搜档网
当前位置:搜档网 › 实验五液体粘滞系数的测定

实验五液体粘滞系数的测定

实验五液体粘滞系数的测定
实验五液体粘滞系数的测定

43

实验五 液体粘滞系数的测定

【实验目的】

学习用比较法测定液体的粘滞系数

【实验原理】

由实际液体在均匀细管中作层流的理论,可求得在时间t 内,当管长为L 、它的横截面的半径为r 、管两端的压强差为ΔP 时,流出液体的体积V 的公式:

t L

P

r t Q V η8Δπ4=

= (1) 上式中η 是液体的粘滞系数.由此公式可得液体的粘滞系数为

t VL

P

r 8Δπ4=

η (2)

用上述公式虽可直接测定η ,但因所测物理量多,测量又困难,误差较大。为此奥斯华尔德设计出奥氏粘度计,采用比较法进行测量。 本实验所用毛细管粘度计(奥氏粘度计)如图1所示。它是一个U 形玻璃管,玻璃管的一侧有一段毛细管C ,其上为一小玻璃泡B ,在小玻璃泡B 的上下有指示痕I 1,及I 2。

实验时以一定体积的液体从大管口D 注入A 泡内,再由小管口E 将液体吸入B 泡中,使液面升高到B 泡的指示痕I 1以上。因两边液面的高度不同,B 泡内液体将经毛细管C 流回A 泡。当液面由指示痕I 1下降到指示痕I 2时,测得其流动时间t ,即为I 1,与I 2刻痕间液体流经毛细管所需的时间。

如果以同样体积的水和被测液体先后注入粘度计,按上述步骤测

出两种液体面从I 1降至I 2所需时间分别为t 1与t 2 。则:

1

418Δπt VL P r =η

2

4

2

8Δπt VL P

r =

η

两式中r ,V ,L 相同,所以

1

12212ΔΔt P t P =ηη (3)

液体是受到重力的作用而流动.由于注入粘度计的两种液体的体积相等,因而在流动

过程中相对应的液面高度差Δh 是相等的,因此有

44

1

2

1212ΔΔΔΔρρρρ==h g h g P P (4) 将(4)式代入(3)式,得到

112

212t t ρρηη=

112

21

2t t ρρηη=

(5)

因此,从后面附表查得作为标准液体蒸馏水的η 1、ρ 1,从实验得到t 1、t 2 、ρ 2,即可求得被测液体粘滞系数η 2 。(5)式表明,待测液体的粘滞系数η2是与标准液体粘滞系数η1相比较而得出的,故称为比较法。这种方法常使实验变得简单易行并能提高测量精度。

【实验仪器】

1. 毛细管粘度计(奥氏粘度计)

2. 机械秒表

3. 蒸馏水、酒精、葡萄糖溶液

4. 量筒

5. 针筒和橡皮管

6. 滴管

7. 液体密度计

8.温度计

【实验内容】

1. 用蒸馏水将粘度计洗涤干净(实验前由实验室工 作人员先用洗涤液清洗粘度计)。E 端装上橡皮管,用支架上夹子夹住粘度计,注意使粘度计保持竖直(见图2)。

2. 用量筒量一定体积(10毫升)的蒸馏水,由大管口 D 缓慢注入A 泡。针筒插入E 处橡皮管,将水缓慢地吸入B 泡,并使液面高于指示痕I 1,但不要进入橡皮管。然后用手捏住橡皮管口,勿使液面下降,取下针筒,准备好秒表。

3. 放开橡皮管,使B 泡中液体经毛细管C 流回A 泡,记录液面从指示痕I 1下降至I 2所需的时间t 1。

4. 重复步骤2、3六次,取t 1的平均值。

5. 用与水同体积(10毫升)的酒精和葡萄糖溶液,重复步骤2、3、4,测得时间t 2及 t 3 。

6. 用比重计测定酒精及葡萄糖溶液的密度ρ2 及 ρ3 。

7. 记录当时温度,从附表l、2中查出相应温度下水的粘滞系数η1 及密度ρ1。

8. 根据(5)式计算酒精及葡萄糖溶液的粘滞系数η2 及 η3,并用不确定度表示结果。

数据记录及处理

【注意事项】

1.实验过程中,粘度计须保持竖直位置。

2.调换被测液体时,必须先用蒸馏水冲洗,再用少量被测液体冲洗,以免管中余留其他液体。

3.测量时,粘度计内的液体不能有气泡。实验过程中,注意避免影响粘度计内液体的温度。4.奥氏粘度计下端弯曲部分很容易折断,不要一手紧握两管口。

【思考题】

为什么实验时注入粘度计的液体需要同样大小的体积?它是泊肃叶公式中的V吗?

45

附表1水在不同温度下的粘滞系数( ×10-3Pa.s)

温度℃ 粘滞系数 温度℃粘滞系数 温度℃粘滞系数

0 1 2 3 4 5 6 7 8 9

10

11

12

13

14 1.7921

1.7313

1.6728

1.6191

1.5674

1.5188

1.4728

1.4284

1.3860

1.3462

1.3077

1.2713

1.2363

1.2028

1.1709

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

1.1404

1.1111

1.0828

1.0559

1.0209

1.0050

0.9810

0.9579

0.9358

0.9142

0.8937

0.8737

0.8545

0.8361

0.8180

30

31

32

33

34

35

36

37

38

39

40

0.8007

0.7840

0.7679

0.7523

0.7371

0.7225

0.7085

0.6947

0.6814

0.6685

0.6560

附表2 水在不同温度时的密度 ( ×103 kg/m3)

t℃密 度 t℃密 度t℃密 度t℃密 度

0 1 2 3 4 5 6 7 8 0.99987

0.99993

0.99997

0.99999

1.00000

0.99999

0.99997

0.99993

0.99988

9

10

11

12

13

14

15

16

17

0.99981

0.99973

0.99963

0.99952

0.99940

0.99927

0.99913

0.99897

0.99880

18

19

20

21

22

22

24

25

26

0.99862

0.99843

0.99823

0.99802

0.99780

0.99757

0.99732

0.99707

0.99681

27

28

29

30

31

32

33

34

35

0.99654

0.99626

0.99597

0.99567

0.99537

0.99505

0.99472

0.99440

0.99406

46

液体黏度的测定-实验报告

物理实验报告 液体黏度的测定 各种实际液体都具有不同程度的黏滞性。当液体流动时,平行于流动方向的各层流体之间,其速度都不相同,即各层间存在着滑动,于是在层与层之间就有摩擦力产生。这一摩擦力称为“黏滞力”。它的方向在接触面内,与流动方向相反,其大小与接触面面积的大小及速度梯度成正比,比例系数称为“黏度”(又称黏滞系数,viscosity )。它表征液体黏滞性的强弱,液体黏度与温度有很大关系,测量时必须给出其对应的温度。在生产上和科学技术上,凡是涉及流体的场合,譬如飞行器的飞行、液体的管道输送、机械的润滑以及金属的熔铸、焊接等,无不需要考虑黏度问题。 测量液体黏度的方法很多,通常有:①管流法。让待测液体以一定的流量流过已知管径的管道,再测出在一定长度的管道上的压降,算出黏度。②落球法。用已知直径的小球从液体中落下,通过下落速度的测量,算出黏度。③旋转法。将待测液体放入两个不同直径的同心圆筒中间,一圆筒固定,另一圆筒以已知角速度转动,通过所需力矩的测量,算出黏度。④奥氏黏度计法。已知容积的液体,由已知管径的短管中自由流出,通过测量全部液体流出的时间,算出黏度。本实验基于教学的考虑,所采用的是奥氏黏度计法。 实验一 落球法测量液体黏度 一、【实验目的】 1、了解有关液体黏滞性的知识,学习用落球法测定液体的黏度; 2、掌握读数显微镜的使用方法。 二、【实验原理】 将液体放在两玻璃板之间,下板固定,而对上板施以一水平方向的恒力,使之以速度v 匀速移动。黏着在上板的一层液体以速度v 移动;黏着于下板的一层液体则静止不动。液体自上而下,由于层与层之间存在摩擦力的作用,速度快的带动速度慢的,因此各层分别以由大到小的不同速度流动。它们的速度与它们与下板的距离成正比,越接近上板速度越大。这种液体流层间的摩擦力称为“黏滞力”(viscosity force )。设两板间的距离为x ,板的面积为S 。因为没有加速度,板间液体的黏滞力等于外作用力,设为f 。由实验可知,黏滞力f 与面积S 及速度v 成正比,而与距离x 成反比,即 x v S f η= (2-5-1) 式中,比例系数η即为“黏度”。η的单位是“帕斯卡·秒”(Pa ·s )或k g ·m -1·s -1。

落球法测量液体粘滞系数

液体粘滞系数的测量(落球法) 在工业生产和科学研究中(如流体的传输、液压传动、机器润滑、船舶制造、化学原料及医学等方面)常常需要知道液体的粘滞系数。测定液体粘滞系数的方法有多种,落球法(也称斯托克斯Stokes 法)是最基本的一种。它是利用液体对固体的摩擦阻力来确定粘滞系数的,可用来测量粘滞系数较大的液体。 【实验目的】 1. 观察液体的内摩擦现象,根据斯托克斯公式用落球法测量液体的粘滞系数; 2. 掌握激光光电计时仪的使用方法; 3. 了解雷诺数与斯托克斯公式的修正数; 4.掌握用落球法测粘滞系数的原理和方法; 5.测定当时温度下变压器油的粘滞系数。 【实验前准备】 1.自学斯托克斯公式及雷诺数; 2.粗略阅读讲义,了解大致的实验过程; 3.认真阅读讲义,明确实验原理,写出自己设计的实验方案; 4.再次阅读讲义,提出自己的疑问或可能的其他实验方案,如下落时间还有其他方法测量吗等; 5.进一步熟悉并掌握某些测量器具的用法(如游标卡尺、螺旋测微计、秒表等)。 6.设计实验数据记录表格; 7.复习不确定度计算方法并推导出本实验要用的不确定计算公式。 【自学资料】 1. 如何定义粘滞力(内摩擦力)?粘滞系数取决于什么? 当液体稳定流动时,流速不同的各流层之间所产生的层面切线方向的作用力即为粘滞力(或称内摩擦力)。其大小与流层的面积成正比,与速度的梯度成正比,即: dx dv S F ? ?=η (1) 式中比例系数η即为该液体的粘滞系数。 粘滞系数决定于液体的性质和温度。 2. 实验依据的主要定律是什么?它需要什么条件? 主要依据斯托克斯定律,即半径为r 的圆球,以速度v 在粘滞系数为η的液体中运动时,圆球所受液体的粘滞阻力大小为: rv F πη6= (2) 它要求液体是无限广延的且无旋涡产生。 3. 实验的简要原理是什么? 圆球在液体中下落时,受到重力、浮力和粘滞阻力的作用,由斯托克斯定律知粘滞阻力与圆球的下落速度成正比,当粘滞阻力与液体的浮力之和等于重力时,圆球所受合外力为零,圆球此后将以收尾速度匀速下落。由此得到:

落球法测量液体粘滞系数

落球法测量液体粘滞系数 Revised by BLUE on the afternoon of December 12,2020.

落球法测量液体粘滞系数 各种实际液体具有不同程度的粘滞性,当液体流动时,平行于流动方向的各层流体速度都不相同,即存在着相对滑动,于是在各层之间就有摩擦力产生,这一摩擦力称为粘滞力,它的方向平行于接触面,其大小与速度梯度及接触面积成正比,比例系数η称为粘度,它是表征液体粘滞性强弱的重要参数。 液体的粘滞性的测量是非常重要的,例如,现代医学发现,许多心血管疾病都与血液粘度的变化有关,血液粘度的增大会使流入人体器官和组织的血流量减少,血液流速减缓,使人体处于供血和供氧不足的状态,这可能引起多种心脑血管疾病和其他许多身体不适症状。因此,测量血粘度的大小是检查人体血液健康的重要标志之一。又如,石油在封闭管道中长距离输送时,其输运特性与粘滞性密切相关,因而在设计管道前,必须测量被输石油的粘度。 测量液体粘度有多种方法,本实验所采用的落球法是一种绝对法测量液体的粘度。如果一小球在粘滞液体中铅直下落,由于附着于球面的液层与周围其他液层之间存在着相对运动,因此小球受到粘滞阻力,它的大小与小球下落的速度有关。当小球作匀速运动时,测出小球下落的速度,就可以计算出液体的粘度。 【实验目的】 1.学习用激光光电传感器测量时间和物体运动速度的实验方法 2.用斯托克斯公式采用落球法测量油的粘滞系数(粘度) 3.观测落球法测量液体粘滞系数的实验条件是否满足,必要时进行修正。【实验原理】 1.当金属小球在粘性液体中下落时,它受到三个铅直方向的力:小球的重力 ρ(V是小球体积,ρ是液体mg(m为小球质量)、液体作用于小球的浮力gV 密度)和粘滞阻力F(其方向与小球运动方向相反)。如果液体无限深广,在小球下落速度v较小情况下,有 = 6 rv Fπη (1)

落球法测量液体粘滞系数

落球法测量液体的粘滞系数实验报告 一、问题背景 液体流动时,平行于流动方向的各层流体速度都不相同,即存在着相对滑动,于就是在各层之间就有摩擦力产生,这一摩擦力称为粘滞力(或粘滞系数),它的方向平行于接触面,其大小与速度梯度及接触面积成正比,比例系数η称为粘度,它就是表征液体粘滞性强弱的重要参数。液体的粘滞系数与人们的生产,生活等方面有着密切的关系,比如医学上常把血粘度的大小做为人体血液健康的重要标志之一。又如,石油在封闭管道中长距离输送时,其输运特性与粘滞性密切相关,因而在设计管道前,必须测量被输石油的粘度。 测量液体粘度可用落球法,毛细管法,转筒法等方法,其中落球法适用于测量粘度较高的透明或半透明的液体,比如:蓖麻油、变压器油、甘油等。 二、实验目的 1.学习与掌握一些基本物理量的测量。 2.学习激光光电门的校准方法。 3.用落球法测量蓖麻油的粘滞系数。 三、实验仪器 DH4606落球法液体粘滞系数测定仪、卷尺、螺旋测微器、电子天平、游标卡尺、钢球若干。 四、实验原理 处在液体中的小球受到铅直方向的三个力的作用:小球的重力mg(m为小球质量)、液体作用于小球的浮力gV ρ(V就是小球体积,ρ就是液体密度)与粘滞阻力F(其方向与小球运动方向相反)。如果液体无限深广,在小球下落速度v较小情况下,有 (1) 上式称为斯托克斯公式,其中r就是小球的半径;η称为液体的粘度,其单位就是s Pa?。

小球在起初下落时,由于速度较小,受到的 阻力也就比较小,随着下落速度的增大,阻力也 随之增大。最后,三个力达到平衡,即 (2) 此时,小球将以0v 作匀速直线运动,由(2)式可得: (3) 令 小 球 的直径 为 d ,并用 '36ρπ d m = ,t l v =0,2 d r =代入(3)式得 (4) 其中' ρ为小球材料的密度,l 为小球匀速下落的距离,t 为小球下落l 距离所用的时间。 实验过程中,待测液体放置在容器中,故无法满足无限深广的条件,实验证明上式应进行如 下修正方能符合实际情况: (5) 其中D 为容器内径,H 为液柱高度。 当小球的密度较大,直径不就是太小,而液体的粘度值又较小时,小球在液体中的平衡速度 0v 会达到较大的值,奥西思-果尔斯公式反映出 了液体运动状态对斯托克斯公式的影响: ...)Re 1080 19Re 1631(620+-+ =r v F πη (6) 其中,Re 称为雷诺数,就是表征液体运动状态的 无量纲参数。 η ρ0 dv R e = (7) 当Re<0、1时,可认为(1)、(5)式成立;当0、1

实验五液体粘滞系数的测定

43 实验五 液体粘滞系数的测定 【实验目的】 学习用比较法测定液体的粘滞系数 【实验原理】 由实际液体在均匀细管中作层流的理论,可求得在时间t 内,当管长为L 、它的横截面的半径为r 、管两端的压强差为ΔP 时,流出液体的体积V 的公式: t L P r t Q V η8Δπ4= = (1) 上式中η 是液体的粘滞系数.由此公式可得液体的粘滞系数为 t VL P r 8Δπ4= η (2) 用上述公式虽可直接测定η ,但因所测物理量多,测量又困难,误差较大。为此奥斯华尔德设计出奥氏粘度计,采用比较法进行测量。 本实验所用毛细管粘度计(奥氏粘度计)如图1所示。它是一个U 形玻璃管,玻璃管的一侧有一段毛细管C ,其上为一小玻璃泡B ,在小玻璃泡B 的上下有指示痕I 1,及I 2。 实验时以一定体积的液体从大管口D 注入A 泡内,再由小管口E 将液体吸入B 泡中,使液面升高到B 泡的指示痕I 1以上。因两边液面的高度不同,B 泡内液体将经毛细管C 流回A 泡。当液面由指示痕I 1下降到指示痕I 2时,测得其流动时间t ,即为I 1,与I 2刻痕间液体流经毛细管所需的时间。 如果以同样体积的水和被测液体先后注入粘度计,按上述步骤测 出两种液体面从I 1降至I 2所需时间分别为t 1与t 2 。则: 1 418Δπt VL P r =η 2 4 2 8Δπt VL P r = η 两式中r ,V ,L 相同,所以 1 12212ΔΔt P t P =ηη (3) 液体是受到重力的作用而流动.由于注入粘度计的两种液体的体积相等,因而在流动 过程中相对应的液面高度差Δh 是相等的,因此有

南昌大学液体粘滞系数的测定实验报告

22110ρρηηt t x =实验三 液体粘滞系数的测定 【实验目的】 1、加深对泊肃叶公式的理解; 2、掌握用间接比较法测定液体粘滞系数的初步技能。 【实验仪器】 1.奥氏粘度计 2、铁架及试管夹 3、 秒表 4、温度计 5、量筒 6、小烧杯1个 7、洗耳球 【实验材料】 蒸馏水50ml 酒精25ml 【实验原理】 由泊肃叶公式可知,当液体在一段水平圆形管道中作稳定流动时,t 秒内流出圆管的液体体积为 t L P R V ηπ84?=(1) 式中R 为管道的的截面半径,L 为管道的长度,η为流动液体的粘滞系数,P ?为管道两端液体的压强差。如果先测出V 、R 、P ?、L 各量,则可求得液体的粘滞系数 t VL P R 84?=πη(2) 为了避免测量量过多而产生的误差,奥斯瓦尔德设计出一种粘度计(见图1),采用比较法进行测量。取一种已知粘滞系数的液体与一种待测粘滞系数的液体,设它们的粘滞系数分别为0η与x η,令同体积V 的两种液体在同样条件下,由于重力的作用通过奥氏粘度计的毛细管DB,分别测出她们所需的时间1t 与2t ,两种液体的密度分别为1ρ、2ρ。则 h g VL t R ?=11 408ρπη(3) h g VL t R x ?= 22 48ρπη(4) 式中h ?为粘度计两管液面的高度差,它随时间连续变化,由于两种液体流过毛细管有同 样的过程,所以由(3)式与(4)式可得: 0 1 122ηρρ η?=t t x (5) 如测出等量液体流经DB 的时间1t 与2t ,根据已知数1ρ、2ρ、0η,即可求出待测液体的粘滞系数。 【实验内容与步骤】 (1) 用玻璃烧杯盛清水置于桌上待用,并使其温度与室温相同,洗涤粘度计,竖直地夹在

实验报告粘滞系数测定

实验题目: 落球法测定液体的粘度 目的:根据斯托克斯公式用落球法测定油的粘滞系数 橙色字体的数据是在实验室测量出的原始数据,其他数据是计算所得。 摩擦阻力作用,这就是粘滞阻力的作用。对于半径r 的球形物体,在无限宽广的液体中以速度v 运动,并无涡流产生时,小球所受到的粘滞阻力F 为 rv F πη6= (1) 公式(1)称为斯托克斯公式。其中η为液体的粘滞系数,它与液体性质和温度有关。 如果让质量为m 半径为r 的小球在无限宽广的液体中竖直下落,它将受到三个力的作用,即重力mg 、液体浮力f 为g r ρπ33 4、粘滞阻力rv πη6,这三个力作用在同一直线上,方向如图1所示。起初速度小,重力大于 其余两个力的合力,小球向下作加速运动;随着速度的增加,粘滞阻力也相应的增大,合力相应的减小。当小球所受合力为零时,即 063 403=--rv g r mg πηρπ (2) 小球以速度v 0向下作匀速直线运动,故v 0称收尾速度。由公式(2)可得 36)34 (rv g r m πρπη -= (3) 当小球达到收尾速度后,通过路程L 所用时间为t ,则v 0=L /t ,将此公式代入公式(3)又得 t rL g r m ?-=πρπη6)34 (3 (4) 上式成立的条件是小球在无限宽广的均匀液体中下落,但实验中小球是在内半径为R 的玻璃圆筒中的液体里下落,筒的直径和液体深度都是有限的,故实验时作用在小球上的粘滞阻力将与斯托克斯公式给出的不同。当圆筒直径比小球直径大很多、液体高度远远大于小球直径时,其差异是微小的。为此在斯托克斯公式后面加一项修正值,就可描述实际上小球所受的粘滞阻力。加一项修正值公式(4)将变成 t R r rL g r m ?? ?? ? ? +-= 4.216)34 (3πρπη (5) 式中R 为玻璃圆筒的内半径,实验测出m 、r 、ρ、t 、L 和R ,用公式(5)可求出液 体的粘滞系数η。 数据处理方法一 图1 图2

液体黏度的测定实验报告记录

液体黏度的测定实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

物理实验报告 液体黏度的测定 各种实际液体都具有不同程度的黏滞性。当液体流动时,平行于流动方向的各层流体之间,其速度都不相同,即各层间存在着滑动,于是在层与层之间就有摩擦力产生。这一摩擦力称为“黏滞力”。它的方向在接触面内,与流动方向相反,其大小与接触面面积的大小及速度梯度成正比,比例系数称为“黏度”(又称黏滞系数,viscosity )。它表征液体黏滞性的强弱,液体黏度与温度有很大关系,测量时必须给出其对应的温度。在生产上和科学技术上,凡是涉及流体的场合,譬如飞行器的飞行、液体的管道输送、机械的润滑以及金属的熔铸、焊接等,无不需要考虑黏度问题。 测量液体黏度的方法很多,通常有:①管流法。让待测液体以一定的流量流过已知管径的管道,再测出在一定长度的管道上的压降,算出黏度。②落球法。用已知直径的小球从液体中落下,通过下落速度的测量,算出黏度。③旋转法。将待测液体放入两个不同直径的同心圆筒中间,一圆筒固定,另一圆筒以已知角速度转动,通过所需力矩的测量,算出黏度。④奥氏黏度计法。已知容积的液体,由已知管径的短管中自由流出,通过测量全部液体流出的时间,算出黏度。本实验基于教学的考虑,所采用的是奥氏黏度计法。 实验一 落球法测量液体黏度 一、【实验目的】 1、了解有关液体黏滞性的知识,学习用落球法测定液体的黏度; 2、掌握读数显微镜的使用方法。 二、【实验原理】 将液体放在两玻璃板之间,下板固定,而对上板施以一水平方向的恒力,使之以速度v 匀速移动。黏着在上板的一层液体以速度v 移动;黏着于下板的一层液体则静止不动。液体自上而下,由于层与层之间存在摩擦力的作用,速度快的带动速度慢的,因此各层分别以由大到小的不同速度流动。它们的速度与它们与下板的距离成正比,越接近上板速度越大。这种液体流层间的摩擦力称为“黏滞力”(viscosity force )。设两板间的距离为x ,板的面积为S 。因为没有加速度,板间液体的黏滞力等于外作用力,设为f 。由实验可知,黏滞力f 与面积S 及速度v 成正比,而与距离x 成反比,即 x v S f η= (2-5-1) 式中,比例系数η即为“黏度”。η的单位是“帕斯卡·秒”(Pa ·s )或k g ·m -1·s -1。

用落球法测量液体的粘滞系数

实验报告 实验题目: 落球法测定液体的黏 度 实验目的: 本实验的目的是通过用落球法测量油的粘度,学习并掌握测量的原理和方 法。 实验原理: 1、 斯托克斯公式 粘滞阻力是液体密度、温度和运动状态的函数。如果小球在液体中下落时的速度 v 很小,球的半径 r 也很小,且液体可以看成在各方向上都是无限广阔的 F 6 vr ( 1) η 是液体的粘度, SI 制中,η 的单位是 Pa s 2、 雷诺数的影响 雷诺数 R e 来表征液体运动状态的稳定性。设液体在圆形截面的管中的流速为 v ,液 体的密度为 ρ0,粘度为 η,圆管的直径为 2r ,则 奥西思 - 果尔斯公式反映出了液体运动状态对斯托克斯公式的影响: F 6 rv (1 3 R e 19 R e 2 ...) 16 e 1080 e 2 式中 3R e 项和 19R e 项可以看作斯托克斯公式的第一和第二修正项 16 1080 随着 R e 的增大,高次修正项的影响变大。 因 F 是很难测定的 ,利用小球匀速下落时重力、 浮力 、粘滞阻力合力等于零 ,由式(4)R e 2v r 2) 3) 3、 容器壁的影响 考虑到容器壁的影响,修正公式为 r3 3.3 )(1 R e h 16 F 6 rv (1 2.4 1080 R e ...) 4) 4、 η 的表示

...) ( 5) 实验内容 : 1、利用三个橡皮筋在靠近量筒下部的地方, 分出两个长度相等的区域, 利用秒表 测 量小球通过两段区域的时间, 调整橡皮筋的位置, 并保持两段区域等长, 寻找两 次测量时间相等的区域,测出两段区域总长度 l 。 2、选用大、中、小三种不同直径的小球进行实验。 3、用螺旋测微器测定 6 个同类小球的直径,取平均值并计算小球直径的误差。 4、将一个小球在量筒中央尽量接近液面处轻轻投下,使其进入液面时初速度为零, 5、分别测出 6 个小球通过匀速下降区 l 的时间 t ,然后求出小球匀速下降的速度。 6、用相应的仪器测出 R 、h 和 ρ0,各测量三次及液体的温度 T ,温度 T 应取实验开 始时的温度和实验结束时的温度的平均值。应用式( 7)计算 η 0。 7、计算雷诺数 R e ,并根据雷诺数的大小,进行一级或二级修正。 4 r 3( 0)g 6 rv(1 2.4 r )(1 3.3r )(1 3 R e 19 R e 2 3 0 R h 16 e 1080 e 0 )gd 2 η 1 ( η 18 d d 3 19 2 18v(1 2.4 )(1 3.3 )(1 R e R e 2 ...) 2R 2h 16 1080 6) a. 当 R e <时,可以取零级解,则式( 6)就成为 0 )gd 2 1( 18 v(1 2.42d R )(1 3.32d h ) 7) 即为小球直径和速度都很小时,粘度 η 的零级近似值 时,可以取一级近似解,式( 6)就成为 它可以表示成为零级近似解的函数: 0 3 dv 0 0 16 0 还必须考虑二级修正,则式( 6)变成 c.当 R e >时, 2 21 1[1 1 270 19 (dv 0 )2] 1 8) 9)

液体粘滞系数测定实验

液体粘滞系数的测量与研究 一 实验目的 1.了解用斯托克斯公式测定液体粘滞系数的原理,掌握其适用条件。 2.学习用落球法测定液体的粘滞系数。 3.熟练运用基本仪器测量时间、长度与温度。 4.掌握用外推法处理实验数据。 二 实验仪器 液体粘滞系数仪、螺旋测微器、游标卡尺、钢板尺、钢球、磁铁、秒表、温度计。 三 实验原理 当物体球在液体中运动时,物体将会受到液体施加的与其运动方向相反的摩擦阻力的作用,这种阻力称为粘滞阻力,简称粘滞力。粘滞阻力并不就是物体与液体间的摩擦力,而就是由附着在物体表面并随物体一起运动的液体层与附近液层间的摩擦而产生的。粘滞力的大小与液体的性质、物体的形状与运动速度等因素有关。 根据斯托克斯定律,光滑的小球在无限广延的液体中运动时,当液体的粘滞性较大,小球的半径很小,且在运动中不产生旋涡,那么小球所受到的粘滞阻力f 为 vd f πη3= (1) 式中d 就是小球的直径,v 就是小球的速度,η为液体粘滞系数。η就就是液体粘滞性的度量,与温度有密切的关系,对液体来说,η随温度的升高而减少(见附表)。 本实验应用落球法来测量液体的粘滞系数。小球在液体中做自由下落时,受到三个力的作用,三个力都在竖直方向,它们就是重力r gV 、浮力r 0gV 、粘滞阻力f 。开始下落时小球运动的速度较小,相应的阻力也小,重力大于粘滞阻力与浮力,所以小球作加速运动。由于粘滞阻力随小球的运动速度增加而逐渐增加,加速度也越来越小,当小球所受合外力为零时,趋于匀速运动,此时的速度称为收尾速度,记为v 0 。经计算可得液体的粘滞系数为 2 018)(v gd ρρη-= (2) 式中0ρ就是液体的密度,ρ就是小球的密度,g 就是当地的重力加速度。 可见,只要测得v 0,即可由(2)式得到液体的粘滞系数。但就是注意,上述推导包括(1)、(2)式都在特定条件下方才适用(见原理的第一段黑体字部分),通过对实验仪器与实验方法的设计,

(完整版)粘滞系数测定实验

实验 液体粘滞系数的测定 当液体内各部分之间有相对运动时,接触面之间存在内摩擦力,阻碍液体的相对运动,这种性质称为液体的粘滞性,液体的内摩擦力称为粘滞力。粘滞力的大小与接触面面积以及接触面处的速度梯度成正比,比例系数η称为粘度(或粘滞系数)。 对液体粘滞性的研究在流体力学,化学化工,医疗,水利等领域都有广泛的应用,例如在用管道输送液体时要根据输送液体的流量、压力差、输送距离及液体粘度,设计输送管道的口径。测量液体粘度可采用落球法,毛细管法(奥氏粘滞计),转筒法等方法。本实验根据所用方法的不同,分成两个部分,第一部分采用落球法测定变温情况下的液体(蓖麻油)粘滞系数,第二部分则是采用毛细管法测定室温下的液体粘滞系数(该方法比较适合用于生物医学应用,比如测量血液的粘度)。 实验一 落球法测变温液体的粘滞系数 落球法(又称斯托克斯法)适用于测量粘度较高的液体。一般而言,粘度的大小取决于液体的性质与温度,温度升高,粘度将迅速减小。例如对于蓖麻油,在室温附近温度改变C 1?,粘度值改变约10%。因此,测定液体在不同温度的粘度有很大的实际意义,欲准确测量液体的粘度,必须精确控制液体温度。实验中,小球在液体中下落的时间可用秒表来测量。 一、实验目的 1.用落球法测量不同温度下蓖麻油的粘度。 2.了解PID 温度控制的原理。 3.练习用秒表计时,用螺旋测微计测量小球直径。 二、实验原理 在稳定流动的液体中,由于各层的液体流速不同,互相接触的两层液体之间存在相互作用,流动较慢的液层阻滞着流动较快的液层运动,所以产生流动阻力。实验证明:若以液层垂直的方向作为x 轴方向,则相邻两个流层之间的内磨擦力f 与所取流层的面积S 及流层间速度的空间变化率x v d d 的乘积成正比: S d d f x v ?? η= (1) 其中η称为液体的粘滞系数,它决定液体的性质和温度。粘滞性随着温度升高而减小。如果液体是无限广延的,液体的粘滞性较大,小球的半径很小,且在运动时不产生旋涡,

实验四液体粘滞系数的测定南京农业大学物理

实验四液体粘滞系数的测定 一、实验目的: 1.用落球法测量不同温度下蓖麻油的粘滞系数; 2.了解PID温度控制的原理; 3.练习用秒表测量时间,用螺旋测微器测量直径。 二、实验器材: 变温粘度测量仪,ZKY-PID温控实验仪,秒表,螺旋测微器,游标卡尺、钢球若干。 三、实验原理: 当固体在液体内部运动或液体内各部分之间有相对运动时,接触面之间存在内摩擦力,阻碍固体与液体或液体之间的相对运动,这种性质称为液体的粘滞性,液体的内摩擦力称为粘滞力。粘滞力的大小与接触面面积以及接触面处的速度梯度成正比,比例系数η称为粘滞系数(或粘度)。 对液体粘滞性的研究在流体力学、化学化工、医疗、水利等领域都有广泛的应用,例如在用管道输送液体时要根据输送液体的流量、压力差、输送距离及液体粘滞系数,设计输送管道的口径。 测量液体粘滞系数可用落球法、毛细管法、转筒法等方法,其中落球法适用于测量粘滞系数较高的液体,本实验采用落球法测量液体的粘滞系数。 粘滞系数的大小取决于液体的性质与温度,温度升高,粘滞系数将迅速减小。例如对于蓖麻油,在室温附近温度每改变1?C,粘滞系数值改变约10%。因此,测定液体在不同温度的粘滞系数有很大的实际意义,欲准确测量液体的粘滞系数,必须精确控制液体温度。 1.落球法测定液体的粘滞系数 一个在静止液体中下落的小球受到重力、浮力和粘滞阻力3个力的作用,如果小球的速度v很小,且液体可以看成在各方向上都是无限广阔的,则从流体力学的基本方程可以导出表示粘滞阻力的斯托克斯公式: (1) (1)式中d为小球直径。由于粘滞阻力与小球速度v成正比,小球在下落很短一段距离后(参见附录的推导),所受3力达到平衡,小球将以v0匀速下落,此时有: (2) (2)式中ρ为小球密度,ρ0为液体密度。由(2)式可解出粘滞系数η的表达式:

液体粘滞系数的测定创新实验报告

液体粘滞系数的测定(多管落球法) 创新实验报告 学院:XXXXXXXXXXXXXXXXXXXXXXX 专业:XXXXXXXXXXXXXXXXXXXXXXX 小组成员:XXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXX

一.实验名称 液体粘滞系数测定(多管落球法)创新实验 二.实验目的: 液体的粘滞力是交通、运载工具外形设计必须考虑的因素之一,粘滞系数的测定具有实际的应用价值,而实验教材中的实验方案存在较大的实验误差,我们选择进行液体粘滞系数测定(多管落球法)的创新实验,通过这次创新实验我们能够对本实验有进一步的认识与了解。 三.实验教材中的实验方案产生较大误差的步骤:(一)实验中我们用肉眼去判断小球匀速下落的位置,观察小钢球通过刻度线AB,容易产生较大的误差。 (二)人对于事物的反应有偏差。在小钢球通过刻度线AB,人用手按动电子秒表的过程中,人的手接收到大脑发出的信号并且做出按动反应会有一段时间差,再加上肉眼观测的误差,这就导致我们所测定的小球下落时间存在较大的实验误差。 (三)实验中用镊子夹住小球,可能由于手的轻微抖动使得小球不能够准确从液体中心下落,这也容易产生误差。 四.实验改进方向:

用光敏电阻、发光源组成的简易光电门和计时器测定小球下落的时间,从而提高实验的精确度,减小误差。 四.用于减小误差的创新实验方案: (一)创新实验仪器 在原实验仪器(液体粘滞系数仪、钢卷尺、镊子、钢球、温度计、比重计)的基础上,我们的创新实验增加了光敏电阻、发光源、计时器以及千分尺。 (二)创新实验改进原理 光敏电阻、发光源组成的简易光电门测小钢球下落时间的原理:在液体粘滞系数仪的AB处各安装一个光敏电阻与发光源,组成一个简易的光电门,并且使之与计时器相连接,当小钢球通过A线的一瞬间,发光源的光线无法投射到光敏电阻上面,计时器开始计时,当小钢球通过B线再次阻挡发光源的光线时计时器停止计时,此时读取计时器示数。 (三)创新实验步骤 1.调节液体粘滞系数测定仪的底板,使其水平,以保证仪器管中心轴线处于铅直状态。 2.用千分尺测量小球的直径,在不同的方向测量5次取平均值。 3.在液体粘滞系数测定仪上安装发光源、光敏电阻及计

液体粘滞系数测定实验

液体粘滞系数的测量与研究 一 实验目的 1.了解用斯托克斯公式测定液体粘滞系数的原理,掌握其适用条件。 2.学习用落球法测定液体的粘滞系数。 3.熟练运用基本仪器测量时间、长度和温度。 4.掌握用外推法处理实验数据。 二 实验仪器 液体粘滞系数仪、螺旋测微器、游标卡尺、钢板尺、钢球、磁铁、秒表、温度计。 三 实验原理 当物体球在液体中运动时,物体将会受到液体施加的与其运动方向相反的摩擦阻力的作用,这种阻力称为粘滞阻力,简称粘滞力。粘滞阻力并不是物体与液体间的摩擦力,而是由附着在物体表面并随物体一起运动的液体层与附近液层间的摩擦而产生的。粘滞力的大小与液体的性质、物体的形状和运动速度等因素有关。 根据斯托克斯定律,光滑的小球在无限广延的液体中运动时,当液体的粘滞性较大,小球的半径很小,且在运动中不产生旋涡,那么小球所受到的粘滞阻力f 为 vd f πη3= (1) 式中d 是小球的直径,v 是小球的速度,η为液体粘滞系数。η就是液体粘滞性的度量,与温度有密切的关系,对液体来说,η随温度的升高而减少(见附表)。 本实验应用落球法来测量液体的粘滞系数。小球在液体中做自由下落时,受到三个力的作用,三个力都在竖直方向,它们是重力r gV 、浮力r 0gV 、粘滞阻力f 。开始下落时小球运动的速度较小,相应的阻力也小,重力大于粘滞阻力和浮力,所以小球作加速运动。由于粘滞阻力随小球的运动速度增加而逐渐增加,加速度也越来越小,当小球所受合外力为零时,趋于匀速运动,此时的速度称为收尾速度,记为v 0 。经计算可得液体的粘滞系数为 2 018)(v gd ρρη-= (2) 式中0ρ是液体的密度,ρ是小球的密度,g 是当地的重力加速度。 可见,只要测得v 0,即可由(2)式得到液体的粘滞系数。但是注意,上述推导包括(1)、 (2)式都在特定条件下方才适用(见原理的第一段黑体字部分),通过对实验仪器和实验方

粘滞系数

实验报告 实验题目:落球法测定液体的粘度 实验目的:是通过用落球法和转筒法测量油的粘度,学习并掌握测量的原理和方法。 实验器材:量筒、密度计、温度计、金属球、螺旋测微器、游标卡尺、直尺 实验原理: 当一种液体相对于其他固体、气体运动,或同种液体内各部分之间有相对运动时,接触面之间存在摩擦力。这种性质称为液体的粘滞性。粘滞力的方向平行于接触面,且使速度较快的物体减速,其大小与接触面面积以及接触面处的速度梯度成正比,比例系数η称为粘度。η表征液体粘滞性的强弱,测定η可以用落球法,通过测量小球在液体中下落的运动状态来求。 1.斯托克斯公式的简单介绍 一个在静止液体中缓慢下落的小球受到三个力的作用:重力、浮力和粘滞阻力。粘滞阻力是液体密度、温度和运动状态的函数。如果小球在液体中下落时的速度很小,球的半径也很小,且液体可以看成在各方向上都是无限广阔的,则从流体力学的基本方程出发可导出著名的斯托克斯公式: 6 =(1) Fπη vr 式中F是小球所受到的粘滞阻力,v是小球的下落速度,r是小球的半径,η是液体的粘度,SI制中,η的单位是s Pa?。斯托克斯公式是由粘滞液体的普遍运动方程导出的。 2.雷诺数的影响 液体各层间相对运动速度较小时,呈现稳定的运动状态,如果给不同层内

的液体添加不同色素,就可以看到一层层颜色不同的液体各不相扰地流动,这种运动状态叫层流。如果各层间相对运动较快,就会破坏这种层流,逐渐过渡到湍流,甚至出现漩涡。我们定义一个无量纲的参数——雷诺数R e 来表征液体运动状态的稳定性。设液体在圆形截面的管中的流速为v ,液体的密度为ρ0,粘度为η,圆管的直径为2r ,则 02e v r R ρη = (2) 当R e <2000时,液体处于层流状态,当R e >3000时,呈现湍流状态,R e 介于上述两值之间,则为层流、湍流过渡阶段。 奥西思-果尔斯公式反映出了液体运动状态对斯托克斯公式的影响: ...)1080 191631(62 +-+ =e e R R rv F πη (3) 式中16 3e R 项和1080 192 e R 项可以看作斯托克斯公式的第一和第二修正项。如 R e =0.1, 则零级解(即式(1))与一级解(即式(3)中取一级修正)相差约2%,二级修正项约4102-?,可略去不计,如R e =0.5,则零级解与一级解相差约10%,二级修正项约0.5%仍可略去不计;但当R e =1时,则二级修正项约2%,随着R e 的增大,高次修正项的影响变大。 3. 容器壁的影响 在一般情况下,小球在容器半径为R 、液体的高度为h 的液体内下落,液体在各方向上都是无限广阔的这一假设条件是不能成立的。因此,考虑到容器壁的影响,式(3)变为 ...)1080 191631)(3.31)(4.21(62 +-+++=e e R R h r R r rv F πη (4) 式(4)含R 和h 的因子即反映了这一修正。 4. η的表示

用落球法测量液体的粘滞系数

实验报告 实验题目:落球法测定液体的黏度 实验目的:本实验的目的是通过用落球法测量油的粘度,学习并掌握测量的原理和方 法。 实验原理: 1、 斯托克斯公式 粘滞阻力是液体密度、温度和运动状态的函数。如果小球在液体中下落时的速度v 很小,球的半径r 也很小,且液体可以看成在各方向上都是无限广阔的 vr F πη6= (1) η是液体的粘度,SI 制中,η的单位是s Pa ? 2、 雷诺数的影响 雷诺数R e 来表征液体运动状态的稳定性。设液体在圆形截面的管中的流速为v ,液体的密度为ρ0,粘度为η,圆管的直径为2r ,则 2e v r R ρη = (2) 奥西思-果尔斯公式反映出了液体运动状态对斯托克斯公式的影响: ...)1080 191631(62 +-+ =e e R R rv F πη (3) 式中16 3e R 项和1080192e R 项可以看作斯托克斯公式的第一和第二修正项。 随着R e 的增大,高次修正项的影响变大。 3、 容器壁的影响 考虑到容器壁的影响,修正公式为 ...)1080191631)(3.31)(4.21(62 +- +++=e e R R h r R r rv F πη (4) 4、 η的表示 因F 是很难测定的,利用小球匀速下落时重力、浮力、粘滞阻力合力等于零,由式(4)得 ...)1080 191631)(3.31)(4.21(6)(342 03+-+++=-e e R R h r R r rv g r πηρρπ(5)

η...) 1080 19 1631)(23.31)(24.21()(18 1 22 0+-+++-= e e R R h d R d v gd ρρ (6) a.当R e <时,可以取零级解,则式(6)就成为 ) 23.31)(24.21()(18 1 2 00h d R d v gd ++-= ρρη (7) 即为小球直径和速度都很小时,粘度η的零级近似值。 时,可以取一级近似解,式(6)就成为 ) 23.31)(24.21()(18 1 )1631(2 01h d R d v gd R e ++-= +ρρη 它可以表示成为零级近似解的函数: 00116 3 ρηηdv - = (8) c.当R e >时,还必须考虑二级修正,则式(6)变成 ) 23.31)(24.21()(18 1 )1080191631(2 022h d R d v gd R R e e ++-=- +ρρη 或 ])(2701911[212 1 012ηρηηdv + += (9) 实验内容: 1、利用三个橡皮筋在靠近量筒下部的地方,分出两个长度相等的区域,利用秒表测量小球通过两段区域的时间,调整橡皮筋的位置,并保持两段区域等长,寻找两次测量时间相等的区域,测出两段区域总长度l 。 2、选用大、中、小三种不同直径的小球进行实验。 3、用螺旋测微器测定6个同类小球的直径,取平均值并计算小球直径的误差。 4、将一个小球在量筒中央尽量接近液面处轻轻投下,使其进入液面时初速度为零, 5、分别测出6个小球通过匀速下降区l 的时间t ,然后求出小球匀速下降的速度。 6、用相应的仪器测出R 、h 和ρ0,各测量三次及液体的温度T ,温度T 应取实验开

讲义 液体粘滞系数的测定

实验N 液体粘滞系数的测定 各种流体(液体、气体)都具有不同程度的粘性。当物体在液体中运动时,会受到附着在物体表面并随物体一起运动的液层与邻层液体间的摩擦阻力,这种阻力称为粘滞力(粘滞力不是物体与液体间的摩擦力)。流体的粘滞程度用粘滞系数表征,它取决于流体的种类、速度梯度,且与温度有关。 液体粘滞系数的测量非常重要。例如,人体血液粘度增加会使供血和供氧不足,引起心脑血管疾病;石油在封闭管道长距离输送时,其输运特性与粘滞性密切相关,在设计管道前必须测量被输石油的粘度。 液体粘滞系数的测量方法有毛细管法、圆筒旋转法和落球法等。本实验采用落球法测定液体的粘滞系数。 【实验目的】 1.了解用斯托克斯公式测定液体粘滞系数的原理,掌握其适用条件; 2.掌握用落球法测定液体的粘滞系数。 【预备问题】 1.如何判断小球作匀速运动如何测量小球的收尾速度 2.为什么实验中不能用手摸圆筒,不能正对并靠近圆筒液面呼吸 3.为什么在实验过程中要保持待测液体的温度稳定 【实验仪器】 液体粘滞系数测定仪、螺旋测微计、游标卡尺、温度计、小钢球、待测液体等。 【实验原理】 如图1所示,当质量为m 、体积为V 的金属小球在密度为液的粘滞液体中下落时,受到三个铅直方向的力作用:重力mg 、液体浮力f=Vg 和液体的粘性阻 力F 。 假设小球半径r 和运动速度v 都很小,而且液体均匀 且无限深广,则粘滞阻力F 可写为: (1) v r F 6ηπ= 式(1)称为斯托克斯公式。其中称为液体的粘滞系数,单位为Pas (帕秒),它与液体的性质和温度有 关。 小球开始下落时,速度v 很小,阻力F 不大,小球加速向下运动。随着小球下落速度的增大,粘滞阻力逐渐加大,当速度达到一定值时,三个力达到平衡,即: 图1 液体粘度测量原理

粘滞系数实验报告

浙江师范大学实验报告 实验名称:液体粘滞系数的测量 班 级:综合理科121班 姓 名: 周琚 学号: 12990141 同 组 人: 实验日期 2013年10月24日 室温: 气温: 一、 实验目的 根据斯托克斯公式用落球法测定洗洁精的粘滞系数。 二、 仪器与用具 玻璃量筒(容量500ml)、停表、游标卡尺、物理天平、密度计、温度计、小球(一种5个,一种10个,直径1mm 到2mm ,镊子,待测液体(洗洁精) 三、 知识背景 当半径为r 的光滑圆球,以速度v 在均匀的无限深广的液体中运动时,若速度不大,球也很小,在液体中不产生涡流的情况下,斯托克斯指出,求在液体中所受的阻力F 为 vr F πη6=(1-1) 式中η为液体的粘度,此式称为斯托克斯公式,从上式可知,阻力F 的大小和物体运动速度成正比例 当质量为m ,体积为v 的小球在密度为ρ的液体中下落时,作用在小球上的力有三个, 即: (1)重力mg (2)液体的浮力vg ρ (3)液体的粘滞阻力vr πη6 这三个力都作用在同一铅直线上,重力向下,浮力和阻力向上。球刚开始下落时,速度r 很小,阻力不大,小球做加速下降。随着速度的增加,阻力逐渐加大,速度达到一定值时,阻力和浮力之和将等于重力,那时物体运动的加速度等于零,小球开始匀速下降,即: vr vg mg πηρ6+= 此时的速度成为终极速度。由此式可得

rv g r m πρη6)(-= 令334r v π=,得 g rv r m πρπη6343-=1-2 由于液体在容器中,而不满足无限深、广的条件,这时实际测得的速度r 和上述式中的理想条件下的速度r 之间存在如下关系: )3.311)(4.21(0h r R r v v +++= 1-3 式中R 为盛液体圆筒的内半径,h 为筒中液体的深度,将1-3代入式1-2,得 )3.31)(4.21(6)34(03h r R r rv g r m ++-=πρπη 1-4 其次,斯托克斯公式是假设在无涡流的理想状态下导出的,实际小球下落时不能是这样理想状态,因此还要进行修正。己知在这时的雷诺数Re 为 η ρ02Re rv = 1-5 当雷诺数不甚大(一般在Re<10)时,斯托克斯公式修正为 12)Re 1080 19Re 1031(6--+=ηπrv F 1-6 则考虑此项修正后的粘度测得值0η等于 120)Re 10800 19Re 1631(--+=ηη 1-7 实验时,先由1-4求出近似值η,用此η代入式1-5求出Re ,最后由式1-6求出最值0η。若Re 值很大时,粘滞力F 与粘滞系数无关,而与液体密度有关;同时,F 不再与v 、r 的一次方成正比,而是与v 、r 的平方成正比 四、 实验内容与步骤 1. 实验装置如图1-2所示,在量筒400ml 和150ml ,分别设标记21,N N ,测量 21,N N 间距l ,量筒内半径R ,液体深度h , 用密度计测量待测液的密度ρ

(原创)液体粘滞系数的测定实验的应用——球体密度测量仪

液体粘滞系数的测定实验的应用——球体密度测量仪 摘要:在稳定流动的液体中,由于各层液体的流速不同,互相接触的两层液体之间就有力的作用,两相邻液层间的这一作用力称为摩擦力或粘滞力。液体的粘滞系数η取决于液体的性质和温度。在用落球法测量液体粘滞系数中,假若控制温度等条件,选取某种液体测出其η并以此为标准液,便可反之计算出小球的密度。 关键词:球体密度测量仪、斯托克斯公式、液体的粘滞系数 引言:在测球体密度ρ时,一般都根据公式ρ=m/v,质量m 一般用天平称出,可是根据“固体密度的测定”实验可知,一般的天平测量质量时存在较大的误差。体积v 需先用游标卡尺先测得球体的直径d ,然后代球体体积公式计算。其中球体形状不一定规则,在测量直径时,存在误差;在带公式计算时兀的小数点选取不同又会造成误差。为了是这些误尽可能少的出现,我们不妨只测定小球的直径,同时在标准液粘滞系数η确定的情况下,在通过测时间t ,便可以换算出小球的密度。 一、仪器原理 当金属小球在粘性液体中下落时,它受到三个铅直方向的力:小球的重力mg 、液体作用于小球的浮力gV ρ(V 为小球体积,ρ为液体密度) 和粘滞阻力F (其方向与小球运动方向相反)。如果液体 无限深广,在小球下落速度v 较小的情况下,有: vr F πη6= (1) 上式称为斯托克斯公式,式中η为液体的粘滞系数, 单位是s Pa ?,r 为小球的半径。 小球开始下落时,由于速度尚小,所以阻力不大,但 是随着下落速度的增大,阻力也随之增大。最后,三个力 达到平衡,即: rv gV mg πηρ6+=液 于是小球开始作匀速直线运动,由上式可得:vr g V m πρη6)(液-= 令小球的直径为d ,并用ρπ 36d m =,t L v =,令小球的直径为d ,并用ρπ36 d m =,t L v =,2 d r =代入上式得: L t gd 18)(2液ρρη-= (2) 其中ρ为小球材料的密度,L 为小球匀速下落的距离,t 为小球下落L 距离所用的时间。

相关主题