搜档网
当前位置:搜档网 › 各向异性页岩岩石物理建模及储层脆性评价

各向异性页岩岩石物理建模及储层脆性评价

各向异性页岩岩石物理建模及储层脆性评价
各向异性页岩岩石物理建模及储层脆性评价

各向异性页岩岩石物理建模及储层脆性评价页岩储层是目前非常规地球物理勘探的研究热点之一。而地震岩石物理分析技术是储层物性参数描述的重要手段。

作为地震弹性参数与储层物性参数之间的“桥梁”,地震岩石物理分析大体可分为“正问题”和“反问题”。正问题主要涉及岩石物理模型的构建及地震属性模拟,而反问题主要包括储层参数反演。

本文从正问题出发,构建了适合页岩储层的各向异性模型。并针对反问题引入网格分析法优化了反演算法。

最终利用反演结果讨论了页岩储层的各向异性特征。同时,分析了页岩储层的热点属性:脆性,优选脆性表征公式,结合井震资料,实现对页岩储层的脆性分析。

本文的主要成果可以归纳如下:(1)论文构建针对页岩储层的各向异性岩石物理模型。模型着重模拟了页岩储层由(1)有机质的富集;(2)黏土的定向排列和(3)扁平状的孔隙形态所引起的各向异性。

模型利用SCA+DEM模拟了页岩中的有机质,并引入成层因子(CL)模拟黏土的成层性强弱,最后利用孔隙纵横比控制了页岩的孔隙形态。实现了对页岩不同各向异性成因的精细模拟。

(2)随后,基于构建的页岩模型,在常规二维孔隙纵横比反演模板的基础上,引入矿物含量作为第三维参数,建立了更符合真实情况的三维孔隙纵横比反演模板,对储层的孔隙形态和孔隙类型进行反演,并利用反演得到的孔隙参数,实现对页岩储层的纵横波速度预测。(3)为了获取更多的储层物性信息,本文构建双扫描反演流程,反演得到表征孔隙形态和黏土成层性强弱的模型参数孔隙纵横比(α)

和成层因子(CL)。

实现对储层各向异性参数的预测,并讨论了各向异性参数与储层物性参数的相互关系。(4)针对反问题,本文通过引入网格分析法,对储层参数的反演算法进行改进。

网格分析法通过将实测测井值正态分布展开,将测井的误差考虑进反演算法中,最终得到待反演参数的概率密度分布图。降低了由测量值不准引起的预测误差,提高了预测结果的可信性。

并预测了目的层的孔隙形态及孔隙类型概率密度分布。(5)优选现有脆性公式,发现基于弹性参数构建的脆性指数的预测精度总体高于基于矿物组分的脆性公式。

基于杨氏模量泊松比构建的脆性指数对岩性的变化较敏感,而拉梅系数构建的脆性表征公式对孔隙流体更为敏感。基于模型,构建岩石物理脆性模板,优选脆性敏感参数。

研究发现低泊松比,中高杨氏模量,往往对应高孔脆性页岩,是页岩开采的“甜点”区域。最终,针对西南四川盆地龙马溪组-五峰组的页岩储层进行脆性评价,叠前同时反演结果和测井脆性分析结果较为吻合,验证了脆性分析结果的稳定性和可靠性。

岩石物理性质

岩石物理性质 地球物理勘探中所涉及的各类岩石和矿物的物理性质。岩石的密度、弹性波传播速度、磁化率、电阻率、热导率、放射性等,是形成各种地球物理场的基础(表1)。 磁性常用的岩石磁性参数是磁化率、磁化强度、剩余磁化强度矢量,以及剩余磁化强度同感应磁化强度的比值Q。 矿物按其磁性的不同可分为3类: ①反磁性矿物,如石英、磷灰石、闪锌矿、方铅矿等。磁化率为恒量,负值,且较小。 ②顺磁性矿物,大多数纯净矿物都属于此类。磁化率为恒量,正值,也比较小。 ③铁磁性矿物,如磁铁矿等含铁、钴、镍元素的矿物。磁化率不是恒量,为正值,且相当大。也可认为这是顺磁性矿物中的一种特殊类型。 岩石的磁性主要决定于组成岩石的矿物的磁性,并受成岩后地质作用过程的影响。一般说,橄榄石、辉长石、玄武岩等基性、超基性岩浆岩的磁性最强;变质岩次之;沉积岩最弱。 ①岩浆岩的磁性取决于岩石中铁磁性矿物的含量。结构构造相同的岩石,铁磁性矿物含量愈高,磁化率值愈大。铁磁性侵入岩的天然剩余磁化强度,按酸性、中性、基性、超基性的顺序逐渐变大。铁磁性侵入岩的特点是Q值一般小于1。由接触交代作用而形成的岩石,Q值可达1~3,甚至更大。 ②沉积岩的磁性主要也是由铁磁性矿物的含量决定的。分布最广的沉积岩造岩矿物,如石英、方解石、长石、石膏等,为反磁性或弱 1顺磁性矿物。菱铁矿、钛铁矿、黑云母等矿物之纯净者是顺磁性矿物;含铁磁性矿物杂质者具有强顺磁性。沉积岩的磁化率和天然剩余磁化强度值都比较小。

③变质岩的磁性是由其原始成分和变质过程决定的。原岩为沉积岩的变质岩,磁性一般比较弱;原岩为岩浆岩的变质岩在变质作用相同时,其磁性一般比原岩为沉积岩的变质岩强。大理岩和结晶灰岩为反磁性变质岩。岩石变质后,磁性也发生变化。蛇纹石化的岩石磁性比原岩强;云英岩化、粘土化、绢云母化和绿泥石化的岩石,磁性比原岩减弱。 岩石磁性的各向异性是岩石的层状结构造成的。磁化率高,变质程度深的岩石,磁各向异性很明显。褶皱区沉积岩的磁各向异性一般要比地台区的大。 岩石的天然剩余磁化强度矢量是在岩石形成过程中,按当时当地的地磁场方向“冻结”下来的。这个矢量的指极性与现代地磁场方向一致的称为正极性。岩石的年代愈古老,它的剩余磁化强度矢量的成分愈复杂。岩石剩余磁性由各种天然磁化过程形成。岩石在磁场中从居里点以上温度冷却时获得的剩余磁性称为热剩余磁性;岩石中的铁磁性物质在磁场中由于磁粘滞性而获得的剩余磁性称粘滞剩余磁性;沉积岩中的微小磁性颗粒在沉积过程中受磁场作用采取定向排列因而获得的剩余磁性称为沉积剩余磁性;沉积物中的铁矿物沉积后,在磁场中经化学变化而获得的剩余磁性称化学剩余磁性;还有等温剩余磁性是常温下磁性物质在磁场中获得的剩余磁性(见岩石磁性)。岩石的剩余磁性是古地磁学赖以建立的基础。 岩石和矿物的磁性与温度、压力有关系。顺磁性矿物的磁化率与温度的关系遵循居里定律。铁磁性矿物的居里温度一般为300~ 2700℃,其磁化率一般随温度升高而增大(可达50%),至居里温度附近则迅速下降。铁磁性矿物的磁化率与温度的关系有两种类型:一为可逆型,即在矿物加热和冷却过程中温度相同时磁化率值相同,如纯磁铁矿、钛铁矿。另一种为不可逆型,即矿物加热和冷却过程中温度相同时磁化率值不同,如对升温不稳定的铁磁性矿物。岩石加热时,磁化率也逐步升高,至200~400℃迅速下降。岩石的磁化率和磁化强度值都随压力的增大而减小。 密度和孔隙度矿物的密度是由构成该矿物各元素的原子量和矿物的分子结构决定的。大多数造岩矿物如长石、石英、辉石等具有 3

储层岩石力学概述

储层岩石力学概述 发表时间:2019-09-11T14:30:47.063Z 来源:《基层建设》2019年第11期作者:王祥程 [导读] 摘要:岩石力学是一门边缘交叉学科,它与工程实践密切联系而得到发展。 成都理工大学能源学院 610059 摘要:岩石力学是一门边缘交叉学科,它与工程实践密切联系而得到发展。深入了解研究岩石力学的性质和相关参数对于工程上的开发具有十分重要的作用。 关键词:岩石力学;石油工程;研究方法 1. 岩石力学的概述 岩石包括组成岩石的固体骨架、孔隙、裂缝以及其中的流体,因此岩石力学往往会应用到弹性力学、塑性力学、流体力学、渗流力学等力学学科的诸多理论方法。岩石的性质几乎牵涉到所有力学分支,岩石力学的研究是各种力学理论的综合运用。不同岩石力学问题的研究,可能包括瞬时变形运动,也可能包含与地质演化时间相关的长期变形运动。 岩石力学是力学的一部分。岩石材料赋存于地下,其力学性质难于直接测试和观察,而若将其取至地面进行测试则岩石的力学性质往往发生了较大的变化,加之岩石中的流体存在于裂隙或孔隙之中,与岩石骨架相互作用,使岩石的受力情况更加复杂。 2.岩石力学的研究方法 岩石力学是一门边缘交叉学科,它与工程实践密切联系而得到发展。岩石具有特殊的固体介质力学特性,这个特殊的力学性质与它所处的环境有关,如天然岩石所处应力状态一般称为岩石的初始应力状态。在岩石受到工程活动扰动后,岩体的应力出现了变化,这时岩石所处的应力状态称为次生应力状态。此时将岩石力学和工程地质相结合进行研究是十分重要和必要的。对于节理岩体,特别需要了解岩体结构面的分布、网络特性、岩体结构类型,才能进行岩体的数值模拟和分析。 一般而言,岩石力学的研究方法可分为如下四大类: (1)地质研究方法:对岩体进行地质方面的研究始终是岩石力学研究的基础,在整个岩石工程过程中,地质性质的研究应当列在第一位。①岩石岩相、盐层特征的研究,如软弱岩体的成分、可溶盐类、含水蚀变矿物、不抗风化岩体成分以及原生结构。②岩体结构的地质特性研究,如断续结构面的几何特征、岩体力学特征、软弱面的充填物及地质特性。③赋存地质环境的研究,如地应力的成因、地下水分布与化学特征以及地质构造对环境的影响。 (2)物理力学研究方法:①岩体结构的探测,应用地球物理化学方法和技术来探查各种结构面的力学特征和化学特征。②地质环境的物理性质分析与测量,如地应力的形成机制及分布、地质环境中热力与水力存在的性状、水化学的分布特征,应用大规模地质构造层析技术、地质雷达探测技术确定岩体构造。③岩体物理力学性质的测定,如岩块力学特性的室内试验、原位岩体的力学性质测试、钻孔测试、工程变形监测、位移反分析等。主要运用的手段是基于震动的动态测试,如超声波测试、地震波测试、电磁波测试、计算机层析方法(CT)测试。这些测试利用岩体的波动特性,来研究岩体的力学特性。 (3)数学力学分析方法:岩石力学的研究,除了以上地质方法、物理力学方法的研究外,还要进行数学力学方法研究,从而构成岩石力学的理论基础,包括:①岩石本构关系的研究-对岩石进行宏观到细观甚至微观的力学特性研究。②数值分析方法。由于计算机计算性能的发展,岩石力学的数值分析方法得到了大力发展。在数值分析方法方面,由岩体连续力学发展到非连续力学,出现了离散元法(DEN)和不连续变形分析法(DDA)、流形法(BEM)、无单元法(EFM)和快速拉格朗日法(FLAC)。③多元统计和随机分析。这两种方法可以深人地研究因岩体介质的随机分布特性而造成传统方法难以解决的问题。④物理和数值模拟仿真分析。 (4)整体综合分析法:就整个工程进行多种分析的方法,并以系统工程为基础的综合分析。 3.石油工程岩石力学研究对象及特点 石油工程岩石力学所研究的,所涉及的地层深度大多在8000m范围内,研究对象主要是沉积岩层,岩石处于较高的围压、温度和孔院压力作用下其性质已完全不同于浅部地层,它可能经过脆-塑性转变成塑性,也可能由于高孔院压力的作用呈现脆性破坏。 (1)石油工程岩石力学所涉及的围压可达200MPa。非均匀的原地应力场形成了地层之间的围压,若垂向应力源于地层自重,那么应力梯度平均为0.023MPa/m,多数地区最大水平应力往往大于垂向应力,且两个水平地应力梯度的比值通常达到1.4~1.5以上。在山前构造带地区,不但地应力梯度高,最大和最小水平地应力的比值也很大。因此在研究地应力分布规律(包括数值大小及主方向)时,主要依靠水力压裂、岩石剩磁分析、地震和构造资料反演、测井资料解释等间接方法。 (2)石油工程岩石力学所涉及的温度可达250℃。一般的地温梯度是3℃/100m,高的可超过4℃/100m,具体的地温梯度往往需要实际测定。当温度超过150℃后,温度对岩石性质的影响将变得十分明显。 (3)石油工程岩石力学中所涉及到的孔隙和裂隙中的高压流体的孔隙压力可高达200MPa.一般情况下,常规的静水孔隙压力梯度为 0.00981MPa/m,但是异常高压可超过0.02MPa/m。 4.结束语 岩石力学是一门十分重要的,它涉及到了工程领域的各个行业。因此,正确理解学习岩石力学的理论知识以及探究其影响等具有十分重要的意义。 参考文献 [1]王路,徐亮,王瑞琮.岩石力学在石油工程中的应用[J].石化技术,2017, 24(3):157-157. [2]陈勉.我国深层岩石力学研究及在石油工程中的应用[J].岩石力学与工程学报,2003,23(14):2455-2462. [3]杨永明,鞠杨,刘红彬,etal.孔隙结构特征及其对岩石力学性能的影响[J].岩石力学与工程学报,2009,28(10):2031-2038. [4]陈新,杨强,何满潮,etal.考虑深部岩体各向异性强度的井壁稳定分析[J].岩石力学与工程学报,2005(16):2882-2888. [5]陈德光,田军,王治中,etal.钻井岩石力学特性预测及应用系统的开发[J].石油钻采工艺,1995,17(5):012-16. [6]王大勋,刘洪,韩松,etal.深部岩石力学与深井钻井技术研究[J].钻采工艺,2006,29(3):6-10. [7]阎铁.深部井眼岩石力学分析及应用[D].2001. [8]陈新,杨强,何满潮,etal.考虑深部岩体各向异性强度的井壁稳定分析[J].岩石力学与工程学报,2005(16):2882-2888.

致密砂岩岩石物理模型研究

致密砂岩岩石物理模型研究致密砂岩油气作为非常规能源的一种,对世界常规能源的接替起到了至关重要的作用。其显著的特征是渗透率低(小于或等于0.1×10-3μm2)、岩石压实紧密、微观储渗机理复杂。多数情况下,致密储层的胶结程度高,塑性大,岩屑含量及粘土含量相对多,常规的解释与评价方法很难揭示岩石的储集与渗流机理,并且现有的岩石物理解释模型也难以精细的表征其微观特征,表征物性特征的参数同样也不仅仅为孔、渗的数值大小,因此对于致密砂岩,基于岩石微观孔隙结构参数的表征是对物性进行描述的重要内容。但在致密砂岩储层中如何明确裂缝的形成过程并把它表征出来一直是一个难点。在致密砂岩形成过程中,成岩作用对其影响最大。在成岩作用过程中,压实作用和胶结作用较大幅度地降低了储层的孔隙度和渗透率,粘土等矿物的充填也是渗透率降低的重要原因。 致密砂岩储层复杂的地质特征使得储层的渗流特征、弹性及物性特征有别于常规砂岩储层,加之极强的非均质性,使得致密砂岩岩石物理分析研究具有很大的挑战性,常规的孔隙度、渗透率以及饱和度等公式适用性差,利用测井手段识别致密砂岩中的气层特别困难、精确评估致密砂岩储层难度大。对此许多学者进行了岩石物理分析及建模方法、测井评价、储层横向预测,以及在开发过程中利用微地震、时移地震等进行储层动态监测的研究。有效的对岩石物理模型进行研究,能够合理地对储层含油气性进行预测。 1、致密砂岩储层特征 在常规砂岩储层中,有效孔隙度通常只比总孔隙度稍低,然而如图 3-1 所示(蓝色部分为容纳气体的孔隙空间),致密砂岩储层中,强烈的成岩作用导致有效孔隙度值比总孔隙度要小很多。伴着成岩作用的发生,致密砂岩得原生孔隙结构发生重大改变,平均孔隙直径减小,弯曲度加大,不连通孔隙增多,于是岩石的孔隙类型和孔隙微结构变得十分复杂。

岩石物理模型

岩石物理模型综述 岩石是由固体的岩石骨架和流动的孔隙流体组成的多相体,其速度的影响因素呈现复杂性和多样性各因素对速度的影响不是单一的,是相互影响综合作用的结果,这也表明利用地球物理资料进行储层特征预测和流体识别是切实可行的,岩石的弹性表现为多相体的等效弹性,可以概括为4个分量:基质模量,干岩骨架模量,孔隙流体模量,和环境因素(包括压力温度声波频率等),岩石物理理论模型旨在建立这些模量之间相互的理论关系,它在通过一定的假设条件把实际的岩石理想化,通过内在的物理学原理建立通用的关系。有些模型假设岩石中的孔隙和颗粒是层状排列的,有些模型认为岩石是由颗粒和某种单一几何形状的孔隙组成的集合体,其中孔隙可以是球体、椭球体或是球形或椭球形的包含体,还有些模型认为岩石颗粒是相同的弹性球体。鉴于以上不同的实际岩石理想化过程,我们将岩石物理模型分为四类:层状模型、球形孔隙模型、包含体模型和接触模型。 1 层状模型 ①V oigt-reuss-hill(V-R-H)模量模型 在已知组成岩石介质各相的相对含量以及弹性模量的情况下,分别利用同应变状态同应力状态估算岩石介质有效弹性模量的vogit上限reuss下限,利用两者的算术平均计算岩石的有效弹性模量,这种平均并没有任何理论的基础和物理含义,该模型比较适合于计算矿物成分的有效体积模量及可能的最大上下限,不适于求取岩石的总体积模量剪切模量和气饱和岩石的情况。

②Hashin-shtrikman模量模型 在已知岩石矿物和孔隙流体的弹性模量及孔隙度的情况下,Hashin-shtrikman模型能精确地计算出多孔流体饱和岩石模量的取值范围,其上下限的分离程度取决于组成矿物弹性性质的差异(均为固体矿物颗粒时,上下限分离很小;如有流体存在时,则上下限分离较大)。 ③wood模量模型 wood模量模型首先利用reuss下限计算混合物平均体积模量,再利用其与密度的比值估算速度,该模型比较适用于计算孔隙混合流体的有效有效体积模量,或者浅海沉积物的有效体积模量(浅海沉积物基本为悬浮状态)。 ④时间平均平均方程 Wyllie等人的测量显示,假设岩石满足:(1)具有相对均匀的矿物;(2)被液体饱和;(3)在高有效压力下,波在岩石中直线传播的时间是在骨架中的传播时间与在孔隙流体中的传播时间的和,由此得到声波时差公式为 ΔT=(1-φ)ΔTma+φΔTf 其中,ΔT为声波时差,ΔTma和ΔTf分别是孔隙流体和岩石骨架的声波时差值,φ是孔隙度。因此,通常被称为时间平均方程,该方程适用于压实和胶结良好的纯砂岩。对于未胶结、未压实的疏松砂岩,需要用压实校正系数犆p校正;对于泥质砂岩,要进行泥质校正。 2 球形空隙模型

岩石物理方程解释

Reuss 模型:此模型为Reuss 在应力均匀恒定的情况下,相当于各个岩石模块的并联组 合,容易得出∑==N i i i R M M 11 φ. 模型如右所示: 推导过程:因为有i dV dV =∑,由dV V P M = ,则可得 到()i i R i P V PV M M ?=∑又因为假设岩石内应力各向相同,则容易得出∑==N i i i R M M 11φ,即可 得出岩石体积模量的最小值。 Voigt 模型:此模型为Voigt 在岩石中各矿物的应变均匀情况下,相当于岩石模块的串联组合,容易得出V i i M M φ=∑. 模型图如右所示: 推导过程:因为有i i P P φ= ∑,同理dV P M V =,即有i V i i dV dV M M V V φ=∑,又因为假设岩石中各矿物的应变均匀相同即i i dV dV φ=,即可得∑=i i V M M φ,即可得出岩石体积模量的最大值。 Wyllie 模型:此模型为Wyllie 在沉积岩中发现孔隙度和速度之间的简单单调关系,即完全理想情况,岩石各向同性即可得出岩石速度f f i Mi W νφνφ ν+= ∑,则可得出岩石 的平均速度,然后根据体积模量和速度的关系即可得出岩石的集体模量W M . 模型图如右: Hill 模型:Hill 模型为Hill 提出用上下边界求平均值的方法来对岩石有效弹性模量进行切合实际的评价即可得出 2 R V H M M M += .

Reuss、Voit和Hill模型所得体积模量对比 Reuss、Voit和Hill模型所得剪切模量对比

孔隙流体为水,泥质和石英各为占一半的岩石体积模量界限值对比 孔隙流体为水,泥质和石英占骨架比7:3和1:1的岩石体积模量界限值对比 Qua:Cla=1:1 Qua:Cla=7:3

岩石物理及其应用

陈华201272231 地质工程S122 岩石物理及其应用 地震波除受激发和接收条件直接影响外,还与岩石的速度、密度等弹性参数和吸收特性有关,而这些特性又与岩石成分、孔隙度、埋深、孔隙流体性质、压力、岩层的不均匀性以及其它地质特性密切相关。地震岩石物理研究主要是试图建立地球物理勘探所获得的物理量与地下岩石参数的定量对应关系,并快速理解储层流体变化所引起的地震响应变化,增强和减小解释的风险。地震岩石物理研究是连接地震和油藏工程的纽带,也是地震资料预测油气的物理基础。 在岩石物理研究中,速度是岩石物理研究乃至整个地球物理勘探领域的关键参数,理论模型则是其研究的基础。这两个关键贯穿于岩石物理研究的整个过程。 首先对于特定的地质研究目标,必须要找出影响速度的主要因素,并寻求这些影响因素的共同表征参数。岩性对速度的影响为致密岩石一般比非致密岩石的高。孔隙对速度的影响为孔隙的存在导致速度值下降。密度对速度的影响一般而言,岩石速度随密度增加而增加。孔隙流体对速度影响通过理论和大量的岩心测试研究表明,岩石样品饱和水时的速度大于饱和油时的速度,饱和气时的速度最低。另外也与温度、压力,成岩作用等有关。 在合理的资料统计分析基础上,需要通过岩石物理模型建立起地球物理量与地下储层参数之间对应关系。典型的模型有Gassmann 模型、Biot 模型、BISQ模型、Xu- White 模型等。 在低频条件下,Gassmann 推导出了饱和流体状态条件下岩石体积模量的理论方程。Gassmann 方程是岩石物理研究的最基本方程,用来描述从干岩石状态到饱和流体孔隙状态下的模量变化。该方程的一个重要的适用条件是低频条件,也即只有在足够低频条件下,该方程是有效的,此时孔隙所受的压力在整个孔隙空间达到平衡(即对于孔隙流体,有足够的时间消除压力梯度,达到平衡)。Biot采用连续介质力学的方法导出了流体饱和多孔隙介质中的声波方程,建立了多孔介质中声速、衰减与频率和多孔介质参数之间的关系。该模型反映

储层岩石微观孔隙结构的实验和理论研究

储层岩石微观孔隙结构的实验和理论研究 张雁 (大庆石油学院地球科学学院黑龙江大庆163318) 【摘要】储层岩石的微观孔隙结构直接影响着储层的储集渗流能力,并最终决定油气藏产能分布的差异。因此,对其详细地研究,探寻各种储层岩石的微观孔隙结构的特点及其分布规律,从而为油气藏的勘探、开发及准确确定注水开发油田不同开发阶段剩余油分布提供科学的依据,具有重要的研究意义。本文介绍了实验上和理论上研究储层岩石微观孔隙结构的方法及进展,并且对其研究的发展趋势和用纳米科技关键仪器-扫描探针显微镜表征储层岩石微观孔隙结构进行了展望。 【关键词】储层岩石;微观孔隙结构;扫描探针显微术 大量的勘探开发实践表明,储层岩石的微观孔隙结构直接影响着储层的储集渗流能力,并最终决定着油气藏产能的差异分布。不同类型的储层具有不同的微观孔隙结构特征,储层岩石孔隙结构参数、含油气性是储层评价的重要指标,如何客观地确定这些参数,是很多石油学家一直努力解决的问题。储层岩石的微观孔隙结构不仅对油气储量,而且对油气井的产能和最终采收率都有影响。详细研究储层的微观孔隙结构特征,有利于对储层进行合理的分类评价,有助于查明储层的分布规律,从而为油气藏的勘探开发提供科学的理论依据。在油气田开发后期,储层的渗流能力的强弱直接受微观孔隙结构特征及其分布规律的影响,因此,确定储层内部微观孔隙结构的特征及分布对了解剩余油形成机理,查明剩余油分布规律具有极为重要的意义。 1.岩石孔隙结构特征的描述方法 孔隙结构是岩石所具有的孔隙和喉道的几何形状、大小、分布及其相互连通关系的总和。孔隙反映了岩石对流体的储集能力,而喉道的形状、大小、孔喉比则控制了孔隙对流体的储集和渗透能力。由于不同沉积相的水动力条件不同,导致砂体的粒度、分选、组成以及发育程度的差异性,加之后期成岩作用对沉积物原始孔隙改造强烈,因此,微观孔隙结构具有复杂多样性。尤其对于孔渗性差、非均质性强的储层而言,详细研究微观孔隙结构特征一方面有利于经济有效地开发低渗透油气资源,另一方面在开发后期的油气挖潜工作中,有助于查明剩余油分布规律,设计提高采收率方案。因此该项研究对石油工业乃至整个国民经济的发展均具有重要意义。这项工作中,由于储层岩石孔隙极其微小和结构的变化,很大一部分流体在渗流过程中被毛管力和粘滞力所束缚不能参与流动,因此客观评价低渗透油田和驱后油田储层的微观孔隙结构特征,研究微观孔隙结构对油气分布的影响具有极为现实的意义。目前评价工作主要集中在利用勘探开发资料的实验和理论模拟两个方面。 1.1储层微观孔隙结构实验分析常规岩石孔隙结构特征的描述方法主要包括:测井资料现场评价法和室内实验方法。室内实验方法是目前最主要,也是应用最广泛的描述和评价岩石孔隙结构特征的方法,主要包括:毛管压力曲线法(半渗透隔板法、压汞法和离心机法等)、铸体薄片法、扫描电镜法、X-CT扫描法及核磁共振法等。 传统的压汞资料分析表明,中孔细喉结构主要发育在水下分支河道及滩坝砂体中;低孔细喉结构主要发育在前缘席状砂及扇三角洲前缘滑塌浊积砂体中[1]。而通过对压汞曲线进行重新变换,以汞饱和度除以压力为纵坐标,汞饱和度为横坐标,绘制成图,会发现峰点,所对应的孔喉半径称为峰点孔喉半径,该值对油气圈闭具有重要意义[2]。而先进的核磁共振实验结果表明,微裂缝发育程度、粘土充填孔隙程度及原生孔隙发育程度等微观孔隙结构特征是低渗透油田可动流体的主要影响因素[3]。而在某些地区,次生孔隙发育带也是天然气高产富集带[4]。同时利用这项技术,可以实时观察渗透和高渗透沉积岩的渗流情况[5]。而这种微观的流体在油气混合地带的运动是极其不能忽视的,否则会得出错误的储层评价结论[6]。经过长期注水开发的储集层的孔隙结构将发生改变,注水冲刷使微观喉道特征变好,退汞效率增高,因此随着冲刷的不断进行,会使大孔隙越来越大,对小孔隙影响则不明显。喉道分选性对驱油效率影响机理较为复杂。总体上储层驱油效率随储集物性的变好而增加[9]。但是驱油效率并不总是和渗透率呈正相关关系,它还受储层孔喉分布和孔喉结构非均质性的影响[10]。扫描电镜可用于研究孔隙和喉道的立体形态及配置关系[11],可以证实储层低孔、低渗并不是造成注水开发效果差的主要原因,而较强的微观孔隙结构非均质性,是造成注入水波及效率不高、水驱油效率较低的主要原因[12]。 1.2储层微观孔隙结构理论解释-分形特征储层岩石的孔隙空间具有良好的分形特征,孔隙结构的分形维数可以定量描述孔隙结构的复杂程度和非均质性。应用分形几何的原理,对低渗透储层岩石的孔隙结构进行研究,可以建立毛管压力和孔隙大小概率密度分布的分形几何模型。并根据毛管压力曲线资料计算孔隙结构的分形维数和孔径大小概率密度分布。计算结果表明,用该方法研究孔隙结构不仅简单易行,而且精度很高[13]。另外,利用分形理论可以模拟各种岩石毛管压力曲线,从而解释岩石之间物性的不同[14]。用岩样孔喉分布的分形维数能更合理地描述多孔介质微观孔喉分布的非均质性[15]。Krohn提出小尺度的孔隙体积具有分形特征,并受孔隙间矿物和胶结物生长控制,研究微观孔隙分形特征可用来表征成岩过程中岩石表面蚀变和改性的程度[16]。同时结合扫描电镜和小角中子散射(Small-AngleNeutron Scattering,SANS)可以确定岩石微观孔隙在10A。~50μm范围内是分形的[17]。并且这种分形的维度随着岩石的种类不同而发生从2.8~2.3的变化[18]。对于砂岩来讲,分形的维度应介于2与3之间。当其接近于2时,砂岩储集性能极好;而接近于3时,砂岩储集性能极差[19]。大量的研究表明,利用分形理论进行储层岩石微观孔隙结构的表征,与目前不同开发阶段实际效果基本吻合,因此这种方法可以作为评价储层油气藏孔隙结构及储集性的一个主要手段。 2.储层岩石微观孔隙结构研究发展趋势 虽然储层岩石微观孔隙结构的研究取得了很大进展,但是还有很多亟待解决的问题,主要集中在以下几个方面: (1)微米或亚微米孔隙结构的表征以往的研究主要集中在几微米以上的孔隙或孔喉的表征,而客观评价储层产能规律,需要进行这方面的研究,尤其是孔隙-岩石界面的形态分布,包括曲率,粗糙度等的评价,因为这是影响储层渗流特征的本质属性。 (2)利用微观孔隙结构分布特性解释储层反常现象例如水驱油效率与渗透率之间不存在密切关系,甚至出现驱油效率与渗透率呈反比关系的现象。到目前为止,这些由实验发现的反常现象还没有得到合理的解释。 (3)储层岩石分形维度的研究岩石孔隙的分维值是岩石孔隙结构的一个重要的独立参数,它与岩石的渗透率有复杂的关系,需要进一步深入研究。 (4)三维孔隙结构成像三维孔隙结构在微米或亚微米分辨尺度上快速成像技术的研究。目前用同步辐射、X-CT和激光共聚焦等三维成像技术只能达到几微米分辨,不能满足微观孔隙结构评价的要求,因此,需要开发新的实验手段和方法。 这些问题的解决,用目前现有的仪器和方法都有一定都困难,因此需要先进的仪器、实验方法和理论去实现。 3.扫描探针显微术表征储层岩石微观孔隙结构的展望 目前,国内外采用的常规描述岩石孔隙结构特征的测井资料现场评价方法及实验方法各有优缺点。比如测井资料现场评价方法虽然具有纵向上的连续性,但由于受到仪器、环境、流体等多种因素的影响,同时测井资料数据繁多,解释起来人为因素较大,描述储层宏观特征尚可,但用于微观孔隙结构研究其数据精度和解释精度都无法保证。一例[21])研究储层岩石微观孔隙结构。寻找一种能够弥补上述方法缺点的表征手段成为必然要求。 扫描探针显微术(ScanningProbeMicroscopy,SPM)是上世纪八十年代中期发展起来的区别于以往显微手段(包括扫描电子显微镜)的 42

常用的岩土和岩石物理力学参数

(E, ν) 与(K, G)的转换关系如下: (7.2)当ν值接近0.5的时候不能盲目的使用公式3.5,因为计算的K值将会非常的高,偏离实际值很多。最好是确定好K值(利用压缩试验或者P波速度试验估计),然后再用K和ν来计算G值。 表7.1和7.2分别给出了岩土体的一些典型弹性特性值。 岩石的弹性(实验室值) (Goodman,1980)表7.1 干密度 (kg/m3) E(GPa) νK(GPa) G(GPa) 砂岩19.3 0.38 26.8 7.0 粉质砂岩26.3 0.22 15.6 10.8 石灰石2090 28.5 0.29 22.6 11.1 页岩 2210- 2570 11.1 0.29 8.8 4.3 大理石2700 55.8 0.25 37.2 22.3 花岗岩73.8 0.22 43.9 30.2 土的弹性特性值(实验室值) (Das,1980)表7.2 干密度(kg/m3) 弹性模量E(MPa) 泊松比ν 松散均质砂土1470 10-26 0.2-0.4 密质均质砂土1840 34-69 0.3-0.45 松散含角砾淤泥质砂土1630 密实含角砾淤泥质砂土1940 0.2-0.4 硬质粘土1730 6-14 0.2-0.5 软质粘土1170-1490 2-3 0.15-0.25 黄土1380 软质有机土610-820 冻土2150 各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5中弹性常量:E1, E3,ν12,ν13和G13;正交各向异性弹性模型有9个

弹性模量E1,E2,E3,ν12,ν13,ν23,G12,G13和G23。这些常量的定义见理论篇。 均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。表3.7给出了各向异性岩石的一些典型的特性值。 横切各向同性弹性岩石的弹性常数(实验 室)表7.3 Ex(GPa) Ey(GPa) νyx νzx Gxy(GPa) 砂岩43.0 40.0 0.28 0.17 17.0 砂岩15.7 9.6 0.28 0.21 5.2 石灰石39.8 36.0 0.18 0.25 14.5 页岩66.8 49.5 0.17 0.21 25.3 大理石68.6 50.2 0.06 0.22 26.6 花岗岩10.7 5.2 0.20 0.41 1.2 流体弹性特性——用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量Kf,如果土粒是可压缩的,则要用到比奥模量M。纯净水在室温情况下的Kf值是2 Gpa。其取值依赖于分析的目的。分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的Kf,不用折减。这是由于对于大的Kf流动时间步长很小,并且,力学收敛性也较差。在FLAC3D中用到的流动时间步长, tf与孔隙度n,渗透系数k以及Kf有如下关系: (7.3) 对于可变形流体(多数课本中都是将流体设定为不可压缩的)我们可以通过获得的固结系数来决定改变Kf的结果。 (7.4)其中 其中,——FLAC3D使用的渗透系数 ——渗透系数,单位和速度单位一样(如米/秒) ——水的单位重量

第二节 储层岩石的孔隙度

第二节 储层岩石的孔隙性(3学时) 一、教学目的 掌握孔隙的分类、定义、 测量方法和影响因素。 二、教学重点、难点 教学重点 1、孔隙的分类和定义 教学难点 1、孔隙的分类和定义 三、教法说明 课堂讲授并辅助以多媒体课件展示相关的数据和图表 四、教学内容 本节主要介绍四个方面的问题: 一、孔隙度的定义和分类 二、孔隙度的测量 三、影响孔隙度的因素 (一)、孔隙度的定义和分类 1、孔隙度的定义 岩石的孔隙度是指岩石的孔隙体积与岩石外观体积的比值,常用百分数表示,记为φ 式中: Vr——岩石的骨架体积,米3,cm3 Vp——岩石的孔隙体积,米3,cm3 V f——岩石的视体积,米3,cm3 φ——岩石的孔隙度,% 2、孔隙度的分类 我们已知讲过,孔隙空间可以分为有效孔隙和无效孔隙,所以相应地,孔隙度也可以分为: A、绝对孔隙度,φa 绝对孔隙度是指岩石所有孔隙体积(有效+无效)与岩石视体积之比。 Vap——总孔隙体积,=V有效+V无效 V f——岩石的视体积 φa——岩石的绝对孔隙度

B、有效孔隙度 由于储油岩石孔隙的复杂性,所以在岩石孔隙中,并非所有的孔隙都是有用的,比如说函端孔隙和孔道半径很小(r<0.0001mm)的孔隙,这样的孔隙实际上对流体的流动毫无价值,所以人们将流体能在其中流动且相互连通的孔道称为有效孔隙,有效孔隙与岩石视体积的比值称为有效孔隙度。 Vep——岩石有效孔隙体积 V f——岩石的外观体积 φe——岩石的有效孔隙度 大家值得注意的是:由于流体只能在大于0.0001mm半径的孔道中流动,因此,孔道小于0.0001mm的那些孔隙也被看作是死孔隙,同样被这些微小孔道包围的大孔道当然也属于死孔隙之列。 另外,从上面的分析中我们不难看出,还应当存在一种孔隙度。 C、流动孔隙度φm Vmp——流动孔隙度 V f——岩石的外观体积 φm——流动体积 很显然,流动体积是指有效孔隙中,允许流何流动的那一部分孔道体积。它不仅排除了死孔隙,也包括束缚水占据的部分以及岩石表面吸附流体所占据的孔道部分。可见,在相互连通的孔隙中并不是全部孔道都能让流体流动。直得注意的是被吸附流体的厚度有时相当可观,可把原来流动的孔道堵住,或者使渗重能力下降,这一点在三次采油中尤为重要。 综合上述的三种孔隙度不难看出: φa>φe>φm 对于砂岩:φa≈φe>φm 泥质砂岩:φa>>φe>φm 泥岩:φa>>>φe>φm 岩石孔隙度在油田中应用极广,通常在地质储量计算中用有效孔隙度φe,在计算可采储量时要用流动孔隙度,而绝对孔隙度只有岩石学上的意义,应用很少。 利用岩石的孔隙度(有效孔隙度)还可以用来进行油层评价,一般砂岩φe=10~25% φ 评价 5~10% 差

第三节 储层岩石的渗透性

第三节储层岩石的渗透性 一、名词解释。 1.绝对渗透率(absolute permeability): 2.有效渗透率(effective permeability): 3.气体滑脱效应(gas slip effect): 4.克氏渗透率Kg(Klinkenberg permeability): 5.渗透性(permeability): 6.渗透率非均质系数: 二.判断题。 1.平行于层理面的渗透率小于垂直于层理面的渗透率。() 2.岩石比面愈大,则岩石的绝对渗透率愈小。() 3.平均孔道半径愈小,则滑动效应愈显著。() 4.平均压力愈大,则滑动效应愈显著。() 5.绝对渗透率在数值上低于克氏渗透率。() 6.同一岩石,其气测渗透率必定大于其液测渗透率。() 7.裂缝对储集层岩的改造作用主要体现在其提高储集岩的储集能力这个方面。 () 8.岩石的相对渗透率是没有单位的。() 9.储层埋藏深度越大,渗透率越大。() 10.孔隙度越大,则渗透率越大。() 三.选择题。 1.气体滑动效应随平均孔道半径增加而,随平均流动压力增加而。 A.增强,增强 B.增强,减弱

C.减弱,增强 D.减弱,减弱 ( ) 2.岩石绝对渗透率与岩石的孔隙结构 ,与通过岩石的流体性质 。 A.有关,有关 B.有关,无关 C.无关,有关 D.无关,无关 ( ) 3.若K ,l K ,g K 为同一岩石的绝对渗透率,液测渗透率和气测渗透率,则三者关 系为 A. K >l K >g K B. l K >g K >K C. g K >K >l K D. K >g K >l K ( ) 4.岩石空隙结构的分选性愈 ,迂回度愈 ,则岩石的绝对渗透率愈低。 A.好,大 B.差,大 C.好,小 D.差,小 ( ) 5.砂岩储集岩的渗滤能力主要受__________的形状和大小控制。 A.孔隙 B. 裂隙 C.喉道 D.孔隙空间 ( ) 6.于同一种流体而言,岩石允许其通过的绝对渗透率K 与有效渗透率Ke 之间的 关系是 。 A.K=Ke B.K >Ke C.K <Ke D.不能确定 ( ) 7.岩石比面愈 ,平均孔道半径愈 ,则岩石绝对渗透率愈大。 A.大,大 B.大,小 C.小,大, D.小,小 ( )

试论岩石构造相及其在储层研究中的意义

试论岩石构造相及其在储层研究中的意义1 黄世伟1,张廷山1,陈艳2,王胜3,付孝悦4,胡东风4,姜照勇1 1.西南石油大学资源与环境学院,四川成都(610500) 2.中国石油大庆油田有限责任公司第六采油厂四矿,黑龙江大庆(163453) 3.中法渤海地质服务有限公司,天津塘沽(300452) 4.中国石油化工股份有限公司南方勘探开发分公司,云南昆明(650021) E-mail:dingjin2008@https://www.sodocs.net/doc/0316033398.html, 摘要:近年来取得的油气勘探突破多与古构造活动区密切相关,如渤海湾盆地大港油田千米桥潜山凝析气藏、鄂尔多斯盆地靖边气田、塔里木盆地和田河气田及塔河油田的发现等。多年来的勘探实践证明,适时的古构造隆起对油气运移、聚集和成藏起着十分关键的作用。研究认为构造活动还直接控制着古风化壳岩溶裂缝-洞穴型、裂缝型等多种类型储层或储集体的发育。提出了岩石构造相的概念及分类体系;指出岩石构造相是岩石成岩后在不同时期所受构造作用的物质体现,可以按照岩石地层单元、构造运动期次及构造运动方式对其进行分类。分析了抬升岩溶构造相及节理构造相储层的特征;前者多见于碳酸盐岩,各种溶蚀孔、洞、缝为储集空间,而后者见于不同岩类,构造裂缝及其伴生孔隙为储集空间;两种的物性特征都比较复杂。建议加强储层岩石构造相的研究,开展相关识别技术的开发。 关键词:岩石构造相,构造运动,抬升,岩溶,节理,储层 油气勘探成果证明,世界许多含油气盆地均发育有与古构造活动相关的碳酸盐岩古风化壳含油气层(体);据统计,世界油气的20%~30%与构造不整合面有关[1]。近年来的很多油气勘探突破及相关报道多与古构造活动密切相关,如四川盆地加里东古隆起震旦系气藏[2]、鄂尔多斯盆地靖边气田的发现[3]、塔里木盆地和田河气田的勘探及塔河油田的发现等[4,5]。 古构造,尤其是古隆起的发育无疑对油气运移成藏的全过程起着至关重要的作用;其实,构造活动还直接控制着多种类型储层或储集体的发育。为了引起学界对构造活动对储层发育的控制作用的重视,本文拟提出岩石构造相的概念,并对有利于储层发育的岩石构造相进行例析,以期抛砖引玉。 1. 引言 “相”的概念在地质上首先应用于沉积学,即用沉积相或岩相来表示岩层形成时的沉积环境。构造相(tectonic facies)一词最早由国外学者于20世纪20年代提出(Sander,1921;Stille,1924),国内学者多把它译作“大地构造相”和“构造岩相”。由于研究领域和侧重点,不同学者赋予了它不同的意义[6~15]。 “大地构造相”是大地构造学家提出的概念,是区域构造研究的重点内容之一。“大地构造相”(tectonic facies)一词1924年由Stille首先提出,以后一些地质学家(如Sehaer和Rogers,1987;K.J.Hsu,1991)又重新提出并赋予新的概念。它的提出曾在国际上引起对全球造山带前缘学科的热烈讨论,促进了对大陆造山带深入研究与发展。许靖华[6](1991)提出,山链的基本要素(大地构造相)可用比较解剖构造学方法恢复和重建,认为造山带可解析为按照基本构造样式建造的一套“生物结构”。其后,Robertson[7](1994)将大地构造相定义为可用于对造山带构造环境进行系统性识别的岩性和构造特征的综合;在广义上类似于沉积相,并能与构造沉积体系域概念结合使用。近年来,国内学者李继亮、凌贤长、陈正乐、高坪仙、梁云海、龚全胜都著作介绍了各自在大地构造相方面的研究。 “构造岩相”更多的为岩石学家、沉积学家所使用,是从事矿产地质勘探的学者所关心的1本课题得到四川省重点学科建设基金资助项目(编号: SZD0414)

储层岩石物性及孔隙结构特征

3. 储层岩石物性及孔隙结构特征 本章将重点分析柴西北区N1 2 ~N2 2 储层岩石的孔隙度、渗透率、储集空间类 型及分布、大小等反映储层孔隙结构特征的性质,区域上仍以南翼山、油泉子、尖顶山和咸水泉作为研究对象。 3.1 储层岩石物性分析 3.1.1 南翼山储层岩石物性 南翼山构造位于青海省柴达木盆地西部北区,属于西部坳陷区——茫崖凹陷南翼山背斜带上的一个三级构造。该构造为两翼基本对称的大而平缓的箱状背斜构造,两翼倾角20°左右,构造轴线近北西西向,长轴50km,短轴15km,闭合面积620km2,闭合高度820m。构造的基本模式为两断夹一隆,南翼山背斜的形成主要受控于翼北、翼南两组断层,由于该断层的控制作用,使得本区产生了一个宽缓的背斜构造,主体构造两翼基本对称。浅层(N21以上)构造隆起幅度较中深层要略小,表现为轴部地层较薄,两翼地层增厚的特征。 N21~N22时期柴西北区广泛发育较深湖、浅湖和滨湖相。南翼山地区N21时期为较深湖—浅湖沉积,该地区中部受构造古隆起的控制主要为浅湖沉积;N22时期随着湖盆沉积中心的进一步往北东方向迁移,主要沉积浅湖相。 共收集该区N22~N21储层岩石Ⅰ~Ⅵ油层组18口井钻井取心样品物性分析资料,其中孔隙度1802块、渗透率1897块,碳酸盐含量933块、氯离子含量514块。物性统计结果见表3-1。 21

从统计结果来看,南翼山油田除Ⅰ+Ⅱ油组孔隙度和渗透率稍高些,Ⅲ+Ⅳ和Ⅴ+Ⅵ油层组物性基本一致,均表现出物性总体较差,属典型中-低孔隙度、低-特低渗透率储层。图3-1是该油田统计的所有样品的孔隙度与渗透率关系图。 图3-1 南翼山N22-N21储层岩石孔渗关系 由图3-1可以看出,该区孔渗分布存在明显的两个区域(图中大圈和小圈),小圈内的孔渗稍高些,是浅部Ⅰ+Ⅱ油层组岩石的孔渗分布,孔隙度一般大于25%,而深透率一般在10mD左右。而大圈内是Ⅲ+Ⅳ和Ⅴ+Ⅵ油层组岩石的孔渗分布,孔隙度一般在5%-20%之间,渗透率在0.01mD-10mD之间。 由于南翼山浅部Ⅰ+Ⅱ油层组埋深浅,岩石受压实作用较弱,岩性以泥质粉砂岩、粉砂质泥岩为主,部分保留了原生粒间孔隙,因此储层物性相对较好,但其岩石成岩性极差,泥质含量高,岩石固结疏松,因此给开采带来很大的难度。下部的Ⅲ+Ⅳ和Ⅴ+Ⅵ储层岩石其成岩性明显好于上部Ⅰ+Ⅱ油层组,岩石胶结较致密,岩性以含灰泥岩以及灰质泥岩为主,水平纹层发育,另有部分砾屑、砂屑、生屑、球粒支撑的颗粒灰岩及含藻屑泥灰岩(风暴岩)。此类岩石其原生粒间孔隙几乎全部损失,除仍保存大量微孔隙外,有效储集和渗流空间仅为溶蚀孔隙和微裂缝,而且孔隙和微裂缝内往往被方解石充填,因此物性较差。 另外,在进行孔渗测量的同时,部分样品同时还测定了碳酸盐含量及氯离子含量。通过分析,各油层组碳酸盐含量随深度有增加趋势,而氯离子含量有减少趋势,但变化不明显。各油层组碳酸盐含量平均不到40%,仅有部分样品超过50%。

页岩气储层岩石物理性质研究

页岩气储层岩石物理性质研究 学生:袁亚丽陈改杰蔡家琛李龙指导老师:樊振军 (数理学院) 【摘要】页岩气藏开采首先要对其进行评价,充分考虑其储层性质和开采能力。储层性质主要通过储层参数来描述,通过对相关参数的分析进一步评价储层的生产能力,制定相应的增产措施和开采方案。本实验以龙马溪组页岩为例,采用电阻率测试装置、YS-Hf岩电声波综合测试仪器等仪器对页岩气储层岩石的物理性质进行了测试,并分析总结页岩气储层物理参数对页岩气开采的指导意义,为提高我国页岩气岩石物理实验分析技术和研究水平,为我国页岩气勘探开发奠定坚实的基础。 【关键词】页岩气;电导率;横波;纵波;泊松比 【项目编号】2015AB061 【背景意义】页岩气藏开采首先要对其进行评价,充分考虑其储层性质和开采能力.储层性质主要通过储层参数来描述,通过对相关参数的分析评价储层的生产能力,制定相应的增产措施和开采方案。页岩气储层以纳米级孔隙为主的特性,使得页岩岩石物理基础实验及相关理论模型研究在页岩气储层测井评价中发挥举足轻重的作用。页岩气地质条件和形成机理完全不同于传统石油地质理论,国内外针对页岩气形成机理、富集规律和主控因素等尚未完全搞清。由于页岩储层低孔隙度、超低渗透率、以纳米级孔隙为主的特性,使得页岩气储层岩石物理基础实验及相关理论模型研究在页岩气储层评价中发挥重大的作用,而中国目前在这方面的研究尚处于起步阶段。因此,急需了解和借鉴国外相关实验技术和研究方法,提高我国页岩气岩石物理实验分析技术和研究水平,为我国页岩气勘探开发奠定坚实的基础。. 1.电阻率测井 页岩气储层识别所利用的常规测井方 法有: 自然伽马测井、声波时差测井、体密度测井、中子密度测井、岩性密度测井、电阻率测井、井径测井等[2],本实验采用电阻率的方法对页岩含有机质量进行了评价,有机质不导电,随 TOC含量增加电阻率增大。在测井中可采用电阻率测井对有机质含量进行评价。本实验采用电阻率测试装置对四川沙坝乡龙马溪组的页岩的电阻率进行了测试,数据如表1所示;天津蓟县页岩的数据如表2所示:

岩石物理学及岩石性质

岩石物理学及岩石性质 一、矿物 1.1矿物 矿物是单个元素或若干个元素在一定地质条件下形成的具有特定理化性质的化合物,是构成岩石的基本单元。矿物多数是在地壳(地球)物理化学条件下形成的无机晶质固体,也有少数呈非晶质和胶体。 1.2矿物的主要物理特性 1.2.1光学特性 (1)颜色:矿物的颜色由矿物对入射光的反映呈现出来。一般来说矿物的颜色是矿物对入射光吸收色的补色。 (2)条痕:条痕色指矿物经过在不涂釉的瓷板上擦划,在瓷板上留下的矿物粉粒的颜色。 (3)光泽:光泽是矿物表面对入射光所射的总光量。根据光泽有无金属感,将光泽分为金属光泽与非金属光泽。矿物光泽特性既与矿物组成和结构有关,又与矿物表面特征有关。 (4)透明度:透明度与矿物对矿物透射光的多少有关。 1.2.2力学性质 (1)硬度: 矿物的硬度是指矿物的坚硬程度。一般采用摩氏硬度法鉴别矿物硬度。即采用标准矿物的硬度对未知矿物进行相对硬度的鉴别。摩氏硬度中选取十种矿物作为标准矿物,将矿物分为10级,称为摩氏硬度计。这十种矿物硬度由1级到10级的顺序是:①滑石,②石膏,③方解石,④磷灰石,⑤萤石,⑥正长石,⑦石英,⑧黄玉,⑨刚玉,⑩金刚石。 (2)解理与断口: 矿物受力后产生破裂出现的没有一定方向的不规则的断开面,谓之断口。当晶质体矿物受力断开时,出现一系列平行的、平整的裂面时,称为解理。断口出现的程度跟解理的完善程度相互消长,解理程度越低的矿物越容易形成断口。因此,断口具有了非晶质体的基本含义。解理与晶质体内质点间距有明显的关系,

解理常出现在质点密度较大的方向上。 (3)延展性: 矿物的延展性,也可以称为矿物的韧性。其特征是表现为矿物能被拉成长丝和辗成薄片的特性。这是自然金属元素具有的基本特性。 1.3重要矿物 (1)自然元素矿物:这类矿物较少,其中包括人们所熟知的矿物,如金、铂、自然铜、硫磺、金刚石(见图1)、石墨等。 图1金刚石 (2)硫化物类矿物:本类是金属元素与硫的化合物,大约200多种,Cu、Pb、Mo、Zn、As、Sb、Hg等金属矿床多有此类矿物富集而称,具有很大的经济价值。 方铅矿PbS。闪锌矿ZnS。黄铁矿FeS2(见图2) 图2黄铁矿 (3)氧化物及氢氧化物类矿物:本类矿物分布相当广泛,共约180多种,包括重要的造盐矿物如石英及Fe、Al、Mn、Cr、Ti、Sn、U、Th等的氧化物或氢

相关主题