搜档网
当前位置:搜档网 › 液力变矩器闭锁离合器..

液力变矩器闭锁离合器..

液力变矩器闭锁离合器..
液力变矩器闭锁离合器..

液力变矩器闭锁离合器

山东理工大学

目录

液力变矩器闭锁离合器 (1)

目录 (2)

一、绪论 (3)

二、发动机与液力变矩器的匹配 (4)

2.1 发动机和液力变矩器的共同工作 (4)

2.1.1 发动机特性 (4)

2.1.2液力变矩器的原始特性 (5)

三、液力变矩器闭锁参数的选择及闭锁控制总体方案 (11)

3.1 液力变矩器闭锁控制的意义 (11)

3.2 汽车闭锁点的选择 (11)

3.3整车行驶参数的检测 (14)

3.4闭锁规律应满足的要求及分类 (15)

3.5、履带车辆中闭锁参数的选择 (16)

3.6、闭锁点的选择 (18)

3.7 按照传统闭锁点的求法,以SD23为例进行闭锁点的确定: (20)

3.8 、闭锁点优化的原则: (33)

3.9 液力变矩器多种闭锁方式及对比 (37)

3.10对于闭锁总体控制方案的选取设计 (41)

四、液力变矩器闭锁点的优化研究及控制器控制策 (42)

4.1第四章、闭锁离合器闭锁过程动态数学模型的建立: (42)

4.2、充油特性的设计: (44)

4.3、离合器集合参数的分析: (45)

4.4闭锁控制策略的特例分析 (46)

4.5 已有控制方法及其特点 (50)

4.6 对于控制策略的设计 (56)

五、液力变矩器的闭锁动态过程的仿真研究及控制算法与控制程序 (56)

5.4 控制算法基本流程 (56)

5.5控制程序 (57)

六、液力变矩器闭锁离合器控制器的使用 (60)

6.1 控制器分类 (60)

6.2 控制器的选取及优化 (61)

第一章:绪论

我国幅员辽阔、河流湖泊沼泽众多、履带式车辆在我国有着广泛的使用,坦克,推土机、履带式装载机等

在履带式车辆的传动系统中主要有机械传动和液力机械传动两种,机械传动是发动机与变速箱通过离合器直接相连,这种传递形式,结构简单,传动效率高,但是适应外负荷变化的能力差。

液力机械式传动是发动机通过变矩器与变速箱相连,

液力变矩器有良好的自动适应性,可以提高车辆的动力性能,但是液力变矩器的效率较低。使车辆的经济性能变差,这个缺点大大影响了液力传动在车辆的广泛使用。为了提高液力变矩器的效率出现了闭锁式液力变矩器。近代汽车、坦克和其他军用车辆广泛应用了闭锁是液力变矩器,在高转速比时用闭锁离合器将泵轮和涡轮闭锁,成为整体旋转,变为机械传动,效率接近于1以提高车辆的经济性,根据某些车辆的试验证明采用闭锁式液力变矩器较不闭锁式油耗可降低5%--10%。

但是闭锁以后成为机械传动,失去了液力传动的一些性能和特点,如减震性能等。

液力变矩器闭锁后失去了液力传动平稳的优点,不能吸收发动机扭矩波动所引起的冲击和振动,造成车辆振动和噪声的增大。乘员可明显地感觉到变矩器不闭锁和闭锁时振动和噪声的差别。在高档高速、小油门开度的情况下,发动机比较稳定,扭矩波动较小,变矩器的闭锁对车辆的行驶平顺性影响较小。

所以在最初,变矩器的闭锁区域仅限于高档高速、小油门开度这样一个很狭窄的区域,一般只在直接档和超速档才采用变矩器闭锁技术。闭锁离合器控制技术是今后发展的一个重要方向。现在,随着电子技术的不断进步,对闭锁离合器滑磨过程进行的控制上了一个新台阶。

国内的一些大学和研究机构也开展了一些相应的研究,如北京理工大学、重庆大学、吉林大学等。其中,北京理工大学的郑慕侨、马彪等教授对闭锁离合器和换挡离合器进行了深入研究,对液力变矩器闭锁离合器的动态特性、闭锁点的选取以及滑磨功和滑磨功率的动态模拟计算进行了研究[6,7,8]。重庆大学的秦大同教授进行了滑差控制方面的研究,对于滑差控制的摩擦材料、传动油进行了分析研究[9,10,11]。吉林大学液力传动研究所葛安林教授对车辆自动变速理论进行了深入的分析研究,并对液力式自动变速器进行了分析设计[12,13,14]。

北京理工大学曾进行过某重型车辆液力变矩器的闭、解锁控制研究,并提出闭锁控制和自动换挡控制是传动系控制中联系紧密的两项主要内容。液力变矩器的闭锁控制实质上也是一种换挡控制,即机械挡和液力挡之间的切换,所以换挡控制和闭锁控制之间具有相似性。闭锁控制系统采用了油门开度、涡轮转速两个参数进行控制,试验验证该控制系统可以实现闭、解锁控制。

吉林大学针对公共汽车液力传动装置做了自动闭、解锁的研究[3],在对闭锁的研究中借鉴了车辆换挡理论,设计了闭锁规律,其控制方案主要是采用变矩器泵轮转速和涡轮转速作为闭锁依据,并兼顾油门开度的影响,设计了变矩器闭锁自动控制装置。

重庆大学的秦大同教授

国内对于工程车辆,特别是履带车辆所使用的闭锁式液力变矩器的研究还比较少,因此,对于履带车辆变矩器的闭锁控制研究的内容还需要进一步加以充实,尤其在控制策略和改善闭锁品质等方面还有一些问题需要解决。

本课题所选用的是变矩器涡轮转速和变速箱油压作为闭锁参数,一方面变矩器涡轮转速

光伏电站常见故障及解决方法

光伏电站常见故障及解决方法

光伏电站常见故障及解决方法 关键词: 光伏电站光伏发电光伏运维 第一章影响光伏电站发电量的因素 光伏电站发电量计算方法,理论年发电量=年平均太阳辐射总量*电池总面积*光电转换效率。但由于各种因素的影响,光伏电站发电量实际上并没有那么多,实际年发电量=理论年发电量*实际发电效率。那么影响光伏电站发电量有哪些因素?以下是我结合日常的设计以及施工经验,给大家讲一讲分布式电站发电量的一些基础常识。 1.1、太阳辐射量 太阳能电池组件是将太阳能转化为电能的装置,光照辐射强度直接影响着发电量。各地区的太阳能辐射量数据可以通过NASA气象资料查询网站获取,也可以借助光伏设计软件例如 PV-SYS、RETScreen得到。 1.2、太阳能电池组件的倾斜角度

从气象站得到的资料,一般为水平面上的太阳辐射量,换算成光伏阵列倾斜面的辐射量,才能进行光伏系统发电量的计算。最佳倾角与项目所在地的纬度有关。大致经验值如下: A、纬度0°~25°,倾斜角等于纬度 B、纬度26°~40°,倾角等于纬度加5°~10° C、纬度41°~55°,倾角等于纬度加10°~15° 1.3、系统损失 和所有产品一样,光伏电站在长达25年的寿命周期中,组件效率、电气元件性能会逐步降低,发电量随之逐年递减。除去这些自然老化的因素之外,还有组件、逆变器的质量问题,线路布局、灰尘、串并联损失、线缆损失等多种因素。 一般光伏电站的财务模型中,系统发电量三年递减约5%,20年后发电量递减到80%。 1.3.1组合损失

现阶段光伏电站的清洁主要有,洒水车,人工清洁,机器人三种方式。 1.3.3温度特性 温度上升1℃,晶体硅太阳电池:最大输出功率下降0.04%,开路电压下降0.04%(-2mv/℃),短路电流上升0.04%。为了减少温度对发电量的影响,应该保持组件良好的通风条件。 1.3.4线路、变压器损失 系统的直流、交流回路的线损要控制在5%以内。为此,设计上要采用导电性能好的导线,导线需要有足够的直径。系统维护中要特别注意接插件以及接线端子是否牢固。 1.3.5逆变器效率 逆变器由于有电感、变压器和IGBT、MOSFET 等功率器件,在运行时,会产生损耗。一般组串式逆变器效率为97-98%,集中式逆变器效率为98%,变压器效率为99%。 1.3.6阴影、积雪遮挡

自动变速箱与液力变矩器工作原理

自动变速箱 自动变速箱简称AT,全称Auto Transmission,它是由液力变扭器、行星齿轮和液压操纵系统组成,通过液力传递和齿轮组合的方式来达到变速变矩。 和手动挡相比,自动变速箱在结构和使用上有很大不同。手动挡主要通过调节不同齿轮组合来更换挡位,而自动变速箱是通过液力传递和齿轮组合的方式来达到变速的目的。其中液力变扭器是自动变速箱最具特点的部件,它由泵轮、涡轮和导轮等构件组成,泵轮和涡轮是一对工作组合,泵轮通过液体带动涡轮旋转,而泵轮和涡轮之间的导轮通过反作用力使泵轮和涡轮之间实现转速差并实现变速变矩功能,对驾驶者来说,您只需要以不同力度踩住踏板,变速箱就可以自动进行挡位升降。由于液力变矩器自动变速变矩范围不够大,因此在涡轮后面再串联几排行星齿轮提高效率,液压操纵系统会随发动机工作变化自行操纵行星齿轮,从而实现自动变速变矩。为了满足行驶过程中的多种需要(如泊车、倒车)等,自动变速箱还设有一些手动拨杆位置,像P挡(停泊)、R挡(后挡)、N挡(空档)、D挡(前进)等。 从性能上说自动变速箱的挡位越多,车在行驶过程中也就越平顺,加速性也越好,而且更加省油。除了提供轻松惬意的驾驶感受,自动变速箱也有无法克服的缺陷。自动变速箱的动力响应不够直接,这使它在“驾驶乐趣”方面稍显不足。此外,由于采用液力传动,这使自动挡变速箱传递的动力有所损失。 手自一体自动变速箱 手自一体变速箱的出现其实就是为了提高自动变速箱的经济性和操控性而增加的设置,让原来电脑自动决定的换挡时机重新回到驾驶员手中。同时,如果在城市内堵车情况下,还是可以随时切换回自动挡。

液力变矩器的工作原理就像两个风扇相对,一个风扇工作,然后将另一个不工作的风扇吹动。这个比喻可以很形象的解释液力变矩器中泵轮和涡轮之间的工作关系。不过详细解释其工作原理,则有些复杂。 动力输出之后,带动与变矩器壳体相连的泵轮,泵轮搅动变矩器中的自动变速箱油(以下简称ATF),带动涡轮转动,ATF在壳体中是一个循环的动作,由于泵轮旋转时的离心力,ATF会在泵轮的作用下,甩向外侧,冲向前方的涡轮,再流向轴心位置,回到泵轮一侧,如此周而复始的循环,将动力传向与齿轮箱连接的涡轮。 不过只有该零部件和传动方式,只能称为液力耦合器,若想成为液力变矩器,必然要改变涡轮叶片的形状,这样一来,ATF在经过涡轮再循环回泵轮时,会与泵轮旋转方向相反,因而造成冲击,所以为了成为液力变矩器还需另一个部件:导轮。导轮是存在于泵轮和涡轮之间的一个部件,用于调节壳体中ATF液流方向,通过单向离合器与箱体固定。 有了导轮,才有了“变矩”的灵魂所在,在泵轮与涡轮转速差较大时,动力输出的扭矩也变大了,此时的变矩器想当一个无级变速器,通过转速差来提升扭矩,此时导轮处于固定状态,用以调节ATF回流;而当转速差降低,涡轮泵轮耦合或锁止时,扭矩接近对等,无需增矩,导轮随泵轮和涡轮同向转动,避免自身搅动ATF,造成动力的损耗。 至此我们了解到了液力变矩器的最大特点——软连接,而这种动力的传输方式起到了两大功能:1、从静止到低速时的平稳起步;2、在加速过程中,较大动力输出时,起到增大扭矩的作用。如果与MT上的离合器相比较,则需注意的是,第一条起到了并优化了MT 上离合器的功能,但第二条则是离合器无法实现的。

液力变矩器故障和工作原理

4.1 液力变矩器构造和工作原理 4.1.1液力变矩器构造 1、三元一级双相型液力变矩器 三元是指液力变矩器是由泵轮、涡轮和导轮三个主要元件组成的。一级是指只有一个涡轮(部分液力偶合器里装有两个涡轮,工作时油液容易发生紊乱)。双相是指液力变矩器的工作状态分为变矩区和偶合区。 * 图4-1为液力变矩器三个主要元件的零件图。 2、液力变矩器的结构和作用 泵轮的叶片装在靠近变速器一侧的变矩器壳上,和变矩器壳是一体的。变矩器壳是和曲轴或曲轴上的挠性板用螺栓连接的,所以泵轮叶片随曲轴同步运转。发动机工作时,它引导液体冲击涡轮叶片,产生液体流动功能,是液力变矩器的 主动元件。 *

1-变速器壳体2-泵轮3-导轮4-变速器输出轴5-变矩器壳体 6-曲轮7-驱动端盖8-单向离合器9-涡轮 涡轮装在泵轮对面,二者的距离只有3~4mm,在增矩工况时悬空布置,被泵轮的液流驱动,并以它特有的速度转动。在锁止工况时它被自动变速器油挤到离合器盘上,随变矩器壳同步旋转。它是液力变矩器的输出元件。涡轮的花键毂负责驱动变速器的输入轴(涡轮轴)。它将液体的动能转变为机械能。 导轮的直径大约是泵轮或涡轮直径的一半。并位于两者之间。导轮是变矩器中的反作用力元件,用来改变液体流动的方向。 导轮叶片的外缘一般形成三段式油液导流环内缘。分段导流环可以引导油液平稳的自由流动,避免出现紊流。 导轮支承在与花键和导轮轴连接的单向离合器上。单向离合器使导轮只能与泵轮同向转动。涡轮的油液流经导轮时改变了方向,使液流返回泵轮时,液流的流向和导轮旋转方向一致,可以使泵轮转动更有效。 *

图4-3为液力变矩器油液流动示意图。 观看液力变矩器油液流动 图上通过箭头示意液体流动方向。油液由泵轮的外端传入涡轮的外端,经涡轮内端传到导轮时改变了油液的流动方向,经导轮传给泵轮的油液的流动方向恰 好和泵轮的旋转方向一致。 * 3、液力变矩器的锁止和减振 液力变矩器用油液作为传力介质时,即使在传递效果最佳时,也只能传递90%的动力。其余的动力都被转化为热量,散发到油液里。为提高偶合工况的传动效率,变矩器设置了锁止离合器。液力变矩器进入偶合工况后,变矩器内的闭锁离合器就有可能进入锁止工况。而变矩器一旦进入锁止工况,发动机的动力就可以100%的传给传动系。可以避免液力传动过程中不可避免的动力损失,提高液力变 矩器的工作效率。 液力变矩器根据锁止形式的不同,负责锁止的闭锁离合器分为液力锁止、离

轮式装载机液力变矩器故障与维修

工程机械上使用液力变矩器,具有起步平稳、操作方便、可在较大范围内实现无级变速等优点。因此,液力变矩器在工程机械中得到了广泛的应用。国内轮式装载机上应用的双导轮综合式液力变矩器,具有高效区宽广、变矩过渡至偶合工况平稳的特点。但这种变矩器在使用时间较长以后,易出现过热、工作无力、内部元件损坏等故障。由于变矩器的拆装与维修比较困难,在维修液力变矩器时,必须在弄懂其工作原理和正确地分析故障原因的基础上才能保证维修质量。本文以双导轮综合式液力变矩器为例,介绍液力变矩器的工作原理,分析变矩器工作过程中的常见故障现象、原因和诊断维修方法。 1 双导轮综合式变矩器的工作原理 该变矩器主要由泵轮、涡轮、第一导轮、第二导轮及导轮座等组成。 工作过程中,液压油自变速器壳底部通过滤网被油泵吸入,从油泵输出的具有一定压力的液压油通过液压油滤清器、主调压阀后进入导轮座的进油孔,然后流向泵轮。柴油机的动力通过相啮合的齿轮传给泵轮,泵轮的旋转将进入其内部的液压油压入涡轮,冲击涡轮叶片,使涡轮旋转,动力由涡轮轴输出。从涡轮出来的液压油,一部分通过变矩器出口经液压油冷却器后进入离合器壳体,再润滑轴承、齿轮及冷却离合器摩擦片后流回变速器壳底;另一部分经第一、第二导轮传给泵轮,液压油在循环圆内传递动力。当涡轮的液体冲向导轮叶片时,导轮不转,导轮给予液体一定的反作用力矩。这个力矩和泵轮给予液体的力矩合在一起,全部传给涡轮,从而使涡轮起到了增大扭矩的作用,即变矩。当涡轮转速继续增高,涡轮传给导轮的液流方向发生变化至冲击导轮背面时,第一、二导轮在超越离合器的作用下,先后开始旋转,变矩工况变成偶合工况。从主调压阀出来的另一路液压油是流向变速器操纵阀的。 2 液力变矩器的故障诊断 液力变矩器的故障通常表现在三个方面:装载机动力不足,高速档起步困难;油温过高;液力变矩器不工作。液力变矩器出现故障时,一般从液压油路方面(包括液压油路是否通畅、密封是否良好等)开始检查。

逆变器常见故障及处理方法

逆变器常见故障及处理方法在采用DC600V供电系统的旅客列车上每节车厢都设置一台三相逆变器将机车供给的DC600V的直流电逆变为380V/50HZ三相交流电给客车空调以及其它一些三相用电设备供电。 逆变器设两台互为独立的热备逆变器单元(硬卧车、行李车为一台无热备),逆变器容量:2*35KV A逆变器+隔离变压器(高寒车及餐车为15KV A、非高寒车为5KV A),当某一台逆变器发生故障造成停止输出时,另一台逆变器可通过转换向两路负载供电,以确保客车用电设备的正常工作。 一、逆变器的操作要求: 为了确保逆变器的可靠工作,必须按照逆变器的操作规程进行操作。上电的时候,先给110V控制电然后再给600V 的大电;断电的时候先断600V的大电,再断110V控制电,即遵行先弱电、后强电,先轻载,再重载的操作原则。为了确保检修人员和设备的安全,逆变器的检修必须在断电五分钟后进行。 一、逆变器常见故障的处理 1.正常工作时,逆变器报代码为“OO”,输入欠压时报 “O2”,除此之外,出现其它代码均为故障状态。 2.如果逆变器报“O5”,断开负载,看能否正常工作,如 正常,检查负载是否有问题,如仍有“O5”故障,则

更换驱动板或控制板,如仍有问题,更换输出电流传感器LT208。如减载后两路都报“O5”故障,是负载有问题,检查负载。 3.如果逆变器报“O7”,空载情况下,如果复位后能重启, 检查负载是否有问题(短路、断路、绝缘不良)。如果不能进行重启,车上四合一电气柜显示屏直接报“O7”,打开相关逆变单元的散热器,检查IGBT是否完好,如IGBT完好,则驱动板故障,更换驱动板。 4.如果逆变器报“OC”,用万用表测量熔断器,如果坏, 更换熔断器,然后,打开对应单元的散热器,测量IGBT 是否有损坏,有损坏则进行更换,同时检查驱动板是否正常,有问题更换。 5.如果逆变器报“OE”,检查相应单元的接触器触头和触 点是否异常,检查散热器箱内左侧的电源板插头是否有松动,如果接触器触头有粘连现象,要检查散热器上的IGBT是否有问题,同时检查驱动板。如都正常,测量相应单元的固态继电器,有问题则更换相应单元箱的固态继电器。 6.如果逆变器报“FE”,打开相应散热器,检查控制板是 否工作,不工作,更换控制板。 7.另外,还有三种故障现象,表现为逆变器上传的代码为 “OO”,但仍为故障的状态:第一种为逆Ⅰ或逆Ⅱ无输

液力变矩器

4.1.1液力变矩器构造 1、三元一级双相型液力变矩器 三元是指液力变矩器是由泵轮、涡轮和导轮三个主要元件组成的。一级是指只有一个涡轮(部分液力偶合器里装有两个涡轮,工作时油液容易发生紊乱)。双相是指液力变矩器的工作状态分为变矩区和偶合区。 图4-1为液力变矩器三个主要元件的零件图 2、液力变矩器的结构和作用 泵轮的叶片装在靠近变速器一侧的变矩器壳上,和变矩器壳是一体的。变矩器壳是和曲轴或曲轴上的挠性板用螺栓连接的,所以泵轮叶片随曲轴同步运转。发动机工作时,它引导液体冲击涡轮叶片,产生液体流动功能,是液力变矩器的主动元件。

1-变速器壳体 2-泵轮 3-导轮 4-变速器输出轴 5-变矩器壳体 6-曲轮 7-驱动端盖 8-单向离合器 9-涡轮 涡轮装在泵轮对面,二者的距离只有3~4mm,在增矩工况时悬空布置,被泵轮的液流驱动,并以它特有的速度转动。在锁止工况时它被自动变速器油挤到离合器盘上,随变矩器壳同步旋转。它是液力变矩器的输出元件。涡轮的花键毂负责驱动变速器的输入轴(涡轮轴)。它将液体的动能转变为机械能。 导轮的直径大约是泵轮或涡轮直径的一半。并位于两者之间。导轮是变矩器中的反作用力元件,用来改变液体流动的方向。 导轮叶片的外缘一般形成三段式油液导流环内缘。分段导流环可以引导油液平稳的自由流动,避免出现紊流。 导轮支承在与花键和导轮轴连接的单向离合器上。单向离合器使导轮只能与泵轮同向转动。涡轮的油液流经导轮时改变了方向,使液流返回泵轮时,液流的流向和导轮旋转方向一致,可以使泵轮转动更有效。

图4-3为液力变矩器油液流动示意图。 图上通过箭头示意液体流动方向。油液由泵轮的外端传入涡轮的外端,经涡轮内端传到导轮时改变了油液的流动方向,经导轮传给泵轮的油液的流动方向恰好和泵轮的旋转方向一致。 3、液力变矩器的锁止和减振 液力变矩器用油液作为传力介质时,即使在传递效果最佳时,也只能传递90%的动力。其余的动力都被转化为热量,散发到油液里。为提高偶合工况的传动效率,变矩器设置了锁止离合器。液力变矩器进入偶合工况后,变矩器内的闭锁离合器就有可能进入锁止工况。而变矩器一旦进入锁止工况,发动机的动力就可以100%的传给传动系。可以避免液力传动过程中不可避免的动力损失,提高液力变矩器的工作效率。 液力变矩器根据锁止形式的不同,负责锁止的闭锁离合器分为液力锁止、离心力锁止和粘液离合器锁止三种形式。 (1)液力锁止离合器 液力锁止的闭锁离合器出现于20世纪70年代,是目前使用最为广泛的变矩器锁止形式。 液力锁止的结构是在涡轮背面加装一个摩擦式压盘(被习惯称之为离合器盘),压盘上粘有一圈摩擦环。液力锁止离合器进入锁止工况的示意图,见图4-4。进入锁止工况时,变矩器内工作油液压加大,油液将压盘用力推向变矩器的后壳体,在油压和摩擦环摩擦力矩的双重作用下,压盘开始和变矩器同步旋转。而压盘外端的卡口和涡轮上的卡口是相互咬合的,于是涡轮在压盘的带动下,也开始随变矩器壳同步旋转。涡轮由液力传动改为机械传动,而变矩器完

液力变矩器的故障检测与维修

液力变矩器的故障检测与维修液力变矩器常见的故障主要有:油温过高、供油压力过低、漏油、机器行驶速度过低或行驶无力,以及工作时内部发出异常响声等5种。 1、油温过高 油温过高表现为机器工作时油温表超过120°C或用手触摸感觉 汤手,主要有以下几种原因:变速器油位过低;冷却系中水位过低;油管及冷却器堵塞或太脏;变矩器在低效率范围内工作时间太长; 工作轮的紧固螺钉松动;轴承配合松旷或损坏;综合式液力变矩器 因自由轮卡死而闭锁;导轮装配时自由轮机构化机构缺少零件。

液力变矩器油温过高故障的诊断和排除方法如下:出现油温过 高时,首先应立即停车,让发动机怠速运转,查看冷却系统有无泄漏,水箱是否加满水;若冷却系正常,则应检查变速器油位是否位 于油尺两标记之间。若油位太低,应补充同一牌号的油液;若油位 太高,则必须排油至适当油位。如果油位符合要求,应调整机器, 使变矩器在高效区范围内工作,尽量避免在低效区长时间工作。如 果调整机器工作状况后油温仍过高,应检查油管和冷却器的温度, 若用手触摸时温度低,说明泄油管或冷却器堵塞或太脏,应将泄油 管拆下,检查是否有沉积物堵塞,若有沉积物应予以清除,再装上 接头和密封泄油管。若触摸冷却器时感到温度很高,应从变矩器壳 体内放出少量油液进行检查。若油液内有金属末,说明轴承松旷或 损坏,导致工作轮磨损,应对其进行分解,更换轴承,并检查泵轮 与泵轮毂紧固螺栓是否松动,若松动应予以紧固。以上检查项目均 正常,但油温仍高时,应检查导轮工作是否正常。将发动机油门全开,使液力变矩器处于零速工况,待液力变矩器出口油温上升到一 定值后,再将液力变矩器换入液力耦合器工况,以观察油温下降程度。若油温下降速度很慢,则可能是由于自由轮卡死而使导轮闭锁,应拆解液力变矩器进行检查。

液力变矩器

10.4 液力变矩器的分类及结构型式 10.4.1液力变矩器的分类 液力变矩器大致可分为下列几类: 1、把装在泵轮与导轮或导轮与导轮之间刚性连接在同一根输出轴上的涡轮数目称为“级”。按级数多少来分,有单级、多级的液力变矩器; 2、把液力变矩器中利用单向离合器或者其他机构的作用来改变参与工作的各工作轮的工作状态的数目,称为“相”。液力变矩器有单相及多相之分; 3、按液流在循环圆中流动时流过涡轮的方向分:离心式、向心式及轴流式涡轮液力变矩器; 4、按在牵引工况时,涡轮轴与泵轮转向相同与否,分作正转和反转液力变矩器; 5、根据液力变矩器能容是否可调,分为可调与不可调液力变矩器; 6、把液力变矩器与机械传动组合而成的变矩器叫做液力机械变矩器。根据功率分流不同,又分为内分流和外分流的液力机械变矩器。 10.4.2液力变矩器的结构及特性 1、单级单相液力变矩器 罩轮4通过弹性连接板3与发动机飞轮连接起来,这样发动机就可带动泵轮1转动。涡轮5通过涡轮套6与空心轴11相连,涡轮的动力由空心轴11对外输出。导轮8通过导轮座12与机座9固定在一起不能转动。油泵轴10活动地装在涡轮空心轴11内,轴的左端用花键、油泵驱动盘7、罩轮4等与发动机飞轮相连,右端有齿轮用来驱动液压泵工作。 这种液力变矩器的值一般为3~4,最高效率0.85~0.90。

图10-10 YB355-2型向心涡轮液力变矩器 1-泵轮2-外罩3-弹性连接板4-罩轮5-涡轮6-涡轮套7- 油泵驱动盘8-导轮 9-机座10-油泵轴11-涡轮空心轴12-导轮座13-油封14-泵轮套 图10-11 YB355-2型液力变矩器原始特性线 2、单级双相综合式液力变矩器 单级双相综合式液力变矩器的结构和单级单相液力变矩器结构大体上相同,不同点是单级双相综合式液力变矩器的导轮是通过单向离合器而与机架连接,不是直接与机架固定为一体。 图10-14 是单级双相综合式液力变矩器的结构简图及其原始特性。当(对应于)范围内,导轮被离合器楔住,不会转动,是变矩工况;()后,导轮

液力变矩器故障分析

液力变矩器故障分析 1.液力变矩器内支撑导轮的单向离合器打滑(1)故障现象当车辆出现在 30~50 km/h以下加速不良,车速上升缓慢,过了低速区后加速良好的故障时, 很可能是液力变矩器内支撑导轮的单向离合器打滑。(2)故障诊断方法发动机热机后,将4个车轮用三角木或砖头塞住,拉紧驻车制动器,踩住脚制动踏板, 用眼睛盯住发动机转速表,将油门完全踩到底,如发动机的失速转速明显低于 规定值,说明液力变矩器内支撑导轮的单向离合器打滑。(3)故障分析图1导轮变矩器低速增扭,靠的是导轮(图1)改变液流方向,变矩器内支撑导轮的单向 离合器打滑后,导轮没有了单向离合器的支撑,在增扭工况时无法改变液流的 方向。这样经导轮返回的液流流向和泵轮旋转方向相反,发动机需克服反向液 流带来的附加载荷,于是液力变矩器变成了液力偶合器,低速增扭变成了低速 降扭,所以汽车在低速区(变矩器增加扭矩工况区域)加速不良。(4)维修方法更换液力变矩器总成或用车床剖开液力变矩器,然后更换导轮和单向离合器即可 排除故障。2.液力变矩器内支撑导轮的单向离合器卡滞(1)故障现象汽车起动和中低速行驶正常,但没有高速,温和踩油门最高车速只有80~90 km/h左右;加大节气门开度,最高车速也只有110~120 km/h左右。(2)故障诊断方法支撑导 轮的单向离合器卡滞时,在感觉上有一点像发动机排气不畅,但发动机排气不 畅时冷车起动困难。打开空气滤清器上盖,拆下滤芯,发动机急加速时此处能 看见废气返流,而支撑导轮的单向离合器卡滞,不会导致废气返流。从油液颜 色看一切正常,用故障诊断仪也找不到故障,发动机失速转速正常。(3)维修方法更换液力变矩器总成或用车床剖开液力变矩器,然后更换导轮和单向离合器 即可排除故障。3.液力变矩器内锁止离合器的锁止力矩不足(1)故障现象汽车低速行驶和发动机冷机时没有异响,热机车速提高后能听到"嗡嗡"的异响声,20 min后发动机冷却液过热,报警装置开始报警。(2)故障诊断方法发动机热机后,车速在30~50 km/h后若听到"嗡嗡"的异响声,轻轻地踩下制动踏板,使制动踏板臂和制动灯开关分开即可(制动灯开关负责解除变矩器锁止工况)。若踩下制 动踏板时"嗡嗡"的异响声立即终止,抬起制动踏板时"嗡嗡"的异响声立即恢复,说明异响是由于液力变矩器内锁止离合器的锁止力矩不足造成的。(3)故障分析图2 4L60E型变速器锁止电磁阀控制阀中的锁止继动阀控制液力变矩器进入锁 止工况的时机,锁止电磁阀(图2)决定锁止油压的大小。若锁止电磁阀密封不

液力变矩器的组成

液力变矩器的组成: 常见的两级三元件综合式液力变矩器由泵轮总成、涡轮总成、导轮总成、闭锁离合器总成和后盖组成,导轮通过单向离合器与变速箱壳体固定连接。泵轮与后盖焊接成一个整体里面充满了传动油,并与发动机连接,起主动作用。涡轮与变速箱输入轴连接,起动力输出作用。变矩器工作时,泵轮在发动机带动下将传动油冲入涡轮,从而带动涡轮转动,实现了动力由发动机向传动系统的传递。导轮总成中,如果单向离合器工作,液力变矩器则起变矩器作用,从而增加扭矩的输出;如果单向离合器不工作(导轮反转),此时变矩器起到了偶合器的作用。 液力变矩器的作用: 1、液力变矩器能够自动无级的根据负载变化改变涡轮的转速,提高车辆的通过能力; 2、液力变矩器通过液体连接泵轮和涡轮,减少发动机对传动系统的冲击载荷,提高传动系统的寿命; 3、液力变矩器在起步时,能够提高车辆的起动变矩比,从而提高车辆的动力性能; 4、起步平稳柔和,提高乘坐舒适性。 液力变矩器的组成结构 液力变矩器由泵轮,涡轮,导轮组成。安装在发动机和变速器之间,以液压油为工作介质,起传递转矩,变矩,变速及离合的作用。以液体为工作介质的一种非刚性扭矩变换器,是液力传动的型式之一。YJH340变矩器,它有一个密闭工作腔,液体在腔内循环流动,其中泵轮、涡轮和导轮分别与输入轴、输出轴和壳体相联。 动力机带动输入轴旋转时,液体从离心式泵轮流出,顺次经过涡轮、导轮再返回泵轮,周而复始地循环流动。泵轮将输入轴的机械能传递给液体。高速液体推动涡轮旋转,将能量传给输出轴。液力YJH340变矩器靠液体与叶片相互作用产生动量矩的变化来传递扭矩。液力变矩器不同于液力耦合器的主要特征是它具有固定的导轮。 导轮对液体的导流作用使液力变矩器的输出扭矩可高于或低于输入扭矩,因而称为变矩器。输出扭矩与输入扭矩的比值称变矩系数,输出转速为零时的零速变矩

液力变矩器的故障检测与维修方法

液力变矩器的故障检测与维修方法 液力变矩器常见的故障主要有:油温过高、供油压力过低、漏油、机器行驶速度过低或行驶无力,以及工作时内部发出异常响声等5种。 1、油温过高 油温过高表现为机器工作时油温表超过120°C或用手触摸感觉汤手,主要有以下几种原因:变速器油位过低;冷却系中水位过低;油管及冷却器堵塞或太脏;变矩器在低效率范围内工作时间太长;工作轮的紧固螺钉松动;轴承配合松旷或损坏;综合式液力变矩器因自由轮卡死而闭锁;导轮装配时自由轮机构化机构缺少零件。 液力变矩器油温过高故障的诊断和排除方法如下:出现油温过高时,首先应立即停车,让发动机怠速运转,查看冷却系统有无泄漏,水箱是否加满水;若冷却系正常,则应检查变速器油位是否位于油尺两标记之间。若油位太低,应补充同一牌号的油液;若油位太高,则必须排油至适当油位。如果油位符合要求,应调整机器,使变矩器在高效区范围内工作,尽量避免在低效区长时间工作。如果调整机器工作状况后油温仍过高,应检查油管和冷却器的温度,若用手触摸时温度低,说明泄油管或冷却器堵塞或太脏,应将泄油管拆下,检查是否有沉积物堵塞,若有沉积物应予以清除,再装上接头和密封泄油管。若触摸冷却器时感到温度很高,应从变矩器壳体内放出少量油液进行检查。若油液内有金属末,说明轴承松旷或损坏,导致工作轮磨损,应对其进行分解,更换轴承,并检查泵轮与泵轮毂紧固螺栓是否松动,若松动应予以紧固。以上检查项目均正常,但油温仍高时,应检查导轮工作是否正常。将发动机油门全开,使液力变矩器处于零速工况,待液力变矩器出口油温上升到一定值后,再将液力变矩器换入液力耦合器工况,以观察油温下降程度。若油温下降速度很慢,则可能是由于自由轮卡死而使导轮闭锁,应拆解液力变矩器进行检查。 2、供油压力过低 现象为:当发动机油门全开时,变矩器进口油压仍小于标准值。主要由以下几种原因引起:供油量少,油位低于吸油口平面;油管泄漏或堵塞;流到变速器的油过多;进油管或滤油网堵塞;液压泵磨损严重或损坏;吸油滤网安装不当;油液

液力变矩器常见故障诊断上课讲义

液力变矩器常见故障诊断 朱建山 摘要:本文结合作者在福建可门港物流有限责任公司顶岗实习期间的实践,阐述了装载机液力变矩器的基本结构及其工作原理,在此基础上,对其故障进行分析诊断并提出相应的改进建议。 关键词:故障分析设计改进建议 引言: 装载机是一种广泛用于公路、铁路、建筑、水电、港口、矿山等建设工程的土石方施式机械,它主要用于铲装土壤、砂石、石灰、煤炭等散状物料,也可对矿石、硬土等作轻度铲挖作业。换装不同的辅助工作装置还可进行推土、起重和其他物料如木材的装卸作业。在道路、特别是在高等级公路施工中,装载机用于路基工程的填挖、沥青混合料和水泥混凝土料场的集料与装料等作业。此外还可进行推运土壤、刮平地面和牵引其他机械等作业。由于装载机具有作业速度快、效率高、机动性好、操作轻便等优点,因此它成为工程建设中土石方施工的主要机种之一。 工程机械上使用液力变矩器,具有起步平稳、操作方便、可在较大范围内实现无级变速等优点。因此,液力变矩器在工程机械中得到了广泛的应用。国内轮式装载机上应用的双导轮综合式液力变矩器,具有高效区宽广、变矩过渡至偶合工况平稳的特点。但这种变矩器在使用时间较长以后,易出现过热、工作无力、内部元件损坏等故障。由于变矩器的拆装与维修比较困难,在维修液力变矩器时,必须在弄懂其工作原理和正确地分析故障原因的基础上才能保证维修质量。本文以双导轮综合式液力变矩器为例,介绍液力变矩器的工作原理,分析变矩器工作过程中的常见故障现象、原因和诊断维修方法。 1液力变矩器的基本结构和工作原理 1.1 双导轮液力变矩器的基本结构 该变矩器主要由泵轮、涡轮、第一导轮、第二导轮及导轮座等组成。

液力变矩器的结构与工作原理

液力变矩器的结构与工作原理 (一)液力变矩器的结构 液力变矩器以液体作为介质,传递和增大来自发动机的扭矩 液力变矩器由可转动的泵轮和涡轮,以及固定不动的导轮三元件构成。各件用铝合金精密铸造或用钢板冲压焊接而成。泵轮与变矩器壳成一体。用螺栓固定在飞轮上,涡轮通过从动轴与传动系各件相连。所有工作轮在装配后,形成断面为循环圆的环状体。 (二)液力变矩器的工作原理 导涡泵 液力变矩器工作原理可以用两台电风扇作形象描述,两风扇对置,一台通电转动,产生的气流可吹动不通电的风扇,如果给其添加一个管道这就成了液力偶合器,它能传轴,并不增扭。 变矩器工作时,发动机带动泵轮转动,叶轮带动液流冲向涡轮,从而驱动涡轮转动,刚起动时扭矩最大,此时冲击力为F1,冲到涡轮的液流驱动涡轮后,由于叶片形状,冲向导轮,而导轮不动,冲击导轮的液流受到阻碍,可使涡轮受到反作用力F2,由于F1、F2都作用于涡轮,所以使涡轮所受扭矩得到增大。 涡轮转速升高后,液流变向会冲击导轮叶背,而失去增扭,并有一定阻力。所以现在所用导轮都使用单向离合器,使去冲击叶背时,导轮转过一个角度,使其继续增扭。 导轮下端装有单向离合器,可增大其变扭范围。 (三)锁止式 变矩器是用液力来传递汽车动力的,而液压油的内部摩擦会造成一定的能量损失,因此传动效率较低。为提高汽车的传动效率,减少燃油消耗,现代很多轿车的自动变速器采用一种带锁止离合器的综合式液力变矩器。这种变矩器内有一个由液压油操纵的锁止离合器。锁止离合器的主动盘即为变矩器壳体,从动盘是一个可作

轴向移动的压盘,它通过花键套与涡轮连接(如图2.3).压盘背面(如图2.3右侧)的液压油与变矩器泵轮、涡轮中的液压油相通,保持一定的油压(该压力称为变矩器压力);压盘左侧(压盘与变矩器壳体之间)的液压油通过变矩器输出轴中间的控制油道与阀板总成上的锁止控制阀相通。锁止控制阀由自动变速器电脑通过锁止电磁阀来控制。 自动变速器电脑根据车速、节气门开度、发动机转速、变速器液压油温度、操纵手柄位置、控制模式等因素,按照设定的锁止控制程序向锁止电磁阀发出控制信号,操纵锁止控制阀,以改变锁止离合器压盘两侧的油压,从而控制锁止离合器的工作。当车速较低时,锁止控制阀让液压油从油道B进入变矩器,使锁止离合器压盘两侧保持相同的油压,锁止离合器处于分离状态,这时输入变矩器的动力完全通过液压油传至涡轮,如图2.4所示。 当汽车在良好道路上高速行驶,且车速、节气门开度、变速器液压油温度等因素符合一定要求时,电脑即操纵锁止控制阀,让液压油从油道C进入变矩器,而让油道B与泄油口相通,使锁止离合器压盘左侧的油压下降。由于压盘背面(图中右侧)的液压油压力仍为变矩器压力,从而使压盘在前后两面压力差的作用下压紧在主动盘(变矩器壳体)上,如图2.5所示,这时输入变矩器的动力通过锁止离合器的机械连接,由压盘直接传至涡轮输出,传动效率为100%. 另外,锁止离合器在结合时还能减少变矩器中的液压油因液体摩擦而产生的热量,有利用降低液压油的温度。有些车型的液力变矩器的锁止离合器盘上还装有减振弹簧,以减小锁止离合器在结合时瞬间产生的冲击力。 第二节行星齿轮变速器的工作原理 液力变矩器虽能在一定范围内自动、无级地改变转矩比和转速比,但存在传动

液力变矩器常见故障

液力变矩器常见的故障主要有:油温过高、供油压力过低、漏油、机器行驶速度过低或行驶无力,以及工作时内部发出异常响声等5种。 1、油温过高 油温过高表现为机器工作时油温表超过120°C或用手触摸感觉汤手,主要有以下几种原因:变速器油位过低;冷却系中水位过低;油管及冷却器堵塞或太脏;变矩器在低效率范围内工作时间太长;工作轮的紧固螺钉松动;轴承配合松旷或损坏;综合式液力变矩器因自由轮卡死而闭锁;导轮装配时自由轮机构化机构缺少零件。 液力变矩器油温过高故障的诊断和排除方法如下:出现油温过高时,首先应立即停车,让发动机怠速运转,查看冷却系统有无泄漏,水箱是否加满水;若冷却系正常,则应检查变速器油位是否位于油尺两标记之间。若油位太低,应补充同一牌号的油液;若油位太高,则必须排油至适当油位。如果油位符合要求,应调整机器,使变矩器在高效区范围内工作,尽量避免在低效区长时间工作。如果调整机器工作状况后油温仍过高,应检查油管和冷却器的温度,若用手触摸时温度低,说明泄油管或冷却器堵塞或太脏,应将泄油管拆下,检查是否有沉积物堵塞,若有沉积物应予以清除,再装上接头和密封泄油管。若触摸冷却器时感到温度很高,应从变矩器壳体内放出少量油液进行检查。若油液内有金属末,说明轴承松旷或损坏,导致工作轮磨损,应对其进行分解,更换轴承,并检查泵轮与泵轮毂紧固螺栓是否松动,若松动应予以紧固。以上检查项目均正常,但油温仍高时,应检查导轮工作是否正常。将发动机油门全开,使液力变矩器处于零速工况,待液力变矩器出口油温上升到一定值后,再将液力变矩器换入液力耦合器工况,以观察油温下降程度。若油温下降速度很慢,则可能是由于自由轮卡死而使导轮闭锁,应拆解液力变矩器进行检查。 2、供油压力过低 现象为:当发动机油门全开时,变矩器进口油压仍小于标准值。主要由以下几种原因引起:供油量少,油位低于吸油口平面;油管泄漏或堵塞;流到变速器的油过多;进油管或滤油网堵塞;液压泵磨损严重或损坏;吸油滤网安装不当;油液起泡沫;进出口压力阀不能关闭或弹簧刚度减小。 如果出现供油压力过低,应首先检查油位:若油位低于最低刻度,应补充油液;若油位正常,应检查进、出油管有无泄漏,若有漏油,应予以排除。若进、出管密封良好,应检查进、出口压力阀的工作情况,若进、出口压力阀不能关闭,应将其拆下,检查其上零件有无裂纹或伤痕,油路和油孔是否畅通,以及弹簧刚度是否变小,发现问题应及时解决。如果压力阀正常,应拆下油管或滤网进行检查。如有堵塞,应进行清洗并清除沉积物;如油管畅通,则需检查液压泵,必要时更换液压泵。如果液压油起泡沫,应检查回油管的安装情况,如回油管的油位低于油池的油位,应重新安装回油管。 3、变矩器漏油 变矩器漏油主要是由于变矩器后盖与泵轮拼命面、泵轮与轮毂拼命处连接螺栓松动或密封件老化或损坏造成的。发现漏油应启动发动机,检查漏油部位。如果从变矩器与发动机的连接处漏油,说明泵轮与泵轮罩连接螺栓松动或密封圈老化,应紧固连接螺栓或更换O形密封圈;如果从变矩器与变速器连接处甩油,说明泵轮与泵轮毂连接螺栓松动或密封圈损坏,应紧固螺栓或检查密封圈;如果漏油部位在加油口或放油口位置,应检查螺栓连接的松紧度以及是否有裂纹等。 4、机器行驶速度不定期低或行驶无力 这种故障主要是由以下几种原因引起的:液力变矩器内部密封件损坏,使工作腔液流冲击下降;自由轮机构卡死,造成导轮闭锁;自由轮磨损失效;工作轮叶片损坏;进、出口压力阀损坏;液压泵磨损,供油不足;液压油油位太低;变速器的磨擦式主离合器有故障。 机器挂挡起步后,如果行驶无力或行驶缓慢,应首先检查挂挡压力表的指示压力是否在

华为光伏逆变器常见故障及处理

华为光伏逆变器常见故障及处理 1、绝缘阻抗低:使用排除法。把逆变器输入侧的组串全部拔下,然后逐一接上,利用逆变器开机检测绝缘阻抗的功能,检测问题组串,找到问题组串后重点检查直流接头是否有水浸短接支架或者烧熔短接支架,另外还可以检查组件本身是否在边缘地方有黑斑烧毁导致组件通过边框漏电到地网。 2、母线电压低:如果出现在早/晚时段,则为正常问题,因为逆变器在尝试极限发电条件。如果出现在正常白天,检测方法依然为排除法,检测方法与1项相同。 3、漏电流故障:这类问题根本原因就是安装质量问题,选择错误的安装地点与低质量的设备引起。故障点有很多:低质量的直流接头,低质量的组件,组件安装高度不合格,并网设备质量低或进水漏电,一但出现类似问题,可以通过在洒粉找出**点并做好绝缘工作解决问题,如果是材料本省问题则只能更换材料。 4、直流过压保护:随着组件追求高效率工艺改进,功率等级不断更新上升,同时组件开路电压与工作电压也在上涨,设计阶段必须考虑温度系数问题,避免低温情况出现过压导致设备硬损坏。 5、逆变器开机无响应:请确保直流输入线路没有接反,一般直流接头有防呆效果,但是压线端子没有防呆效果,仔细阅读逆变器说明书确保正负极后再压接是很重要的。逆变器内置反接短路保护,在恢复正常接线后正常启动。 6、电网故障: 电网过压:前期勘察电网重载(用电量大工作时间)/轻载(用电量少休息时间)的工作就在这里体现出来,提前勘察并网点电压的健康情况,与逆变器厂商沟通电网情况做技术结合能保证项目设计在合理范围内,切勿“想当然”,特别是农村电网,逆变器对并网电压,并网波形,并网距离都是有严格要求的。出现电网过压问题多数原因在于原电网轻载电压超过或接近安规保护值,如果并网线路过长或压接不好导致线路阻抗/感抗过大,电站是无法正常稳定运行的。解决办法是找供电局协调电压或者正确选择并网并严抓电站建设质量。 电网欠压:该问题与电网过压的处理方法一致,但是如果出现独立的一相电压过低,除了原电网负载分配不完全之外,该相电网掉电或断路也会导致该问题,出现虚电压。 电网过/欠频:如果正常电网出现这类问题,证明电网健康非常堪忧。 电网没电压:检查并网线路即可。 电网缺相:检查缺相电路,即无电压线路。 三相不平衡,并网线路外加特殊设备导致并网异常震荡,超长距离并网,电网削顶过压相移。 7、最后一点——监控搭接:正确阅读各设备说明书机型线路压接,设备连接,并设置好设备的通讯地址,时间,是保证通讯稳定有效的保证! 8、发电量保证:有空擦擦板子,发电量“凸”一下就起来了。

液力变矩器的结构

1、三元一级双相型液力变矩器 三元是指液力变矩器是由泵轮、涡轮和导轮三个主要元件组成的。一级是指只有一个涡轮(部分液力偶合器里装有两个涡轮,工作时油液容易发生紊乱)。双相是指液力变矩器的工作状态分为变矩区和偶合区。 图4-1为液力变矩器三个主要元件的零件图。 2、液力变矩器的结构和作用 泵轮的叶片装在靠近变速器一侧的变矩器壳上,和变矩器壳是一体的。变矩器壳是和曲轴或曲轴上的挠性板用螺栓连接的,所以泵轮叶片随曲轴同步运转。发动机工作时,它引导液体冲击涡轮叶片,产生液体流动功能,是液力变矩器的主动元件。 观看液力变矩器油液流动 图上通过箭头示意液体流动方向。油液由泵轮的外端传入涡轮的外端,经涡轮内端传到导轮时改变了油液的流动方向,经导轮传给泵轮的油液的流动方向恰好和泵轮的旋转方向一致。 * 3、液力变矩器的锁止和减振 液力变矩器用油液作为传力介质时,即使在传递效果最佳时,也只能传递90%的动力。其余的动力都被转化为热量,散发到油液里。为提高偶合工况的传动效率,变矩器设置了锁止离合器。液力变矩器进入偶合工况后,变矩器内的闭锁离合器就有可能进入锁止工况。而变矩器一旦进入锁止工况,发动机的动力就可以100%的传给传动系。可以避免液力传动过程中不可避免的动力损失,提高液力变矩器的工作效率。 液力变矩器根据锁止形式的不同,负责锁止的闭锁离合器分为液力锁止、离心力锁止和粘液离合器锁止三种形式。 (1)液力锁止离合器 液力锁止的闭锁离合器出现于20世纪70年代,是目前使用最为广泛的变矩器锁止形式。 液力锁止的结构是在涡轮背面加装一个摩擦式压盘(被习惯称之为离合器盘),压盘上粘有一圈摩擦环。液力锁止离合器进入锁止工况的示意图,见图4-4。进入锁止工况时,变矩器内工作油液压加

液力自动变速箱四大常见故障及方法

自动变速箱简称AT,全称Auto Transmission,它是由液力变扭器、行星齿轮和液压操纵系统组成,通过液力传递和齿轮组合的方式来达到变速变矩。 汽车自动变速箱常见的有三种型式,分别是液力自动变速箱(简称AT)、机械无级自动变速箱(简称CVT)、电控机械自动变速箱(简称AMT)。 液力自动变速箱是由液力变扭器和行星齿轮变速器组合而成的变速器。液力变扭器(HYDRAULIC CONVERTER),通过液力传递和齿轮组合的方式来达到变速变矩。其中液力变扭器是AT最具特点的部件,它由泵轮、涡轮和导轮等构件组成,直接输入发动机动力传递扭矩和离合作用。 下面是小编整理的液力自动变速箱四大常见的故障:

一,液力变矩器内支撑导轮的单向离合器打滑 1,故障现象 当车辆出现在30~50km/h以下加速不良,车速上升缓慢,过了低速区后加速良好的故障时,很可能是液力变矩器内支撑导轮的单向离合器打滑。 2,故障原因 变矩器低速增扭,靠的是导轮改变液流方向,变矩器内支撑导轮的单向离合器打滑后,导轮没有了单向离合器的支撑,在增扭工况时无法改变液流的方向。这样经导轮返回的液流流向和泵轮旋转方向相反,发动机需克服反向液流带来的附加载荷,于是液力变矩器变成了液力偶合器,低速增扭变成了低速降扭,所以汽车在低速区(变矩器增加扭矩工况区域)加速不良。 3,故障诊断 发动机热机后,将4个车轮用三角木或砖头塞住,拉紧驻车制动器,踩住脚制动踏板,用眼睛盯住发动机转速表,将油门完全踩到底,如发动机的失速转速明显低于规定值,说明液力变矩器内支撑导轮的单向离合器打滑。 二,自动变速器不能强制降挡 1、故障现象:当汽车以3挡或超速挡行驶时,突然将油门踏板踩到底,自动变速器不

逆变器操作说明和故障处理

一逆变器原理介绍 1.1逆变(invertion):把直流电转变成交流电的过程。 逆变电路是把直流电逆变成交流电的电路。当交流侧和电网连结时,为有源逆变电路。变流电路的交流侧不与电网联接,而直接接到负载,即把直流电逆变为某一频率或可调频率的交流电供给负载,称为无源逆变。 逆变桥式回路把直流电压等价地转换成常用频率的交流电压。逆变器主要由晶体管等开关元件构成,通过有规则地让开关元件重复开-关(ON-OFF),使直流输入变成交流输出。当然,这样单纯地由开和关回路产生的逆变器输出波形并不实用。一般需要采用高频脉宽调制(SPWM),使靠近正弦波两端的电压宽度变狭,正弦波中央的电压宽度变宽,并在半周期内始终让开关元件按一定频率朝一方向动作,这样形成一个脉冲波列(拟正弦波)。然后让脉冲波通过简单的滤波器形成正弦波。 1.2 IGBT的结构和工作原理 1.2.1 IGBT的结构 IGBT是三端器件,具有栅极G、集电极C和发射极E。IGBT由N沟道VDMOSFET 与双极型晶体管组合而成的,VDMOSFET多一层P+注入区,实现对漂移区电导率进行调制,使得IGBT具有很强的通流能力。图1-1为IGBT等效原理图及符号表示 图1-1 IGBT等效原理图及符号表示 1.2.2IGBT的工作原理 IGBT的驱动原理与电力MOSFET基本相同,是一种场控器件。 其开通和关断是由栅极和发射极间的电压U GE决定的。

当U GE为正且大于开启电压U GE(th)时,MOSFET内形成沟道,并为晶体管提供基极电流进而使IGBT导通。 当栅极与发射极间施加反向电压或不加信号时,MOSFET内的沟道消失,晶体管的基极电流被切断,使得IGBT关断。 电导调制效应使得电阻R N减小,这样高耐压的IGBT也具有很小的通态压降。 1.3逆变电路介绍 1.3.1逆变产生的条件为 1,要有直流电动势,其极性须和晶闸管的导通方向一致,其值应大于变流器直流侧的平均电压。 2要求晶闸管的控制角α>π/2,使U d为负值。 两者必须同时具备才能实现有源逆变。 逆变运行时,一旦发生换相失败,外接的直流电源就会通过晶闸管电路形成短路,或者使变流器的输出平均电压和直流电动势变成顺向串联,由于逆变电路的内阻很小,形成很大的短路电流,这种情况称为逆变失败,或称为逆变颠覆。 逆变失败的原因 1触发电路工作不可靠,不能适时、准确地给各晶闸管分配脉冲,如脉冲丢失、脉冲延时等,致使晶闸管不能正常换相。 2晶闸管发生故障,该断时不断,或该通时不通。 3交流电源缺相或突然消失。 4换相的裕量角不足,引起换相失败 为了防止逆变失败,不仅逆变角β不能等于零,而且不能太小,必须限制在某一允许的最小角度内。 1.3.2逆变电路基本的工作原理 图1-2单相逆变电路原理图

相关主题