搜档网
当前位置:搜档网 › 【CN109768531A】一种GaN大电流自供电直流固态断路器及直流电源系统【专利】

【CN109768531A】一种GaN大电流自供电直流固态断路器及直流电源系统【专利】

【CN109768531A】一种GaN大电流自供电直流固态断路器及直流电源系统【专利】
【CN109768531A】一种GaN大电流自供电直流固态断路器及直流电源系统【专利】

(19)中华人民共和国国家知识产权局

(12)发明专利申请

(10)申请公布号 (43)申请公布日 (21)申请号 201910228365.2

(22)申请日 2019.03.25

(71)申请人 安徽工业大学

地址 243000 安徽省马鞍山市湖东路59号

(72)发明人 周郁明 肖彩虹 

(74)专利代理机构 安徽知问律师事务所 34134

代理人 王亚军

(51)Int.Cl.

H02H 7/26(2006.01)

(54)发明名称一种GaN大电流自供电直流固态断路器及直流电源系统(57)摘要本发明公开了一种GaN大电流自供电直流固态断路器及直流电源系统,属于直流电源供电和配电领域。具体由主开关S和反激变换器C构成,主开关S是由若干个性能参数一致的宽禁带半导体材料氮化镓制作的固体开关S 1、S 2、……、S n 并联构成,并且都是常通型结构,反激变换器C是具有宽输入电压范围的自激式结构,依靠故障电路的大电流在主开关两端产生的电压来激励工作,并输出稳定的电压驱动并联的半导体固体开关同步动作,断开负载和直流电源,达到保护负载和电源的目的,而且断路器在传递正常电流和断

开负载的过程无需外电源供电。权利要求书1页 说明书6页 附图1页CN 109768531 A 2019.05.17

C N 109768531

A

权 利 要 求 书1/1页CN 109768531 A

1.一种GaN大电流自供电直流固态断路器,其特征在于:包括,主开关和反激变换器,主开关和反激变换器并联,主开关由若干宽禁带GaN半导体固体开关并联构成。

2.根据权利要求1所述的一种GaN大电流自供电直流固态断路器,其特征在于:主开关和反激变换器的连接关系如下,

若干个并联的宽禁带GaN半导体固体开关按对称结构布置;若干个宽禁带GaN半导体固体开关的驱动电极从它们的对称点中心引出连接线,连接到反激变换器输出端的负极;若干个宽禁带GaN半导体固体开关的阳极从它们的对称点中心引出连接线,连接到直流电源;若干个宽禁带GaN半导体固体开关的阴极从它们的对称点中心引出连接线,连接到负载;反激变换器输出端的正极连接到半导体固体开关阴极的对称点中心;反激变换器输入端的正极连接到半导体固体开关阳极的对称点中心;反激变换器输入端的负极连接到半导体固体开关阴极的对称点中心。

3.根据权利要求1或2所述的一种GaN大电流自供电直流固态断路器,其特征在于:所述宽禁带GaN半导体固体开关为常通型结构。

4.根据权利要求3所述的一种GaN大电流自供电直流固态断路器,其特征在于:所述宽禁带GaN半导体固体开关为对称或非对称结构。

5.根据权利要求1所述的一种GaN大电流自供电直流固态断路器,其特征在于:所述的宽禁带GaN半导体固体开关为GaN HEMT或GaN SIT。

6.根据权利要求1或2所述的一种GaN大电流自供电直流固态断路器,其特征在于:反激变换器是自激式结构。

7.一种直流电源系统,其特征在于:直流电源系统包括权利要求1-6任意所述的GaN大电流自供电直流固态断路器,断路器主开关串联在电源和负载之间。

8.根据权利要求7所述的一种直流电源系统,其特征在于:具体连接方式如下,负载的一端连接电源的负极,另一端连接断路器主开关中宽禁带GaN半导体固体开关的阴极对称点中心,电源的正极与断路器主开关中宽禁带GaN半导体固体开关的阳极对称点中心相连。

2

低压断路器基本参数知识

低压断路器的几个基本参数 断路器的额定持续电流:Iu,额定持续电流Iu是制造商声明该设备可连续工作的电流值。当低压电器流过额定持续电流时,低压电器必须工作在长期工作制下,低压电器的各部件温升不超过极限值 断路器的额定电流:Ie,在规定条件下保证电器正常工作的电流值 断路器的额定短时耐受电流:Icw,额定短时耐受电流Icw是指在规定使用条件将处于闭合位置的低压断路器流过其能够承载的最大电流,同时对该电流流过断路器的时间也做了规定(1秒和3秒),断路器必须能够承载Icw 断路器的极限短路分断能力:Icu,断路器在额定工作电压下,按“打开→延时T→再次闭合→再次打开”的工作顺序O-t-CO执行操作,在执行顺序中的流过断路器的电流为最大短路电流,顺序后则不再要求断路器承载额定电流。其实此时的断路器已经损坏。 断路器的额定运行短路分断能力:Ics,断路器在额定工作电压和功率因素下,按“第一次打开→第一次延时T→第二次闭合→第二次打开→第二次延时T→第三次闭合→第三次打开”的工作顺序O-t-CO-t-CO执行操作,在执行顺序中的流过断路器的电流为短路电流,顺序后则要求断路器能继续工作并且满足承载额定电流的要求。显然,Ics是衡量断路器分断 短路电流的能力,是断路器动稳定性的指标。Ics和Icu的关系是:Ics≤Icu

断路器的额定短路接通能力:Icm,断路器在额定工作电压、额定频率和规定的功率因数下能够接通的短路电流。 未完待续 问题描述 我们的问题是:在断路器的样本中已经指明只要断路器的极限短路分断能力Icu满足Icu>I k,则此断路器就能分断该电力变压器的短路电流。可是:变压器产生的ipk怎么办呢?难道它不会影响到断路器的分断能力吗? 4)Icm开始起作用了 额定短路接通能力Icm是断路器的重要技术指标,它的值约为Icu的2.0~2.2倍,所以尽管冲击短路电流峰值ipk是如此之大,但只要在足够短的时间内通过断路器,那么对断路器也就不会产生什么影响。 所以,在各大公司的断路器样本中都把Icu作为分断变压器产生的短路电流的主要技术指标。 5)知识扩充 我们已经知道,断路器一旦流过Icu以后,这台断路器就永久地损坏了,而断路器的额定运行短路分断能力Ics则不一样,断路器流过Ics后能够重复使用。那么为什么不将Ics作为断路器分断变压器短路电流的主要技术指标呢? 从Ics的定义中我们看到它的试验程序是O-t-CO-t-CO,其中C表示CLOSE(闭合)而O 表示OPEN(打开),所以Ics比Icu的测试条件要严酷的多。 目前在电气工程设计中有两种意见,第一种意见认为Ics有两个CO,Ics比Icu的保险系数更大,所以在工程中应当选用Ics;第二种意见认为应当认为Icu更重要。我个人的意见也赞同后者,理由如下: A)当短路线路中出现最大预期短路电流时,只要Icu大于此电流,则断路器就可以安全可靠地切断此电流。尽管此后此断路器已经损坏而必须更换,但考虑到线路中出现最大预期短路电流的机会少而又少,几乎在断路器的一生中都碰不到一次。 B)由于Ics小于Icu,因此会出现选用问题。 例如:若线路预期短路电流是60kA,则选用Icu是60kA而Ics为50kA。若选用Ics为60k A,则务必Icu更大,造成采购成本增加;另外,如果没有Ics=50kA同时Icu=60kA规格的断路器的化,势必要使用更大规格的断路器,造成不必要的浪费。 现在我们再看看Icw的问题。 Icw是短时耐受电流,一般时间是1秒,它是衡量断路器承受短路电流发热的冲击作用的物理参量。 我们知道热能Q可以表达为UIt,也可表达为RI2t。将热能除电阻就得到一个新的参量I2t,I2t参量表征了某元件容许流过的最大发热电流,其单位是电流的平方乘以时间,这个参量就是Icw。

断路器容量选择

用户选用产品方法简介 一) 断路器额定电流和漏电电流的作用 断路器作为配电保护开关,如何根据用电设备容量来选择恰当容量(额定电流规格)的断路器以及 相应 导线(电缆)截面。 用电设备分为单相和三相: 1、单相负载:功率P=UI COSφ I = P/UCOSφ 式中:U-单相220V COSφ--负载功率因数,一般取0.8 例如:单相负载用电设备总容量为20KW,计算电流 I =20000/(220x0.8) = 113.6A 则应选用额定电流In=140A的断路器。如果配电柜散热条件较差,则应选择160A断路器。因为断路 器的额定电流按标准考核 是单独安装,并在无外壳的条件下测试的,因此,安装在配电箱或配电柜中, 散热条件差,应降容为0.7~0.8使用。 家用空调机有1匹、1.5匹、2匹、3匹等,一般均指制冷功率,空调设备的用电功率除了制冷机(压缩机) ,还有风扇、室内 机等损耗,所以一般应按每匹1KW来计算。 例如:1匹空调机,工作电流 I =1000/(220X0.8) = 5.7A 一般柜式空调机名牌上有标明额定工作电流和恶劣条件下的工作电流,恶劣条件下电流大约为额定工作 电流的1.3倍。上述计 算方法所得结果介于两者之间。一般选择保护开关可以按上述方法计算,考虑空 调机 的起动电流,一匹空调应选择DZ47 D型6A 或C型10A。

2、三相负载(如三相电动机负载) 三相功率 P= UICOSφ I = P/( UICOSφ) 式中:U--380V COSφ- 一般取0.8 例:一台45KW三相电动机,计算电流 I =45000/( X380X0.8) = 85.5A 可选择额定电流In=100A断路器,散热条件差的场所,可能要选择120A的断路器。 3、导线(电缆)截面的选择 导线(电缆)允许载流量,在电线、电缆生产厂的手册中都可以查到。载流量与使用环境、电缆数量 等有关。部分规格聚氯乙烯绝缘电力电缆在空气中敷设的允许载流量如表3(型号为VV、VLV 低压电缆 ,根据广东电缆厂样本) 铜 电 缆 表 允许载流量 A 标称截面 mm2 单芯 2芯 3芯 4芯 1.5 24 19 17 17 2.5 31 26 22 22 4.0 41 35 29 30 6.0 52 44 37 38 10 72 60 52 53 16 95 80 68 70 25 120 107 91 94 35 150 131 112 116 50 180 152 133 139 70 230 194 171 177 95 280 238 209 217 120 325 275 242 254

真空断路器结构介绍(图)

真空断路器结构介绍 1.真空断路器结构的基本要求 1)机械性能稳定,例如合闸弹跳时间,希望在寿命全程中保持同一状态,不要初期无弹跳, 后期则弹跳。 2)足够的机械强度,使断路器本身具有足够的动稳定度。 3)高压区和低压区的分隔,最好是前后布置,有助于保证运行中人员的人身安全。 4)操动机构的检查、调整、维修要有足够空间。方便。 5)配用机构的可选择性,有的型号可配CD和CT两种机构,有的只能配用一种。 6)结构简单、工作可靠、价格低廉。 7)易于实现防误联锁。 所有真空断路器,不论是何种结构,断路器本体中均装设有分闸拉力弹簧。合闸过程中操动机构既要提供驱动开关运动的功,又要同时将分闸弹簧贮能。当需要分闸时,操动机构只需完成脱扣解锁任务,由分闸弹簧释能完成分闸运动。 2.功能部件 真空断路器按其结构的功能可分为六个部分: 1)支架:安装各功能组件的架体。 2)真空灭弧室:实现电路的关合与开断功能的熄弧元件。 3)导电回路:与灭弧室的动端及静端连接构成电流通道。 4)传动机构:把操动机构的运动传输至灭弧室,实现灭弧室的合、分闸操作。 5)绝缘支撑:绝缘支持件将各功能元件,架接起来满足断路器的绝缘要求。 6)操动机构:断路器合、分间的动力驱动装置 3.真空断路器结构简图 下图为我公司生产的ZN28A-12型真空断路器的结构图,图一和图二分别为正面和侧面视图。真空断路器的主要部件及名称说明见标注1-16。

1.开距调整片 16.连接弹簧或电磁操动机构的大轴 图一、ZN28A-12型真空断路器外型图(正面)

2.触头压力弹簧 3.弹簧座 4.接触行程调整螺栓 5.拐臂 6.导向板 7.螺钉 8.导电夹紧固螺栓 9.下支座 10.真空灭弧室 11.真空灭弧室 12.上支座 13.绝缘子固定螺丝 14.绝缘子 15.螺栓 16. 连接弹簧或电磁操动机构的大轴 图二、ZN28A-12型真空断路器外型图(侧面) 4.结构型式 真空断路器的类型,可从不同角度来划分,一般情况下主要从以下两个方面划分: 1)按使用场所划分--可分为户内式和户外式(见图三、图四),分别用ZN和ZW来表示。 2)按断路器主体与操动机构的相关位置划分--可分为整体式和分体式。整体式真空断路器操动机构与开关本体安装在同一骨架上,体积小、重量轻、安装调整方便、机械性能稳定。分体式真空断路器操动机构与开关本体分别装于开关柜的不同位置上(图一、二为分体式ZN28),断路器的各项机械特性参数必须安装在开关柜上调整试验才有实际意义,这种安装方式主要受我国少油断路器的安装方式的社响,比较适合于少油开关柜的无油化改造,优点是巡视和检修方便,缺点是安装调整稍麻烦,机械特性的稳定性和可靠性稍逊。

ZW32真空断路器使用说明书

1. 概述 ZW32-12 系列户外交流高压真空断路器(以下简称“断路器”)系三相交流50Hz户外高压开关设备,主要用于农网和城网的10kV户外配电系统,作为分、合负荷电流、过载电流及短路电流之用;也可用于其它类似场所。ZW32-12系列户外交流高压真空断路器符合国家GB 1984《交流高压断路器》和国际电工委员会IEC 60056《高压交流断路器》等标准。 2. 型号及含义 3. 使用条件 3.1 正常使用条件 a) 周围空气温度: -40℃~+40℃; b) 海拔高度: 不超过2000m; c) 周围空气可以受到尘埃、烟、腐蚀性气体、蒸汽或盐雾的污染; d) 风速不超过34m/s(相当于圆柱表面上的700Pa); e) 来自开关设备和控制设备处部的振动或地动是可以忽略的; f) 污秽等级:Ⅲ级。 3.2 特殊使用条件 断路器可以在不同于以上规定的正常使用条件下使用,这时用户的要求应和制造厂家进行协商,并取得一致的意见。 3.3 如超出上述正常使用条件,由用户与制造厂协商。 4. 技术参数 4.1 断路器主要技术参数

4.2 断路器装配调整参数 4.3 CTB弹簧操动机构主要技术参数

4.4 带隔离开关的ZW32户外真空断路器,除满足表1、表2的要求外,隔离开关部分还应满足表4的要求 5. 断路器结构特点 5.1 断路器采用三相支柱式结构,具有开断性能稳定可靠、无燃烧和爆炸危险、免维修、体积小、重量轻和使用寿命长等特点。 5.2 断路器采用全封闭结构,密封性能好,有助于提高防潮、防凝露性能,特别适用于严寒或潮湿地区使用。 5.3 三相支柱及电流互感器采用进口户外环氧树脂固体绝缘,或采用户内环氧树脂外包有机硅橡胶固体绝缘;具有耐高低温、耐紫外线、耐老化等特点。 5.4 操动机构采用小型化弹簧操动机构,储能电机功率小,分合闸能耗低;机构传动采用直动传输方式,零部件数量少,可靠性高。操动机构置于密封的机构箱内,解决了操动机构锈蚀的问题,提高了机构的可靠性。 5.5 断路器的分、合闸操作可采用手动或电动操作及远方遥控操作。可与智能控制器配套实现配电自动化,也可以与重合控制器配合组成自动重合器、分段器。 5.6 断路器可以装设二相或三相电流互感器,供过电流或短路保护用,也可以给智能控制器提供电流采集信号;根据用户要求可加装计量用电流互感器。

断路器过流脱扣器额定电流的选择和整定

断路器广泛应用于低压配电系统中,是一种保护电器元件。在设计低压配电系统时,应注意断路器的选择性,对断路器过流脱扣器额定电流进行选择和整定,确保充分发挥过电流脱扣器的作用;当环境温度大于或小于校准温度值时,应根据制造商提供的温度与载流能力修正系数来调整低压断路器的额定电流值。 1、断路器的几种电流参数 断路器的额定电流In,是指脱扣器能长期通过的电流,也就是脱扣器额定电流。 断路器壳架等级额定电流Inm,用基本几何尺寸相同和结构相似的框架或塑料外壳中所装的最大脱扣器额定电流表示。它决定了所能安装的脱扣器的最大额定电流值。例如,DW15—1600额定电流800A的断路器,1600 A是断路器的壳架等级额定电流Inm,断路器的额定电流In为800A。 过电流脱扣器可分为过载脱扣器和短路(电磁)脱扣器,有长延时动作电流(Ir1)、短延时动作电流(Ir2)和瞬时动作电流(Ir3)之分。如正泰产DW15—1600的Ir1为(0.7~1)In,Ir3为(1~3)In,没有短延时脱扣器;常熟产CW2—1600A 的Ir1为(0.4~1)In,Ir2为(0.4~15)In+OFF,短延时时间0.1s—0.4s,共4级,Ir3为1.6KA~35 kA+OFF。 断路器的额定极限短路分断能力(Icu):按规定的试验程序所规定的条件,不包括断路器继续承载其额定电流能力的分断能力;也就是断路器规定的试验电压及其它规定条件下的极限短路分断电流值,不考虑断路器继续承载它的额定电流。 极限短路分断能力Icu的试验程序为O—t—CO。 其具体试验是:把线路的电流调整到预期的短路电流值(例如380V,50kA),而试验按钮未合,被试断路器处于合闸位置,按下试验按钮,断路器通过50kA的短路电流,断路器立即开断(OPEN简称O)并熄灭电弧,断路器应完好,且能再合闸。t为间歇时间,一般为3min,此时线路处于热备状态(试验按钮仍在按下状态),断路器再进行一次接通(CLOSE简称C)和紧接着的开断(O)(接通试验是考核断路器在峰值电流下的电动和热稳定性和动、静触头因弹跳的磨损)。此程序即为CO。断路器能完全分断,熄灭电弧,并无超出规定的损伤,就认定它的极限分断能力试验成功。 额定运行短路分断能力Ics,是指断路器在规定的试验电压及其它规定条件下的一种比额定极限短路分断电流小的分断电流值,在按规定的试验程序O—t—CO—t—CO动作之后,断路器应有继续承载它的额定电流的能力。它比Icu的试验程序多了一次CO。Ics是Icu的一个百分数。对于万能式和塑壳式断路器,

断路器的几个电流概念

极限短路分断能力(Icu),是指在一定的试验参数(电压、短路电流、功率因数) 条件下,经一定的试验程序,能够接通、分断的短路电流,经此通断后,不再继续承载其额定电流的分断能力。它的试验程序为0—t(线上)C0 (“0”为分断,t 为间歇时间,一般为3min,“C0”表示接通后立即分断)。试检后要验证脱扣特性和工频耐压。 运行短路分断能力(Ics),是指在一定的试验参数(电压、短路电流和功率因数) 条件下,经一定的试验程序,能够接通、分断的短路电流,经此通断后,还要继续承载其额定电流的分断能力,它的试验程序为0—t(线上)C0—t (线上)C0。 短时耐受电流(Icw),是指在一定的电压、短路电流、功率因数下,忍受0.05、0.1、0.25、0. 5或1s而断路器不允许脱扣的能力,Icw 是在短延时脱扣时,对断路器的电动稳定性和热稳定性的考核指标 选择断路器的一个重要原则是断路器的短路分断能力≥线路的预期短路电流,这个断路器的短路分断能力通常是指它的极限短路分断能力。 -- 作者:ZYP -- 发布时间:2005-4-7 11:52:00 -- 低压断路器的电流参数 摘要:本文分析低压断路器的各个电流参数的概念,提出选择低压断路器时就标定的电流参数和标定方法。 断路器是配电系统中主要的保护电器之一,也是功能最完善的保护电器,其主要作用是作为短路、过载、接地故障、失压以及欠电压保护。根据不同需要,断路器可配备不同的继电器或脱扣器。脱扣器是断路器总体的一个组成部分,而继电器,则通过与断路器操作机构相连的欠电压脱扣器、分励脱器来控制断路器。低压断路器一般由脱扣器来完成其保护功能。

10kV真空断路器分合闸线圈烧毁原因分析及处理

10kV真空断路器分合闸线圈烧毁原因分析及处理 发表时间:2018-01-30T17:33:54.050Z 来源:《电力设备》2017年第28期作者:曾伟胜 [导读] 摘要:本文以VSEP系列真空弹簧机构断路器为例,对导致真空弹簧机构断路器分合闸线圈烧毁的原因进行了分析,并针对缺陷原因提出了处理措施,以此来预防和减少类似故障的发生。 (广东电网有限责任公司汕尾供电局 516600) 摘要:本文以VSEP系列真空弹簧机构断路器为例,对导致真空弹簧机构断路器分合闸线圈烧毁的原因进行了分析,并针对缺陷原因提出了处理措施,以此来预防和减少类似故障的发生。 关键词:断路器;线圈烧毁;VSEP系列。 0、引言 针对日常班组处理缺陷统计,其10kV真空断路器分合闸线圈烧损的缺陷率占据了首位位置,分别是2014年26起,2015年18起,2016年21起,其中合闸线圈烧损率占其85%。缺陷故障率高,将增加了检修的工作量、生产成本和非计划停电次数,直接影响了电力系统的供电可靠性。因为10kV出线直接影响到数以万计的用户,为了提高电力系统的供电可靠性,我们必须对此类缺陷的原因进行深入的研究分析,并提出有效的解决措施,尽可能的减少类似故障的发生,下面以VSEP型真空断路器为例来进行研究分析。 1、VSEP系列断路器 1.1分析故障原因前,先来了解VSEP型断路器机构的工作原理。真空断路器操作机构,如下图: 真空断路器操动机构(图1) ①储能电机及手动储能孔位②传动链条③储能弹簧④储能保持掣子及顶轴⑤滚轮⑥凸轮⑦电气闭锁线圈⑧合闸半轴联板⑨辅助开关、拐臂头、连杆⑩分闸半轴联板?分闸半轴 1.2真空断路器操作机构工作原理: 储能:储能电机或者是手动储能①,能带动传动链条②带动储能轴跟随传动并通过拐臂拉伸对储能弹簧③进行拉伸储能,到达储能位置时,储能轴与链轮传动系统脱开储能保持掣子④顶住滚轮⑤,保持储能位置。同时,储能到位后辅助接点闭合,电机回路断电后储能电机停止工作,如是手动储能,位置到达后储能机构将进行脱扣空转。 合闸:合闸操作分电动和手动,其工作原理就是让其合闸触板带动合闸半轴运动,让合闸半轴另一边的储能保持掣子④脱扣滚轮⑤,合闸弹簧释放能量收缩同时通过拐臂使储能轴和轴上的凸轮⑥转动,凸轮⑥又驱动连杆机构带动连接头和动触头进入合闸位置,并压缩触头弹簧,保持触头所需接触压力。手动合闸和电气合闸的区别就在于:电气合闸是利用合闸线圈通电击打触动合闸半轴联板动作,但电气合闸必须通过电气闭锁⑦才能可靠动作,而手动合闸就是手动来让合闸半轴联板动作。 分闸:可人工触按分闸按钮即分闸半轴联板⑩带动分闸半轴?脱扣,也可靠电气程序分闸线圈得电或过流脱扣电磁铁动作使合闸保持掣子与半轴脱扣而实现分闸操作。由触头弹簧和分闸弹簧储存的能量使真空灭弧室动静触头分离。 2、分、合闸线圈烧毁举例及分析 2.1 真空断路器的分合闸线圈 在真空断路器的弹簧操作机构中,分、合闸线圈不是断路器动作的直接动力,而是直接接在控制回路中,作用于分、合闸半轴联板,使储能弹簧的能量得以释放。分、合闸线圈是在被施加额定电压和额定电流后,产生击打分、合闸半轴联板的冲击力,打开闭锁弹簧能量的掣子扣接,实现分、合闸的。分、合闸线圈的作用时间很短,一般是几十毫秒,分、合闸线圈只需在这个瞬间提供一个打开保持掣子扣接的动力,这个动力来源于分、合闸线圈的旋转磁场,即通过线圈的电流,因此分、合闸线圈的额定电流通电时间短。如果线圈通过较大的电流或者长时间通电,线圈就会发生过热而烧毁。线圈一般烧损时间为4~6秒之间。即假设机构故障,使分合闸线圈得电后不能瞬时实现机构脱扣,线圈通电超过4秒后烧损几率将增大。 2.2 分、合闸线圈烧毁缺陷的原因分析 导出近年来广东汕尾地区10kV真空断路器合闸线圈烧坏缺陷进行统计分析,并结合2.1节对分、合闸线圈的作用原理进行分析,总结出分、合闸线圈烧坏的原因有以下几点: 1)分、合闸线圈电阻变大或者端电压不足,都会使通过分、合闸线圈的电流较小,以致线圈产生的磁场作用在分、合闸顶杆的作用力不足,不能正常打开保持掣子,导致分、合闸线圈由于长时间通电而烧毁。 2)断路器的操动机构故障。㈠、分、合闸半轴转动卡涩;㈡、分闸触板⑩角度过高,分闸线圈冲杆行程过短,使其无法对在有效的行程内对分闸触板进行击打脱扣,这些都将导致分、合闸线圈长时间通过电而不能瞬时使保持掣子脱扣,进而将烧坏线圈。 3)弹簧储能故障。㈠、储能电机故障、储能弹簧断裂、与储能机构联动的辅助开关故障。在弹簧未储能情况下合闸,合闸线圈将一直通电,持续通电将造成合闸线圈烧毁。㈡、储能电机故障没有足够的力量储能拐臂到位后与保持掣子保持合适的扣接量,使合闸线圈通过额定电压和额定电流时所产生的冲击力不足以使保持掣子脱扣,导致线圈长时间通电而烧毁。 4)断路器的辅助开关故障、或拐臂头及连杆故障。如真空断路器操作机构(图)辅助开关⑨,如果该辅助开关故障或常闭、常开触点异常或者是拐臂头及连杆脱落,使开关机构分合闸位置无法通过辅助开关进行正确表示,分、合闸线圈将会持续通电,进而造成线圈损

固态继电器介绍及工作原理

固态继电器介绍及工作原理 1.什么是固态继电器,有什么优缺点? 固态继电器(亦称固体继电器)英文名称为Solid State Relay,简称SSR。它是用半导体器件代替传统电接点作为切换装置的具有继电器特性的无触点开关器件,单相SSR为四端有源器件,其中两个输入控制端,两个输出端,输入输出间为光隔离,输入端加上直流或脉冲信号到一定电流值后,输出端就能从断态转变成通态。 固态继电器工作可靠,寿命长,无噪声,无火花,无电磁干扰,开关速度快,抗干扰能力强,且体积小,耐冲击,耐振荡,防爆、防潮、防腐蚀、能与TTL、DTL、HTL等逻辑电路兼容,以微小的控制信号达到直接驱动大电流负载。主要不足是存在通态压降(需相应散热措施),有断态漏电流,交直流不能通用,触点组数少,另外过电流、过电压及电压上升率、电流上升率等指标差。 2. 固态继电器可应用于哪些场合? 固态继电器目前已广泛应用于计算机外围接口装置,电炉加热恒温系统,数控机械,遥控系统、工业自动化装置;信号灯、闪烁器、照明舞台灯光控制系统;仪器仪表、医疗器械、复印机、自动洗衣机;自动消防,保安系统,以及作为电网功率因素补偿的电力电容的切换开关等等,另外在化工、煤矿等需防爆、防潮、防腐蚀场合中都有大量使用。 3.固态继电器可分为哪些类型? 交流固态继电器按开关方式分有电压过零导通型(简称过零型)和随机导通型(简称随机型);按输出开关元件分有双向可控硅输出型(普通型)和单向可控硅反并联型(增强型);按安装方式分有印刷线路板上用的针插式(自然冷却,不必带散热器)和固定在金属底板上的装置式(靠散热器冷却);另外输入端又有宽范围输入(DC3-32V)的恒流源型和串电阻限流型等。 4.过零型SSR与随机型SSR在用途上有什么区别? 过零型SSR用作“开关”切换(从“开关”切换功能而言即等同于普通的继电器或接触器),我们通常讲的固态继电器多数都为过零型(过零型SSR只能“开关”不能“调压”)。 随机型SSR主要用于“斩波调压”(但随机型SSR的控制信号必须为与电网同步且上升沿可在0°-180°范围内改变的方波信号时才能实现调压,单一电压信号或0-5V的模拟信号并不能使其调压,从“调压”功能的角度讲随机型SSR 完全不同于普通的继电器或接触器)。有一点必须强调,各类调压模块或固态继电器内部作为输出触点的器件均为可控硅,且都是依靠改变可控硅导通角来达到“调压”的目的,故输出的电压波形均为“缺角”的正弦波(不同于自耦

真空断路器安装

壹.安装 真空断路器的装配以ZN叁玖(见图三)为例,一般可分成三个部分安装,即前部、上部和后部。前部安装顺序是:骨架入位→支柱绝缘子→水平绝缘子→托架→下母排→灭弧室与并排绝线杆→上母排→导电夹软连接→触头弹簧座滑套→三角拐臂。上部安装顺序是:主轴及轴承座→油缓冲器→绝缘推杆。后部安装顺序是:操动机构→分闸弹簧→计数器,合、分闸指示,接地标志。再将上述三大部分安装联接起来:前部与上部,由绝缘推杆可调活接头用销子与三角拐臂连接;后部与上部,由操动机构的可调传动连杆用销子与主轴拐臂连接。装配过程简单、直观、方便。 贰.安装要求 (壹)安装前的各零件、组件必须检验合格。 (贰)安装用的工位器具、工具必须清洁并满足装配要求。紧固件拧紧时应使用呆扳手或梅花、套筒扳手,在灭弧室附近拧螺丝,不得使用活扳手。 (叁)安装顺序应遵守安装工艺规程,各元件安装的紧固件规格必须按设计规定采用。特别是灭弧室静触头端固定的螺栓,其长度规格绝不许弄错。 (肆)装配后的极间距离,上、下出线的位置距离应符合图样尺寸的要求。 (伍)各转动、滑动件装配后应运动自如,运动磨擦处涂抹润滑油脂。(陆)调整试验合格后应清洁抹净,各零部件的可调连接部位均应用

红漆打点标记,出线端处涂抹凡上林并用洁净的纸包封保护。 叁.机械特性参数测试、调整与出厂试验 叁.壹特性测试开距及接触行程、辅助开关初步调整后,便可进行电动合、分闸,并测量合、分闸时间、速度、不同期性和合闸弹跳等机械特性参数。机械特性参数的测试仪器主要有光线示波器和开关特性测量仪两种。前者较准确、直观;后者操作简便快捷,准确性可满足运行要求,适于现场使用。具体测试办法此略。 叁.贰机械特性的微调测试后对不合格的参数进行微调整,尽量使各机械特性参数达到最佳值。 (壹)不同期性的微调由测量找出合、分闸差异最大的一相,如该极合闸过早(迟),将该极的开距稍调大(小)一点,因三极开距已调整大致差不多,所以这时调整只需把该极绝缘拉杆的可调活接头旋入(出)半卷便可以。一般可调整使合、分闸不同期性达到Lms以内。(贰)合、分闸速度的微调合、分闸的速度受多方面因素的影响,但一般可调的部位主要是分闸弹簧和接触行程。分闸弹簧的松紧程度,对合分闸速度有影响,而接触行程(触头压力弹簧的压缩量)对分闸速度有主要影响。例如,合闸速度偏高而分闸速度偏低时,可把接触行程增大或把分闸弹簧予拉紧些,反之可调松些。又如,合闸速度合适,而分闸速度偏低,这时可调整总行程使其增大零.壹~零.贰mm左右,此时各极接触行程都增大了零.壹~零.贰mm,其分闸速度亦会上升;反之分闸速度过高亦可把接触行程调整小零.壹~零.贰mm,速度亦会降低。不同期性与速度调整后应重新测量修正各极

低压断路器的电流参数通用范本

内部编号:AN-QP-HT565 版本/ 修改状态:01 / 00 When Carrying Out Various Production T asks, We Should Constantly Improve Product Quality, Ensure Safe Production, Conduct Economic Accounting At The Same Time, And Win More Business Opportunities By Reducing Product Cost, So As T o Realize The Overall Management Of Safe Production. 编辑:__________________ 审核:__________________ 单位:__________________ 低压断路器的电流参数通用范本

低压断路器的电流参数通用范本 使用指引:本安全管理文件可用于贯彻执行各项生产任务时,不断提高产品质量,保证安全生产,同时进行经济核算,通过降低产品成本来赢得更多商业机会,最终实现对安全生产工作全面管理。资料下载后可以进行自定义修改,可按照所需进行删减和使用。 断路器是配电系统中主要的保护电器之一,也是功能最完善的保护电器,其主要作用是作为短路、过载、接地故障、失压以及欠电压保护。根据不同需要,断路器可配备不同的继电器或脱扣器。脱扣器是断路器总体的一个组成部分,而继电器,则通过与断路器操作机构相连的欠电压脱扣器、分励脱器来控制断路器。 低压断路器一般由脱扣器来完成其保护功能。标明低压断路器电流特性的参数很多,容易混淆不清。在设计文件中,常常在标明断路器的电流值时,不说明电流值的意义,给定货

10KV真空断路器说明

真空断路器的应用 一:真空的绝缘特性 真空具有很强的绝缘特性,在真空断路器中,气体非常稀薄,气体分子的自由行程相对较大,发生相互碰撞的几率很小,因此,碰撞游离不是真空间隙击穿的主要原因,而在高强电场作用下由电极析出的金属质点才是引起绝缘破坏的主要因素。真空间隙中的绝缘强度不仅与间隙的大小,电场的均匀程度有关,而且受电极材料的性质及表面状况的影响较大。真空间隙在较小的距离间隙(2—3毫米)情况下,有比高压力空气与SF6气体高的绝缘特性,这就是真空断路器的触头开距一般不大的原因。电极材料对击穿电压的影响主要表现在材料的机械强度(抗拉强度)和金属材料的熔点上。抗拉强度和熔点越高,电极在真空下的绝缘强度越高。实验表明,真空度越高,气体间隙的击穿电压越高,但在10-4托以上,就基本保持不变了,所以,要保持真空灭弧室的绝缘强度, 其真空度应不低于10-4托。 二:真空中电弧的形成与熄灭 真空电弧和我们以前学习的气体电弧放电现象有很大的差别,气体的游离现象不是产生电弧的主要因素,真空电弧放电是在触头电极蒸发出来的金属蒸汽中形成的。同时,开断电流的大小不同,电弧表现的特点也不同。我们一般把它分为小电流真空电弧和大电流真空电弧。 1.小电流真空电弧 触头在真空中开断时,产生电流和能量十分集聚的阴极斑点,从阴极斑点上大量地蒸发金属蒸汽,其中的金属原子和带电质点的密度都很高,电弧就在其中燃烧。同时,弧柱内的金属蒸汽和带电质点不断地向外扩散,电极也不断的蒸发新的质点来补充。在电流过零时,电弧的能量减小,电极的温度下降,蒸发作用减少,弧柱内的质点密度降低,最后,在过零时阴极斑消失,电弧熄灭。有时,蒸发作用不能维持弧柱的扩散速度,电弧突然熄灭,发生截流现象。 2.大电流真空电弧 在触头断开大的电流时,电弧的能量增大,阳极也严重发热,形成很强的集聚型的弧柱。同时,电动力的作用也明显了,因此,对于大电流真空电弧,触头间的磁场分布就对电弧的稳定性和熄弧性能有决定性的影响。如果电流太大,超过了极限开断电流,就会造成开断失败。此时,触头发热严重,电流过零以后仍然蒸发,介质恢复困难,不能断开电流。 三:断路器的结构和工作原理 真空断路器的生产厂家比较多,型号也较繁杂。按使用条件分为户内(ZNx—**)和户外(ZWx—**)两种类型。主要由框架部分,灭弧室部分(真空泡),和操动机构部分组成。 下面以浙江华仪电器科技股份有限公司生产的ZW27—12型户外高压真空断路器为例,说明其结构与工作原理。断路器本体部分由导电回路,绝缘系统,密封件和壳体组成。整体结构为三相共箱式。其中导电回路由进出线导电杆,进出线绝缘支座,导电夹,软连接与真空灭弧室连接而成。此机构为电动储能,电动分合闸,同时具有手动功能。整个结构由合闸弹簧,储能系统,过流脱扣器,分合闸线圈,手动分合闸系统,辅助开关,储能指示等部件组成。 3.工作原理真空断路器利用高真空中电流流过零点时,等离子体迅速扩散而熄灭电弧,完成切断电流目的。 4动作原理储能过程:当储能电机14接通电源时,电机带动偏心轮转动,通过紧靠在偏心轮上的滚子10带动拐臂9及连板7摆动,推动储能棘爪6摆动,使棘轮11转动,当棘轮11上的销与储能轴套32的板靠住以后,二者一起运动,使挂在储能轴套上32上的合闸弹簧21拉长。储能轴套32由定位销13固定,维持储能状态,同时,储能轴套32上的拐

C45N系列小型限流断路器的额定电流参数

当产品内流过的电流达到这一安培值时,其已闭合的触点能长时间维持其闭合状态,从而保证电源向用电器供电。 在断路器的环境温度不同时,断路器内可以长期流过不会使断路器内的脱扣装置自动将已闭合的触点分断的电流值不同的。 当环境温度提高时,这一电流值下降,环境温度下降时,这一电流值提高。 C45N型断路器的额定电流是在环境温度在+40℃下定义的。 以额定电流为10A的断路器为例: 当环境温度为-30℃时,断路器内可以长期流过而不会使断路器已闭合的触点分断的电流将上升为10.8安。 当环境温度为+50℃时,断路器内可以长期流过而不会使断路器已闭合的触点分断的电流将下降为9安。 国内其它型号的断路器的额定电流一般是在环境为+25℃下定义的。 同样额定电流为10A的DZ12断路器在环境温度为+40℃时,就可能自动跳闸了。原因之一当然是因为在+25℃以上时,不会引起跳闸的最大允许流过电流下降了。原因之二是,不少DZ12的生产厂家为了避免超负荷时不能自动切断电路,从而引起事故,在生产DZ12时,把上述电流调在小于额定电流值的状态下,以使DZ12的”保安”灵敏度很高,事实上,这样做直接引起了不能满负荷供电的故障。 在一项建筑工程完工时举行的交工仪式上,所有的用电器都工作了,当供电操作人员合闸供电时,DZ12却自动跳闸了。是什么原因造成的呢?是建筑设计院的工程师设计有问题么?不!那些低质的DZ12根本不能在满负荷下运行。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关断路器产品的选型,报价,采购,参数,图片,批发等信息,请关注https://www.sodocs.net/doc/0316021175.html,/

固态继电器Solid State Relay

固态继电器 固态继电器(Solid State Relay,缩写SSR),是由微电子电路,分立电子器件,电力电子功率器件组成的无触点开关。用隔离器件实现了控制端与负载端的隔离。固态继电器的输入端用微小的控制信号,达到直接驱动大电流负载。 目录 1简介 2组成 3工作原理 4选型方法 5技术参数

6优缺点 7注意事项 8应用实例 9术语解释10保养方法

护,过载保护和过热保护功能,与组合逻辑固化封装就可以实现用户需要的智能模块,直接用于控制系统中。固态继电器目前已广泛应用于计算机外围接口设备、恒温系统、调温、电炉加温控制、电机控制、数控机械,遥控系统、工业自动化装置;信号灯、调光、闪烁器、照明舞台灯光控制系统;仪器仪表、医疗器械、复印机、自动洗衣机;自动消防,保安系统,以及作为电网功率因素补偿的电力电容的切换开关等等,另外在化工、煤矿等需防爆、防潮、防腐蚀场合中都有大量使用。 1、如何选择SSR的型号规格 主要是选取适当的额定电流的固态继电器(SSR)除特别说明以外,整流、可控等功率模块亦然。 根据不同的负载类型来选用SSR的额定电流。阻性负载、感性负载和容性负载在刚起动时瞬时电流较大。即使是纯阻性,由于具有正温度系数,冷态时电阻值较小,因而有较大的起动电流。电炉刚接通时电流为稳定时的1.3—1.4倍。白炽灯接通时电流为稳态10倍。有些金属卤化物灯不但开启时间长达10分钟,而且有高达100倍稳态时的脉冲电流。 异步电动机起动电流为额定值的5—7倍,直流电机起动电流还要大。不但如此,感性负载还具有较高的反电势。这是一个不定值,随L和di/dt的不同而不同。通常为电源电压的1—2倍,这样和电源电压叠加。有高达三倍的电源电压。 容性负载具有更大的危险性,因为起动时,由于电容器两端的电压不能突变,电容器(负载)相当于短路。这种负载在选型时更要特别注意。 需要特别指出的是用户不要将SSR的浪涌电流值作为选择负载起动电流的依据。SSR的浪涌电流值是以晶闸管浪涌电流为标准的。它的前提条件是半个(或一个)电源周波。即10或20ms。而前述启动过程,少则几百毫秒、几分钟,多则高达10分钟。这点务必敬请高度注意。 2组成 固态继电器由三部分组成:输入电路,隔离(耦合)和输出电路。 输入电路 按输入电压的不同类别,输入电路可分为直流输入电路,交流输入电路和交直流输入电路三种。有些输入控制电路还具有与TTL/CMOS兼容,正负逻辑控制和反相等功能,可以方便的与TTL,MOS逻辑电路连接。 对于控制电压固定的控制信号,采用阻性输入电路。控制电流保证在大于5mA。对于大的变化范围的控制信号(如3~32V)则采用恒流电路,保证在整个电压变化范围内电流在大于5mA可靠工作。 隔离(耦合)

断路器参数说明

[摘要] 结合塑壳断路器MCCB的常用电气参数,提出了各种MCCB的正确选用方法,指出了各电气参数之间的内在联系。 [关键词]塑壳断路器选择使用 1.引言 塑料外壳式断路器以下简称MCCB,作为低压配电系统和电动机保护回路中的过载、短路保护电器,是应用极广的产品。随着现代科技水平的不断发展,新技术、新工艺、新材料不断出现,断路器的生产工艺及各种材质不断改进,使断路器的性能有了很大的提高,除国际知名品牌,如ABB、施耐德外,国内一些企业也不甘落后,自行开发、研制或引进国外先进技术,并加以消化、吸收,也向市场推出了成熟了的产品如常熟开关厂的CMl、天津低压开关厂TM30等。这类产品具有零飞弧、高分断、大容量、进出线方向可以互换、智能型、四极、内部附件结构模块化、安装积木化、体积小型化等特点。实现了MCCB所需的选择性保护功能和多种辅助功能,并带有通信接口,使低压配电系统实现自动化和组网成为可能;降低了低压成套配电装置的动、热稳定性的要求;缩小了成套配电装置的体积;大大地提高了供配电系统和设备运行的可靠性。 然而,目前在一些电气设计方案中,对MCCB的正确合理选用并不尽人意,往往忽略了所选厂家的MCCB规格、型号、附件等其它电气参数,特别是对一些新型MCCB的电气参数理解不透,标注不全、应用类别、使用场合及用途等考虑不周。选用了不合适的MCCB,导致成套厂订货困难,保护的选择性变差,灵敏性,合理性不符合设计规范要求,不但使MCCB没有物尽所用,反而造成了浪费,降低了配电系统的可靠性,影响了工矿企业的生产和人们的生活。为此,本文结合有关MC—CB的常用参数和国家标准谈谈自己对MCCB正确选用的一些看法。 2.断路器的常用基本相关符号其合义及相互之间的关系 Inm——断路器壳架等级电流A,它所指的含义是本断路器内所能安装的最大开关及脱扣器电流值。 In——断路器的额定电流A,它所指的含义是该断路器内选用的额定热动型脱扣器电流值,在不可调固定式热脱扣器中In=Ir1。 Ir1——断路器的长延时整定电流A,它所指的含义是该断路器的过载保护脱扣器所整定的电流值。 Ir2——断路器的短延时整定电流A,它所指的含义是该断路器的短延时脱扣器整定的电流,它的数值

断路器的壳架电流,额定电流,脱扣电流

断路器不可能每种规格设计一种外壳和接线端子。不同额定电流(但相近)的断路器会使用同样一种外型体积甚至同样触头、同样的接线端子,这种外壳可通过的最大额定电流就是壳架电流。因此,同一壳架电流的断路器其额定电流可能不同,但其安装尺寸是相同的。 断路器壳架等级额定电流是指基本尺寸相同的框架和塑料外壳中能装的最大脱扣器的额定电流。断路器额定电流是指断路器中的脱扣器能长期通过的电流,又称断路器脱扣器额定电流。同一系列中有多种壳架等级额定电流,同一壳架等级额定电流中又有多种额定电流。例如DZ20系列中有100、225、400、630、800、1250等壳架等级额定电流,而100壳架等级额定电流中有16A、20A、25A、32A、40A、50A、63A、80A、100A额定电流;225A壳架等级额定电流中有100A,125A、160A、180A、200A、225A额定电流。DZ20—100和DZ20—225两种壳架等级中都有100A额定电流,但断路器体积外形和分断能力不相同,因此在选用时要把型号填写完整即具体的壳架等级额定电流内的断路器额定电流。 额定电流分级是按(1.25)优先系数来选择的:一方面是符合和满足最大线路和电器元件额定电流的需要;另一方面是为了标准化,以取得最佳的使用导线及加工的效益。因此它所规定的级别是:3(6)、8、10、12.5、16,20、25、32、40、50、63、80,100、125、160、200、250、315、400A等。由于此规定,当线路计算负载为90A时,则只能选100A规格,因此在一定程度上影响它的保护性能。 脱扣器电流整定值是指脱扣器调整到动作电流值。它是指额定电

真空断路器合闸线圈烧毁的故障分析

真空断路器合闸线圈烧毁的故障分析 【摘要】苏州望亭发电厂位于太湖之滨、苏州和无锡之间,它担负着苏锡常地区和上海220kV环网东西线交换负荷及华东电网的调频任务,成为华东电网的负荷中心和枢钮电站,二期2台660MW超临界机组扩建工程由我公司承建,如何建好二期2台机组对于我公司迅速抢占华电市场具有非常重要的意义。作者作为电气专业技术负责人,在分公司的领导下,刻苦钻研专业知识,努力提高技术管理水平,攻克了施工过程中的一些技术性难题,为机组顺利投产奠定了基础,并为今后的施工提供了借鉴。例如,在#4机组整套启动期间,对6kV开关柜送电准备电机试转时遇到合闸线圈多次被烧毁现象,经过我的仔细研究、推断,最终找到了线圈烧毁的原因,并顺利地解决了这一难题。 【关键词】合闸线圈;检查;分析;处理 1 故障过程和现象 2010年1月22日,在对炉水循环泵送电前,按照送电要求,绝缘检查合格后,将6kV开关室炉水循环泵开关柜内VD4型真空断路器推至试验位置,分、合闸均正常,推至工作位置,面板上的状态指示仪显示断路器已处于工作位置,且弹簧已储能,由DCS远方合闸操作时,断路器未合闸,现场有焦糊味。于是我将断路器拉至检修位置,经检查,发现合闸线圈烧毁,然后找来厂家图纸,检查二次图纸和接线,发现合闸回路无错误,接线正确、无松动现象,且试验位置分、合闸操作正常,工作位置时各种状态指示也正常。 但是当我再次将断路器推至工作位置过程中,发现有些异样的阻力,但状态指示仪显示断路器到达工作位置。 出现上述情况后,我静下心来,及时调整了分析思路,首先排除了设计和接线的错误,接下来我便详细地研究了开关柜的本体结构,希望在这方面能找到问题的真正原因,以下是我分析与处理上述问题的具体过程: 2 故障分析与处理 合闸回路经多次检查无问题,故检查合闸闭锁电磁铁是否故障导致合闸推杆被闭锁时合闸而烧毁合闸线圈。于是选择1台同型号的开关柜试验合闸,合闸闭锁电磁铁及其电气回路正常。于是我想到了是不是机械上出了问题,根据新的反措要求,开关柜在工作位置时,只能远方合闸,不能在开关柜面板的合闸按钮上进行电动合闸(分闸可以),只有在紧急情况下才可以打开柜门,进行手动机械合闸。于是我试了一下在工作位置手动机械合闸,发现断路器仍不动作。于是我打开柜门,拆下面板,发现原来合闸推杆还被另一个机械装置闭锁,至此,我初步得出结论,烧毁合闸线圈的原因为断路器手车底盘机械故障,具体情况如下: 为防误操作VD4型断路器装有2套合闸闭锁装置,同时解除时才可合闸,

固态切换开关现场验收试验技术规范

ICS号01.040.29 中国标准文献分类号K46 团体标准 T/CPSS XXXX-XXXX 固态切换开关现场验收试验技术规范 Technical Specification for Solid State Transfer Switch Acceptance Test (征求意见稿) XXXX-XX-XX发布XXXX-XX-XX实施 中国电源学会发布

T/CPSS XXXX-XXXX 目次 前言............................................................................... III 1 范围 (1) 2 规范性引用文件 (1) 3 术语和定义 (1) 4 试验电路及要求 (3) 5 试验内容及方法 (4) 附录A(规范性附录)固态切换开关拓扑结构 (8) 附录B(规范性附录)试验记录 (11) 图1 切换时间定义 (2) 图2 试验电路 (3) 图A.1 主备式混合型固态切换开关拓扑结构 (9) 图A.2 分裂母线式混合型固态切换开关拓扑结构 (10) 表1 试验项目 (4) 表2 装置额定电压1kV及以下的电气间隙与爬电距离 (4) 表3 装置工频耐受电压 (7) 表B.1 外观和结构检查试验记录表 (11) 表B.2 电气间隙和爬电距离试验记录表 (11) 表B.3 核相试验记录表 (11) 表B.4 显示功能试验记录 (11) 表B.5 传动试验记录表 (12) 表B.6 最小切换时间试验记录表 (12) 表B.7 切换时间间隔试验记录表 (14) 表B.8 旁路试验记录表 (15) 表B.9 冲击性负荷试验记录表 (15) 表B.10 通讯试验记录表 (15) I

相关主题