由于烘干法测试的精度较高,样本间测试误差小,能够反映土壤水分真实结果。并以此为基础,通过大量土壤烘干测试样品比较,根据土壤质地、土壤田间持水量、土壤容重等统一进行计算,找出水分经典测试方法与速测仪数据的相关关系及估算值,得出两者间相关数据,对土壤水分数据进行测试校正。

4.5 主要设备

4.5.1 墒情传感器

土壤墒情监测主要采用仪器测试法。

这里介绍一下中国农业大学生产的速测仪系列产品。该产品由SWR—1型、WR-2型土壤水分传感器和 TSCⅡ型智能化土壤水分速测仪(固定式)、TSCⅢ型智能化土壤水分速测仪(移动式)两部分构成。

土壤墒情监测设备可选为“TSCⅡ型固定式土壤水分数据采集器”(固定

式)。该设备由4个SWR—1型土壤水分传感器、多通道数据采集器和计算机构成。SWR—1型土壤水分测量传感器分别埋入0—10、10—20、20—40、40—60厘米土层。多通道数据采集器内带电池RAM,可长期保持数据,备有RS 232通讯接口,可以与计算机进行通讯。并配有专用软件Soil Water,具有数据通讯、数据保存、查看历史数据、删除数据等功能。多通道数据采集器安装在便于管理并有避雨条件的地方。可通过配置笔记本电脑或移动PC电脑与多通道数据采集器的接口随时对接采集相关墒情信息。

辅点、试验地的土壤墒情监测采用TSCII型智能化土壤水分移动式速测仪,由SWR—l型土壤水分传感器和以微处理器为核心的智能速测仪两部分组成。它由1个SWR型土壤水分传感器、多通道数据采集器两部分构成。SWR型土壤水分传感器共有6、10、15、20cm四组可拆式探头组成。其优点是便于携带,可在瞬间读取监测数据,在农田、设施温室等随着进行土壤墒情监测,应用范围较广。仪器安装调试较为方便。

4.5.2 数据采集终端

一般选用通用的数据采集终端。要求如下:

采用定型产品,结构简单、可靠、性能先进、低功耗、可以根据不同的要求进行灵活配制。

可以远程配置各种采集参数。

可采集多种类型的传感器数据,集数据采集、存贮及通信于一体,

可利用超PSTN、短波电台、CDMA、GPRS等多种通信方式,组建统一的墒情采集、传输网络。

可以以自报、自报-确认和召测三种工作体制混合组网。

具有现场显示功能,屏蔽调试数据功能。

有功耗控制,蓄电池保护和避雷保护措施。

土壤墒情监测系统的操作方法及注意事项

土壤墒情监测系统的操作方法及注意事项 农业发展一直是我国的重点之一,如今农业发展的方向是现代化农业,现代化农业的主要特点是农业信息化,而农业信息化主要体现在农业物联网。 托普云农物联网推出的物联网技术全面打造土壤墒情监测系统,将最前沿的信息技术武装到了延续几千年的劳动生产上。 在系统应用过程中,大量的传感器节点构成了一张张功能各异的监控网络,通过各种传感器采集信息,可以帮助农民及时发现问题,并且准确地捕捉发生问题的位置。如此一来,农业逐渐地从以人力为中心、依赖于孤立机械的生产模式转向以信息和软件为中心的生产模式,从而大量使用各种自动化、智能化、远程控制的生产设备,促进了农业发展方式的转变。 相关数据显示,农业灌溉是我国的用水大户,长期以来,由于技术、管理水平落后,导致灌溉用水浪费十分严重,农业灌溉用水的利用率仅40%。如果根据监测土壤墒情信息,实时控制灌溉时机和水量,可以有效提高用水效率。而人工定时测量墒情,不但耗费大量人力,而且做不到实时监控。 托普云农物联网结合土壤墒情监测平台和物联网控制技术的应用,使农业种植中的监控管理不再受到时空局限,根据大棚或其他种植区微传感器采集的详实数据,点击手机屏幕便可以有针对性的遥控节水灌溉、施肥、二氧化碳、水泵、风机等田间设施。 总而言之,实现土壤墒情的连续在线监测,农田节水灌溉的自动化控制,既

提高灌溉用水利用率,缓解我国水资源日趋紧张的矛盾,也能为作物生长提供良好的生长环境。 根据规划,托普云农物联网应用中的管理平台分为墒情信息监测、苗情信息监测、气象数据分析、短信发布、灾情信息发布、图形预警几个部分。未来,围绕系统建立起来的"绿色产业链"将让现代农业朝着绿色可持续的方向迈进。 土壤墒情监测是实施农田有效管理措施的基础,为此,托普云农结合国内外同类产品的优势研发了一种土壤墒情监测系统,它可以实现农田土壤墒情的准确测定和管理,对农业展开合理的生产措施有重要的意义。 TZS-GPRS-I土壤墒情监测系统又可称为墒情与旱情信息管理系统,土壤墒情与旱情管理系统,无线墒情与旱情管理系统,土壤墒情实时监测系统。该系统拥有自己的数据平台(数据无须上传至国家系统)及监测网络,数据可直接发送到管理者的服务器,下级所有被管理站点均可查看。该土壤墒情与旱情监测系统用户可以根据需要选择网络GPRS模式或短信GSM模式两种通讯方式传输。 TZS-GPRS-I与TZS-GPRS的区别在于: TZS-GPRS-I是自有网络平台,即不上传到国家墒情监测网,自己有一套墒情监测网络,数据直接发送到管理者的服务器,下级所有被管理站点均可查看。 托普云农土壤墒情监测系统其他选配的气象要素: 空气温度、空气相对湿度、太阳辐射、风向、风速、降水量、大气压力、光照度、露点、直接辐射、日照、光合有效辐射、紫外辐射、蒸发、二氧化碳等传感器。

自动化变形监测系统在地铁监测中的应用

自动化变形监测系统在地铁监测中的应用 摘要:随着我国城市化进程的不断加快,地铁已成为城市公共交通建设的重要 组成部分。由于地铁自身运营及临近地铁相关工程建设对地铁结构产生动态影响,如何对隧道结构及轨道开展自动化监测尤为重要。本文结合沈阳地铁二号线青年 公园站~青年大街站区间自动化监测项目来详细说明自动化监测技术在地铁变形 监测中的具体应用。 键词:轨道交通;地铁;自动化监测系统;变形监测 1、工程实例概况介绍 本基坑工程处于沈阳地铁二号线左线控制范围内,基坑结构边线距离地铁左 线结构边线距离约12米,基坑结构地下四层,深度约22米。该基坑的施工将对 地铁左线结构产生明显的影响,地铁左线结构将产生向上隆起和向基坑侧的水平 位移变形。为保证地铁结构的绝对安全,对运营的左线地铁结构采用基于高精度 智能型全站仪的自动化变形监测系统,来实时地监测左线地铁结构的三维变形。 2、针对运营的左线地铁结构采取的监测方法 采用基于高精度智能型全站仪的自动化变形监测系统,实时监测左线地铁结 构的三维变形。为确保监测数据的可靠,左线在布设自动化监测系统的同时,布 设人工监测点,人工监测与自动化监测系统相互校核。 3、使用的仪器设备及软件 瑞士徕卡TM50或TS30自动全站仪(0.5″,0.6mm+1ppm),武汉大学测绘 学院“GeoRDMAS”软件,Leica L型棱镜。 3.1 自动化变形监测系统简介 自动变形监测系统是用于控制测量机器人进行自动变形监测以及对监测过程 中所采集的数据进行管理与处理的软件,该系统将自动测量、实时显示测量成果、实时显示变形趋势等智能化的功能合为一体(详见图3-1)。 3.2 自动化变形监测系统优势 自动化变形监测系统使用的是全自动跟踪全站仪,它可以代替人完成对观测 目标的自动搜索、照准、跟踪、识别并且获取观测目标的距离、角度等数据,而 且精度高、可连续作业。由于地铁隧道内观测环境特殊性不同,传统的人工监测 方法缺乏同时性,而且作业效率低、观测周期长,仅适用于施工环境复杂、隧道 结构相对稳定不需要长期进行监测的工程。 4.自动化监测项目实施 4.1自动化监测内容 1)道床沉隆及水平位移监测; 2)结构侧壁沉隆及水平位移监测; 3)道床(轨道)差异沉降监测; 4)现场安全巡视。 4.2监测断面布设及点位埋设 自动化监测区间为约100米,70米施工基坑范围每10米布设1处监测断面,两侧各外延30米,15米一个断面,各设2个断面,共设12个断面,每个断面布设4个监测点,道床2个,侧壁2个(详见断面监测点布置示意图4-1、监测断 面位置示意图4-2)。 4.3自动化数据采集过程

设备远程监测系统功能特点

设备远程监测系统功能特点 随着科学技术的进步与发展,机械设备逐渐趋向于全球化、自动化、高速化和复杂化,一方面使得设备状态监测和故障诊断技术变得越来越重要,另一方面使得其越来越专业化,对一般技术人员越来越难以掌握,这在某种程度上限制了设备远程监测技术的推广和发展。 设备远程监测系统软件由两部分组成:监测系统软件和前置机软件。监测系统,软件画面直观,界面友好,具备数据显示、模拟动画、数据查询、报警显示、生成曲线,报表等多项功能。前置机软件是平升公司专有的通信管理软件,支持国产及进口的各种组态软件,支持集成商自行开发的系统软件。 一、系统功能: ⑴、主动问询功能:生产监测中心主动问询获取每个起重设备被监测的数据。 ⑵、报警功能:通信中断等故障出现时,监测中心有报警显示。 ⑶、显示功能:显示器的界面上显示当时被监测设备的地址及主要数据。 ⑷、数据存储功能:服务器上的数据库中存储所有历史记录。

⑸、数据查询功能:监测中心可以查询任意时间段每个起重设备被监测的数据。 ⑹、曲线报表功能:所有存储数据可以自动生成分析曲线和报表。 ⑺、远程维护功能:通信模块具备远程参数设置和维护功能。 ⑻、拓展功能:可自由增减被监测起重设备的数量。通过增添设备,可增加其它功能。 二、系统特点: ⑴、可靠性高:系统及产品均为工业级设计,通信网络为专网,具有高可靠性。 ⑵、性能稳定:通信设备具有良好的自恢复功能,保证系统稳定运行。 ⑶、性价比高:系统功能多,前端设备可以远程维护,移动公司负责网络,系统维护费用低。 ⑷、技术先进:通信采用网络通信技术,国内先进水平。 远程监测方式远程监控系统仅仅向设备控制系统发出控制命令,而由设备自主的完成这个命令,远程监控系统不对设备的具体实现过程进行监控,设备完成任务后向远程监控系统报告。设备的操作控制完全由本地进行,设备在本地操作人员的监控下完成加工任务。远程监测方式设备的本地控制系统仅仅控制设备的执行机构,全部的操作控制由远程监控系统完成。

自动化变形监测

自动化变形监测技术的研发与应用 摘要:在各项工程的变形自动化监测方面,测量机器人正逐步成为首选的自动化测量技术设备。与传统人工测量手段相比,测量机器人以它的高精度、高稳定性和高可靠性等优越性,在变形监测中发挥越来越重要的作用。自动化变形监测能够在无人值守情况下完成变形监测,完全能够取代人工测量,同时还为我们提供了可视化的动态变形信息,做到了信息化施工,也避免了工程事故的发生。 关键词:自动变形监测;传统人工测量;自动全站仪;可视化 The development and application of automatic deformation monitoring Subtract:In the project of the automation deformation monitoring, measuring robot is gradually becoming the preferred automation measuring technology equipment.The system is simple operation, high automation level. Compared with the traditional artificial measurement methods, measuring robot to its high precision, high stability and high reliability etc- advantages in deformation monitoring playing more and more important- role. When no one guards,it can complete deformation monitoring and completely replace artificial measurement. At the same time, it also provides us with a visualization of the dynamic deformation information. We can do the informatization construction and avoid engineering accident. Key words: automatic deformation surveying ; The traditional artificial measurement; automatic total station; visualization 1 引言 传统的工程变形监测测量是靠人工实地测量,工作量大,测出的各项参数存在一定的系统误差和人工误差,还要受天气和现场条件状况的影响,资料的整理与分析周期也很长,不能及时地发现工程隐患。为了解决这些问题,测量机器人开始进入人们的视野。测量机器人通过CCD影像传感器和其它传感器对测量的“目标”进行识别,迅速做出分析、判断与推理,实现自我控制,并自动完成照准、读数等操作。自动化变形监测系统是采用测量机器人对各种工程进行自动化安全监测和数据处理的通用软件系统,可对各监测点进行实时监控、自动测量和变形过程显示等功能。国内外自动化变形监测系统的研究和开发也取得一定成果。例如,国内武汉大学张正禄开发研制的测量机器人变形监测系统等,国外德国Leica公司推出的Geomos(Geodetic Monitoring System)自动监测系统,已经相对比较完善。 2 系统整体设计 (1)工程管理:工程中保存着该变形监测项目在监测过程中的相关数据。 (2)系统初始化:实现各项通讯参数设置以及测量机器人的初始化设置等。 (3)学习测量:对所需观测的目标点进行首次人工测量,获取目标点概略空间位置信息,以便日后计算机控制测量机器人自动搜寻定位目标点,完成自动测量。

风电场及远程监控自动化管理系统

风电场及远程监控自动化管理系统 一、系统概述 风电场及远程监控自动化系统采用分层分布的体系结构,整个自动化系统分为三层:风场控制层、区域控制层和集中控制层。风场控制层设在风电场现场,为风电场运行 与管理提供完整的自动化监控,为上级系统提供数据与信息服务;区域控制层 设在区域风电场中央控制室,负责所辖风电场运行状态的监视与管理,为集中 控制层提供数据与信息服务;集中控制层作为总部或集团的风力发电监控中 心,全面掌控所有风电场运行状况,统筹资源调配。 建设风电场及远程监控自动化系统,实现各风电场设备的集中监视和管理,对提高公司综合管理水平、优化人员结构、提高风电场发电效益等十分重要。 提高风电场自动化水平 无人值班少人值守是风电场运营模式的发展方向,对风电场的设备状态、自动化水平、人员素质和管理水平都提出了更高的要求,是风电场一流的设备、一流的人才、一 流的管理的重要标志,建立可以实现风电场及远程监控自动化系统,是实现风 电场无人值班少人值守的必要条件,对全面提高风电场自动化水平有极大的促 进作用。 提高风电场群的经济效益 设置风电场及远程监控自动化系统,建立与当地气象部门的联系,根据气象部门对未来时段天气预报的预测信息,制定风电场在未来时段的生产计划,合理地安排人员调 配和设备检修计划,使资源得到充分利用,提高风电场群的经济效益。 提高风电场群在电网中的竞争优势 随着风电场群规模的日益扩大,风电发电量在电网中占的比重将越来越大,通过建立风电场及远程监控自动化系统,对各风电场的发电状况进行预测,并上报电网公司, 以利于电网公司电力调度计划的制定,提高发电公司在电网中的竞争优势。提高公司管理水平 由于风电场群具有风电场设备多且分布分散,地处偏远的特点,如果对每个风电场单独进行管理,需要消耗大量的人力物力。设置风电场及远程监控自动化系统,实现风 电场群的集中运行管理、集中检修管理、集中经营管理和集中后勤管理,通过 人力资源、工具和备件、资金和技术的合理调配与运用,达到人、财、物的高

土壤墒情在线监测系统概述

土壤墒情在线监测系统概述 灌溉在农业生产中是非常重要的一项农事工作,而节水灌溉则是近年来国家所倡导的一种灌溉方式。经实践证明,在田间作物增产灌溉和适时适量节水技术应用与研究中,都离不开田间墒情的监测和预报。通过应用土壤墒情在线监测系统对田间墒情的监测和预报,种植者可以根据土壤墒情在线监测系统提供的数据发现某块田地缺水了,然后及时进行灌溉,而当土壤水分达到过多时,就能提醒种植者进行排水,严格的按照墒情浇关键水,使得灌溉水得到有效利用,从而达到节水高产的目的。 那么,土壤墒情在线监测系统是什么?该系统怎样呢? 土壤墒情在线监测系统就是专业用来监测田间土壤墒情的设备,它可以利用其数据采集、传输和存储技术来实时获取田间的墒情旱情等信息,而工作人员通过这些数据信息,就可以分析出当前田间土壤的墒情情况。土壤墒情在线监测系统和传统土壤监测仪器相比具有很大优势,它可以实现全天24小时对土壤墒情的实时监测,做到每分每秒关注土壤墒情的变化情况,而且不需要工作人员看守,同时还能够将数据传输至平台,实现多点墒情监测,而这些都是过去的土壤墒情监测仪器所不具备的。 不仅如此,土壤墒情在线监测系统的好处远远不止只有这一点,农业种植人人都想作物增产,而作物要想增产,合理的灌溉措施是少不了的,而合理的灌溉离不开田间墒情的监测和预报,即离不开土壤墒情在线监测系统的应用,还有在农业种植过程中,农户也经常会遇到灌溉的问题,比如什么时候灌溉合适,灌溉多少合适,如果灌溉把控不好时间或者灌溉不及时,很容易影响农作物的正常生长,影响农作物的产量。所以如何使农作物得到适时、适量的灌溉,提高灌水效率,是非常重要的事情。而托普云农TZS-GPRS-I土壤墒情在线监测系统是专业用于监测与管理土壤墒情的专业系统。该系统可以通过实时监测,为作物灌溉提供可靠的数据支撑,提高水资源的利用率,提高种植效率。

自动化监测系统说明

GSP温湿度自动监控系统 使用说明 前言 我司GSP自动监控系统是基于Windows平台下开发的自动化监控系统,拥有强大的多线程,多核处理器,系统稳定性高。适用于Win2000XP、Win2003、Vista、Win7操作系统。 基础功能包括:实时监控数据显示、超线自动报警、实时记录监控数据和报警数据、实时曲线图、历史数据查询打印、自动生成历史曲线图、历史数据导出、数据自动备份、系统运行日志、用户权限管理。 支持多种数据采集通讯方式,如RS232、485、422、无线电台、TCP以太网、GPRS远程无线通讯。 系统要求 CPU:主频2.1G以上 内存:1G以上 硬盘空间:可用空间不小于1G

基本功能操作说明: 一、主界面 软件主界面,采用温度、湿度组合方式进行显示,显示更直观有序。 二、用户登陆: 默认用户密码:0000,选择用户登陆(如图,初始密码为0000)注意:为了安全起见,建议在第一次登录后修改系统操作员密码,

并妥善保存其密码,选择【自动登陆】后,下一次用户可以直接进入系统,无需再次输入用户名和密码,不建议选择【自动登陆】。 三、修改公司名称和标题: 主要修改主界面的显示标题,用户可根据自己的实际填写。 四、退出系统: 退出系统时系统会有提示,询问用户是否真想退出,防止用户无意中退出系统,并且如果选择退出时输入密码选项,在退出系统时,还提示输入密码,密码验证后才能退出系统。

输入密码并且正确后才可以推出该自动监控系统软件。 五、选择基本设置。

数据采集间隔:数据采集间隔是指监控软件向温湿度监测设备定时发送数据请求命令的周期,单位可以是秒、分钟、小时。根据监测点的多少调节数据采集间隔,一般情况无需用户调节该选项,采用默认60秒即可。 数据保存间隔:是将采集到的温湿度数据及状态数据保存到数据库中的周期,利于数据长久保存,可虑到数据容量、数据的完整性及数据与温湿度监测设备的一致性系统采用默认数据保存间隔为10分钟,10分钟也满足GSP要求,不建议用户修改该选项,确实需要修改间隔,请联系该系统技术人员。 冷藏车数据保存间隔:根据GSP要求,冷藏车监测数据保存间隔要求间隔短,我们采用默认2分钟记录间隔,能够很好满足GSP 要求,同时能够保证数据的规律性,不建议用户修改该选项,确实需要修改冷藏车的数据保存间隔,请联系该系统技术人员。 报警记录间隔:报警记录间隔是指在某个监测点在报警期间对数据的记录间隔,GSP要求在报警期间加快报警数据记录频率,该项默认采用2分钟记录间隔,用户无需修改。 允许通讯失败次数:由于通讯本身存在线路不通的现象,该参数就是说明在通讯连续失败几次就认为确实线路有问题,需要检查线路或设备,软件会提示通讯异常,一般也不建议用户修改该参数,采用默认4次比较合理。 六、报警设置

监测自动化发展现状

我国大坝自动化安全监测现状 200930201489周杰华 我国大坝自动化安全监测的研究始于70年代末,80年代有了长足的进步,进入90年代中期以后,随着现代科学技术的迅猛发展,特别是传感技术、计算机和微电子技术、通信技术的巨大发展,我国大坝自动化安全监测技术的总体水平有了一个质的飞跃,监测自动化技术已渐趋成熟,大坝安全监测的实时性、稳定性、可靠性和实用性有了显著的提高。可以说21世纪大坝自动化安全监测已进入了推广应用的新时代。 一、概述 从1992年对83座水电站大坝开展了首轮水电站大坝安全监测设施更新改造工作开始,通过八年多的努力,绝大部分水电站大坝已完成以“完善化为主,着重配齐必要的监测项目,提高监测精度、稳定性和可靠性”为目标的更新改造工作,设置了必要的变形、渗流等监测项目,大坝安全监测设施的现状有了较大的改善,使这些大坝健全了监视其安全的耳目。但是,通过调查发现:由于客观因素的限制和变化以及人们认识水平的不断提高,部分大坝的监测设施还存在一些问题。如:有的大坝变形监测未设校核基点,或测点布置和结构不合理,或监测精度不能满足规范要求,或设备老化、受损,或自动化程度不高等。 在大坝自动化安全监测方面,根据对电力系统136座水电站大坝自动化安全监测调查情况看,有60座水电站大坝单个或多个监测项目采用了监测自动化技术,实现了数据的自动采集。其中,有33座大坝的变形、渗流等主要监测项目实现了监测自动化,有18座大坝的变形监测实现了自动化,有6座大坝的渗流监测实现了自动化。系统都有在线监测的功能(如数据的自动采集、传输、储存和处理),大多数系统还有离线分析、建立数学模型、报表制作、图形制作等功能。 大坝自动化安全监测的实现,提高了监测精度,改善了监测条件,减轻了劳动强度,增强了对大坝的在线监测能力,为今后实现在线监控和在线管理打下了良好的基础。同时对及时掌握大坝运行状态发挥了重要作用,也为大坝安全评价提供了科学依据。 从调查的资料中也可以看出,各大坝的监测自动化系统的规模、功能、稳定性、可靠性参差不齐,绝大多数基本能满足监测要求。但也有一些系统,特别是1995年以前建成的系统问题较多,有的已处于瘫痪状态(如盐锅峡),有的监测数据系列较差、精度低不能满足资料分析要求(如桓仁、回龙山的垂线,梅山的垂线,柘溪的垂线和量水堰、富春江的引张线,长潭的激光准直,枫树坝的采集单元等),急需进行改造完善。系统发生故障的原因主要有:传感器、设备元器件质量差,还有雷击、潮湿、鼠咬、浸水等外界因素。 二、下面分监测方法、监测仪器(传感器)、数据采集系统、监控管理系统四大部分对目前的监测自动化有关现状加以叙述。 1 监测方法 选择有效的监测方法是取得良好监测效果的保证。表1汇总了大坝自动化安全监测常用

全国土壤墒情监测工作方案

全国土壤墒情监测 工作方案

全国土壤墒情监测工作方案 随着全球气候变化加剧,中国旱灾频发重发,干旱缺水问题日益突出。为做好土壤墒情监测工作,应对旱灾威胁,促进农业发展方式转变和农业可持续发展,特制定本方案。 一、总体要求 各级农业部门要进一步强化土壤墒情监测,大力推进监测站(点)建设,建立健全国家、省、县三级墒情监测网络体系,扩大覆盖土壤墒情监测规模和范围。要充分利用现代监测和信息设备,全面提升监测效率和服务能力。逐步完善主要农作物墒情评价指标体系,实现墒情评价规范化和科学化。强化现代高新技术应用,提高墒情监测的时效性、针对性和科学性,为指导农业生产、防灾减灾、领导决策提供依据。 土壤墒情监测要以服务农业生产为宗旨,以土壤和作物为对象,统筹规划、合理布局,覆盖全国粮食主产区和干旱易发区。经过采用自动化、信息化、网络化等现代高新技术手段,突出土壤墒情监测关键技术环节,实现定点、定期监测。分析汇总土壤墒情数据,评价作物需水情况,及时提出应对措施建议。建立墒情定期会商和报告制度,提高时效性和结果表示的可视化程度。 二、基本原则 (一)代表性。土壤墒情监测站(点)要充分考虑区域内主导作物、气候条件、灌排条件、土壤类型等因素合理布局,确保监测数据具有代表性。

(二)及时性。土壤墒情监测要做到及时、快速、准确,出现旱涝灾情,应加大监测频率,旱涝灾情不迟报、不漏报;关键农时季节,应及时汇总相关信息,重大农事活动前有信息;日常监测工作,坚持定期采样,快速分析、及时汇总、按时上报。 (三)规范性。建立土壤墒情监测工作制度和责任制度,做到工作人员相对固定,设施设备配置齐全,监测工作制度化和规范化,确保监测数据可靠、调查内容详实、评价结论科学。 三、重点工作 (一)监测点布设 选择区域范围内代表性强,当地政府重视,土肥水工作基础好,技术力量强,能够长期坚持的县承担土壤墒情监测工作。 以县为基本单元,根据气候类型、地形地貌、作物布局、灌排条件、土壤类型、生产水平等因素,选择有代表性的农田,平均每10万亩耕地设立1个农田监测点(每个县不少于5个)。 农田监测点应设立在作物集中连片、种植模式相对一致的地块。采用统一编号,设立标志牌。开展基本情况调查,内容主要包括地理位置、气候条件、土壤类型、种植制度、灌排条件、地力等级、产量水平等;测定不同层次土壤质地、容重、田间持水量等指标;拍摄景观照片,建立监测点档案。 (二)数据采集 1、监测指标。一般按0~20cm、20~40cm、40~60cm、60~100cm四个层次监测土壤含水量,其中,0~20cm、20~

农业大棚远程智能监控与PLC自动化控制系统项目解决方案

农业大棚远程智能监控与PLC自动化控制系统解决方案 目录 1 前言 (2) 1.1 智能农业远程智能监控系统的概念 (2) 1.2 实施农业远程智能监控系统的必要性 (2) 2 背景分析 (3) 3 大棚温湿度光照采集与自动化控制设计 (5) 3.1 系统设备组成 (9) 3.2 网络架构 (10) 3.3 采集原理 (11) 3.4 数据架构 (13) 3.5 设计原则 (14) 4 系统功能 (16) 4.1 功能架构 (16) 4.2 功能特点 (17) 4.2.1 数据采集 (17) 4.2.2 数据查询 (18) 4.2.3 数据分析与诊断 (18) 4.2.4 数据报警 (18) 4.2.5 视频监控 (19) 4.3 设备参数 (19) 4.3.1 数据采集与传输设备 (19) 4.3.2 温/湿度测试仪昆仑海岸 (20) 4.3.3 光照测试仪昆仑海岸 (25) 5 施工组织方案 (25) 5.1 施工方案介绍 (25) 5.2 施工计划安排 (26) 5.3 资源准备 (27) 5.4 施工内容 (27) 6 售后服务及承诺 (28) 7施工与验收时间表 (28)

1前言 1.1智能农业远程智能监控系统的概念 智能农业是采用比较先进、系统的人工设施,改善农作物生产环境,进行优质高效生产的一种农业生产方式,20世纪80年代以来,智能农业发展很快,特别是欧美、日本等一些发达国家,目前已经普遍采用计算机控制的大型工厂化设施,进行恒定条件下全年候生产,效益大为提高;在社会主义市场经济条件下,我国的智能农业以其较高的科技含量、市场取向的新机制、短平快的产销特点、效益显著的竞争力,取得了快速发展,改善了传统农业的生产方式、组织方式和运行机制,提高了农业科技含量和物质装备水平,成为现代农业重要的生产方式。 深圳市信立科技有限公司智能农业远程智能监控系统是指利用现代电子技术、移动网络通信技术、计算机及网络技术相结合,将农业生产最密切相关的空气的温度、湿度及土壤水分等数据通过各种传感器以无线ZigBee技术动态采集,并利用中国电信的4G,4G CDMA网络通讯技术,将数据及时传送到智能专家平台,使智能农业管理人员、农业专家通过手机或手持终端就可以及时掌握农作物的生长环境,及时发现农作物生长症结,及时采取控制措施,及时调度指挥,及时操作,达到最大限度的提高农作物生长环境,降低运营成本,提高生产产量,降低劳动量,增加收益。 1.2实施农业远程智能监控系统的必要性 江苏智能农业发展,已经初步形成了政府引导、社会支持、市场推动和农民

土壤墒情监测系统的设计与实现_刘欣伟

2013年第7期 福建电脑支持基金:吉林省世行贷款农产品质量安全项目“基于物联网的设施蔬菜安全生产技术研究与应用”,编号:2011-Z 20 1、引言 我国是农业大国,在农业逐步迈入现代化生产的时期,利用计算机相关技术,对农业的生产进行预测与指导是十分必要的。近些年来旱情的发展严重地制约了我国的经济发展,这对农业灌溉产生了巨大的影响,我们需要长期考虑的课题就是如何提高灌溉水的利用效率。传统灌溉方式会大量的浪费水资源,并且不能针对不同地块和农作物实行不同的灌溉方案,不能使农作物达到最适宜的生长环境。这些问题可以通过发展土壤墒情监测技术,建立墒情监测数据数据库和土壤墒情监测系统,实现土壤的适时适量灌溉,达到节约水资源,提高作物产量和提高效益的目的。本文应用计算机技术,信息技术,人工智能,网络技术与地理信息系统等技术,建立土壤墒情监测系统,从而解决水资源配置与高效利用等常见问题。 2、土壤墒情 土壤墒情是农田耕作层土壤含水率的俗称,是影响农作物生长的重要因素。土壤墒情是不断变化的,所以需要对其进行实时监控,这样采集的信息才有利用价值。土壤水分的变化不仅与土壤特性有关,还受降水、灌溉、蒸发、根系层下边界水分能量等因素影响,而且其动态变化也是一个复杂的系统问题[1]。 3、GIS在土壤墒情中的应用 在全国第三次农业气候区划会议上,土壤水分委员会提出了GIS 技术应用于监测土壤水分的原因。地理信息系统在农业气候区划,主要经济作物适宜种植区划,天气和其他业务领域,提供了土壤水分研究的新工具[2]。 在布置数据采集点的同时布置GPS 装置,利用全 球卫星定位采集监测点的经度和纬度,再结合GIS 软件就可以实现大面积的土壤墒情实时监测。 4、系统总体设计 本系统共有四个模块组成,分别是数据采集模块,数据传输模块,人机交互模块和数据库模块。 数据采集模块利用传感器采集土壤温度、湿度等土壤墒情数据,GPS 装置采集监测点经度、纬度等数据,通过zigbee 网络实现单个监测区域内数据的相互传递。再利用GPRS 技术,实现zigbee 网络之间与zigbee 网络和智能终端之间数据的远距离传送。在智能终端,采用浏览器的形式结合GIS 技术,将数据以不同形式展示给用户,后台数据库则对数据进行加工、 存储和数据的分析,查询与统计。4.1土壤墒情数据采集模块: 土壤墒情数据采集模块是利用土壤温湿度传感器对土壤温度和湿度等数据进行采集。利用GPS 装置对监测点经度、纬度等地理信息数据进行采集。 监测区土壤墒情监测点设置的主要依据包括:地理位置;土壤质地类型及土壤物理特性;所属行政区划、 周边地形地貌;作物种植的种类及范围;水文地质条件:地下水埋深;灌溉条件。土壤含水量监测点布在地块中央平整的地方,避开低洼易积水的地点[3]。监测土壤墒情效果的好坏,取决于监测点的数量。监测点过多虽然会提高监测效果,但会使系统的投资过大。所以合理的选取监测点数量是十分必要的。在布设土壤墒情监测点时,每二十平方米放置一个节点,采样点之间保持一定的距离,采样点的位置一经确定,应保持其相对的稳定。传感器可以埋入土中的不同深度,结合GIS 软件, 就可以全方位立体的对土壤墒情土壤墒情监测系统的设计与实现 刘欣伟,司秀丽,蒋小琴 (吉林农业大学吉林长春130118) 【摘要】:本文阐述了信息技术在农业方面应用的必要性,介绍了土壤墒情概念和G I S 技术,对土壤墒情监测系统进行了综合分析与设计。本文结合了G I S 技术来构建土壤墒情监测系统,其中包括几大主要模块:土壤墒情数据采集模块,数据传输模块,人机交互模块和数据库模块。 【关键词】:土壤墒情;监测;系统设计33··

自动化设备远程监控系统解决方案

自动化设备远程监控系统 自动化设备远程监控系统概述 随着科学技术的迅猛发展,各种设备制造商纷纷涌现,设备制造商已经成为生产力发展的重要组成部分。如何提高管理水平,提高企业效率和竞争力是从管理到基层面临的日益严峻的问题。对于如何提高设备运维效率和抓好售后管控,确实是工业设备自动化检测和控制设备制造商提升绩效的一大重点区域,而建立智能化、自动化的全方位远程设备监控以及管理系统是对本行业模式的变革,是科技创新+管理创新。 自动化设备远程监控系统软件是工控人的福音也是技术创新给工厂衍生的新的管理模式,改变了工人的作业形式以及更加高效的设备维护效率和低成本,通过大本营中心连接上千万台的设备运营数据并统一管理,可实现大屏、手机端、PC电脑端以及更多的终端软件系统实现远程设备的运维和管理控制,在工业4.0时代,远程运维平台也将越来越成熟和智能化,依靠数据可实现整个管理的数字化标准化。

自动化设备远程监控系统网络构架 架构中现场设备及PLC通过以太网或RS485/RS232/RS422串口方式接入HINET智能网关中(或者其他品牌网关),HINET智能网关依靠自身协议解析以及数据传输功能将解析好的数据通过4G或者有线网络传输至互联网,进而传输到服务器中,最后通过服务器中部署的数据平台系统,将设备监控监控数据、业务数据以及其他数据发布到监控大屏及各个监控端。 远程运维主要功能 远程运维主要实现原理是通过智能网关采集设备的数据,把数据通过通讯技术传输到处理中心进行数据的应用和计算,主要实现功能:GIS地图,试试监控,维保中心,历史数据,远程控制等应用。

通过HiNet工业智能网关在现场采集设备数据,然后把数据直接传输到远程监控云端。通过对这些数据的处理,具体可实现的功能如下: 1)远程监控。基于互联网架起了实时的数据链,打破了以往滞后式的信息互通模式。整个设备运行的数据链变得可视,客户可以在手机端、PC端掌握包装机机械设备的使用参数、生产运行,故障维修等情况。 2)可以通过预警等信号知道设备哪个部位?哪个零件?将要出现故障,以及出现的位置、时间和可能原因,以保养代替维修,最大化减少非计划性的停机时间。 3)故障告警,它可以通过电脑及手机app实时通知设备维护人员相关设备的运行状况,并把故障发生时的所有相关的数据都推送给设备维护人员,让维护人员全面掌握发生故障时的真实原因、状态并及时解决问题。

全国土壤墒情监测工作方案解析

全国土壤墒情监测工作方案 随着全球气候变化加剧,我国旱灾频发重发,干旱缺水问题日益突出。为做好土壤墒情监测工作,应对旱灾威胁,促进农业发展方式转变和农业可持续发展,特制定本方案。 一、总体要求 各级农业部门要进一步强化土壤墒情监测,大力推进监测站(点)建设,建立健全国家、省、县三级墒情监测网络体系,扩大覆盖土壤墒情监测规模和范围。要充分利用现代监测和信息设备,全面提升监测效率和服务能力。逐步完善主要农作物墒情评价指标体系,实现墒情评价规范化和科学化。强化现代高新技术应用,提高墒情监测的时效性、针对性和科学性,为指导农业生产、防灾减灾、领导决策提供依据。 土壤墒情监测要以服务农业生产为宗旨,以土壤和作物为对象,统筹规划、合理布局,覆盖全国粮食主产区和干旱易发区。通过采用自动化、信息化、网络化等现代高新技术手段,突出土壤墒情监测关键技术环节,实现定点、定期监测。分析汇总土壤墒情数据,评价作物需水情况,及时提出应对措施建议。建立墒情定期会商和报告制度,提高时效性和结果表达的可视化程度。 二、基本原则 (一)代表性。土壤墒情监测站(点)要充分考虑区域内主导作物、气候条件、灌 排条件、土壤类型等因素合理布局,确保监测数据具有代表性。 (二)及时性。土壤墒情监测要做到及时、快速、准确,出现旱涝灾情,应加大监 测频率,旱涝灾情不迟报、不漏报;关键农时季节,应及时汇总相关信息,重大农事活动 前有信息;日常监测工作,坚持定期采样,快速分析、及时汇总、 按时上报

(三)规范性。建立土壤墒情监测工作制度和责任制度,做到工作人员相对固定,设施设备配置齐全,监测工作制度化和规范化,确保监测数据可靠、调查内容详实、评价结论科学。 三、重点工作 (一)监测点布设 选择区域范围内代表性强,当地政府重视,土肥水工作基础好,技术力量强,能够长期坚持的县承担土壤墒情监测工作。 以县为基本单元,根据气候类型、地形地貌、作物布局、灌排条件、土壤类型、生产水平等因素,选择有代表性的农田,平均每10万亩耕地设立1个农田监 测点(每个县不少于5个)。 农田监测点应设立在作物集中连片、种植模式相对一致的地块。采用统一编号,设立标志牌。开展基本情况调查,内容主要包括地理位置、气候条件、土壤类型、种植制度、灌排条件、地力等级、产量水平等;测定不同层次土壤质地、容重、田间持水量等指标;拍摄景观照片,建立监测点档案。 (二)数据采集 1、监测指标。一般按0?20cm、20?40cm、40?60cm、60?100cm四个层次监测土壤含水量,其中,0?20cm、20?40cm为必测层。播种出苗期时,加测 0?10cm 土层。特殊作物根据其需水特性和根系分布深度确定监测层次和深度。同时调查观测气象、作物表象、干土层厚度、田面开裂、灌溉、农事操作等相关数据。水田淹水时监测淹水深度、排水状况等。 2、采集方法。固定监测:埋设固定式自动监测设备,传感器分别埋入土层 深度10cm、30cm、50cm、80cm处进行监测,采用无线通讯方式将监测数据实时上传到全国土壤墒情监测系统”,并做好定期校正和维护保养。流动监测:配备便携式监测仪器和交通工具,在监测点地块,以GPS仪定位点为中心,长方形地

土壤墒情监测站详情介绍

土壤墒情也即土壤中的水分状况是最重要和最常用的土壤信息。它是科学地控制调节土壤水分状况进行节水灌溉、实现科学用水和灌溉自动化的基础。而快速、准确地测定农田土壤水分对于探明作物生长发育期内土壤水分盈亏,以便做出灌溉、施肥决策或排水措施等具有重要意义。因此在各种农业水土工程管理、农业试验、农业气象、灌溉管理和旱情监测中都离不开对土壤墒情的监测。土壤墒情的测量可以使用定时定位土壤墒情监测站来进行监测。 一、土壤墒情监测站的简介概述: 土壤墒情监测站也叫土壤墒情速测仪,土壤墒情监测系统,是专业用于监测与管理土壤墒情的专业系统。土壤墒情监测站采用GPRS传输,可通过短信、电脑等方式进行远程查看数据。 土壤墒情监测站能够实现对土壤墒情(土壤湿度)的长时间连续监测。用户可以根据监测需要,灵活布置土壤水分传感器;也可将传感器布置在不同的深度,测量剖面土壤水分情况。系统还提供了额外的扩展能力,可根据监测需求增加对应传感器,监测土壤温度、土壤电导率、土壤PH值、地下水水位、地下水水质以及空气温度、空气湿度、光照强度、风速风向、雨量等信息,从而满足系统功能升级的需要。 土壤水分是土壤的重要组成部分,对作物的生长、节水灌溉等有着非常重要的作用。通过土壤墒情监测系统的GPS定位系统掌握土壤的水分(墒情)的分布状况,为差异化的节水灌概提供科学的依据,同时精确的供水也有利于提高作物的产量和品质。 二、土壤墒情监测站原理: 土壤墒情监测站(土壤墒情监测系统)采用GPRS传输方式。GPRS通讯方式是采集点采集数据后通过GPRS上传网络,用户可利用任意一台可以上网的电脑登陆并查看数据,稳定可靠,解决了同行业利用移动无线IP传输通讯经常掉线的麻烦。数据稳定可靠无需担心突然断线,通讯费用按流量计费,适用于数据量大的应用模式。 三、土壤墒情监测站(土壤墒情监测系统)标准配置: 远程传输系统一套,室外支架一套,太阳能系统一套,土壤墒情传感器四只,

水泵远程智能监测系统

水泵远程智能监测系统一.公司简介 深圳市天地网电子有限公司致力于电力领域产品的开发,生产和技术性服务。公司聚集了一批在电力和通讯领域有着丰富经验的专家以及研发精英,为电力设备、输配电线路的运行状态监测、故障检测定位等提供产品以及技术性服务。公司本着以人为本、科技创新、团结协作、顾客至上的理念,为电力用户提供了诸多可靠的解决方案,并得到业内企业的认可。深圳市天地网电子有限公司成立于2011年,注册资金为500万元。公司位于深圳南山区,属于高新技术企业。 水泵站远程监测和控制系统的实现,首先依赖于各个环节重要运行参数的在线监测和实时信息掌控,基于此,物联网作为“智能信息感知末梢”,可成为推动智能电网发展的重要技术手段。未来智能电网的建设将融合物联网技术,物联网应用于智能水泵站最有可能实现原创性突破、占据世界制高点的领域。 二.概述 我公司自主研发的TDW-008水泵站自动化远程监控系统是集传感技术、自动化控制技术、无线通信技术、网络技术为一体的自动化网络式监控管理系统。 泵站管理人员可以在泵站监控中心远程监测站内水泵的工作电压、电流、多路无线检测温度、水位等参数;支持泵启动设备手动控制、自动控制、远程控制泵组

的启停,实现泵站无人值守。该系统适用于城市供水系统、电厂、工厂、排水泵 站的远程监控及管理。 1)系统组成 TDW-008主要包括:值班室污水泵站自动化远程监控系统人值守集中控制管理系统中心主站监控平台和现场泵房控制分站: ◇中心主站监控平台由工控机、系统监控软件、网络接入设备共同构成,能够实现监测、查询、遥调、运算、统计、控制、存储、分析、报警等多项功能。 ◇现场泵房控制分站主要由数据采集模块:电压、电流、功耗、功率因数,无线可以接多路温度、水位传感器、电源控制器、继电器单元、配电控制机柜及安装附件组成。它与中心主站监控平台通过GPRS/3G网络方式连接到一起。水源地各井位泵房为分站,中心泵房统领各分站,通过中国移动的无线数据传输设备,实现点到多点的通讯,从而最终实现对各井位泵的远程集中监视和控制。 2)控制功能 (1)监测采集功能 ---监测采集泵站水位、各种在线温度;监测泵组的启停状态、电流、电压、保护状态以及深井泵电机的实际温度等数据。

土壤自动化监测系统

墒情监测系统实施方案

目录 1 概述 (1) 1.1建设土壤墒情监测系统的必要性 (1) 1.2系统建设任务 (1) 1.3系统建设目标 (2) 1.4系统设计依据 (2) 1.5系统设计原则 (2) 1.6影响墒情变化的主要因素 (3) 1.7墒情监测要素 (3) 1.8主要专业术语解释 (5) 2 墒情自动化监测系统总体设计 (6) 2.1总体思路 (6) 2.2系统组成 (6) 2.3系统功能 (7) 2.4系统工作方式及数据流程 (8) 2.5系统特点 (8) 3 墒情监测站网及站网布设 (9) 3.1墒情监测站网分类 (9) 3.2土壤墒情监测基本站点的设置 (10) 3.3土壤含水量垂向测点的布设 (11) 4 墒情遥测站设计 (12) 4.1设备构成 (12) 4.2遥测站功能 (12) 4.3土壤墒情监测点区域选建及选站原则和相关土建 (13) 4.4仪器安装调试及数据校验 (15) 4.5主要设备 (16) 4.5.1 墒情传感器 (16) 4.5.2 数据采集终端 (17) 5 墒情自动化监测系统通信设计 (18)

5.1公共电话交换网(PSTN) (18) 5.2超短波信道 (19) 5.3全球移动通信系统(GSM) (20) 5.4GSM的通用无线分组业务(GPRS) (22) 5.5CDMA通讯网络 (23) 5.6基于GPRS/CDMA网络的组网解决方案 (24) 6 监测中心站设计 (28) 6.1中心站系统配置 (28) 6.1.1 硬件配置 (28) 6.1.2 软件配置 (30) 6.2墒情自动化监测应用软件设计 (31) 6.2.1 软件设计总体思想 (31) 6.2.2 软件设计原则 (31) 6.2.3 软件体系结构 (32) 6.3中心站主要功能 (33) 6.4自动气象站的建设 (33) 6.4.1 气象观测概述 (33) 6.4.2 气象采集系统 (34) 7 采集系统的可靠性 (37) 7.1电源管理 (37) 7.2雷电防护 (38) 7.3信道可靠性 (39) 8 系统安全 (39) 8.1数据安全 (39) 8.2系统安全 (40) 9 实施组织与培训 (41) 附录1 墒情监测点的勘查和土壤含水量的测定方法 (43) 附录2 墒情报送制度与报送方法 (48)

自动化监测

自动监测系统在地铁穿越既有线施工中的 研究与应用 姚建荣1洪涛2 (中铁电气化局集团西安铁路工程有限公司西安 721032 ) 摘要暗挖穿越既有线路必须对轨道进行监控量测,传统监测技术在高密度的行车区间内无法实施,且不能满足对大量数据采集、分析、及时准确反馈的要求,因此采用远程自动监测系统对既有线的轨道变形进行实时监测具有重要实用意义。 关键词自动化监测系统既有线道岔地铁 The Research and Application for Automatic Monitoring System in Subsurface Excavation of Subway that Pass the Exiting Line Turnout Yao Jianrong 1 Hong Tao2 (CREC Electrification Bureau Group Xi’an Railway Engineering Co.,ltd, Xi’an, 721032)Abstract:It is necessary to monitor rail in subsurface excavation of subway that pass the exiting line turnout,The traditional monitor technique.the traditional monitor technique is impracticability in high-density driving interval,and it can not satisfy a large number of data collection, analysis, timely and accurate feedback on the requirements,for this reason, the automatic remote monitoring systems for existing railway track deformation in real-time monitoring of important practical significance. Key words: automatic monitoring system; exiting railway; turnout; metroline 1 发展概况 随着各种新型传感器、微电子技术和网络通信技术的发展,各种自动化监测系统在大坝、堤防、高边坡等重大建筑物和环境工程中得到了广泛应用,并且监测的项目如变形、渗流、渗压、温度、应力、应变等技术也日渐成熟,具有数据准确、实时的特点。在轨道交通建设中,随着暗挖穿越既有线施工的增多,既有线结构和运营的安全压力逐渐增大,传统的人工监测系统已无法满足安全施工的要求,在暗挖穿越既有线施工中,自动化监测系统对结构和轨道的监测具有广泛的应用前景。 2 工程实例 北京地铁机场线东直门站C区施工需暗挖穿越既有13号线折返线,穿越部位位于既有车站主体和暗挖隧道之间的明挖单层单跨箱形结构,长14米,明挖隧道结构与车站主体和暗挖隧道连接处各设置一道变形缝,具体位置关系见图1。道岔结构尖轨部分跨缝设置,尖轨与基本轨的密贴度规范要求为2mm,暗挖施工引起的结构沉降对道岔的影响极其灵敏,稍有变形则会引起整个城铁13号线的停运。 为满足对既有线的实时监测要求,确保既有线的运营安全,本工程中采用了DAMS-IV型智能分布式工程安全监测系统。 3 DAMS-IV型智能分布式工程安全监测系统组成、系统特点 DAMS-IV型智能分布式数据采集系统由DAU-2000型模块化结构数据采集单元(DAU)、监控主机、管理计算机以及被采集传感器等构成。可对各种 作者简介:姚建荣,男,本科,从事轨道交通施工; yao19760913@https://www.sodocs.net/doc/0217788901.html, 洪涛,男,本科,从事轨道交通施工。

相关主题