搜档网
当前位置:搜档网 › Discovery of the Ultra-Bright Type II-L Supernova 2008es

Discovery of the Ultra-Bright Type II-L Supernova 2008es

Discovery of the Ultra-Bright Type II-L Supernova 2008es
Discovery of the Ultra-Bright Type II-L Supernova 2008es

a r X i v :0808.2812v 2 [a s t r o -p h ] 4 S e p 2008

Accepted to the Astrophysical Journal

Preprint typeset using L A T E X style emulateapj v.02/07/07

DISCOVERY OF THE ULTRA-BRIGHT TYPE II-L SUPERNOVA 2008es

S.Gezari,1J.P.Halpern,2D.Grupe,3F.Yuan,4R.Quimby,5T.McKay,4D.Chamarro,4M.D.Sisson,4

C.Akerlof,4J.C.Wheeler,6P.J.Brown,3S.B.Cenko,7A.Rau,5J.O.Djordjevic,8and

D.M.Terndrup 8

Accepted to the Astrophysical Journal

ABSTRACT

We report the discovery by the ROTSE-IIIb telescope of SN 2008es,an overluminous supernova (SN)at z =0.205with a peak visual magnitude of ?22.2.We present multiwavelength follow-up observations with the Swift satellite and several ground-based optical telescopes.The ROTSE-IIIb observations constrain the time of explosion to be 23±1rest-frame days before maximum.The linear decay of the optical light curve,and the combination of a symmetric broad H αemission line pro?le along with broad P Cygni H βand Na I λ5892pro?les,are properties reminiscent of the bright Type II-L SNe 1979C and 1980K,although SN 2008es is greater than 10times more luminous.The host galaxy is undetected in pre-supernova SDSS images,and similarly to Type II-L SN 2005ap (the most luminous SN ever observed),the host is most likely a dwarf galaxy with M r >?17.We see suggestive evidence for a transition in the light curve 80days after maximum to the radioactive decay rate of 56Co.Swift Ultraviolet Optical Telescope observations in combination with Palomar 60inch photometry measure the spectral energy distribution of the SN from 200?800nm to be a blackbody that cools from 14,000K at the time of the optical peak to 6,400K 65days later.The inferred blackbody radius is in good agreement with the radius expected for the expansion speed measured from the broad lines (10,000km s ?1).The bolometric luminosity at the optical peak is 2.8×1044erg s ?1,with a total energy radiated over the next 65days of 5.6×1050erg.The exceptional luminosity of SN 2008es requires an e?cient conversion of kinetic energy produced from the core-collapse explosion into radiation.We favor a model in which the large peak luminosity is a consequence of the core-collapse of a progenitor star with a low-mass extended hydrogen envelope and a stellar wind of ≈10?3M ⊙yr ?1,close to the upper limit on the mass-loss rate measured from the lack of an X-ray detection by the Swift X-ray Telescope.

Subject headings:supernovae:general —supernovae:individual (SN 2008es)—ultraviolet:ISM

1.INTRODUCTION

Hydrogen-rich supernovae (SNe II)produce their ra-diative energy in several phases;with a diversity of lu-minosities,light curves,and spectroscopic features that divide them into subclasses.An initial burst of UV/X-ray radiation is observed at the time of shock breakout (Schawinski et al.2008;Gezari et al.2008a),followed by declining UV/optical emission from the adiabatic ex-pansion and cooling of the SN ejecta (e.g.,SN II-pec 1987A:Hamuy et al.1988;SN IIb 1993J:Schmidt et al.1993;Richmond et al.1994,SN II-P 2006bp:Imm-ler et al.2007).Type II-plateau (II-P)SNe are char-acterized by their subsequent plateau in optical bright-ness,which is understood as the result of a progenitor with a substantial hydrogen envelope,for which a cool-ing wave of hydrogen recombination recedes through the

1

Department of Physics and Astronomy,Johns Hopkins Univer-sity,3400North Charles Street,Baltimore,MD 21218

2Department of Astronomy,Columbia University,New York,NY 10027

3Pennsylvania State University,Department of Astronomy &Astrophysics,University Park,PA 16802

4University of Michigan,Randall Laboratory of Physics,450Church St.,Ann Arbor,MI,48109-1040

5Division of Physics,Mathematics and Astronomy,California Institute of Technology,Pasadena,CA 91125

6Department of Astronomy,University of Texas,Austin,TX 78712

7Department of Astronomy,601Campbell Hall,University of California,Berkeley,CA 94720-3411

8Department of Astronomy,Ohio State University,Columbus,OH 43210

inner layers of the ejecta (Falk &Arnett 1977;Litvinova &Nadyozhin 1983).Type II-linear (II-L)SNe do not have a plateau phase,but rather a steep drop in lumi-nosity that is thought to be the result of the ejection of large amounts of radioactive material (Young &Branch 1989),or a small hydrogen envelope mass (Barbon et al.1979;Blinnikov &Bartunov 1993).The sub-class of bright SNe II-L (M B

In this paper we present the discovery of an overlu-minous SN II,that has the properties of a SN II-L,but with an exceptional luminosity that we argue is best ex-plained by the core-collapse of a progenitor star with a low-mass,extended hydrogen envelope and a dense stel-lar wind.We disfavor more exotic scenarios such as an interaction with a massive shell of CSM expelled in an episodic eruption,a pair-instability explosion,or a buried GRB.In §2we present the ROTSE-IIIb discovery data,and follow-up observations with the Swift satellite and

2Gezari et al.

several ground-based telescopes;in§3we compare the properties of SN2008es to other known Type II SNe,and use our observations to constrain the mechanism pow-ering the extroardinary radiative output;and in§4we make our conclusions.

2.OBSERVATIONS

2.1.Photometry

SN2008es was discovered as an optical transient at α=11h56m49.13s,δ=+54?27′25.7′′(J2000.0) in un?itered images(calibrated to the SDSS r-band) taken by the0.45m ROTSE-IIIb(Robotic Optical Tran-sient Search Experiment)telescope(Akerlof et al.2003) at McDonald Obseratory on2008Apr26(ROTSE J115649.1+542726;Yuan et al.2008).UT dates are used throughout this paper.ROTSE-IIIb continued to monitor the transient for~50days.We began a mon-itoring program with the Palomar60inch(P60)tele-scope(Cenko et al.2006)in the g,r,and i′bands on 2008May2,with continued observations for~100days. Observations in the V band were obtained by the1.3m MDM telescope and the4K detector with0.315arcsec pixel?1spatial resolution,starting on2008May24and continuing for45days.Secondary standard stars were established through observations of stars from Landolt (1992),and included the determination of nightly extinc-tion corrections.Observations on2008Aug22?23in the B,V,and i bands were obtained with the Palomar 200inch telescope(P200)and the Large Format Camera. The optical light curve measured from all four optical telescopes is shown in Figure1and Table1.Magnitudes reported in this paper have been corrected for a Galac-tic extinction of E(B?V)=0.012mag(Schlegel et al. 1998).The ROTSE-IIIb and P60data catch the rise of the source to its peak.We?t the rise of the un?ltered ?ux measured by ROTSE IIIb with a quadratic function (plotted with a black line in Figure1),and estimate the time of explosion from the intercept with the time axis to be MJD54,574±1.The error in the time of explo-sion re?ects both the statistical error from the ROTSE-IIIb?ux uncertainties and the systematic error from the shape of the function used for the?t.We measure the peak of the light curve from quadratic?ts to the individ-ual?lter light curves from MJD54,580to54,620,which yields a peak of MJD54,602±1,and corresponds to23±1d after the time of explosion in the rest frame of the supernova.

2.2.Spectroscopy

Within days of the ROTSE discovery,we followed up the source with optical spectroscopy on2008May1and 8with the9.2m Hobberly Eberly Telescope(HET)and the Marcario Low-Resolution Spectrograph and on2008 May2with P200and the Double Beam Spectrograph (Yuan et al.2008).The transient was tentatively classi-?ed as a quasar because the spectra showed a featureless blue continuum and one broad emission feature that was associated with Mg IIλ2798at z=1.02.We obtained further follow-up spectra on2008June1and16with the HET and on2008Aug1with P200.The identi?cation of the redshift and type of the SN was ambiguous(Miller et al.2008a;Gezari et al.2008b;Miller et al.2008b)un-til later spectra obtained on2008Aug1(by our group with P200)and2008Aug3(by Chornock et al.2008 with the10m Keck Low-Resolution Imager and Spectro-graph),revealed broad Balmer emission lines,reported by Chornock et al.(2008)to be associated with a Type II SN at z=0.21.Figure2shows the evolution of the spec-tra over time,and Table2gives the log of spectroscopic observations.In order to minimize uncertainties in the absolute?ux calibration,the spectra are multiplied by a scaling factor so that their?ux integrated over the r-band?lter matches the P60r-band photometry closest in time to the observation.We see no evidence of nar-row absorption or emission lines superimposed on the SN spectrum indicating a contribution from the host galaxy. We measure the redshift of the SN to be z=0.205±0.001from a Gaussian?t to the broad He IIλ4686line in the2008May1and8spectra,with a full-width at half-maximum(FWHM)of5500±500km s?1.Detection of the high ionization line He IIλ4686at t=(14?20)days after explosion in the SN rest-frame requires high temperatures and ionization.This is similar to the case of Type II-P SN2006bp for which He IIλ4686was detected in the?rst few days after explosion,and was associated with outer layers of the SN ejecta that were ?ash ionized at shock breakout(Quimby et al.2007a; Dessart et al.2008).

Strong Balmer lines and Na Iλ5892did not appear until after>20rest-frame days after explosion.The broad Hαline in the2008Aug1spectrum can be?tted with a single Gaussian with a FWHM=(1.02±0.06)×104km s?1.The spikes near the peak of Hαare residuals from a poor sky subtraction.The broad Hα?ux is(3.7±0.4)×10?15erg s?1cm?2,corresponding to a luminosity of(3.7±0.4)×1041erg s?1.The Na Iλ5892and Hβlines have P Cygni line pro?les with a blue-shifted absorption component with a minimum at a velocity of(?7.4±0.2)×103km s?1and(?7±1)×103km s?1respectively,and a blue absorption wing that extends out to~1×104 km s?1.Figure6shows the broad emission lines,and their best?tting Gaussian pro?les.The lack of a strong P Cygni absorption component in the Hαline and P Cygni pro?les in the Hβand Na I lines is consistent with the bright Type II-L SNe1979C and1980K(Panagia et al.1980;Branch et al.1981;Uomoto&Kirshner1986). The width of the Hαline is a measure of the expansion speed of the SN ejecta,while the absorption component of the P Cygni pro?le traces the out?ow of the absorbing material in the line of sight.Both components indicate a SN blast-wave velocity of~10,000km s?1.

The error in the redshift from the Gaussian?t to the He IIλ4686line does not re?ect systematic errors that may be introduced if the He II line is blended or is not symmetric.The best-?tting SN II template in the Su-pernova Identi?cation Code(SNID)database(Blondin &Tonry2007)to the spectrum105d after explosion is SN II-L1990K on day+53(Cappellaro et al.1995) at z=0.202±0.006.A?t to all Type II-L SNe in the database gives the same best?t result.If we re-strict the?t to SN templates1979C and1980K(as is done by Miller et al.2008c),a worse?t is found,with z=0.213±0.011.The redshift measured from the best template?ts is consistent with the redshift determined from the He II line,and so we use this redshift but change the error bars to re?ect the uncertainties in the template

Ultra-Bright Type II-L SN 2008es

3

Fig. 1.—Light curve of SN 2008es in the un?ltered ROTSE-IIIb optical band (calibrated to the SDSS r -band),the Palomar 60inch g ,r ,and i ′bands,the V band from the MDM 1.3m (plotted with open circles),the B ,V ,and i -band data from P200(plotted with open circles),and the uvw 2,uvm 2,uvw 1,u ,B ,and V bands measured by the Swift UVOT telescope.Black line shows a quadratic ?t to the rise in ?ux measured by ROTSE-IIIb used to determine the time of explosion at MJD 54,574±1.Dotted red line shows the slope of radioactive 56Co decay of 0.98mag (100d)?1,stretched in time to match the time dilation of SN 2008es.

?t,z =0.205+.003

?.009.

2.3.Host Galaxy

No host galaxy is detected in the pre-SN Sloan Digital Sky Survey (SDSS)DR 6images (Adelman-McCarthy et al.2008),down to a limiting magnitude of r ~23.This constrains the host galaxy to be a dwarf galaxy with

M r >~

?17at z =0.205.The closest galaxy detected by SDSS is located 8.3′′North East of the SN,with r =23.1±0.4,and g ?r =?0.1±0.5mag.At a redshift of z =0.205this angular separation corresponds to a projected separation of ~40kpc,which is much larger than would be expected if the galaxy were the SN host.During our 2008Aug 1spectrum we placed the slit at a position angle so that this galaxy would fall in the slit,but we did not detect any emission lines from the galaxy that could be used to determine its redshift.The accuracy of the SN redshift could be greatly improved with future spectroscopic observations at the position of the SN,after the SN has faded signi?cantly,when emission lines from the host galaxy that are now outshined by the SN may be detectable.

2.4.Swift Observations

We requested Target of Opportunity (ToO)observa-tions with the Ultraviolet/Optical Telescope (UVOT;Roming et al.2005)and X-ray Telescope (XRT;Burrows et al.2005)on board the Swift observatory (Gehrels et al.2004)on 2008May 14,with continued monitoring through 2008Sep 2.The spectral energy distribution

(SED)of the source on 2008May 14was well described by a blackbody with T ~104K for z ~1.The cor-responding bolometric luminosity of ~1046erg s ?1,in combination with the lack of X-ray emission indicative of persistent quasar activity,suggested that the source may have been a ?are from the accretion of a tidally dis-rupted star around a central black hole of 108M ⊙(Gezari &Halpern 2008).This interpretation was soon ruled out,however,by the rapidly cooling temperature of the emission seen in the later Swift observations,and the subsequent appearance of SN-like broad features as the spectra evolved (Miller et al.2008a;Gezari et al.2008b).No X-ray source was detected in any of the individual XRT epochs.The count-rate in a 23′′extraction radius for the accumulated exposure time of 50.27ks is 4.8×10?4counts s ?1,and places a 3σupper limit to the 0.3-10keV ?ux,using the standard energy conversion factor,of 2.4×10?14erg s ?1cm ?2s ?1,which corresponds to a luminosity at z =0.205of L X <2.4×1042erg s ?1,using a luminosity distance for z =0.205of d L =1008Mpc (H 0=70km s ?1Mpc ?1,?m =0.30and ?Λ=0.70).The UVOT magnitudes were measured with a 3′′aper-ture,and an aperture correction based on an average point-spread function (PSF).We convert the magni-tudes into ?ux densities using the count-rate to ?ux conversions determined for the Pickle standard stars (Poole et al.2008).The UVOT uvw 2(λeff =203nm),uvm 2(λeff =223nm),uvw 1(λeff =263nm),u (λeff =350nm),b (λeff =433nm),and v (λeff =540nm)band magnitudes are plotted in Figure 1and listed in Table 3.

4Gezari et

al.

Fig. 2.—Optical spectra of SN 2008es taken on 2008May 1(day 13),May 8(day 20),Jun 1(day 44),and Jun 16(day 59)with the HET 9.2m,and on 2008May 2(day 14),and Aug 1(day 105),on the Palomar 200inch,where τis the observed days since explosion.Spectra are o?set in the vertical direction by c 1=2.6,c 2=2.0,c 3=1.0,and c 4=0.5,and the 2008Aug 1spectrum (day 105)is multiplied by a factor of 2for comparison.The redshift of z =0.205is measured from the broad He II λ4686line in the May 1and 8HET spectra.Solid grey lines show a ?t to the continuum with a blackbody at z =0.205on May 1,2,and 8with T bb =14,000K and on Jun 1with T bb =11,000K.

In Figure 3we show the SED of the SN over time from 200?800nm measured by UVOT in combination with optical data points from the P60data closest in time to the UVOT observations.The UVOT b and v bands are interchangeable with the Johnson B and V system,but the u band has a bluer response than the Johnson U band,and we make this distinction throughout the paper.

We ?t the SEDs over time with a blackbody at z =0.205,and ?t temperatures starting t =26d after explo-sion with 14,000K,cooling down to 6,400K at t =91d,with corresponding blackbody radii expanding from

3×1015cm to 5×1015cm.These radii are >

~50times larger than a standard red supergiant photosphere,and mostly likely correspond to the radius of the expanding SN blast-wave.We see evidence of an excess above of a pure blackbody in the uvw 2band at early times (26?27observed days after explosion),that may be the e?ect of strong FeIV and FeIII features in that region,seen in the spectra of SN II-P 2006bp at similar photospheric temperatures (Dessart et al.2008).

3.RESULTS

https://www.sodocs.net/doc/024434845.html,parison with Type II SNe

The high signal-to-noise (S/N)MDM 1.3m V -band ob-servations,with ?mag ~0.01,measure a linear decay from 9to 53d after the peak of 2.95±0.02mag (100d)?1,or 3.55mag (100d)?1in the SN rest-frame.This decay rate is just above the transition of the average

decay-rates in the ?rst 100days after maximum from Type II-plateau (II-P)to Type II-linear (II-L)classes of supernovae (SNe)de?ned by Patat et al.(1994)to be 3.5mag (100d)?1in the B -band (at z ~0.2the V band is close to the rest-frame B band).This classi?ca-tion is non-exclusive,however,since Patat et al.(1994)point out that there is a continuum in rates between the plateau and linear subclasses.Type II-L SNe are on aver-age brighter than Type II-P SNe,and II-L SNe appear to have a bimodal distribution of absolute peak magnitudes,with a subclass of bright II-Ls with =?19.27(Richardson et al.2002).Yet,even the bright II-Ls are still 3magnitudes fainter than the peak magnitude of SNe 2008es.

The latest Swift and MDM V -band observations show evidence of a ?attening of the optical light curve ~65rest-frame days after maximum,with a slope that is con-sistent with the 56Co decay rate of 0.98mag (100d)?1(shown with a dotted line in Figure 1,stretched in time to match the time dilation of SN 2008es).The estimated luminosity at the time of the last MDM V -band data point,at 104d after explosion in the SN rest frame,is ≈1×1042erg s ?1(a factor of ~3below the lumi-nosity on day 75in the SN rest-frame),and using the expression,L =1.42×1043e ?t d /111M Ni /M ⊙erg s ?1(Sutherland &Wheeler 1984),implies an upper limit to

the initial 56Ni mass of <

0.2M ⊙,which is close to the upper end of the range masses measured for Type II SNe (e.g.,0.3M ⊙for SN 1992am;Schmidt 2000).

Ultra-Bright Type II-L SN2008es

5 Fig.3.—Spectral energy distribution of SN2008es over time in observed days since the time of explosion measured by the Swift UVOT

telescope in the uvw2,uvm2,uvw1,u,B,and V bands,and the Palomar60inch telescope in the g,r,and i′bands.Swift UVOT telescope magnitudes are converted to?ux densities using the count rate to?ux conversion from the Pickles standard stars(Poole et al.2008). Temperature?ts are shown for a rest-frame blackbody at z=0.

205.

Fig. 4.—Swift u?B and B?V,and P60g?r colors of SN

2008es over time in the SN rest-frame in comparison to Type II-L

SN1979C and Type II-P SN2006bp.

In Figure4we compare the u?B,B?V,and g?r

colors of SN2008es over time to the evolution of the

U?B and B?V colors of SN II-L1979C which have

a linear slope of~0.85mag(100day)?1(Panagia et

al.1980).The K-correction at the redshift of SN2008es

makes the g?r color close to rest-frame B?V.We also

show the u?B,and B?V light curves of SN II-P2006bp

measured by Swift(Immler et al.2007).All curves are

shown in days since explosion in the SN rest frame.The

light curve of SN2008es has a much slower evolution of

the B?V color than seen in prototypical Type II-P SN

2006bp,and is in closer agreement with the colors and

linear slopes of prototypical bright Type II-L SN1979C.

We estimate the bolometric luminosity of SN2008es

over time(shown in Figure5)using the blackbody curve

?ts shown in Figure3.The luminosity during the opti-

cal peak,23d after the explosion in the SN rest-frame,is

2.8×1044erg s?1,and decays exponentially as L bol(t)=

L bol(t=0)e?αt erg s?1,where L bol(t=0)=6.5×1044

erg s?1,α=0.040±0.004,and t is rest-frame days since

explosion.We estimate the total energy radiated by inte-

grating under the curve from day21to75in the SN rest-

frame,to get E tot=5.6×1050erg,a value comparable

to the radiated energy of the extreme SN2006gy(Ofek

et al.2007;Smith et al.2007)which emitted~1×1051

erg s?1in the?rst two months.These radiated energies,

so close to the total kinetic energy produced in a core-

collapse explosion(typically in the range of0.5?2.0×1051

6Gezari et

al.

Fig. 5.—Blackbody temperature,radius,and bolometric lumi-

nosity over time in the SN rest-frame for SN2008es,and Type II-P

SNe2005cs and2006bp.The luminosity and radius of SNe2005cs

and2006bp have been scaled by a factor of50and5respectively

for comparison with SN2008es.

erg),require an e?cient conversion of the kinetic energy

of the SN ejecta into radiation.

Figure5shows the evolution of the bolometric lumi-

nosity of SN2008es in comparison to two Type II-P

SNe with detailed non-LTE modeling of their photom-

etry and spectra by Dessart et al.(2008):SNe2005cs

and2006bp.The luminosity curves have been scaled by

a factor of50for comparison with SN2008es.The be-

havior of SN2008es is markedly di?erent than the SNe

II-P,with a factor of50greater luminosity at23days

after explosion compared to the peak luminosity of SN

2006bp that occurs a couple days after explosion,and

with a much slower decline in luminosity over75days

in comparison to~15days in SNe2005cs and2006bp.

Figure5also shows T bb and R bb for SN2008es in com-

parison to the Type II-P SNe2005cs and2006bp,with

the radii of the Type II-P SNe scaled up by a factor of

5for comparison.In contrast to SN2008es which has

T=14,000K at23days after explosion,the photo-

spheric temperatures of the Type II-P SNe have already

cooled to6000K by day20,and their photospheric radii

are~5times smaller.It is clear that there is a di?er-

ent mechanism powering the long-lived,and extremely

luminous emission from SN2008es.

3.2.Interaction with CSM

Given the estimate of the expansion speed,v s,from

the broad Hαline of10,000km s?1,the radius of the

ejecta at the time of the peak of the optical light curve,

t peak=23d after explosion in the SN rest-frame,is

expected to be R ph=v s t peak=2×1015cm,which

is in good agreement with the the radius of the black-

body?t at that time(R bb~3×1015cm).If the lu-

minosity during the optical maximum is powered by in-

teraction with the CSM,this requires a density of order

n~L/(2πR2v3s m)~2×109cm?3,where m is the mean

mass per particle(2.1×10?24g for H+He)and we use

R ph=3×1015cm.This implies an enclosed mass within

R ph of~0.2M⊙,and corresponds to a mass-loss rate of

˙M~M/(tv

s

/v w)~2.5×10?3(v w/10km s?1)M⊙yr?1,

where v w is the velocity of the stellar wind(~10km s?1

for a red supergiant progenitor).

We can place an upper limit on the progenitor’s mass-

loss rate if we assume that X-ray emission is produced by

the interaction of the SN shock with the ambient CSM.

In the forward shock,a H+He plasma will be heated

to T=1.36×109[(n?3)/(n?2)]2v2s4K(Chevalier&

Fransson2003),where n is the ejecta density parameter

(in the range7?12)and v s4is the shock velocity in104

km s?1,and will produce an X-ray luminosity of L X=

3.3×1060Λ(T)(˙

M?6/v w1)2(v s4t d)?1erg s?1(Immler et

al.2002),where v w1is the stellar wind speed in units of

10km s?1,t d is the time since explosion in days,˙M?6is

the progenitor’s mass-loss rate in units of10?6M⊙yr?1,

andΛ(T)=2.4×10?23g?T0.5

8

is the cooling function

for an optically thin heated plasma,where g?is the free-

free Gaunt factor,and T8is the temperature in units of

https://www.sodocs.net/doc/024434845.html,ing the width of the broad Hαline to estimate

v s4~1,and using t d=23,the upper limit on L X(0.3?

10)keV implies that˙M<~5×10?4v w1M⊙yr?1.This

upper-limit to the mass-loss rate is still a factor5below

what is required to power the observed peak bolometric

luminosity purely by interaction with the CSM.

https://www.sodocs.net/doc/024434845.html,parison with Models

The B-band light curve and B?V colors of bright

SN II-L1979C were succesfully modeled by Blinnikov&

Bartunov(1993)with a red supergiant progenitor with

an extended structure(R~6,000R⊙),a small hydrogen

envelope mass(~1?2M⊙),and a dense superwind with

a mass-loss rate of˙M≈10?4M⊙yr?1.In this model,

the large peak luminosity of SN1979C(M B=?19.6)

is produced by the dense stellar wind that reprocesses

the UV photons produced at shock breakout,and can be

boosted to up to M B~?22by increasing the mass-loss

rate to˙M≈10?3M⊙yr?1.Their model predicts a steep

drop in luminosity50days after explosion,when the re-

combination(in the di?usion regime)reaches the silicon

core.After this point,the light curve has an extended tail

powered by radioactive decay and/or emission from the

shock propagating into the CSM.These predictions are

consistent with the sharp drop and subsequent56Co de-

cay slope tentatively detected in the V-band light curve

of SN2008es.The Blinnikov&Bartunov(1993)model

also explains the absence of the absorption component

in Hα,which is due to the fact that at late stages the

temperature inside the dense envelope is lower than the

Ultra-Bright Type II-L SN2008es

7 Fig. 6.—Left:Broad He IIλ4686in the2008May1and8spectra,with the continuum subtracted,and the best?t Gaussian with

FWHM=(5.5±0.5)×103km s?1(red line).Right:Broad Hα,Hβ,and Na Iλ5892emission lines with the continuum subtracted.The Hβand Na I lines have been scaled by a factor of3to match the?ux of Hα.The single Gaussian?t to the broad Hαline with FWHM =(1.01±0.06)×104km s?1is shown with a red line,and the area under the Na I line is shaded in green.The Hβand Na I lines have a strong blue-shifted P Cygni absorption feature with a minimum at?7×103km s?1that is not seen in the pro?le of the Hαline. shock wave temperature.

Young et al.(2005)?nd these values for the radius and

superwind unrealistic,and prefer a model in which the

bright luminosity at the early phase of the SN light curve

is the result of an optical afterglow from a GRB jet in-

teracting with the progenitor’s hydrogen envelope.The

main problem with this model is that the optical after-

glow emission produced from the external shocks created

by the interaction of the relativistic jet with the H enve-

lope will emit non-thermal synchotron radiation,which is

in direct contradiction with the cooling blackbody SED

of SN2008es.

Another possibility,favored by Miller et al.(2008c),is

that the luminosity is powered by the interaction of the

SN blast-wave with a massive circumstellar shell that was

ejected in an episodic eruption(Smith&McCray2007).

Similarly,the luminosity could be powered by an inter-

action between such shells(Woosley et al.2007).Both

of these models produce their luminosity via the dense

shell that decelerates the blast wave,and converts the

bulk kinetic energy into radiation through shocks.The

intermediate-width(a few thousand km s?1)P Cygni

lines produced from the dense post-shock gas,and the

slow escape of radiation due to photon di?usion of the

thermal energy through the opaque shell in these mod-

els are not consistent with the broad,symmetric Hαline

emission,and relatively fast rise time of SN2008es.

If the bolometric luminosity of SN2008es were powered

solely by thermalization of gamma-rays from radioactive

cobalt decay,then the luminosity at t d=23would re-

quire25M⊙of56Ni to be synthesized in the explosion.

This is3orders of magnitude larger than typically pro-

duced in Type II SNe,and much larger than the ejecta

mass which is expected to be<5M⊙to avoid a plateau

from H recombination in the optical light curve.Al-

though it is possible for such a large amount of56Ni to be

produced by an extremely massive progenitor star(>100

M⊙)that underwent a pair-instability supernova(Ober

et al.1983),we already?nd evidence for a transition to a

radioactive heating-dominated light curve at late times,

which suggests that the light curve was not dominated by

radioactive decay near the peak.Furthermore,the calcu-

lations of Scannapieco et al.(2005)predict a long,slow

rise to maximum,and slow expansion speeds of~5000

km s?1,which is neither consistent with the23d rise to

maximum nor the10,000km s?1expansion speed seen

in SN2008es.

Given the contradictions with the more exotic scenar-

ios discussed above,the extreme luminosity of Type II-L

SN2008es seems most likely to be on the bright end

of a range of luminosities and light curves possible with

variations of progenitor star H envelope and stellar wind

parameters presented in the models by Blinnikov&Bar-

tunov(1993).However,even the largest red supergiant

stars have radii<~1500R⊙(Levesque et al.2005),thus

a progenitor star with the extreme extended structure

assumed by Blinnikov&Bartunov(1993)is problem-

atic.Type II-L SN light curves with peak magnitudes of

M B~?19were reproduced by Swartz et al.(1991)for

core-collapse models with more realistic envelope radii

(1200R⊙).More detailed modeling is needed to deter-

mine if the required parameters for SN2008es are con-

sistent with stellar evolution.

4.CONCLUSION

The overluminous SN2008es(M V=?22.2),is the sec-

ond most luminous SN observed,and in the same league

as the extreme SNe2005ap,2006gy,and2006tf,which

had peak visual magnitudes of?22.7,?22.0,and?20.7,

respectively.In Figure7we compare the absolute R-

band light curves of the4SNe(all discovered by the

ROTSE-IIIb telescope)in rest-frame days since the time

of explosion.SN2006gy and2006tf are classi?ed spec-

troscopically as Type IIn SNe because of their narrow

peaked P Cygni Balmer lines(Ofek et al.2007;Smith et

al.2008),although with deviations from the smooth pro-

?les typical of SNe IIn in SN2006gy(Smith et al.2007).

8Gezari et

al.

Fig.7.—Comparison of absolute R magnitudes of the four overluminous SNe discovered by the ROTSE-IIIb telescope.The light curve of SN2008es is constructed from the un?itered ROTSE-IIIb observations and the P60r-band observations.The light curves are shown corrected for time dilation.The day of explosion for SNe2005ap is estimated by Quimby et al.(2007)to be~3weeks before the peak in the rest-frame of the SN at z=0.2832.The rise time of SN2006tf is not well constrained,so for comparison,we assume that the peak occurs at the same time after explosion as SN2008es.

The time of explosion for SN2005ap is estimated by

Quimby et al.(2007b)to be~3weeks before maximum.

The time of explosion for SN2006tf is poorly constrained

(Smith et al.2008),so for comparison we assume that it

takes the same time to reach the peak as SN2008es.

Of the SNe in the same luminosity class,the light curve

of SN2008es is most like SN2005ap,the most lumi-

nous SN ever observed(Quimby et al.2007b).Inter-

estingly,SN2005ap also has a dwarf galaxy host,with

M R=?16.8.However,SN2005ap does di?er from SN

2008es in the fact that it demonstrated absorption fea-

tures at early times,as well as P Cygni absorption in its

broad Hαpro?le.This is not consistent with the spectra

of bright II-L SNe which have decreasing P Cygni ab-

sorption with increasing luminosity(Patat et al.2004).

The extended envelope/wind model is problematic for

SN2005ap,since it would be hard to produce early ab-

sorption features without corresponding emission.The

extreme luminosity and linear decay of SN2005ap were

attributed instead to a collision of the SN ejecta with

a dense circumstellar shell,a GRB explosion buried in

a H envelope,or a pair-instability eruption powered by

radioactive decay(Quimby et al.2007b).

The peak luminosity,linear decay,and spectroscopic

features of SN2008es place it in a subclass of ultra-bright

Type II-L SNe.The light curve and spectral energy dis-

tribution of SN2008es,measured in detail from the UV

through the optical,and the tentative detection of ra-

dioactive56Co decay at late times,point towards a core-

collapse explosion of a non-standard progenitor star with

a super wind and extended envelope,and a substantial

initial mass of56Ni.Wide-?eld optical synoptic surveys

such as the ROTSE-III Supernova Veri?cation Project,

Pan-STARRS,and LSST will continue to explore the

large parameter space of core-collapse explosions;and

increase our understanding of the e?ects of variations in

progenitor star properties and environments.

We want to thank the Swift PI Neil Gehrels for approv-

ing our various ToO monitoring requests for SN2008es

and the Swift Science Operating Center team for per-

forming the observations,and Don Schneider for approv-

ing our HET ToO request and the HET resident as-

tronomers for performing our HET spectroscopic follow-

up observations.The Hobby-Eberly Telescope(HET)

is a joint project of the University of Texas at Austin,

the Pennsylvania State University,Stanford University,

Ludwig-Maximilians-Universit¨a t M¨u nchen,and Georg-

Ultra-Bright Type II-L SN2008es9

August-Universit¨a t G¨o ttingen.The HET is named in honor of its principal benefactors,William P.Hobby and Robert E.Eberly.Swift is supported at PSU by NASA contract NAS5-00136.ROTSE-III has been supported by NASA Grant NNG-04WC41G,the Aus-tralian Research Council,the University of New South Wales,the University of Texas,and the University of Michigan.P60operations are funded in part by NASA through the Swift Guest Investigator Program(Grant Number NNG06GH61G).F.Y.is supported by NASA grants NNX-07AF02G and NNX-08AN25G.J.C.W.is supported in part by NSF Grant AST0707769.

REFERENCES

Adelman-McCarthy,J.K.,et al.2008,ApJS,175,297

Akerlof,C.W.,et al.2003,PASP,115,132

Barbon,R.,Ciatti,F.,&Rosino,L.1979,A&A,72,287 Blinnikov,S.I.&Bartunov,O.S.1993,A&A,273,106 Blondin,S.,&Tonry,J.L.2007,ApJ,666,1024

Branch,D.,Falk,S.W.,Uomoto,A.K.,Wills,B.J.,McCall,M.L., &Rybski,P.1981,ApJ,244,780

Burrows,D.N.,et al.2005,Space Sci.Rev.,120,165 Cappellaro,E.,Danziger,I.J.,della Valle,M.,Goui?es,C.,& Turatto,M.1995,A&A,293,723

Cenko,S.B.,et al.2006,PASP,118,1396

Chevalier,R.A.&Fransson,C.2003,in Supernovae and Gamma-Ray Bursters,ed.K.W.Weiler(Berlin:Springer),171 Dessart,L.,et al.2008,ApJ,675,644

Gezari,S.,et al.2008,ApJ,683,L131

Gezari,S.,Grupe,D.,Yuan,F.,Akerlof,C.,Cenko,B.,Rau,A., Quimby,R.,Halpern,J.P.,Wheeler,J.C.,&Terndrup,D., ATel,1578,1

Gezari,S.&Halpern,J.P.2008,ATel,1524,1

Gehrels,N.,et al.2004,ApJ,611,1005

Hamuy,M.,Suntze?,N.B.,Gonzalez,R.,&Martin,G.1988,AJ, 95,63

Immler,S.,Wilson,A.S.,&Terashima,Y.2002,ApJ,573,L27 Immler,S.,et al.2007,ApJ,665,435

Landolt,A.U.1992,AJ,104,340

Levesque,E.M.,Massey,P.,Olsen,K.A.G.,Plez,B.,Josselin, E.,Maeder,A.,&Meynet,G.2005,ApJ,628,L973

Miller,A.A.,et al.2008,ATel,1576,1

Miller,A.A.,Chornock,R.,Bloom,J.S.,Modjaz,M.,Filippenko, A.V.,Li,W.,Foley,R.J.,Butler,N.R.,&Perley,D.A.2008, ATel,1593,1

Miller,A.A.,et al.2008,ApJ,submitted(arXiv:0808.2193) Ober,W.W.,El Eid,M.F.,&Fricke,K.J.1983,A&A,119,61Panagia,N.,et al.1980,MNRAS,192,861

Patat,F.,Barbon,R.,Cappallero,E.,&Turatto,M.1994,A&A, 282,731

Poole,T.S.,et al.2008,MNRAS,383,627

Quimby,R.M.,Wheeler,J.C.,H¨o?ich,P.,Akerlof,C.W.,Brown, P.J.,&Ryko?,E.S.2007,/apj,666,1093

Quimby,R.M.,Aldering,G.,J.C.Wheeler,H¨o?ich,P.,Akerlof, C.W.,&Ryko?,E.S.2007,ApJ,668,L99

Richardson,D.,Branch,D.,Casebeer,D.,Millard,J.,Thomas, R.C.,&Baron,E.2002,AJ,123,745

Richmond,M.W.,et al.1994,AJ,107,1022

Roming,P.W.A.,et al.2005,Space Sci.Rev.,120,95 Scannapieco,E.,Madau,P.,Woosley,S.E.,Heger,A.,&Ferrara, A.2005,ApJ,633,1031

Schawinski,K.,et al.2008,Science,321,223

Schlegel,D.J.,Finkbeiner,D.P.,&Davis,M.1998,ApJ,500,525 Schmidt,B.P.,et al.1993,Nature,364,600

Schmidt, B.P.2000,in SN1987A:Ten Years After,ed. M.M.Phillips,N.B.Suntze?,Fifth CTIO/ESO/LCO Workshop (Garching:ESO)

Smith,N.&McCray,R.2007,ApJ,671,L17

Sutherland,P.G.&Wheeler,J.C.1984,ApJ,280,282 Swartz,D.A.,Wheeler,J.C.,&Harkness,R.P.1991,ApJ,374, 266

Turatto,M.,et al.1993,MNRAS,262,128

Uomoto,A.,&Kirshner,R.P.1986,ApJ,308,685

Woosley,S.E.,Blinnikov,S.,&Heger,A.2007,Nature,450,390 Young,T.R.&Branch,D.1989,ApJ,342,L79

Young,T.R.,Smith,D.,&Johnson,T.A.2005,ApJ,625,L90 Yuan,F.,Quimby,R.,McKay,T.,Chamarro,D.,Sisson,M.D., Akerlof,C.,&Wheeler,J.C.2008,ATel,1515,1

10Gezari et al.

TABLE1

Ground-based Optical Photometry

Telescope/Band MJD a Magnitude b Error

ROTSE-IIIb54555.1(19.48)

54556.2(19.51)

54559.1(18.32)

54562.1(19.21)

54567.4(18.93)

54569.2(18.69)

54571.2(18.25)

54573.2(18.46)

54575.2(18.54)

54579.2(18.27)

54580.2(18.34)

54582.218.360.10

54584.218.090.16

54585.218.100.07

54591.218.020.18

54592.217.960.22

54594.217.780.10

54596.217.790.09

54597.117.660.21

54604.217.950.15

54605.217.910.18

54606.217.980.08

54608.318.050.33

54610.217.870.05

54618.217.980.06

54619.218.140.09

54620.218.090.09

54622.218.210.15

54624.218.500.16

54626.218.140.14

54627.218.600.16

P60/g54588.317.950.06

54589.217.980.06

54590.217.940.06

54591.217.910.06

54593.217.890.04

54595.217.820.06

54597.217.830.08

54598.317.840.08

54600.217.770.10

54601.217.870.13

54602.217.910.05

54603.217.860.05

54606.317.860.07

54607.217.890.05

54608.217.930.07

54615.218.110.08

54617.218.070.06

54618.218.130.06

54619.218.190.08

54620.218.130.08

54624.218.260.08

54629.218.420.11

54633.218.590.10

54634.218.770.12

54635.218.720.15

54636.218.690.15

54638.218.780.12

54640.218.810.08

54641.218.780.08

54645.219.000.10

54648.219.050.12

54652.219.140.15

54654.219.290.13

54655.219.360.16

54657.219.570.20

54658.219.820.52

54672.219.990.25

54674.220.150.30

54675.220.430.25

54676.220.490.19

54681.220.500.28

54688.220.730.40

P60/r54588.318.000.06

54590.217.900.06

Ultra-Bright Type II-L SN2008es11 TABLE1—Continued

Telescope/Band MJD a Magnitude b Error

54591.217.940.06

54593.217.860.06

54595.217.910.08

54597.217.860.08

54598.317.820.08

54600.217.820.10

54602.217.810.16

54603.217.840.08

54606.317.920.10

54607.217.830.08

54608.217.970.12

54615.217.960.08

54617.218.000.06

54618.218.010.06

54620.218.220.14

54624.218.090.08

54629.218.260.07

54633.218.280.08

54634.218.330.09

54635.218.300.08

54636.218.300.11

54638.318.350.10

54640.218.380.06

54641.318.430.06

54645.218.550.08

54648.218.600.08

54652.218.790.15

54654.218.830.08

54655.218.840.09

54658.219.220.30

54672.219.310.15

54674.219.370.15

54676.219.470.15

54681.219.850.20

54688.219.950.29

54696.220.230.41

P60/i54588.318.130.08

54590.217.950.06

54591.217.920.08

54593.217.810.05

54595.217.880.06

54597.217.770.06

54600.217.810.07

54603.217.800.08

54606.317.870.10

54607.217.820.09

54608.217.900.10

54615.317.980.08

54617.217.970.10

54618.217.980.09

54620.218.000.08

54624.218.030.08

54629.218.120.08

54633.218.150.09

54634.218.160.07

54635.218.260.08

54636.218.240.09

54638.318.310.10

54640.218.350.06

54641.318.350.07

54645.218.360.07

54645.218.360.07

54655.218.740.09

54657.218.630.30

54658.218.840.25

54676.219.180.14

54681.219.390.17

54688.219.640.20

MDM/V54611.217.800.01

54614.117.890.02

54617.117.890.01

54621.118.010.01

54625.218.140.01

54626.218.170.01

54627.218.190.01

54628.218.230.01

12Gezari et al.

TABLE1—Continued

Telescope/Band MJD a Magnitude b Error

54629.218.230.01

54630.218.280.01

54631.218.320.03

54632.218.350.01

54633.218.380.01

54635.218.410.02

54637.218.480.01

54638.218.530.01

54639.218.560.01

54640.218.600.01

54648.218.840.02

54655.219.100.02

54699.120.700.05

P200/B54701.221.230.12

54701.221.520.16

P200/V54700.120.810.10

54700.220.820.06

54701.220.640.06

54701.220.820.06

P200/i54700.120.400.16

54700.120.170.10

54700.220.150.03

54701.120.060.07

54701.120.140.04

a Days in JD-2,400,000.5

b ROTSE-IIIb upper limits shown in parentheses.P60,MDM,and P200magnitudes corrected for a Galacti

c extinction of E(B?V)=0.012 mag(Schlegel et al.1998).

14Gezari et al.

TABLE3

Swift UVOT Photometry

Band MJD a Magnitude b Error

uvw254599.817.050.03

54601.517.130.03

54608.217.630.03

54616.118.300.09

54617.918.340.05

54624.118.830.11

54634.919.770.10

54643.620.150.14

54651.520.480.20

54664.921.260.29

uvm254599.816.810.04

54601.516.910.04

54608.217.370.04

54616.218.010.12

54617.918.160.07

54624.218.540.23

54634.919.480.13

54643.619.740.16

54651.520.400.27

54665.020.760.30

uvw154599.816.910.04

54601.516.900.03

54608.217.300.04

54616.117.990.10

54617.917.780.05

54624.118.160.11

54634.919.040.10

54643.619.970.21

54651.420.230.28

54664.920.900.40

u54599.816.820.03

54601.516.810.03

54608.217.050.03

54616.117.470.08

54617.917.410.04

54624.118.090.10

54634.918.480.08

54643.619.100.13

54651.419.190.16

54664.920.120.31

B54599.817.810.04

54601.517.790.04

54608.217.970.04

54616.118.230.09

54617.918.230.05

54624.118.450.09

54634.919.180.08

54643.619.280.11

54651.520.090.26

54664.920.080.20

54698.921.370.21

V54599.817.800.06

54601.517.700.06

54608.217.960.07

54616.217.960.14

54617.917.940.07

54624.217.940.16

54634.918.540.10

54643.618.660.12

54651.519.330.23

54665.019.310.23

54681.620.440.24

54696.520.430.16

54707.821.090.24

a Days in JD-2,400,000.5

b Magnitudes corrected for a Galacti

c extinction of E(B?V)=0.012mag(Schlegel et al.1998).

TEMSDiscovery2.5操作指南概论

TEMS DISCOVERY DISCOVERY的几大功能: 一:数据展示(地理化窗口/layer 3/图形化显示)都是在project中可以直接打开显示的。二:出报告 三:地理化的差值分析/平均分析 Discovery和TI导入数据的想法不一样,TI是用logfile进行导入后分析,discovery是通过PROJECT形式导入各种数据(.cel/map/log这些数据是基于project) 第一步:新建一个project:点击project explorer---new

上图中我们需要给project定义一个project name。然后SAVE一下。(再导入cell/map之前GIS/CELL CONFIGATION是空的,导入之后这里会有相应的显示) UDR:uers defined region(用户自定义区域) 第二步: 导入数据 路测数据 地理化数据

小区数据 天线数据(天线的主瓣旁瓣) 覆盖图(planning tools导出来的)

在导入.cel(小区数据) 文件时的选项:要定义小区数据是属于哪一个project(define target project),然后Browse小区数据。 导入过程中,我们会在TASK WINDOW中看到相应的project/.cel导入信息。 导入好小区数据之后我们会在project Explorer中看到我们新建的project (20100801)中会出现Composite(组合)/datasets(数据组),现在这里还是空的,然后我们右键project(比如:20100801)—view/edit properties会看到我们cell configuration已经存在CELL文件了。 ,

Deep Learning for Human Part Discovery in Images

Deep Learning for Human Part Discovery in Images Gabriel L.Oliveira,Abhinav Valada,Claas Bollen,Wolfram Burgard and Thomas Brox Abstract—This paper addresses the problem of human body part segmentation in conventional RGB images,which has several applications in robotics,such as learning from demon-stration and human-robot handovers.The proposed solution is based on Convolutional Neural Networks(CNNs).We present a network architecture that assigns each pixel to one of a prede?ned set of human body part classes,such as head, torso,arms,legs.After initializing weights with a very deep convolutional network for image classi?cation,the network can be trained end-to-end and yields precise class predictions at the original input resolution.Our architecture particularly improves on over-?tting issues in the up-convolutional part of the network.Relying only on RGB rather than RGB-D images also allows us to apply the approach outdoors.The network achieves state-of-the-art performance on the PASCAL Parts dataset.Moreover,we introduce two new part segmentation datasets,the Freiburg sitting people dataset and the Freiburg people in disaster dataset.We also present results obtained with a ground robot and an unmanned aerial vehicle. I.INTRODUCTION Convolutional Neural Networks(CNNs)have recently achieved unprecedented results in multiple visual perception tasks,such as image classi?cation[14],[24]and object detection[7],[8].CNNs have the ability to learn effective hierarchical feature representations that characterize the typical variations observed in visual data,which makes them very well-suited for all visual classi?cation tasks.Feature descriptors extracted from CNNs can be transferred also to related tasks.The features are generic and work well even with simple classi?ers[25]. In this paper,we are not just interested in predicting a single class label per image,but in predicting a high-resolution semantic segmentation output,as shown in Fig.1. Straightforward pixel-wise classi?cation is suboptimal for two reasons:?rst,it runs in a dilemma between localization accuracy and using large receptive?elds.Second,standard implementations of pixel-wise classi?cation are inef?cient computationally.Therefore,we build upon very recent work on so-called up-convolutional networks[4],[16].In contrast to usual classi?cation CNNs,which contract the high-resolution input to a low-resolution output,these networks can take an abstract,low-resolution input and predict a high-resolution output,such as a full-size image[4].In Long et al.[16], an up-convolutional network was attached to a classi?cation network,which resolves the above-mentioned dilemma:the contractive network part includes large receptive?elds,while the up-convolutional part provides high localization accuracy. All authors are with the Department of Computer Science at the University of Freiburg,79110Freiburg,Germany.This work has partly been supported by the European Commission under ERC-StG-PE7-279401-VideoLearn, ERC-AG-PE7-267686-LIFENA V,and FP7-610603-EUROPA2. (a)PASCAL Parts(b)MS COCO (c)Freiburg Sitting People(d)Freiburg People in Disaster Fig.1:Input image(left)and the corresponding mask(right) predicted by our network on various standard datasets. In this paper,we technically re?ne the architecture of Long et al.and apply it to human body part segmentation,where we focus especially on the usability in a robotics context.Apart from architectural changes,we identify data augmentation strategies that substantially increase performance. For robotics,human body part segmentation can be a very valuable tool,especially when it can be applied both indoors and outdoors.For persons who cannot move their upper body, some of the most basic actions such as drinking water is rendered impossible without assistance.Robots could identify human body parts,such as hands,and interact with them to perform some of these tasks.Other applications such as learning from demonstration and human robot handovers can also bene?t from accurate human part segmentation.For a learning-from-demonstration task,one could take advantage of the high level description of human parts.Each part could be used as an explicit mapping between the human and joints of the robot for learning control actions.Tasks such as human-robot handovers could also bene?t.A robot that needs to hand a tool to its human counterpart must be able to detect where the hands are to perform the task. Human body part segmentation has been considered a very challenging task in computer vision due to the wide variability of the body parts’appearance.There is large variation due to pose and viewpoint,self-occlusion,and clothing.Good results have been achieved in the past in conjunction with depth sensors[22].We show that CNNs can handle this variation very well even with regular RGB cameras,which can be used also outdoors.The proposed network architecture yields correct body part labels and also localizes them precisely. We outperform the baseline by Long et al.[16]by a large

中国电视纪录片发展现状研究

中国电视纪录片发展现状研究 本文的目的在于研究中国电视纪录片发展现状。新中国成立以来电视纪录片的的发展经历了四个阶段新闻纪录、专题纪录、创新纪录、媒 介融合。从研究历史出发通过对当下纪录片生态环境、市场化问题、 话语权三大问题的现状分析归纳出体制内外纪录片发展中共同面临 的问题。世纪在新的传播环境和传播语境下中国当下的电视纪录片依 托传播学的理念从自身改造突破问题寻找出路。关键词电视纪录片市场化问题话语权传播过程引言引言研究缘起在年第届奥斯卡金像奖 提名名单中华人女导演杨紫烨凭借执导的环保题材纪录短片《仇岗卫士》成功入围最佳纪录短片提名。杨紫烨接受采访时说“现在是中国纪录片最好的时代。与“最好时代”不相称的是纪录片现状的尴尬局面翻阅电视报几乎找不到它的身影即使找到了也被安排在午夜等非黄 金时段相亲节目选秀节目竟猜节目……充斥于荧屏成为了老百姓茶 余饭后的谈资。与二十世纪九十年代的辉煌相比电视纪录片节目渐渐 冷清甚至已淡出人们的视线。纪录片遇到了怎样的困境把电视台的资源拱手让于其他节目电视纪录片在中国为何会有此境遇它的出路又 在哪里这就是笔者写作的缘起也是重点研究的问题。纪录得益于电 影。年月日法国卢米埃尔兄弟开创了电影的先河,工厂大门》、火车到站》、《婴儿进餐》等影片的公开收费放映使得电影真正走入了人类世 界展示出独有的光影魅力。这些影片就像一幅幅活动的相片带有很大程度的纪实性质。而就在年电影很快登陆中国。上海、北京、香港、

台湾陆续出现电影但放映的都是外国人的影片。直到年北京丰泰照相馆的老板任庆泰以著名京剧艺术家谭鑫培作为拍摄对象拍下了他表 演定军山》的几个片断观众反响热烈。这预示了中国纪录片的萌芽。 而国际上公认的第一部纪录电影是罗伯特?弗拉哈迪在年拍摄的北方的纳努克》这也是他的第一部电影。直到今天这部电影仍然充满着无穷的魔力被热爱纪录片的专家学者作为研究欣赏图本。原因就在于他开创了纪录片的拍摄手法。纪录片依托电影发展壮大在电影和电视界闯下了一番天地被全世界人民所认同。从年电视发明以后人们就可以足不出户了解世界新闻、博览社会百态。影视合流成了趋势。电视 纪录片应电视技术的成熟、媒体力量的聚合诞生了。美国国家地理频道、探索频道依托纪录片而崛起、发展英国的日本的在世界上在纪录片的专属领域中享有美誉。中国的电视杨紫烨现在是中国纪录片最好时代新浪网? 引言纪录片发从年起步至今已走过了五十三年的历史 现状又是如何呢研究的目的和意义选择中国电视纪录片的现状作为 论文的研究对象其目的和意义在于第一新千年已进入第十一个年头 科学技术日新月异中国电视纪录片自身在承载内容和外在形式上都 表现出个性化、丰富化的特点通过回顾半个世纪的电视纪录史分析出每个时期电视纪录片的共性站在历史的肩头才能更好的审视现在展 望未来。第二电视生态环境与纪录片发展息息相关在市场经济时代纪 录片面临着哪些问题又该如何把握自己的话语权这些问题的探讨是 纪录片现状生存必须面对的课题。第三电视纪录片是一个复杂动态的

用STM32F4-Discovery套件自带调试器烧录STM32芯片

用STM32F4-Discovery套件自带调试器烧录STM32芯片 碧云天书 STM32F4-Discovery自带了SWD调试连接器,可以用来调试和烧录STM32芯片和开发板。一般STM32开发板上的调试接口为20脚的JTAG接口,而STM32F4-Discovery板载的SWD调试连接器为6教SWD接口,可以用一条20脚转6脚的连接线将SWD调试器连接到开发板的JTAG接口上。 一、硬件连接 下图是JLink接口的SWD端口配置图,可以作为连接参考。引脚编号为简易牛角座顶视图对应的编号。红线标识的引脚对应着ST-LINK/V2调试连接器CN2的6个引脚。 表1STM32F4-Discovery自带的ST-LINK/V2调试连接器CN2引脚定义(SWD) 引脚CN2说明 1VDD_TARGET来自应用的VDD 2SWCLK SWD时钟 3GND地线 4SWDIO SWD数据输入/输出 5NRST目标MCU的复位 6SWO保留(TRACESWO,连接目标MCU的PB3,可以不接) 由于使用ST-LINK/V2上的NRST就得断开SB11锡桥,因此不使用NRST线。需要连接剩下的5根线,分别是VCC,SWDIO,SWCLK,SWO,GND。其中SWO也可以不接,这样就只需要连4条线。下面的表2总结了连线方式。 表2连接STM32F4-Discovery自带的ST-LINK/V2调试连接器到开发板JTAG接口的连线 VDD SWCLK GND SWDIO SWO(可省略) 12346 ST-LINK/V2 (CN2) JTAG接口194713

连接线实物 使用STM32F4-Discovery自带的ST-LINK/V2调试连接器时,需要把CN3上的跳线拔掉,这时板载的ST-LINK/V2处于调试外部开发板状态。如下图:

Discovery纽约时代广场探索博物馆EB-5项目

Discovery纽约时代广场探索博物馆EB-5项目 项目概况 探索频道(Discovery Channel)于1985年在美国创立,探索频道目前覆盖全球 超过160个国家、4亿5千万个家庭,探索公司同时也是美国的上市公司,是美国最大的主流媒体之一。 Discovery博物馆(mDiscovery Times Square)成立于2009年,是探索频道(Discovery)的官方合作伙伴,为纽约市的前五大的博物馆。地处于时代广场核心的44街与第七第八大道中间,过去成功展出:泰坦尼克号、哈利波特、法老王和兵马俑等世界知名展览,已接待超过数百万人次的游客。继成功推出纽约时代广场第一期娱乐项目“百老汇4D剧院”项目(进展顺利,投资者均取得I-526移民申请通过)后,曼哈顿区域中心(MRC)又重磅推出位于纽约时代广场的第二期娱乐项目Discovery博物馆——探索纽约项目,该项目与第一期4D剧院项目仅隔一街距离。

项目特点 独一无二的地理优势 纽约时代广场在2013年迎接了5340万次游客,游客总消费超过了400亿美金,旅游消费预计将会在未来4年每年以8.5%的速度增长。 良好的发展前景——纽约市的旅游统计表

足够的就业机会创造 依照Michael Evans所做出的就业人数计算(即RIMS Ⅱ计算方式,该计算方法为美国移民局比较推荐的就业机会计算方式),该项目预计产生593个新的就业机会。远远超过EB-5所需的240个就业机会空间高达60%。 银行专户还款 Discovery博物馆参观门票预计价格为22美元,娱乐产业一直以来都是现金流十分可观的产业,依照与其他时代广场相似项目比较并且保守评估推算,每年项目净利润预计高达一千万美元以上,项目承诺在营运方面将保留60%的现金存放至还款账户中,专款专户作为未来贷款五年还款准备。 资金结构

DAVID使用方法介绍

DAVID使用说明文档 一、DAVID简介 DA VID (the Database for Annotation,Visualization and Integrated Discovery)的网址是https://www.sodocs.net/doc/024434845.html,/。DA VID是一个生物信息数据库,整合了生物学数据和分析工具,为大规模的基因或蛋白列表(成百上千个基因ID或者蛋白ID列表)提供系统综合的生物功能注释信息,帮助用户从中提取生物学信息。 DA VID这个工具在2003年发布,目前版本是v6.7。和其他类似的分析工具,如GoMiner,GOstat等一样,都是将输入列表中的基因关联到生物学注释上,进而从统计的层面,在数千个关联的注释中,找出最显著富集的生物学注释。最主要是功能注释和信息链接。 二、分析工具: DAVID需要用户提供感兴趣的基因列表,在基因背景下,使用提供的分析工具,提取该列表中含有的生物信息。这里说的基因列表和背景文件的选取对结果至关重要。 1.基因列表:这个基因列表可能是上游的生物信息分析产生的基因ID列表。对于富集分析而言,一般情况下,大量的基因组成的列 表有更高的统计意义,对富集程度高的特殊Terms有更高的敏感度。富集分析产生的p-value在相同或者数量相同的基因列表中具有可比性。 DAVID对于基因列表的格式要求为每行一个基因ID或者是基因ID用逗号分隔开。基因列表的质量会直接影响到分析结果。这里定性给出好的基因列表应该具有的特点,一个好的基因列表至少要满足以下的大部分的要求: (1)包含与研究目的相关的大部分重要的基因(如标识基因)。

discovery软件在测井资料标准化中的应用

discovery软件在测井资料标准化中的应用 趋势而分析方法是依据物质的某一物理参数的测量值来研究幷空间分布特点及变化规律的方法。任何汕出实际地质参数在横向上差不多上具有某种规律性渐变,即可看作是趋势面变化。趋势而分析的差不多思路确实是对标准层的测井响应多项式趋势面作图,并认为与地层原始趋势而具有一致性。若趋势面分析的残差图仅为随机变量,则是测井刻度误差造成的,若存在一组专门残差值,则认为是岩性变化导致的0 1981年J H Doveton和E?Bomcman 进一步用趋势而分析来描述这一标准化过程,1991年石汕大学熊绮华教授在进行牛庄洼陷万全汕田油藏描述研究过程中采纳该方法对测井曲线进行标准化。 Discovery软件是应用较为广泛的油藏描述软件,该软件在用趋势面分析方法进行测井 曲线标准化方而具有操作简单、图形化输出及运算等特点,使得测井曲线标准化变得专门方便。 1 Discovery软件的趋势面分析方法 1.1趋势面分析方法的数学原理 若趋势而分析的残差图仅为随机变量,则是测井刻度误差造成的,若存在一组专门残差值,则认为是岩性变化导致的。它的数学方法概述如下: 设用z(x,y)表示所研究的地质特点,其中(x,y)是平面上点的坐标.则趋势值和剩余值用下式表示: z(x,y)= Z (x,y)+e 其中:2(xj)为趋势值,C为剩余值。 关于已知的数据:z,x\yiJH2 No 通常用回来分析求出趋势值和剩余值,即依照已知的数据求出回来方程f(x?y),使得: N 2 =乞忆一/(兀,片)] r-l 达到最小。实际上这确实是最小二乘意义下的曲面拟合咨询题,即依据运算值z(xj)用回来分析方法求出一个回来而: 对应于回来而上的值Z = 为趋势值,残差z,.名为剩余值。

体验营销之远交近攻

体验营销之远交近攻 原文和出处 【古兵法原文】 形禁势格,利以近取,害以远隔。上火下泽。 【原文今译】 在受到地理条件的限制时,攻取靠近的敌人就有利,越过近敌去攻取远敌就有害。火向上烧,水往下流,是我方与邻近者乖离的情形。 【出处原文】 “王不如远交而近攻,得寸则王之寸;得尺亦王之尺也。” 【出处今译】 大王不如交好距离远的国家进攻邻近的国家,这样,得了一寸土地就是大王的一寸土地,得了一尺土地就是大王的一尺土地。 【案例】 雀巢公司联合第三世界国家摆脱危机 雀巢公司是全球规模最大的跨国食品公司,至今已兴盛发展了120多年。它所生产的食品,尤其是速溶咖啡,时下人见人爱,风靡全球,是其拳头产品之一。然而,就是这样一个饮誉世界的雀巢帝国,在70年代却险些信誉扫地,“一命呜呼”。 本世纪70年代末80年代初,世界上出现了一种舆论,说雀巢食品的竞销,导致了发展中国家母乳哺育率下降,从而导致了婴儿死亡率的上升。由于当时雀巢的决策者拒绝考虑舆论,继续我行我素,加上竞争对手的煽风点火,到了80年代,竟形成了一场世界性的抵制雀巢奶粉、巧克力及其他食品的运动。雀巢产品几乎在欧美市场上无立足之地,给雀巢公司带来了严重的危机。在残酷的事实面前,雀巢公司的决策者不得不重金礼聘世界著名的公共关系专家帕根来商量对策,帮助雀巢公司渡过这一难关。 帕根受此重托后,立即着手调查分析。结果,他发现,造成这场抵制雀巢食品运动的根源,就是在于雀巢公司以大企业、老品牌自居,拒绝接受公众的意见。另外,由于雀巢公司

的推销活动,对公众是保密的。这使得雀巢公司与公众之间的信息交流不通。所有这一切,都犯了公共关系的大忌,也就难怪误解、谣传遍起。 帕根根据调查分析的结果,制定出了一个详细周密的公共关系计划,呈报给雀巢公司。帕根的这一计划,把行动的重点放在了抵制最强烈的美国,虚心听取社会各界对雀巢公司的批评意见,开展大规模的游说活动,组织有权威的听证委员会,审查雀巢公司的销售行为等,使舆论逐渐改变了态度。在“近攻”取得初步胜利的基础上,帕根建议接任雀巢公司总经理之职的毛奇,开辟发展中国家的市场,把它作为雀巢产品的最佳市场。在开拓市场过程中,雀巢公司吸取了以往的教训,不是把第三世界的发展中国家单纯看作雀巢产品的市场,而是从建立互利的伙伴关系着手。 雀巢公司每年用60亿瑞士法郎,从发展中国家购买原料,每年拨出8000万瑞士法郎,来帮助这些国家提高农产品的质量。同时,还聘请100多名专家,在第三世界国家举办各种职业培训班。比如,在印度的旁遮普邦,雀巢公司进入莫加区建立了一个奶品工厂。由于那里的家庭所饲养的产奶水牛,不仅营养不良,而且很多都染有疾病。大多数农民只能生产仅够自己所需的牛奶,根本没有任何剩余牛奶可供出售。于是,雀巢公司设立了一个免费的兽医服务处,以批发价格向农民供应药品,并提供低息贷款支持开掘新水井,增加用水的供应。这样一来,使更多的草料长起来了,牛犊的存活率也从40%提高到75%。在这一计划开始时,那里只有4460户牛奶直接供应者,在计划实施之后,牛奶供应者超过了3.5万户,每年向雀巢公司售奶可达11.7万吨。牲畜疾病已基本绝迹。这个奶品工厂发展所创造的繁荣,已协助带来电力、电讯、农机,交通事业的发展。使昔日的贫瘠之一,今已欣欣向荣。 如此一系列的活动,使雀巢公司在发展中国家里树立起了良好的形象,因而销路大增。又取得了“远交”的胜利。 到1984年,雀巢公司的年营业额高达311亿瑞士法郎,雄居世界食品工业之首。 2、“情感式营销”诠释“梦想”文化 一、传播策略:“非奥运营销”战略强调“参与”精神 雪花啤酒近日对外公布了其在奥运期间的品牌推广战略—“非奥运营销”战略,并宣

纪录片制作机构

探索频道(Discovery Channel)是由探索传播公司(Discovery Communications, Inc./DCI;NASDAQ:DISCA,旗下拥有197多家全球性电视网,包括Discovery探索频道、动物星球频道、Discovery科学频道和Discovery高清视界频道等)于1985年创立的,总部位于美国马里兰州蒙哥马利县银泉市。探索频道主要播放流行科学、科技、历史、考古及自然纪录片。 探索频道自1985年在美国启播后、现今已成为世界上发展最迅速的有线电视网络之一、覆盖面遍及全国百分之九十九的有线电视订户、在全球145个国家和地区有超过14400万个家庭订户。探索频道是全球最大的纪录片制作及买家、它吸引全球最优秀的纪录片制作人、所以探索频道的节目均被认为是世界上最优秀的纪实娱乐节目。也是世界上发行最广的电视品牌,目前到达全球160多个国家和地区的30600多万家庭,以35种不同语言播出节目。 探索频道在世界主要国家地区均有落地,但探索频道会因应不同地区设立不同版本,加上字幕或配音。美国版本主要播放写实电视节目,如著名的流言终结者系列。亚洲探索频道除着重播放写实节目之外,也播放文化节目,如介绍中国、日本文化的一系列节目。 亚洲探索频道于1994年成立,总部在新加坡,为美国Discovery传播公司(DCI)的全资附属机构,提供二十四小时精彩的纪实娱乐节目。据2005年泛亚媒体调查(PAX)的结果显示,探索频道在富裕成人中连续9年被公认为亚洲地区收视人口最多的有线及卫星电视频道。在新加坡举办的2004年“亚洲电视大奖”评选中,探索频道还荣膺“年度最佳有线及卫星电视频道”。 中国国际电视总公司(中央电视台全额投资的大型国有独资公司,成立于1984年,是中国内地规模最大、赢利能力最强的传媒公司)境外卫星代理部接收探索频道信号,通过亚太6号卫星(东经134度)发射KU波段信号。该服务一般只提供给三星级或以上的涉外宾馆酒店,外国人居住区,领事馆及大使馆。中国大陆各省市的地方电视台会转播或播放探索频道制作的节目。同时,还与浙江华数集团成立合资公司,向由杭州电视台开办的四个面向全国播出的高清付费电视频道(求索纪录、求索生活、求索科学、求索动物)提供绝大多数的节目内容。

discover微波操作手册

微波合成仪标准操作手册 一、操作流程 1、例行检查:仪器开机前,首先检查仪器整体是否正常;反应腔及内衬溢出杯是否清洁;检查自 动压控装置APD是否清洁;自动进样器是否在正常位置;仪器电源线、数据线、气体管路连接情况是否正常。经检查一切正常方可开机。如内衬、APD不清洁或其它问题未经处理而运行仪器所造成的损害,属于非正常操作范畴。 2、开机顺序:先打开计算机电源,再打开Discover主机电源,然后运行Synergy软件(在计算机 桌面上)。最后打开空压机电源。 3、登记制度:检查、开机均正常,请认真按规定填写仪器使用记录,记录信息不全将承担后续使 用问题的责任。检查、开机、运行过程中,发现任何问题请及时联系管理员。 4、启动软件:运行Synergy软件,选择用户名并输入密码,进入软件操作界面后,可从屏幕右下 方工具栏察看Discover和Explorer的联机情况。 5、放入样品:按要求装配好微波反应管(详见第六部分),放入仪器衰减器。 6、选择方法:打开软件界面中相应用户的“M ethod”文件夹图标,选择所需方法,单击鼠标左键拖 拽到相应样品位置,如有需要,可新建方法或对方法进行修改(详见第四部分) 7、运行前检查:检查衰减器是否处于锁定状态;察看屏幕右侧温度、压力的显示是否正常。 8、运行方法:点击软件界面上部工具栏中的“P lay”按钮,仪器自动运行。 二、禁止的操作项 1、严禁频繁开关机;开机后1min内关机;关机后1min内开机。 2、严禁修改电脑系统设置如注册表项等内容。 3、严禁使用破损的、有裂痕的、划痕严重的反应瓶。 4、严禁使用变形的样品盖。 5、反应瓶盖必须严格按要求装配,禁止未经过检查就放置于自动进样器架上。 6、严禁将标签纸粘贴在反应瓶的任何部位。 7、严禁将文献中多模微波仪器(特别是家用微波炉)的反应条件直接用于该仪器。 8、严禁长时间无人值守,仪器运行过程中,必须每2小时进行巡视查看,并做好检查记录。 9、微波程序运行过程中,严禁非仪器管理员在线修改反应参数。 10、仪器登陆用户只有管理员的权限可以设置为“Admin”其他均设置为“User”。 11、仪器各登陆用户的参数设置应符合仪器要求(详见第三部分),禁止修改。

《荒野求生》教学设计

《荒野求生》教学设计 1、视频导入 播放《荒野求生》片段,板书。 2、作者简介 贝尔·格里尔斯,世界最著名的野外生存探险专家,美国discovery探险节目《荒野求生》主持人,前英国特种兵,登山家,演讲家,畅销书作家。他是专门为超越危险和死亡而生的野外生存大师,也曾乘水上摩托环绕不列颠群岛,搭乘小船横越冰冷的北大西洋,登上冰封万年的珠穆朗玛峰,也曾从沙漠的流沙死里逃生,在夏威夷穿越鲨鱼成群出没的水域,在野外寻找蛆虫充饥而得以存活。 贝尔主持的节目《荒野求生》在全球170多个国家和地区播出,他置身绝境、激发本能、破图极限的探险经历给全球数十亿观众留下了深刻的印象,显示了人类挑战极限的生存能力。因其在节目中食用的东西太过惊人,被誉为“站在食物链最顶端的男人”。 他挑战过世界上最危险的环境,他是世界上最可爱的疯子,天生的冒险家。 3、介绍评价 今天老师给大家推荐的就是贝爷写的“荒野求生少年生存小说系列”书籍。 我们来看看贝爷自己怎么说的。危险无处不在,即使在大街上也不一定安全,而父母是无法替孩子挡住所有危险的。只想规避孩子遇到的各种危险,只会让孩子对危险猛然无知,也是剥夺了孩子的成长权利。父母应该教会孩子在面对危险时,如何选择正确的处理方式,避免伤害。这种学习让孩子更强大。“荒野求生少年生存小说系列”是野外生存大师贝尔·格里尔斯为广大少年儿童,为三个儿子创作的一套荒野求生秘籍。贝尔将自己丰富的野外生存经验与精彩的少年历险故事相结合,在野外生存绝境中,生动描述了上百种简洁而实用的求生技巧,传递了野外求生的原则“永远保持微笑,只要活着就有希望",引领小读者在野外环境或危险环境中,镇静从容,采用多种方法进行自救。一望无际的滚烫沙漠、万年冰封的茫茫荒原、步步惊心的热带雨林……少年探险家贝克深陷绝境,没有食物、没有水、没有救援,面临着重重危机,他该如何只靠自己的双手和智慧顽强求生?

美国探索教育视频资源服务平台

1、美国探索教育视频资源服务平台 平台内容及意义 大众文化的流行,娱乐学习一体化的浪潮席卷全球。同时随着社会发展,多学科交叉融合,使得社会对大学生综合能力要求颇高。在某一个方面出类拔萃的复合型人才,越来越受到企业社会的青睐。综合性人才在当今社会炙手可热,因此学校在重视专业课的同时,加强对课外知识的普及符合当今教育时代的发展需求。 美国探索教育视频资源服务平台坚持以“科教兴国”为总方略,以提高在校师生综合素质、开拓师生眼界为宗旨;以教育、科学、文化、历史、探险等为题材的多学科交叉融合的教育视频资源服务平台。平台始终坚持科学研究与教学理论相统一,历史知识和文化教育相结合,以求达到师生即使足不出户,亦能知大千世界之神奇、能知世界各地前沿性科学技术,能解世间万物之疑惑。此平台已经成为西安数图网络科技有限公司一个独具特色的教育资源服务平台。 平台特色 美国探索教育视频资源服务平台,结合高校科学教育及科普知识所需,精选整合美国探索频道(Discovery)和美国国家地理频道(National Geography)两大世界知名频道近年来的最新节目,精心制作而成。 1、美国探索频道(Discovery) 1985年开播 使用客户在全球达到160多个国家,3亿零6百多万家庭。 通过15颗卫星用36种语言、24小时播放来源于全球不同地方摄制的精彩高品质纪实节目 2、美国国家地理频道(National Geography) 遍布全球达171个国家及地区 通过48种语言收看 荣获1次奥斯卡金像奖和2次金像奖提名,129座艾美奖 平台分类 自然科学,历史人文,科学发现,生命科学,旅游风光,体育探索,军事侦探,交通机械,工程建筑

BBC一百多部记录片

BBC一百多部记录片 BBC.生物记录片.细胞 https://www.sodocs.net/doc/024434845.html,/cszGSiqUkU9cr(访问密码:e215)自然风光喜马拉雅山脉 https://www.sodocs.net/doc/024434845.html,/cs4iYcAeiHKIn 提取码:28c1自然风光巴厘岛 https://www.sodocs.net/doc/024434845.html,/csizn3trNnCGv 提取码:e5edBBC纪录片《野性水域终极挑战》[MKV] https://www.sodocs.net/doc/024434845.html,/Qi24t6zR3TyCK (提取码:bbcb)[历史地理] 詹姆斯·卡梅隆的深海挑战. https://www.sodocs.net/doc/024434845.html,/lk/cJxR8pIvfSvR8 访问密码4076远方的家-边疆行全100集 https://www.sodocs.net/doc/024434845.html,/cszGATNBFhjjw(访问密码:52c6)美丽中国湿地行50集

https://www.sodocs.net/doc/024434845.html,/cszX2JZKa6UVy 访问密码2f2f李小龙:勇士的旅程》(Bruce Lee A Warriors Journey) https://www.sodocs.net/doc/024434845.html,/csFPTqFZr8GTz 提取码6c71CHC高清纪录片:星球奥秘之地球雪球期MKV 720P 1.4G 英语中字 https://www.sodocs.net/doc/024434845.html,/QGEpqiPbfGfsG (访问密码:cdb2)探索频道:狂野亚洲:四季森林 https://www.sodocs.net/doc/024434845.html,/cJxPJZXa8wGzA 访问密码1034BBC 纪录片《美国的未来》[MKV/4集全] https://www.sodocs.net/doc/024434845.html,/QivxnUNbqLEau (提取码:27fe)生命的奇迹.全5集 https://www.sodocs.net/doc/024434845.html,/cJXTIkq5jLBY5 访问密码7d2f《华尔街》高清收藏版[HDTV/720p/MKV/全10集] https://www.sodocs.net/doc/024434845.html,/cy5PrZeud43Rk 提取码8497远方的家-沿海行(高清全112集) https://www.sodocs.net/doc/024434845.html,/cszX4jUKD29ay 访问密码a52aBBC

discovery教程

第一章:前言 (1) 第二章:微机油藏描述系统集成 (3) 一、Landmark公司微机油藏描述系统发展历程 (3) 二、微机油藏描述系统各模块集成 (4) (一)工区、数据管理系统 (二)GESXplorer地质分析与制图系统 (三)SeisVision 2D/3D二维三维地震解释系统 (四)PRIZM 测井多井解释系统 (五)ZoneManager层管理与预测 (六)GMAPlus正演建模 三、Discovery微机油藏描述系统软件特色 (12) 第三章:微机三维地震解释系统软件应用方案研究 (13) 一、工区建立 (13) (一)工区目录建立 (二)一般工区建立 (三)工区管理 二、数据输入 (20) (一)地质数据输入 1 井头数据输入 2 井斜数据输入 3 分层数据输入 4 试油数据输入 5 生产数据加载 6 速度数据输入 (二)测井数据输入 1 ASCII格式测井数据输入 2 LAS格式测井数据输入 (三)地震数据输入 1 SEG-Y三维地震数据输入 2 层位数据输入 3 断层数据输入

三、微机地质应用 (31) (一)微机地质应用工作流程工作流程 1 地质分析工作流程 2 沉积相分析工作流程 (二)微机地质应用 1 井位图建立 2 等值线图(isomap)建立 3 各种剖面图(Xsection)建立 4 生产现状图制作 5 沉积相图制作 四、微机三维地震解释综合应用 (48) (一)微机三维地震解释工作流程 1 合成记录及层位工作流程 2 地震解释工作流程 3 速度分析工作流程 (二)微机三维地震解释综合应用 1 地震迭后处理-相干体 2 合成记录制作及层位标定 3 层位和断层建立、解释 4 三维可视化 5 速度分析与时深转换 6 构造成图 7 地震测网图建立 8 地震属性提取 五、微机单井测井解释及多井评价 (104) (一)微机单井测井解释及多井评价工作流程 1 测井曲线环境校正与标准化工作流程 2 测井分析流程 (二)微机单井测井解释及多井评价 1 打开测井曲线 2 测井曲线显示模板制作 3.测井曲线显示、编辑与预处理 4.交会图制作与分析 5 测井解释模型建立与解释 6 测井解释成果报告

雷励中国简介

雷利中国 雷励中国(Raleigh China),正式文件全称:上海杨浦区雷励青年公益发展中心,于上 海杨浦区民政局正式注册的公益组织。致力于青少年发展的教育型公益机构,也是雷励国 际在亚洲的第六个独立社区。通过开展环保建设、社区工作、野外探索等类型的项目,在 服务当地社区及环境的同时,青年人得以增长自己的技能,提高自信心、领导力及社会责 任感,加强多种文化之间的理解和交流,并加强对世界各地环境保护及社区发展的关注, 开启全球化视野。 雷励特质 雷励在成立之出即是以慈善机构的运作模式运转,赚取利润从来就不是我们的目的, 我们的目的是为青年人的发展提供探险的旅程。雷励旨在帮助人们更好地体验和感受这个 我们赖以生存的世界,并在实践雷励项目的过程中,更好地了解自己,发展自己。我们将 尽我们的所能,使每次旅程都成为参与者一生难以忘怀的经历。 冒险精神的灵魂在于我们的行动。雷励真正的灵魂和核心即是给予青年人探索世界的 机会,并且使他们在此过程中发掘自己的优势潜能,并最终成为真正意义上的,能够携手 共进,为社区服务和环保事业做出杰出贡献的团队一员。这个目标持续不变,传承至今。 雷励与人生 参与雷励,你将拥有一段伴随一生的经历。这不仅是因为你将得到凭一己之力无法到 达的地方的生活经历,同时也因为你会真正地为他人的人生改变而努力奋斗,在此过程中,你能够与来自不同地区、拥有不同文化背景的年轻人一起,去挑战你们之前从未相信自己 能够做到的事情。雷励相信,其中一些人将成为你一生的挚友。 雷励的意义不只是远征的过程,它还将让你体验参与团队的喜悦和感动,这里的成员 和你一样都拥有同样想法:在自己的生命中做一些不平凡的,又能真正改变世界的事情。 所以,参与雷励,你的人生从此会与众不同。 雷励灵魂与核心价值观——Raleigh Value Discovery 认识自己,探索世界 Courage 勇于承担,敢于挑战 Integrity 诚实正直,关怀社区 Drive 热情主动,行动实践

全球最好的电视台

全球著名电视台 掌门人:霍珂灵 标签:文化国家 电视台(TV station /television station )指的是制作电视节目并通过电视或网络播放的媒体机构。它由国家或商业机构创办的媒体运作组织,传播视频和音频同步的资讯信息,这些资讯信息可通过有线或无线方式为公众提供付费或免费的视频节目。其播出时间固定,节目内容一部分为其自己制作,也有相当部分为外购。比较有名的电视台:CNN,BBC,TVB,CCTV等。 美国有线电视新闻网(CNN ) CNN由特德·特纳于1980年创办,1995年被时代—华纳公司兼并。总部设在美国佐治亚州首府亚特兰大市,在美国本土以外设有28个分部,在世界各地的雇员达4000人。CNN使用英语和西班牙语广播,它的资金来源于用户付费和广告收入。CNN因独家报道1991年海湾战争而成为家喻户晓的有线新闻广播公司,目前已覆盖全球210个国家和地区。 ? 什么叫CNN? ?CNN是什么? ?CNN什么意思啊好像最近很流行还有什么流行词啊? ?美国的CNN公司是什么东西请消息说明一下 ?CNN 是美国的还是法国的 ?CNN歪曲报道原文 英国广播公司(BBC) 这一新闻频道由英国广播公司于1991年成立。它在海外拥有250名记者和58个分部,资金来源于用户付费和广告收入。该频道声称在全球拥有2.7亿个家庭用户。英国广播公司今年宣布,计划于2007年新开播一个阿拉伯语的新闻频道。 ? BBC是什么? ?BBC什么意思 ?BBC是什么啊 ?BBC是哪个国家的媒体哦? ?bbc的经典语录(games[TV]的BBC) ?求bbc所有纪录片目录 半岛电视台(AlJazeera) 半岛电视台由卡塔尔政府于1996年成立。它在全球雇有170名记者,拥有26个分部。世界各地都能收看到半岛电视台的阿拉伯语频道。半岛电视台因不断报道伊拉克和中东其他地区的一些事件而遭到美国的指责。美国总统布什甚至曾计划轰炸它的卡塔尔总部。2006年,该电视台还将推出英语频道。 ?半岛电视台的相关资料? ?卡塔尔半岛电视台与cctv ?为什么半岛电视台收视率全球第一?cctv1呢? ?基地组织为什么要把拉登的录音送到半岛电视台? ?半岛电视台在中东哪里?据说很有名的! ?半岛电视台是哪国的 欧洲新闻电视台(Euronews) 欧洲新闻电视台建立于1993年,它的特点之一就是使用英语、法语、德语、意大利语、葡萄牙语、西班牙语和俄语7种语言播报新闻。该电视台所以能这样做是因为它主要使用各个通讯社提供的图像,而没有亮相屏幕的新闻主播。该电视台由19个欧洲公共部门电视频道共同所有,总部设在法国城市里昂,雇

相关主题